
Testing for Coordination Fidelity?

Yehia Abd Alrahman1, Claudio Antares Mezzina2, and Hugo Torres Vieira3

1 University of Gothenburg | Chalmers University of Technology , Sweden
2 Dipartimento di Scienze Pure e Applicate, Università di Urbino, Italy

3 IMT School for Advanced Studies Lucca, Lucca, Italy

Abstract. Operation control in modern distributed systems must rely
on decentralised coordination among system participants. In particular
when the operation control involves critical infrastructures such as power
grids, it is vital to ensure correctness properties of such coordination
mechanisms. In this paper, we present a verification technique that
addresses coordination protocols for power grid operation control. Given
a global protocol specification, we show how we can rely on testing
semantics for the purpose of ensuring protocol fidelity, i.e., to certify that
the interaction among the grid nodes follows the protocol specification.

1 Introduction

Power generation and distribution have been undergoing a revolution in the
past years, on the one hand due to the introduction of different solutions for
generation, on the other hand because of the impact that such solutions have on
distribution grids. More concretely, having a unique power supplier in a grid is
an outdated configuration, instead now the scenario of interest involves multiple
power supplies and distribution to potentially all nodes of the grid, in particular
when renewable energy sources come into play. The real time requirements of
such systems demand automatic mechanisms for operation control, that must be
certifiably reliable given their critical nature.

Clearly, the outdated centralised control models of power grids cannot scale
with the complexity and heterogeneity of emerging configurations. Instead, de-
centralised operation control must rely on the coordination of distributed remote
collaborating parties, for example for the purpose of balancing supply-and-demand.
It is however vital that such coordination mechanisms are encompassed with
techniques that allow to ensure reliability in a rigorous way.

Several proposals of formal models for distributed coordination can be found
in the existing literature, for instance based on tuple spaces (e.g., [9]). We
may also find recent proposals for new paradigms for interaction models, such
as attribute-based communication [1]. The common goal is to support system
modelling in a precise way and exclude unexpected behaviours. Building on such

? Yehia Abd Alrahman is funded by the ERC consolidator grant D-SynMA under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 772459).

2 Y. Abd Alrahman, C.A. Mezzina, H.T. Vieira

characterisation of system behaviour, one may then ensure reliability properties
by means of verification techniques. We distinguish here the approaches based on
behavioural type specifications (cf. [15]) that allow to certify protocol fidelity, i.e.,
that ensure that interacting parties follow a prescribed protocol of interaction.

In this paper, we build on previous work that introduces a model of co-
ordination protocols for power grid operation control [2]. The key principles
underlying the proposal are a global programming model, that allows to reason
on grid behaviour as a whole, and a notion of operation control transference
via interaction. Intuitively, idle nodes react to synchronisations so as to carry
out their part in the operation control, hence interactions authorise nodes much
like interactions in a token ring protocol authorise nodes to access the shared
resource. Together with a notion of network configuration, in particular network
topology and state, the principles above are embedded in a protocol language
that is role-agnostic, i.e., that does not specify a priori the parties involved in
the communications. This means that the development of coordination protocols
may consider generic networks, as expectable, and the concrete association with
the network nodes involved in the communications is carried out on-the-fly at
runtime based on the transference of the operation control.

Likewise to the (global) protocol specification, also the controllers running in
network nodes should be developed targeting a generic setting. The key issue, for
the purpose of ensuring that the node controllers interact among them according
to the protocol specification, is to certify that the implementation of a node
controller exhibits the (local) actions expected at network level. Hence, a notion of
observational reasoning over implementations is required in order to certify that
an implementation complies with a prescribed protocol of interaction. Ideally, such
observational power should be as flexible as possible so to allow for the greatest
number of implementations to be deemed compliant with the specification. We
therefore rely on testing [10] since we may streamline the verification by deriving
the testers from the specification and abstract away from implementation details
that are not pertinent for the protocol validation.

The global protocol language, presented in the next section, is equipped with
an operational semantics that provides the reference model of interaction. We
refer the interested reader to previous work [2] for a more detailed presentation
of the model, but nevertheless the presentation in this paper is self-contained. To
that end we illustrate here the flavour of the language in Section 3 by modelling
a protocol that addresses the reconfiguration of a power grid which is new to this
paper. In Section 4 we present our novel technical development, starting by the
definition of the language model for testers and a technique that may be used to
synthesise testers from global protocol specifications. We then show how we can
rely on a testing semantics to ensure that an implementation complies with a
protocol (Definition 1). Based on this notion of compliance, we may then ensure
protocol fidelity (Theorem 1), which attests that implementations follow the
prescribed protocol of interaction. Finally, Section 5 includes some concluding
remarks.

Testing for Coordination Fidelity 3

Table 1: Global Language Syntax

(Protocol) P ::= 0

| P |Q
| rec X.P

| X

| S

| (id)P

(Summation) S ::= [fd]oiP

| S + S

(Direction) d ∈ {?,N,I, •}

2 A Model for Operation Control Protocols

In this section, we present a global language to model operation control protocols
governing power networks. Interaction in our language is driven by the structure
of the power network, in particular considering radial power networks, i.e., tree-
structures where the root provides power to respective subtree. The interaction
model also accounts for a notion of proximity so as to capture backup links. Thus,
we consider that nodes can interact if they are in a provide/receive power relation
or in a neighbouring relation. In order to identify the target of a synchronisation,
specifications include a direction that determines the type of the relation.

