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Previously

I Theoretical questions related to language, action and
perception

I Examples of image descriptions and challenges for their
computational modelling

I Semantics of spatial language and computational models

I Experiment for vision and language

I Example of an image captioning system using DNNs

I TODAY: Computational systems for learning and generating
grounded language
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Words as classifiers



Perceptual grounding

(Harnad, 1990) image from Kelleher (2010)
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Words as classifiers

(Roy, 2002)

I A scene:
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Training instances

I Vector of real-valued features representing the objects in the
scene: r, g, b, hw ratio, area, x, y mm dimension

I Natural language descriptions

I The pink square
I The light blue square
I The brightest green rectangle
I The purple rectangle to the left of the pink square
I The narrow purple rectangle below and to the right of the blue

square
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Learning

I Cluster words into classes (using probabilistic models):
I Based on word distributions: words within a class co-occur

infrequently with other words in that class
I Their association with semantic features
I A combination of both

I Statistical bi-gram model of classes (encodes word order
constraints)
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Generation

I For each bi-gram sequence of classes, for each class choose
the most likely word given the target object:

I the, the rectangle, the green rectangle, the large green
rectangle, the large light green rectangle . . .

I Estimate the fit of each description to the target object: the
likelihood of a sequence of words to refer to the features of
the object

I Contextual constraints and ambiguity of a description:
ψ(Q) = fit(xtarget ,Q)−max∀x 6=target fit(x ,Q)

I Combine the scores from syntactic and contextual constraints
with a weighted sum

I Evaluated by 3 human judges to select the target object given
a description:

I human-generated: 89.8%
I machine-generated: 81.3%
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Words as classifiers with robots

(Dobnik, 2009)

I Difficult to write a semantic model of spatial descriptions.

(Logan and Sadler, 1996)

I Difficult to pre-define a model of the world for a robot (cf.
Shrdlu (Winograd, 1976))

I In SLAM (Dissanayake et al., 2001) the robot learns its
environment incrementally through observations.

I Let’s learn language by combining observations of the
environment with the ways humans describe it!
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The robot

I Are robot’s representations sufficient to learn spatial
language?

I ATRV-JR mobile robot (iRobot) primarily used for tasks such
as map building, localisation and navigation and runs the
following components:

I odometry component: provides information about the robot’s
motion, for example 〈R-Heading〉 and 〈Speed〉;

I SLAM component: localises the robot on a 2-dimensional map
consisting of a set of points relative to some random starting
point, for example 〈0.6234,0.2132〉.
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From sensors to spatial geometry

Human Robot

Film: 3D laser point cloud generation
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https://www.youtube.com/watch?v=EpPzFZfekCo


Creation of learning examples

I A robot an a human describer situated in a room.

I The robot is guided manually by another person.

I Human describers (4) freely generate descriptions from the
perspective of the robot (speech recognition).

I All linguistic and non-linguistic observations are logged.
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Linguistic descriptions

Descriptions of robotic motion

I You’re going forward slowly.

I Now you’re turning right.

Descriptions of relations between objects

I The chair is to the left of you.

I The table is further away than the chair.
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Supervised off-line learning

I Automatic extraction of useful information from datasets

I Matching observations in time . . . noise

I A lot of perceptual data for few descriptions

I Some extracted features:

R-Heading Speed Verb
0.001 0.234 moving
0.535 0.122 turning
0.123 -0.364 reversing
. . .

LO x LO y REFO x REFO y Relation
0.632 0.536 0.001 0.321 to the right of
0.212 0.447 0.346 0.342 to the right of
0.573 0.731 0.564 0.632 near
. . .
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Applying the classifiers

Two interactive systems:

I pDescriber: generates descriptions (of objects, of robot’s
motion)

I pDialogue: generates motion and answers user’s questions

M Motion requests: Go forward slowly. Go forward right fast.
A Locating objects: Where is the table? - The table is to the left

of the chair? Where are you? - I’m behind the sofa.
B Confirming object description: Is the table to the left of the

chair? - Yes, the table is to the left of the chair. - No, the
table is near the chair.

