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SAMMANFATTNING

Den sanna kapaciteten i ett produktions- eller servicesystem ar ofta svar att skatta med
tillracklig precision. De tva huvudsakliga metoderna for kapacitetsméatning som beskrivs i
litteraturen - matning baserade pa tekniska/fysiska parametrar och matning baserad pa
tidsstudier - karakteriseras bada av saval konceptuella som praktiska nackdelar. | detta
papper analyseras hur kapaciteten i ett system istallet kan matas med hjalp av kémodeller,
vilket eliminerar vissa storre svagheter med de tva andra metoderna. Den grundlaggande
idén ar att anvanda det systemteoretiska samband som galler mellan ankomsttakt, kapacitet
och kotid: eftersom den takt med vilken jobb/kunder ankommer och den tid de befinner sig i
ko ofta kan observeras objektivt kan dessa parametrar under vissa omstandigheter anvandas
for att indirekt mata kapaciteten i det aktuella systemet. De priméara fordelarna jamfort med
de tva traditionella metoderna for kapacitetsmatning ar att den kdmodellbaserade metoden &r
helt okanslig for forhallandet mellan designad och effektiv kapacitet och att den inte
genererar nagra beteendemassiga problem eftersom den inte kraver ndgon direkt observation
av systemet. Validitetsaspekter diskuteras ocksa i papperet.

1. INTRODUCTION

Capacity planning is one of the major fields of operations management. Ensuring that
operations can meet current and future demand cost-effectively is a fundamental task of
operations managers (Horngren et al. 2012; Slack et al. 2010). This applies to both
manufacturing firms and service organizations. For service organizations, the task is
complicated by the fact that services are typically intangible, perishable, and cannot be stored.
Services are often produced (capacity) and consumed (demand), simultaneously, at the same
place and time and when in contact with consumers. Storage is not an available option to
balance capacity and demand or to improve capacity utilization and service levels (Klassen
and Rohlender 2001; Ng et al. 1999; Prajogo 2006; Sasser 1976). Therefore, capacity
planning for service organizations is considered a more complex and complicated task than
capacity planning for manufacturing firms (Adenso-Dias et al. 2002; Brown et al. 2005;
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Corsten and Stuhlmann 1998; Klassen and Rohlender 2001; Ng et al. 1999; Shemwell and
Cronin 1994). However, for both types of organizations, developing a reliable methodology
for measuring capacity is important because accurate data input is a prerequisite to effectively
fulfilling capacity planning (Bamford and Chatziaslan 2009; Elmaghraby 1991: Fitzsimmons
and Fitzsimmons 2008; Larsson 2013; Pullman and Rodgers 2010; Sasser 1976).

Queueing models are often used by applied researchers to characterize and analyse different
types of systems in different types of industries, for example, call centres (Gans et al. 2003;
Koole and Mandelbaum 2002), healthcare (Green 2006; Lakshmi and lyer 2013; Palvannan
and Teow 2012;), hospitality and tourism (Hwang et al. 2010; Pullman and Rodgers 2010),
manufacturing (Govill and Fu 1999; Papadopoulos and Heavey 1996: Rao et al. 1998),
retailing (Defraeye and Nieuwenhuyse 2016; Kesavan and Mani 2015), seaports (Canonaco et
al. 2007; Dragovic et al. 2006; Shabayek and Yeung 2000; Stahlbock and Voss 2008), and
telecommunications (Bruneel et al. 2014). In these industries, queueing models are applied to
capacity planning and control. Queueing analysis is, for example, used to determine the
capacity required by a service process to achieve an acceptable service level (i.e. waiting
time) and to evaluate how changes in demand or the service process affect the queue lengths
and waiting times (Brown et al. 2005; Green et al. 2006; Karvonen et al. 2004; Kim et al.
1999; Palvannan and Teow 2012).