As anticipated in the Introduction, the language model embeds the principle
that control is transferred by means of synchronisations. For example, a node
enabling synchronisation on an action and another one reacting to it may synchro-
nise and the enabling node yields the control to the reacting one. Consequently,
the reacting node may enable the next step of the protocol. We may therefore
consider that active nodes enable synchronisations and, as a consequence of a
synchronisation, transfer the active role to the reacting node. This allows to
specify protocols as a (structured) set of interactions without prescribing the
actual identities of the nodes involved, as these are determined operationally due
to the transference of the active role in synchronisations.

The syntax of the language is given in Table 1. We use id to range over node
identifiers, f to range over synchronisation action labels, and c, i, o, . . . to range
over logical conditions. The protocols, ranged over by P and Q, consist of static
specifications and the active node construct (id)P, which says that the node with
identifier id is active to carry out the protocol P. Static specifications represent
the behaviour of the protocol which is defined by termination 0, fork P |Q to
specify that both P and Q are to be carried out, and infinite behaviour defined in
terms of the recursion rec X.P and recursion variable X, with the usual meaning.
Static specifications also include synchronisation summations (S, . . .), where

4 Y. Abd Alrahman, C.A. Mezzina, H.T. Vieira

S1 + S2 states that either S1 or S2 is to be carried out (exclusively), and where
[fd]oi represents a synchronisation action: a node active on [fd]oiP that satisfies
condition o may synchronise on f with the node(s) identified by the direction
d for which condition i holds, leading to the activation of the latter node(s) on
protocol P. Intuitively, the node active on [fd]oiP enables the synchronisation,
which results in the reaction of the targeted nodes that are activated to carry
out the continuation protocol P.

A direction d specifies the target(s) of a synchronisation; ? targets all (children)
of the enabling node; N targets the parent; I targets a neighbour; and • targets
the enabler itself and is used to capture local computation steps. We remark
that since one node can supply power to several others, synchronisations with ?
direction may actually involve several reacting nodes. Any ? synchronisations
are therefore interpreted as broadcasts, i.e., ? targets all (direct) children that
satisfy the reacting condition, which can be the empty set (e.g., the node has
no children or none of them satisfy the reacting condition). Binary interaction,
on the other hand, is interpreted as synchronisation and can only occur if the
identified target node satisfies the reacting condition.

Example 1. Consider the protocol: (id)([f1
?]o1i1 P1 + [f2

•]o2i2 (P2 |P3)) which speci-
fies that node id is active to synchronise on f1 or f2, exclusively.

There are two language mechanisms, illustrated in Example 1, that may introduce
concurrency in the model. One is the broadcast which may lead to the activation
of several nodes: in the example, each one of the nodes reacting to f1 will carry
out P1. Another is the fork construct which allows a node to concurrently carry
out two subprotocols: in the example, a node active on (P2 |P3) will carry out
both P2 and P3, and potentially synchronise with different nodes in each one.

The semantics of the language relies on a structural congruence relation ≡.
Structural congruence is the least congruence relation on protocols that satisfies
the rules given in Table 2. The first set of rules states that fork and summation are
associative and commutative, and that fork has identity element 0 (notice that
0 is syntactically excluded from summations). Rule (id)(P |Q) ≡ (id)P | (id)Q
states that a node id is active on both branches of the fork construct. Rule
(id1)(id2)P ≡ (id2)(id1)P states that the order of active nodes is immaterial
and rule (id)0 ≡ 0 states that a node active on 0 is equivalent to 0. Intuitively,
structural congruence rewriting allows active nodes to “float” in the term towards
the synchronisation actions. The rule for recursion unfolding is standard.

Example 2. Considering the active node distribution in a fork, we have that
[f1

?]o1i1 P1 + [f2
•]o2i2 (id)(P2 |P3) ≡ [f1

?]o1i1 P1 + [f2
•]o2i2 ((id)P2 | (id)P3)

The definition of the semantics depends on the state of the network and on the
fact that nodes satisfy certain logical conditions. We consider state information
for each node so as to capture both “local” information about the topology (such
as the identities of the power provider and of the set of neighbours) and other
information relevant for condition assessment (such as the status of the power
supply). The network state, denoted by ∆, is a mapping from node identifiers to
states, where a state, denoted by s, is a register id [id ′, t, n, k, a, e, g] containing the

Testing for Coordination Fidelity 5

Table 2: Structural Congruence

P |0 ≡ P P1 | (P2 |P3) ≡ (P1 |P2) |P3 P1 |P2 ≡ P2 |P1

rec X.P ≡ P[rec X.P/X] S1 + (S2 + S3) ≡ (S1 + S2) + S3 S1 + S2 ≡ S2 + S1

(id)(P |Q) ≡ (id)P | (id)Q (id1)(id2)P ≡ (id2)(id1)P (id)0 ≡ 0

following information: id is the node identifier; id ′ identifies the power provider;
t captures the status of the input power connection; n is the set of identifiers of
neighbouring nodes; k is the power supply capacity of the node; a is the number
of power supply links (i.e., the number of nodes that receive power from this
one); g is the identity of a nearby power generator; and e is the number of power
supply links that are in a faulty state. We consider that the elements in the
register are natural numbers (and a set of natural numbers for the neighbours)
albeit in the examples we use some special symbols (e.g., ∞).