C Finding objects: What is to the left of the chair? - The pillars,
the tyres and the wall are to the left of the chair.

D Referencing an object: What is the chair to the left of? - The
chair is to the left of the table, the desk and the wall.
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Was learning successful?

I Performance of the classifiers vs subjective opinion

I One context vs different contexts

I New room, 5 subjects (pDescriber), 13 subjects (pDialogue)

I pDescriber: Is this a good description? - Yes/No.
I pDialogue: How natural is the answer? - 1 to 5.

Question type Accuracy (%) Classifier Accuracy (%)

pDescriber 59.28 relation 69.12

A 43.51 relation 69.12
B 54.17 relation 69.12
C 54.70 lo x 48.80

lo y 72.80
D 56.92 refo x 65.60

refo y 82.24

Mean 52.33 67.71
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Words as classifiers + formal
representations



Connecting grounded and formal representations

I (Harnad, 1990): language in a domain of symbolic
computation

I Not true but there are benefits of this view from the
computational perspective

I Top-down filtering of bottom-up induced knowledge

I “Deeper” cognitively inspired representations vs
representations induced from patterns

I Can examine and interpret the beliefs obtained

I Possibilities of using techniques for logical inference with
machine learning methods

I The need for an over-arching framework for perception and
language

(Dobnik and Kelleher, 2017)
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NL, formal language and grounding

Parsing natural language to a robot control language and
grounding it in action and perception (Matuszek et al., 2012b)

go to the second junction and go left

S/NP NP/NP NP/N N S\S/S S
(move-to forward) [null] (do-n-times 2 x) (until ( junction current-loc) y) (do-seq g f) (turn-le ft)

NP S\S
(do-n-times 2 (until ( junction current-loc) y)) (do-seq g turn-le ft)

NP
(do-n-times 2 (until ( junction current-loc) y))

S
(do-n-times 2 (until ( junction current-loc) (move-to forward)))

S
(do-seq (do-n-times 2 (until ( junction current-loc) (move-to forward))) (turn-le ft))
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Type Theory with Records

Type Theory with Records (Cooper, in prep; Dobnik et al., 2013;
Larsson, 2015; Cooper et al., 2015; Dobnik and Cooper, 2017)

I meaning relative to agent

I judgements

I of situations, of speech events (and of neural events)

I meaning representations as record types (and a few basic
types)

I types of perceptual readings to types of dialogue game-boards

I types are cognitive and intensional
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Types of objects

(Dobnik and Cooper, 2017)

Perceptual domain

I [[34,24,48],[56,78,114]. . . ]: PointMap
PointMap v list(list(Real))

I Object detection function

(Pointmap → set(

[
reg : Pointmap
pfun : (Ind→Type)

]
))

pfun = λx :Ind.chair(x)

I Individuation function

λr :

[
reg:Pointmap
pfun:(Ind→Type)

]
.

 a : Ind
loc : location(a, r .reg)
c : r .pfun(a)



Conceptual domain
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ImageTTR

(Matsson, Dobnik, and Larsson, 2019): pyTTR for Visual Question
Answering (VQA)

https://github.com/arildm/imagettr

23 / 69

https://github.com/arildm/imagettr


Question answering

A polar question as a subtype check
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Grounding a language model



Grounding bottom-up without formal representations

(Ghanimifard and Dobnik, 2017)

I Compositionality as a strength of formal grammars

I A probabilistic/neural language model learns the associations
between words in a sequence

I Is bottom-up grounding compositional?
I Composed strings of words
I Composed perceptual representations

I Grounded language model
Pr(w1:T |c) =

∏T
t=1 Pr(wt |w1:t , c)

where a word sequence w1:T is a description of an image with
the visual features c .
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Artificial dataset

I Average acceptability/probability scores over locations
(Logan and Sadler, 1996)

I freq(w1:T , c) = n × Pr(w1:T , c)
I Artificial composition

I Simple language with connectives
g∧ : (vi , vj)→ [vi , “and”, vj ]
g∨ : (vi , vj)→ [“either”, vi , “or”, vj ]
g¬ : v → [“not”, v ]

