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1 Aims

•Situated agents/robots need to refer to space
•Spatial descriptions: “the chair is to the left

and close to the table” and “go down the cor-
ridor until the large painting on your right, then
turn left”

•Grounded in several modalities
•Shortcomings of DNN approaches when gener-

ating them
•We need a modular approach to DNNs
•Combines top down (mechanistic) and bottom

up (phenomenological) approaches

2 Shortcomings of the current
models

•DNNs are suited for learning multi-modal rep-
resentations: discrete (words) and continuous
(word embeddings and visual features)

•Generalised learning mechanisms that learn
with relatively high-level (coarse) supervision
through architecture design: bottom-up or
phenomenological approach

•Pattern recognition is not enough
Generated by (Karpathy and Fei-Fei, 2015)

an airplane is parked on the 
tarmac at an airport

a group of people standing on 
top of a beach

a woman riding a horse on a 
dirt road

“...without intuitive physics, intuitive psychology,
compositionality, and causality.” (Lake et al.,
2016)

3 Multi-dimensionality of meaning of
spatial language
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över-functional

•Scene geometry
•Functional world knowledge about dynamic

kinematic routines between objects
•Perspective
• Interaction between agents and with their envi-

ronment
•A theory of how different factors in spatial

language are integrated? (Herskovits, 1987;
Coventry and Garrod, 2005)

4 Modular approaches

•Build a solution in a piece-wise manner and
then integrate

•Deep learning is assisted with domain knowl-
edge expressed as modules that are trained on
data: a top-down or mechanistic approach

5 Promising architectures

• (Regier, 1996): constrained connectionist
network, captures geometric factors and paths
of object motion to predict a description

•Coventry et al. (2005): interconnected net-
works

– Dynamic visual scenes containing three ob-
jects: a teapot pouring tea into a cup

– Geometric arrangement (6 locations) vs
function of objects (tea reaches the con-
tainer, misses the container, no tea), degrees
of pouring

– For each temporal snapshot of the scene, op-
timise the appropriateness score of a spatial
description obtained in subject experiments
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– Transfer learning: modules trained indepen-
dently but are connected to encode represen-
tations

– Object recognition: a neurally inspired vi-
sion processing module that deals with detec-
tion of objects (“what”) and motion (“where”)
of objects from image sequences using an at-
tention mechanism

– Interaction of objects: an Elman recurrent
network that learns the dynamics of the at-
tended objects in the scene over time

– Vision and language fusion: integration of
the grounded visual information (30) with lan-
guage (6 object names and 4 prepositions) to
predict the same visual data, 6 object names,
and ratings for 4 prepositions

•Andreas et al. (2016): sequencing the mod-
ules
– Visual question answering: associate a ques-

tion and visual/database representation with
an answer by finding a sequence of trainable
neural modules using reinforcement learning
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6 Conclusions and future work

•DNNs allow for a great flexibility in combining
top-down specification (hand-designed struc-
tures and rules) and data driven approaches

•Can be modularised to specialise for a particu-
lar task

•Modules can be pre-trained (even on a different
dataset) and used as feature encoders

•Good at information fusion
•Well-suited for modelling spatial language
•Scale the existing neural spatial language mod-

els to a large corpus of image descriptions (Kr-
ishna et al., 2017)
– distortion of object appearance and geometry

by perspective at which an image was taken
– not all spatial configurations of an object pair

in a temporal sequence are there
– different configurations may appear similar
– no direct human judgements scores
– bias to particular kinds of objects and interac-

tions
•Extend the modalities of (Coventry et al., 2005),

e.g. referential games (Lazaridou et al., 2016)
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