We check conditions against states for the purpose of allowing synchronisations.
Given a state s we denote by s |= c that state s satisfies condition c, where we
leave the underlying logic unspecified. For example, we may say that s |= (k > 0)
to check that s has capacity greater than 0. We also consider a notion of side-
effects, in the sense that synchronisation actions may result in state changes so as
to model system evolution. By upd(id , id ′, fd, ∆) we denote the operation that
yields the network state obtained by updating ∆ considering node id synchronises
on f with id ′, hence the update regards the side-effects of f in the involved
nodes. Namely, given ∆ = (∆′, id 7→ s, id ′ 7→ s′) we have that upd(id , id ′, fd, ∆)
is defined as (∆′, id 7→ fd!(s, id ′), id ′ 7→ fd?(s′, id)), where fd!(s, id ′) modifies
state s according to the side-effects of enabling fd and considering id ′ is the
reactive node (likewise for the reacting update, distinguished by ?). We consider
side-effects only for binary synchronisations (I and N directions), where both
interacting parties are known, but state changes could also be considered for
other directions following similar lines.

The definition of the semantics relies on an auxiliary operation, denoted
d(∆, id), that yields the recipient(s) of a synchronisation action, given the di-
rection d, the network state ∆ and the enabler of the action id . The operation
yields the power provider of a node in case the direction is N, (any) one of the
neighbours in case the direction is I, all the nodes that have as parent the enabler
in case the direction is ?, and is undefined for direction •.

The operational semantics is given in terms of configurations consisting
of a protocol P and a network state ∆. We use ∆;P −→ ∆′;P′ to represent
that configuration ∆;P evolves in one step to configuration ∆′;P′, potentially
involving state changes (∆ and ∆′ may differ) and (necessarily) involving a step
in the protocol from P to P′.

The semantics of our language is reported in Table 3. Rule Bin captures binary
interaction where the direction (d) of the synchronisation action targets either
the parent (N) or a neighbour (I). Protocol (id)([fd]oiP+ S) states that node id
can enable a synchronisation on f provided that the state of id satisfies condition

6 Y. Abd Alrahman, C.A. Mezzina, H.T. Vieira

Table 3: Reduction Rules

d ∈ {N,I} ∆(id) |= o d(∆, id) = id ′ ∆(id ′) |= i ∆′ = upd(id , id ′, fd,∆)

∆; (id)([fd]oiP + S) −→ ∆′; [fd]oi ((id
′)P) + S

(Bin)

∆(id) |= o ? (∆, id) = I ′ I = {id ′ | id ′ ∈ I ′ ∧∆(id ′) |= i}
∆; (id)([f?]oiP + S) −→ ∆′; [f?]oi ((I)P) + S

(Brd)

∆(id) |= o ∆(id) |= i

∆; (id)([f•]oiP + S) −→ ∆; [f•]oi ((id)P) + S
(Loc)

∆;P −→ ∆′;P′

∆; [fd]oiP −→ ∆′; [fd]oiP
′ (Synch)

∆;P −→ ∆′;P′

∆; (id)P −→ ∆′; (id)P′
(Id)

∆;P1 −→ ∆′;P′1

∆;P1 + P2 −→ ∆′;P′1 + P2

(Sum)
∆;P1 −→ ∆′;P′1

∆;P1 |P2 −→ ∆′;P′1 |P2

(Par)

P ≡ P′ ∆;P′ −→ ∆′;Q′ Q′ ≡ Q

∆;P −→ ∆′;Q
(Struct)

o, as specified in premise ∆(id) |= o. Furthermore, the reacting node id ′, specified
in the premise d(∆, id) = id ′, is required to satisfy condition i. As a result of
the synchronisation, the configuration evolves to [fd]oi ((id ′)P) + S, specifying
that id ′ is active on the continuation protocol P. The resulting network state
is obtained by considering the side-effects of the synchronisation. Note that the
synchronisation action construct is preserved after the respective synchronisation
(see Example 3). We omit the rule that captures the case for the singleton
summation (likewise for Brd and Loc).

Rule Brd captures broadcast interaction (?) and is similar to rule Bin. Except
for the absence of side-effects, the main difference is that now a set of potential
reacting nodes is identified (I ′ denotes a set of node identifiers), out of which all
those satisfying condition i are singled out (I). The latter are activated to carry
the continuation protocol. We use (I) to abbreviate (id1) . . . (idm) considering
I = id1, . . . , idm. We remark that the set of reacting nodes may be empty (e.g., if
none of the potential ones satisfies condition i), in which case (∅)P is defined as P.
Note that the reduction step nevertheless takes place, even without reacting nodes,
modelling a non-blocking broadcast. This differs from the binary interaction
which is blocked until all conditions are met, including the reacting one.

Rule Loc captures local computation steps (•). For the sake of uniformity
we keep (both) output and input conditions. Note that the node that carries
out the f step retains control, i.e., the same id active in f is activated in the
continuation P. Like for broadcast, we consider local steps do not involve any
state update.

Rules for language closure state that nodes can be active at any stage of
the protocol, hence reduction may take place at any level, including after a
synchronisation action (rule Synch) and within a summation (rule Sum). By

Testing for Coordination Fidelity 7

preserving the structure of the protocol, including synchronisation actions that
have been carried out, we allow for participants to be active on (exactly) the
same stage of the protocol simultaneously and at different moments in time, as
the next example shows. Rules Id and Par follow the same principle and finally,
rule Struct closes reduction under structural congruence.

Example 3. Assuming that node id2 satisfies conditions i2 and o2 in ∆ we may
derive, using axiom Loc, rule Sum, rule Struct, and rule Id the reduction:

∆; (id1)(id2)([f1
?]o1i1 P1 + [f2

•]o2i2 P2) −→ ∆; (id1)([f1
?]o1i1 P1 + [f2

•]o2i2 (id2)P2)

where node id2 carries out the f2 local action. Notice that node id1 is still active
on the summation protocol, and both synchronisations are possible regardless of
the summation branch involved in the reduction step involving id2 shown above.