I Language with “distractor” words
g1 : (v∗)→ [v∗]
g2 : (v∗)→ [“it”, “is”, v∗]
g3 : (v∗)→ [“it”, “is”, v∗, “the′′, “box ′′]
g4 : (v∗)→ [“the”, “ball”, “is”, v∗, “the′′, “box ′′]
g5 : (v∗)→ [“the”, “object”, “is”, v∗, “the′′, “box ′′]

I Locations
ŝg∧(vi ,vj ),c = svi ,c × svj ,c
ŝg∨(vi ,vj ),c = svi ,c + svj ,c − svi ,c × svj ,c

ŝg¬(v),c = 1− sv ,c
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Generated templates
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Grounded neural language model
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Evaluation: composition

The probability of the generated sequence for a particular location
is a judgement score

Tw1:T
= {Scorew1:T ,c}c∈L

T̂w1:T
= {Pr(w1:T |c)}c∈L

ρ(Tw1:T
, T̂w1:T

) Spearman’s rank correlation coefficient
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Evaluation: composition

Performance on different datasets

Descriptions -0% +Distractors -10% -20% -30% -80%
One word 0.92 0.91
Phrases 0.83 0.84
AND-phrases∗ 0.87 0.85 0.84 0.80 0.78 0.53
OR-phrases∗ 0.79 0.80 0.74 0.73 0.69 0.38
NEG-phrases∗ 0.72 0.82

∗Contains single words and their negations
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Some examples of new compositions

-50%
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Evaluation: decomposition

Trained on all descriptions with some removed

Removed -0% -10% -20% -30% -40%
−AND-phrases∗ 0.83 0.86 0.80 0.77 0.81
−NEG-phrases∗ 0.83 0.83 0.64 0.59 0.43
−OR-phrases∗ 0.83 0.73 0.78 0.68 0.69
−One word 0.92 0.90 0.90 0.84 0.87

∗ also excludes single words and their negation

above, ρ = 0.8 not over, ρ = 0.77
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Tutorial #2



Tutorial #2: Learning to compose

by Mehdi Ghanimifard

In this tutorial we look at the code that was used for the paper.
You can:

I adjust the descriptions and the spatial templates used to
generate the artificial dataset

I remove individual words or composed phrases from the
training dataset

I train and evaluate the models on them

Code on Github
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https://github.com/mmehdig/apl-esslli-19-material/tree/master/2-language-models-part1


The power of a language model



Interacting objects

Coventry et al. (2005)
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Degrees of contributions

The umbrella is over/above the man.

Coventry et al. (2001)

38 / 69



Extracting knowledge about object interaction

I Encoded in the language model, cf. the success of
distributional semantics

I Use the predictions as a filter in description generation
I Predict the bias of a spatial relation to functional or geometric

knowledge:
I A functional spatial relation is more selective of their target

and landmark objects
I A geometric relation will occur with any kind of objects.

(Dobnik and Kelleher, 2013, 2014)
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Corpora of image descriptions

a yellow building with white columns in the background; two palm trees
in front of the house; cars parked in front of the house; a woman and a
child are walking over the square;
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Choosing a relation

FG Prep −2logλ H2 vs. H1

people*square on 655.66* 2.37 ×10142

people*square in 133.63* 1.04 ×1029

people*square at 1.81 2.47

people*umbrella with 16.06* 3076.878
boy*umbrella under 12.16* 436.788
table*umbrella under 9.39* 109.447
child*umbrella under 8.35* 65.006
sculpture*umbrella with 6.88* 31.25
woman*umbrella with 6.83* 30.428
woman*umbrella under 6.78* 29.592
girl*umbrella with 4.59* 9.921
man*umbrella with 2.29 3.15
child*umbrella with 1.53 2.153

*: p < 0.05
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(Normalised) entropy and object variation
# Preposition FG-Types Tokens Norm FG ent