Since we are interested in developing protocols that may be used in different
networks, we will focus on static protocols for the purpose of the development,
where static protocols are given by the (id)-free fragment of the language. Then,
to represent a concrete operating system, active nodes may be added at “top-level”
to the static specification (e.g., (id)Ps where Ps denotes a static specification,
hence does not specify any active nodes), together with a concrete network state
(e.g., ∆; (id)Ps).

Also, to simplify protocol design, we consider that action labels are unique
(up to recursion unfolding) and that, as usual, recursion is guarded by (at least)
one synchronisation action (excluding, e.g., rec X.X). In the remainder, we only
consider well-formed protocols that follow the above guidelines, namely: originate
from specifications where recursion is guarded, all action labels are distinct, and
where the active node construct only appears top-level (e.g., (id1) . . . (idk)Ps).

3 Management of Distributed Generation in Power Grids

In this section, we model a protocol for managing distributed generation when
major faults in power sources happen. The goal is to find a replacement for failed
power sources and transfer the control to it.

We consider a cross section of a radial network of a power grid in Fig. 1.
The network consists of a primary power substation PS, two generators Hydro
and Wind Farms, and six secondary power substations, numbered from 1 to
6. The type of this network is called radial because every substation has only
one incoming power input and possibly multiple power outputs. Each secondary
substation has fault indicators (fault • and no fault ◦), line switches (closed | and
open ‖), and an embedded controller that implements the substation’s behaviour
and manages interactions with others. Fig. 1 illustrates a configuration where
the secondary substations 1-5 are energised by the primary substation PS, while
substation 6 is energised by Wind Farms. Secondary substations cannot operate
the switches or exchange information without authorisation from the primary
substation which supplies the power.

8 Y. Abd Alrahman, C.A. Mezzina, H.T. Vieira

Fig. 1: Power Distribution Grid

Let us consider that the power source of the primary substation PS failed
which caused a blackout in its domain. The substation PS initiates a reconfigura-
tion protocol by synchronising with its directly connected secondary substations
and delegates them to locate the substation managing the hydroelectric generator
so to transfer the control to it and restore power. To simplify the presentation,
our reconfiguration protocol is designed specifically to handle the configuration
in Fig. 1. However, it can be easily extended to handle any configuration.

Every substation delegates the substations connected to its output power
lines to collaborate to locate the generator. Once the signal is received by the
substation managing the generator (in our case, substation 4), it reconfigures
itself, triggers the generator, and the relocation protocol starts. A swap signal is
propagated in the direction of PS to reconfigure the connections of secondary
substations to the direction of the new source. Once this signal is received by PS,
it sends a permit signal to the substation where the signal came from so that the
control is transferred to the new source. At this point the transference protocol
starts and a release signal is propagated to the new source. Once received, the
new source claims the manager role and retains the control.

We fix the following terminology before we model the protocol in our global
language: the state of a source link t can be 0 (to indicate a faulty link, i.e., no
power) or 1 otherwise. We use z as the source id when a substation is not connected
to a power supply. We also use ∞ in place of the source for all primary stations.
Initially, substations, with direct links to backup generators, e.g., substation 4,
record the generators identities in their states regardless of their current sources;
otherwise the generation field is reset to ⊥, e.g., substation 3. The initial state
of each substation follows from Fig. 1. For instance, substations 3, 4, and PS
have the following initial states 3[2, 0, {2, 4}, 1, 1, 0,⊥], 4[3, 0, {3, 6}, 1, 0, 0, H],
and PS[∞, 0, {1}, 2, 1, 0,⊥], respectively.

Testing for Coordination Fidelity 9

The reconfiguration protocol is reported below:

Reconfiguration , [Unlink?]o1i1 rec X.([Locate?]o2i1X + [FoundN]o3i1 Relocation)

The protocol states that Unlink is broadcasted to the children of the enabling
substation, after which a recursive protocol is activated on the children. The
latter states that either Locate is broadcasted to the children of the enabling
substation, after which the recursive protocol starts over, or Found is sent to the
parent which consequently carries out the Relocation protocol.

A substation enabled on Reconfiguration enables Unlink only when its
source link is faulty and it serves as a primary substation, i.e., o1 = (t = 0)∧ (i =
∞). Furthermore, a reactive/receiving substation can always synchronise on
Unlink, i.e., i1 = true.

The children carry out the continuation protocol which is responsible for
finding a replacement power source and guaranteeing safe reconfiguration of the
network. A child can broadcast Locate only if it cannot serve as a replacement
power source, i.e., o2 = (g 6= H); otherwise, when o3 = (g = H), Found is sent
to the parent. Note that Locate has no side-effects on both sides while Found
requires that the enabling station sets its source to ∞ and the receiver sets its
generation field (g) to the id of the enabling substation. Note that once Found
is executed, the substation triggers the hydroelectric generator to supply power
and marks itself as a new replacement. The power will be restored once the last
substation in the network segment is configured correctly. Furthermore, both
actions can always be received. The relocation protocol is reported below:

Relocation , rec Y.([SwapN]o4i1 Y + [PermitI]o5i2 Transference)

Except for the primary substation, any substation enabled on Relocation can
send Swap, i.e., o4 = (i 6=∞); otherwise, when o5 = (i =∞), Permit is sent to
its neighbour which would carry out the Transference protocol. The receiver
can always synchronise on Swap while for Permit the generation field (g) and
the source (i) of the substation should be equal, i.e., i2 = (i = g). Swap requires
that senders sets the value of their source to the one of their generation field.
The side-effects of Swap on the receiver are the same as of Found. For Permit,
the enabling station disconnects itself and sets its source to z. Furthermore,
Permit requires that the receiver resets its generation field. The Transference
protocol is reported below:

Transference , rec Z.([ReleaseN]o6i1 Z + [Claim•]o7i1 Reconfiguration)

Similarly, the Transference protocol propagates a Release signal to release
the manager role of the network segment to the new source. Once the signal
is received, the new substation declares the end of the protocol by enabling
Claim which is a local signal. This way, the substation retains the control and
becomes ready to carry out the whole Reconfiguration protocol. Except for
the replacement substation, any substation can enable Release, i.e., o6 = (g 6= H);
otherwise, when o7 = (g = H), Claim is enabled. Note that Release only requires
that the receiver resets its generation field while Claim has not side-effects at all.

10 Y. Abd Alrahman, C.A. Mezzina, H.T. Vieira

Fig. 2: Target Language Syntax

Tests T ::= T |T parallel
| 0 termination
| rec X.T recursion
| X recursion variable
| Σi∈I αi?.Ti input summation
| α!.T output
|

√
success

Action prefix α ::= 〈c〉fd

The static protocol Reconfiguration abstracts from the concrete net-
work configuration. To represent a concrete network, active substations iden-
tifiers must be added at “top-level” together with a network state ∆, i.e.,
∆; (PS)Reconfiguration. Note that the primary station, PS, is initially active
because in our scenario it is the only station that can initiate the protocol.

4 Testing for Protocol Fidelity

In this section, we present a technique ensuring that individual node controllers
follow a global protocol specification. We start by introducing a testing language
that provides a means of interaction with an implementation. Implementations
are left abstract as our focus is on the verification technique that only relies that
such implementations exhibit determined actions. Then, we show how we can
synthesise testers out of a global protocol specification, building on which we
introduce a notion of protocol compliance that characterises implementations
that pass the synthesised tests. We then present our protocol fidelity result
(Theorem 1) that attests implementations compliant with a protocol exhibit the
local actions prescribed by the global specification.

The syntax of tests is given in Figure 2. A test can be a parallel composition
T |T , the terminated process 0, the recursive definition rec X.T , a recursion
variable X, an input summation Σi∈I αi?.Ti, an output α!.T and the success

√
.

We remark that since we are interested in interacting with an implementation,
we do not expect interaction among different tests. Hence, a parallel composition
of tests captures two simultaneously active tests, but where no interaction can
occur, as will be made clear by the semantics of the language. Furthermore, we
remark on the

√
introduced for the sake of signalling the success of a test. Finally,

notice that action prefixes (〈c〉fd) are defined so as to match the observables
expected in the global interaction, identifying the synchronisation label f , the
direction d and the condition c that either refers to input or output conditions.

The semantics of testers is defined in terms of the following observable actions:
λ ::= α! | α? |

√
. An observation λ can then be an input or an output or a success

label. We then define the semantics of tests by the rules given in Fig. 3, which
we now briefly discuss. Rule ParL allows the left part of a parallel composition

Testing for Coordination Fidelity 11

Fig. 3: Tester Language LTS

T1
λ−→ T ′1 λ 6=

√

T1 |T2
λ−→ T ′1 |T2

ParL
T1

√
−→ T ′1 T2

√
−→ T ′2

T1 |T2

√
−→ T ′1 |T ′2

ParS

T [rec X.T/X]
λ−→ T ′

rec X.T
λ−→ T ′

Rec √ √
−→ 0

Success

j ∈ I

Σi∈I αi?.Ti
αj?−−→ Tj

Input
α!.T

α!−→ T
Output

Fig. 4: Testing Semantics

I
α!−→ I ′ T

α?−→ T ′

I ‖ T τ−→ I ′ ‖ T ′
CommL

I
τ−→ I ′

I ‖ T τ−→ I ′ ‖ T
Internal

to evolve by itself by showing a label different from the success (
√

) one. The
symmetric rule for the right part of the parallel composition is omitted. The
only way a success label can be propagated through a parallel composition is
when both parts are able to produce such label as reported in ParS. Rule Rec
deals with recursive processes in a standard way. Rule Success allows a success
prefix to reduce to the idle process, while rules Input and Output show how
the prefixes exhibit the corresponding labels and activate the continuation. We

say test T succeeds, written T ↓√, if T
√
−→ T ′ for some T ′.

As one can notice, in the given LTS there is no rule for synchronisation. As
previously announced, this is due to our goal of testing implementations, so
the goal is to allow testers to interact with an implementation and not among
themselves. We abstract away from how implementations are defined, and consider
implementations, ranged over by I, as black-boxes that exhibit labels of the form
α!, α? and τ . For the purpose of testing an implementation, we define a new level
of semantics given by the rules in Figure 4, describing the interactions between a
test T and an implementation I, where we use ‖ to specify the parallel composition
operator for the testing level. We consider that the actions of implementations
and tester are identical (up to the represented duality), which in particular
means that the conditions are exactly the same. Considering logical equivalence
instead would be more appropriate to support more flexibility, but for the sake of
simplifying the presentation we adopt here syntactic equality. We leave for future
work the refinement of this notion, together with a more in depth exploration
of the possible logical support for the correspondence, and consider here that
implementations refer to conditions as specified in the protocol.