1 on left side of 5 31 0.35448
2 underneath 31 74 0.65535
3 in 7584 34846 0.6714
4 onto 49 86 0.79109
5 down 83 142 0.81099
6 over 440 736 0.83106
7 at 1393 2726 0.83148
8 on top of 61 87 0.83409
9 against 50 68 0.85171
10 on 4897 10085 0.852
11 on side of 46 63 0.87644
. . . . . . . . . . . . . . .
15 on back of 9 11 0.89489
16 through 179 245 0.89738
17 in front of 1278 1938 0.90998
. . . . . . . . . . . . . . .
22 under 167 220 0.92096
23 above 145 190 0.9228
. . . . . . . . . . . . . . .
26 below 13 14 0.96248
. . . . . . . . . . . . . . .
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Neural language models and perplexity

(Dobnik, Ghanimifard, and Kelleher, 2018)
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Perplexities by NLMs as vectors

ab
ov

e
at ba

ck
 o

f
be

lo
w

be
tw

ee
n

by in in
 b

ac
k 

of
in

 b
et

we
en

in
 fr

on
t o

f
in

 th
e 

ba
ck

 o
f

on on
 b

ac
k 

of
on

 fr
on

t o
f

on
 th

e 
ba

ck
 o

f
on

 th
e 

fro
nt

 o
f

ou
t

ou
ts

id
e

ov
er

th
ro

ug
h

to to
 th

e 
le

ft 
of

to
 th

e 
rig

ht
 o

f
un

de
r

wi
th

wi
th

ou
t

Contexts

above
at

away
back of

below
between

by
in

in back of
in between

in front of
in the back of

on
on back of
on front of

on left side of
on the back of
on the front of

out
outside

over
through

to
to the left of

to the right of
under

with
without

Re
la

tio
ns

(Ghanimifard and Dobnik, 2019)

44 / 69



When language model takes over

Demo from yesterday

(Ghanimifard and Dobnik, 2018b)

On the linguistic bias of vision and language datasets (Agrawal
et al., 2017)
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https://mehdi.ghanimifard.com/apl-esslli-19-material/demo.html


Tutorial #3



Tutorial #3: bottom-up grounding of vision and language

by Mehdi Ghanimifard

In this tutorial we look at the extension of the code from the
previous tutorial that replaces simple spatial locations with visual
features that are also trained from the data. It will examine

I how the visual features are trained, represented and used in
the model

I how objects are detected

I how image descriptions are generated

I limitations and further work in generating image descriptions

Code on Github
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https://github.com/mmehdig/apl-esslli-19-material/blob/master/2-language-models-part2/encoder-decoder_image_description.ipynb


Summary



Summary

I Grounding words classifiers
I Integration of grounded words with a language model

I probabilistic
I rule-based

I End-to-end grounding with a grounded neural language model
I Compositionality?
I Information encoded in language alone

I End-to-end grounding of visual features and a language model
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Kenny R. Coventry, Mercè Prat-Sala, and Lynn Richards. 2001. The
interplay between geometry and function in the apprehension of Over,
Under, Above and Below. Journal of Memory and Language,
44(3):376–398.

Robert Dale and Ehud Reiter. 1995. Computational interpretations of the
Gricean maxims in the generation of referring expressions. Cognitive
science, 19(2):233–263.

M. W. M. G Dissanayake, P. M. Newman, H. F. Durrant-Whyte,
S. Clark, and M. Csorba. 2001. A solution to the simultaneous
localization and map building (SLAM) problem. IEEE Transactions on
Robotic and Automation, 17(3):229–241.

Simon Dobnik. 2009. Teaching mobile robots to use spatial words. Ph.D.
thesis, University of Oxford: Faculty of Linguistics, Philology and
Phonetics and The Queen’s College, Oxford, United Kingdom.

Simon Dobnik and Robin Cooper. 2017. Interfacing language, spatial
perception and cognition in Type Theory with Records. Journal of
Language Modelling, 5(2):273–301.