The rules of Figure 4 on the one hand capture the interaction between test
and implementation (rule CommL and the omitted symmetric version), and on

12 Y. Abd Alrahman, C.A. Mezzina, H.T. Vieira

Table 4: Tester Synthesis

[[[fd]oiP]]?σ , 〈i〉fd!.[[P]]!σ | [[P]]?σ iSynch

[[[fd]oiP]]!σ , 〈o〉fd?.
√

oSynch

[[0]]rσ , 0 pNil

[[X]]?σ , 0 pVar

[[X]]!σ , [[P]]!σ (σ(X) = P) oVar

[[rec X.P]]rσ , [[P]]rσ[X 7→P] pRec

[[P |Q]]rσ , [[P]]rσ | [[Q]]rσ pPar

[[S1 + S2]]!σ , [[S1]]!σ + [[S2]]!σ oSum

[[S1 + S2]]?σ , [[S1]]?σ | [[S2]]?σ pSum

the other hand abstract away from the implementation internal behaviours (rule
Internal). The latter, conceivably, can be further generalised by disregarding
actions that are not relevant for the particular tester considered, e.g., by identi-
fying the set of labels of relevant actions and, like for τ , allowing evolutions of
the implementation that carry a non-relevant action label to be interleaved.

For the purpose of defining protocol compliance, we rely on the traces observed
for the composition of an implementation and a test. In order to abstract from the
internal moves of implementations, we rely on the weak variant of the transitions,
defined next following standard lines. As usual, we add τ to the set of relevant
observations (because protocols also involve local steps) and use λτ to represent

either a λ or τ . We then denote by I ‖ T λτ
=⇒ I ′ ‖ T ′ the evolution from I ‖ T

to I ′ ‖ T ′ comprising a (possibly empty) sequence of τ steps and a λτ , hence

I ‖ T τ−→ · · · τ−→ λτ−−→ τ−→ · · · τ−→ I ′ ‖ T ′. Also, we denote by I ‖ T λ̃τ
=⇒ In ‖ Tn the

sequence I ‖ T λτ1=⇒ I1 ‖ T1
λτ2=⇒ · · · λ

τ
n=⇒ In ‖ Tn when λ̃τ = λτ1 , · · · , λτn.

We now show how we can automatically generate testers out of a protocol
specification. Tests T are synthesised directly from a protocol P through the
function [[P]]rσ defined in Table 4, where σ is a mapping from recursion variables
to protocols and r identifies the type of projection. When r is ? the result of
the projection tests if the implementation has an (expected) input. On the other
hand when r is ! the result of the projection tests if the implementation has
an (expected) output. The result of the (combination of these two types of)
projection allows one to verify static protocols (cf. Section 2).

We briefly discuss the definition of projection. In case iSynch, the projection
yields the output (〈i〉fd!.[[P]]!σ) that is intended to interact with the expected
corresponding input. For this purpose, notice that the condition specified in the
tester output is precisely the one expected for the input i. Also, the continuation
of the tester output ([[P]]!σ) checks if the implementation can afterwards (i.e.,
after the input) exhibit the active behaviour of the continuation. Therefore
the type of the projection for the continuation is !, and hence will test the
implementation exhibits the expected outputs. Finally, the remainder of the
protocol is (inductively) projected for generating testers for other inputs ([[P]]?σ),

Testing for Coordination Fidelity 13

which are collected in parallel so inputs are tested without a causality relation,
while the causality is present between the input and the output reactions.

In case oSynch the yielded tester input specifies the condition of the output
expected from the implementation. If the implementation matches the expectancy
then the synchronisation may occur, in which case (this part of) the test succeeds
and hence the continuation of the tester input is

√
. The remaining cases show

how the two types of projections inductively proceed in the structure of the
protocol so as to generate the tester inputs and outputs for the whole of the
protocol. We remark that σ is used to generate the ! projection when a recursion
variable occurs in the continuation of a synchronisation action (cf., pRec and
oVar).

We may now define the notion of protocol compliance in a way similar to
the notion of passing a test [10]. Protocol compliance relies on the ?-projection
to check if all expected inputs may be exhibited by the implementation, while
?-projection relies on !-projection to check for the expected outputs.

Definition 1 (Protocol Compliance). We say implementation I is compliant
with protocol P , written (I ‖ P) ⇓√, if

I ‖ [[P]]?∅
τ
=⇒ I ′ ‖ T ′ and T ′ ↓√

The key idea of protocol compliance is to rely on an extensional observational
characterisation which allows to abstract away from implementation details.

The compositionality principle stated next is of particular use in our setting,
considering different protocols are developed using different action label alphabets
(cf. well-formed protocols). We remark that the projection is conservative in this
respect, i.e., protocols with disjoint action label alphabets yield testers that also
have disjoint action label alphabets. We then say that two tests T1 and T2 are
non-interfering if the sets of their action prefixes are disjoint, denoted by T1#T2.

Proposition 1 (Compositionality). If I passes tests T1 and T2 with T1#T2,
then I passes test T1 |T2.

Proposition 1 thus allows to focus the verification of implementations consid-
ering each protocol separately, given an implementation that is compliant with
two protocols individually will also be compliant with the (parallel) combination
of the protocols.

As mentioned previously, protocol compliance addresses static protocols, hence
ensures that implementations exhibit all expected reactions. For the purpose of
our protocol fidelity result, we need to have a means of specifying the initial
enabling behaviour that is introduced by adding to a static protocol active nodes
at top-level. To this end, we define a third kind of projection, shown in Table 5,
that yields the outputs corresponding to the top-level actions of a protocol.

Example 4. To illustrate the synthesis of a test from a protocol specification, we
consider a simplified version of the Reconfiguration protocol in Section 3 as
follows:

Reconfiguration , [Unlink?]o1i1 rec X.([Locate?]o2i1X + [FoundN]o3i1 0)

14 Y. Abd Alrahman, C.A. Mezzina, H.T. Vieira

Table 5: Enabler Synthesis

[[[fd]oiP]]eσ , 〈o〉fd!.0 iSynch

[[0]]eσ , 0 iNil

[[X]]eσ , [[P]]eσ (σ(X) = P) iVar

[[rec X.P]]eσ , [[P]]eσ[X 7→P] iRec

[[P |Q]]eσ , [[P]]eσ | [[Q]]eσ pPar

[[S1 + S2]]eσ , [[S1]]eσ + [[S2]]eσ iSum

The e-synthesized test according to Table 5 is:

〈o1〉Unlink?!.0

The ?-synthesized test according to Table 4 is:

〈i1〉Unlink?!.(〈o2〉Locate??.
√

+ 〈o3〉FoundN?.
√

) |
〈i1〉Locate?!.(〈o2〉Locate??.

√
+ 〈o3〉FoundN?.

√
) | 〈i1〉FoundN?.0

At this point we have all the technical ingredients on the implementation
side that allow to characterise protocol fidelity. However, we need to revisit the
semantics of the global language, instrumenting it in a way so that evolutions
(reductions) carry the respective information (in labels). Namely, we introduce
labels that reveal the interacting parties and the synchronisation action that
triggered the reduction step. Such labels thus refer to both parties involved in an
interaction, while our purpose is to ensure that the implementation of each one
of such parties exhibits the prescribed behaviours. So, we need a means to focus
a global label on an individual party. Furthermore, we introduce traces of global
(labeled) reductions and define a way to trim such traces so as to focus on the
contributions of a specific party. All of the above are defined next.

Definition 2 (Labeled Reduction). Given a reduction ∆;P −→ ∆′;P ′ derived
using the rules of Table 3 we write

1. ∆;P
(id)[fd]oi (id

′)−−−−−−−−→ ∆′;P ′ if the derivation has axiom Bin;

2. ∆;P
(id)[fd]oi (Ĩ)−−−−−−−→ ∆′;P ′ if the derivation has axiom Brd;

3. ∆;P
τ−→ ∆′;P ′ if the derivation has axiom Loc.

We use ξ to range over such labels.

We now define the operation that allow us to focus global protocol labels on
an individual participant. Given a protocol label ξ we define (ξ) id as follows:

((id)[fd]oi (id
′)) id = !〈o〉fd ((id ′)[fd]oi (id)) id = ?〈i〉fd

((id)[fd]oi (Ĩ)) id = !〈o〉fd ((id ′)[fd]oi (Ĩ)) id = ?〈i〉fd if id ∈ Ĩ
(τ) id = τ (ξ) id = ε otherwise

Testing for Coordination Fidelity 15

We also extend the definition of (·) id for a trace ξ̃ as (ξ̃) id = (ξ) id · (ξ̃′) id
when ξ̃ is ξ, ξ̃′, using ‘·’ to represent trace concatenation and taking ε as the
idempotent element (empty trace). We may now state our main result.

Theorem 1 (Protocol Fidelity). Let ∆ be a network state, id a node identifier,
P a protocol and I an implementation such that (I ‖ P) ⇓√. We have that:

if ∆; (id)P
ξ1−→ ∆1;P1

ξ2−→ · · · ξn−→ ∆n;Pn

then I | [[P]]e∅
λ̃
=⇒ I ′ |T ′ with (ξ̃) id = λ̃

Notice that in Theorem 1 we use the e type of projection to inject the initial
behaviours correspondent to the ones obtained by the top-level active node. This
is because the implementation I is ensured to exhibit the actions of the static
part of the protocol P but not the enabling actions corresponding to (id)P . So we
consider the implementation is composed (in parallel) with the implementation,
where synchronisation between them is not supported (hence, parallel supports
interleaving here). The result ensures that any sequence of actions prescribed for
any node at the level of the global trace is matched by the corresponding actions
of the implementation composed with the initial enabling behaviour.

Example 5. We return to the protocol shown in Example 4, namely:

Reconfiguration , [Unlink?]o1i1 rec X.([Locate?]o2i1X + [FoundN]o3i1 0)

Let I be an implementation such that (I ‖ Reconfiguration) ⇓√. Consid-
erin the e-synthesized test shown in Example 4 we have that Theorem 1 ensures
that I | 〈o1〉Unlink?!.0 can exhibit the actions corresponding to the reductions of
∆; (id)Reconfiguration. Notice that the initial action of id is given by the
e-projection, while remaining actions will be exhibited by the implementation
since it complies to the test given by the ?-projection (see Example 4).

We remark that the inverse direction of the implication stated in Theorem 1
does not hold in general considering the protocol compliance given in Definition 1.
Intuitively, consider that implementations can exhibit more actions than the
ones prescribed by the tests, e.g., an implementation can exhibit simultaneously
(in parallel) two actions while the corresponding test prescribes that they must
happen in sequence. The strict correspondence is naturally a desirable property
that we leave for future work. We also remark that we focus here on observable
actions and do not introduce the state information explicitly (which may be
separated from the operational implementation). Refining the statement so as to
consider explicitly the state information may allow us to abstract away from the
logical conditions currently under consideration in the testing that supports the
protocol compliance, and explore different notions of logical support for assessing
when implementations meet the specifications.