51 / 69

https://doi.org/doi:10.1006/jmla.2000.2742
https://doi.org/doi:10.1006/jmla.2000.2742
https://doi.org/doi:10.1006/jmla.2000.2742
https://gup.ub.gu.se/publication/270997
https://gup.ub.gu.se/publication/251413
https://gup.ub.gu.se/publication/251413


References III

Simon Dobnik, Robin Cooper, and Staffan Larsson. 2013. Modelling
language, action, and perception in type theory with records. In Denys
Duchier and Yannick Parmentier, editors, Constraint Solving and
Language Processing - 7th International Workshop on Constraint
Solving and Language Processing, CSLP 2012, Orleans, France,
September 13-14, 2012. Revised Selected Papers, number 8114 in
Publications on Logic, Language and Information (FoLLI). Springer,
Berlin, Heidelberg.

Simon Dobnik, Mehdi Ghanimifard, and John D. Kelleher. 2018.
Exploring the functional and geometric bias of spatial relations using
neural language models. In Proceedings of the First International
Workshop on Spatial Language Understanding (SpLU 2018) at
NAACL-HLT 2018, pages 1–11, New Orleans, Louisiana, USA.
Association for Computational Linguistics.

52 / 69

https://gup.ub.gu.se/publication/267064?lang=en
https://gup.ub.gu.se/publication/267064?lang=en


References IV

Simon Dobnik and John D. Kelleher. 2013. Towards an automatic
identification of functional and geometric spatial prepositions. In
Proceedings of PRE-CogSsci 2013: Production of referring expressions
– bridging the gap between cognitive and computational approaches to
reference, pages 1–6, Berlin, Germany.

Simon Dobnik and John D. Kelleher. 2014. Exploration of functional
semantics of prepositions from corpora of descriptions of visual scenes.
In Proceedings of the Third V&L Net Workshop on Vision and
Language, pages 33–37, Dublin, Ireland. Dublin City University and
the Association for Computational Linguistics.

Simon Dobnik and John D. Kelleher. 2017. Modular mechanistic
networks: On bridging mechanistic and phenomenological models with
deep neural networks in natural language processing. In Proceedings of
the Conference on Logic and Machine Learning in Natural Language
(LaML 2017), Gothenburg, 12–13 June 2017, volume 1 of CLASP
Papers in Computational Linguistics, pages 1–11, Gothenburg,
Sweden. Department of Philosophy, Linguistics and Theory of Science

53 / 69

http://pre2013.uvt.nl/pdf/dobnik-kelleher.pdf
http://pre2013.uvt.nl/pdf/dobnik-kelleher.pdf
http://www.aclweb.org/anthology/W14-5405
http://www.aclweb.org/anthology/W14-5405
https://gup.ub.gu.se/publication/262955?lang=en
https://gup.ub.gu.se/publication/262955?lang=en
https://gup.ub.gu.se/publication/262955?lang=en


References V

(FLOV), University of Gothenburg, CLASP, Centre for Language and
Studies in Probability.

Raquel Fernández. 2013. Rethinking overspecification in terms of
incremental processing. In Proceedings of the PRE-CogSci 2013
Workshop on the Production of Referring Expressions.

Mehdi Ghanimifard and Simon Dobnik. 2017. Learning to compose
spatial relations with grounded neural language models. In
Proceedings of IWCS 2017: 12th International Conference on
Computational Semantics, pages 1–12, Montpellier, France.
Association for Computational Linguistics.

Mehdi Ghanimifard and Simon Dobnik. 2018a. Knowing when to look for
what and where: Evaluating generation of spatial descriptions with
adaptive attention. In Computer Vision – ECCV 2018 Workshops.
ECCV 2018, volume 11132 of Lecture Notes in Computer Science
(LNCS), pages 1–9, Proceedings of the Workshop on Shortcomings in
Vision and Language (SiVL), ECCV 2018, Munich, Germany. Springer,
Cham.