16 Y. Abd Alrahman, C.A. Mezzina, H.T. Vieira

5 Concluding remarks

Ensuring that implementations meet specifications is of crucial importance in
software development. Techniques used to guarantee such correspondence should
be flexible enough to allow for a great number of implementations to (safely)
match a specification, so as to promote their usability. For the purpose of analysing
interacting systems, reasoning in terms of observational equivalences has been
used ever since the seminal work of Milner (cf. [17]). The key idea is that systems
are deemed equivalent if an external observer cannot distinguish between them.
Testing [10] embeds this principle and seems particularly fit for the purpose of
ensuring that implementations meet specifications, given that the testers may
be crafted so as to faithfully represent the specifications. The idea is that two
implementations are equivalent if no specification can distinguish between them.

The above principle is at the basis of the development presented in this
paper. The goal is to allow for several implementations to conform to a protocol
specification, abstracting away from details that do not compromise the safe
operation of the system. We have merely scratched the surface of the advantages
of using testing in this setting, in particular when taking into account the
broadness of the related literature (e.g., [3–5,8,11–14,16,18,19]). However, we can
already state a protocol fidelity result that ensures compliant implementations
exhibit the actions prescribed by the protocol specifications. Introducing a notion
of testing preorder, relating implementations that pass all the tests of other
implementations, we may also characterise a substitution principle for the safe
replacement of controller implementations.

Our global protocol language can be anchored to the proposal of choreographic
programming [6], in the sense that programming is carried out directly at the
protocol language level, and operationally correspondent distributed implementa-
tions can be automatically generated from the global specification (cf. [2]). We
take a different perspective here, admitting that node controllers are developed as
usual in a separate way with respect to the specification. In fact, we view imple-
mentations in an opaque way so as to allow for greater generality, e.g., allowing
for implementations that interleave their participation in different protocols.

Nevertheless, following lines similar to previous work [2], given a protocol
specification we may consider a distributed network where each node is equipped
with a (compliant) controller implementation. Then, we may also show that the
yielded distributed model operationally corresponds to the global (centralised)
model of Section 2.

A tribute to Rocco De Nicola. This paper is a contribution to the Festschrift
that celebrates Rocco De Nicola’s 65th birthday. We tried to gather topics in
which Rocco has been a pioneer and a prolific author: coordination models and
testing equivalences. Coordination is the goal of the model presented in Section 2
while Section 4 is undoubtedly inspired by Rocco’s seminal work on testing
pre-orders [7, 10]. Besides being a very prolific and influential scientist, Rocco
has also been a mentor and a source of inspiration for many researchers. His
dedication to research and his quest for scientific rigour will inspire generations.

Testing for Coordination Fidelity 17

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: Formal Techniques for Distributed Objects, Components, and
Systems - 36th IFIP WG 6.1 International Conference, FORTE’16. pp. 1–18 (2016)

2. Alrahman, Y.A., Vieira, H.T.: Operation control protocols in power distribution
grids. CoRR abs/1811.01942 (2018)

3. Bernardi, G., Hennessy, M.: Mutually testing processes. Logical Methods in Com-
puter Science 11(2) (2015)

4. Boreale, M., De Nicola, R.: Testing equivalence for mobile processes. Inf. Comput.
120(2), 279–303 (1995)

5. Boreale, M., De Nicola, R., Pugliese, R.: Trace and testing equivalence on asyn-
chronous processes. Inf. Comput. 172(2), 139–164 (2002)

6. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: The 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL’13. pp. 263–274. ACM (2013)

7. De Nicola, R.: Testing equivalences and fully abstract models for communicating
systems. Ph.D. thesis, University of Edinburgh, UK (1986), http://ethos.bl.
uk/OrderDetails.do?uin=uk.bl.ethos.649251

8. De Nicola, R.: Extensional equivalences for transition systems. Acta Inf. 24(2),
211–237 (1987)

9. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

10. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

11. De Nicola, R., Hennessy, M.: CCS without tau’s. In: TAPSOFT’87: Proceedings of
the International Joint Conference on Theory and Practice of Software Development,
1987. LNCS, vol. 249, pp. 138–152. Springer (1987)

12. De Nicola, R., Melgratti, H.C.: Multiparty testing preorders. In: Trustworthy Global
Computing - 10th International Symposium, TGC 2015, Revised Selected Papers.
LNCS, vol. 9533, pp. 16–31. Springer (2015)

13. De Nicola, R., Segala, R.: A process algebraic view of input/output automata.
Theor. Comput. Sci. 138(2), 391–423 (1995)

14. Hennessy, M.: Algebraic theory of processes. MIT Press series in the foundations of
computing, MIT Press (1988)

15. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv. 49(1),
3:1–3:36 (2016)

16. Laneve, C., Padovani, L.: The Must preorder revisited. In: Concurrency Theory,
18th International Conference, CONCUR 2007, Proceedings. LNCS, vol. 4703, pp.
212–225. Springer (2007)

17. Milner, R.: Communication and concurrency. PHI Series in computer science,
Prentice Hall (1989)

18. Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: Automata, Languages
and Programming, 22nd International Colloquium, ICALP95, Proceedings. LNCS,
vol. 944, pp. 648–659. Springer (1995)

19. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)

http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.649251
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.649251

	Testing for Coordination Fidelity