54 / 69

https://gup.ub.gu.se/publication/257763?lang=en
https://gup.ub.gu.se/publication/257763?lang=en
https://doi.org/10.1007/978-3-030-11018-5_14
https://doi.org/10.1007/978-3-030-11018-5_14
https://doi.org/10.1007/978-3-030-11018-5_14


References VI

Mehdi Ghanimifard and Simon Dobnik. 2018b. Visual grounding of
spatial relations in recurrent neural language models. In Proceedings
of the 3rd Workshop on Models and Representations in Spatial
Cognition (MRSC-3) at 11th International Conference on Spatial
Cognition 2018, pages 1–7, Tübingen, Germany.
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Referring to what matters

From (Fernández, 2013)
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Generating referring expressions (GRE)

The Incremental Algorithm, Dale and Reiter (1995)

I Each target object is associated with certain properties, e.g.
Colour, Type and Position

I Each target object is assigned a set of distractor objects
having some property in common

I An unambiguous referring expression matches the target
object but none of the distractors

I Properties are assigned a preference order 〈Colour, Type,
Position〉 based on their salience in that domain

I Add properties in this order to the description plan iff a
property has a discriminatory power (reduces the set of
distractor objects) at that point in the order: “the red”

I Stop if the description is uniquely identifies the target: “the
red chair”
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Not just visual properties

Other factors may influence the amount of information speakers
include in a referring description:

I Complexity of the domain: the number of properties

I Cardinality of the target: plural targets are more likely to be
over-specified

I Cross-linguistic differences

I Dialogue context and intent

Further reading on GRE: (Krahmer and van Deemter, 2011)
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Rule-based generation (Mitchell et al., 2013) I

I The datasets

TUNA corpus GRE3D3 corpus

I Represented as properties

tg color:yellow size:(63,63) type:ball loc:right-hand
lm color:red size:(345,345) type:cube loc:right-hand
obj3 color:yellow size:(70,70) type:cube loc:left-hand

obj1 colour:grey size:(454,454) type:desk loc:(3,1) ori:front
obj2 colour:blue size:(454,454) type:desk loc:(2,1) ori:front
obj3 colour:red size:(454,454) type:desk loc:(3,2) ori:back
obj4 colour:green size:(254,254) type:desk loc:(4,1) ori:left
obj5 colour:blue size:(454,454) type:fan loc:(1,1) ori:front
obj6 colour:red size:(454,454) type:fan loc:(5,1) ori:back
obj7 colour:green size:(254,254) type:fan loc:(2,2) ori:left
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Rule-based generation (Mitchell et al., 2013) II

I Two categories of properties:
absolute (“what”) and relative (“where”)

I Process through this graph of attributes, calculating the
likelihood of generating a property based on its prior αatt and
a description length penalty γ
f (A ∪ {x}) = γαatt

I Add the property if f > n where n is random 0 ≤ n ≤ 1

I Scan through objects; if there are more objects like the
referent object, generate properties that distinguish them
constrained by γ
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Engineering visual features
I Scale Invariant Image Transform (SIFT) features

(Lowe, 1999)
I Creating visual words
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Learning visual features with CNNs

c1 c2 c3 c4 c5 f6 f7 f8

w1 w2 w3 w4 w5 w6 w7 w8

bike

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classif cation with deep 
convolutional neural networks. In Proc. NIPS, 2012.

Image from Vedaldi (2016)
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Generation of image descriptions with deep learning

(Xu et al., 2015)
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Attention

(Xu et al., 2015; Lu et al., 2016)

I Align visual features with words

I Combine the image features V and the hidden state ht of the
LSTM through a single layer followed by a softmax
zt = wT

h tanh(WvV + (Wght)1T )
αt = softmax(zt)

I ct =
∑k

i=1 αtivi
I ct : attended visual features at time t
I i : a region of k regions of an image
I vi : visual representation of a region i
I αti : the attentional weight to the region i

I ct and ht are combined to predict the next word yt+1

I Adaptive attention (Lu et al., 2016):
ĉt = βtst + (1− βt)ct
st is obtained from the memory state of the language model
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Attention and different description types

Kelleher and Dobnik (2017); Ghanimifard and Dobnik (2018a)

I Attention as spatial templates?
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I Visual attention is high in general: higher with objects than
relations

I Spatial relations depend more on the language model

I Spatial relations are attended in less focused way: not
geometric relation

69 / 69


	Words as classifiers
	Words as classifiers + formal representations
	Grounding a language model
	Tutorial #2
	The power of a language model
	Tutorial #3
	Summary