Most comprehensive textbooks on the subject of operations management include the
fundamentals of queueing theory (Balakrisnan et al. 2014; Fitzsimmons and, Fitzsimmons
2008; Krajewski et al. 2016; Lantz 2015; Slack et al. 2010). The typical textbook approach
introduces the problem with queues that arise in many types of service industries as well as in
manufacturing when the arrival of customers (or jobs) is a stochastic process and the service
(or production) time is a random variable. The textbook approach is a straightforward
presentation of the formulas used to calculate different operating characteristics for several
different types of basic queueing systems. Although many textbook authors do mention the
conceptual logic on which the formulas rely, the explicit derivation of the formulas is
typically suppressed (as it should be because the math required is of a relatively advanced
level); however, useful relationships to the context, such as Little’s law, are often mentioned
(Little 1961, 2011; Taha 1981).

The formulas used to calculate the operating characteristics for a system assume that the
arrival process and the service time are stochastic and characterized by specific statistical
distributions with known parameters. In other words, given specific assumptions regarding the
capacity of the system and the customer arrival process, we can use the formulas to compute,
for example, the expected queueing time for a customer or the expected number of customers
in the queue. However, the arrival process and the operating characteristics that the queueing
formulas are used to compute, in most cases, can both be measured objectively in an empirical
sense (we can observe the actual queue itself as well as the arrivals), but the capacity of the
system cannot be measured in an empirical sense.

In a recent paper, Lantz and Rosén (2016) noted this incongruity and suggested that because
the relationship between the arrival process, system capacity, and operating characteristics,
such as expected queueing time, are theoretically defined within the field of queueing models,
it would make more practical sense to use the two objectively measurable entities in the
relationship to estimate the third entity that otherwise cannot be estimated objectively. In
other words, using an empirical estimate of the arrival intensity and its distribution in
combination with the empirically estimated waiting time in the queue, or the empirically



estimated length of the queue, can estimate the capacity of the service process without any
type of direct observation. This avoids the Hawthorne effect and other types of potential
biases. In their study, Lantz and Rosén (2016) used this approach to estimate the effective
capacity of the triage process in an emergency department based on detailed empirical data on
arrivals and waiting times and without having to study the triage process itself. However, the
authors’ modelling was restricted to a Markovian arrival and service process, and the authors
only briefly discussed the potential of the approach to capacity management.

Therefore, the purpose of this paper is to provide a broader formula-based analysis on the
ways that different queueing models can be applied. The analysis is then applied to estimate
the capacity of a system in practice and to discuss the general validity and applicability of this
approach. A production system, both in manufacturing firms and service organizations, can be
designed in several ways (see, e.g. Fitzsimmons and Fitzsimmons 2008; Krajewski et al.
2016). In Cigolini and Grando (2009), two real-life manufacturing systems, a parallel system,
and a serial system with tightly interconnected machines, were analysed regarding the
system’s capacity and productivity. According to the authors, the capacity of a parallel system
is estimated by the sum of the capacity of all the machines in the system while the capacity of
a serial system is determined by the bottleneck capacity or pace. It is common practice to
identify capacity as output that is limited by the bottleneck operation over a period.
Determining capacity, therefore, involves defining the bottleneck operation (see, e.g.
Boehmer 1982; Gupta 2003), and substantial attention has been focused on the importance
(i.e. management) of bottlenecks or the capacity-constraining stage in a production system
(see, e.g. Goldratt and Cox 1984; Goldratt 1988 1990; Plenert 1993; Watson et al. 2007).
Thus, when we discuss how queueing models can be used to estimate the capacity of a
production system, we primarily refer to the system bottleneck but also to other single
operations or stages of a system.

The remainder of this paper is organized as follows. In the next section, we discuss the
concept of capacity, including methods for capacity measurement. In Section 3, we derive
formulas to estimate effective capacity for different types of queueing models. In Section 4,
we discuss the practical applications of these formulas. Finally, in Section 5, we present our
conclusions on the proposed concept for capacity measurement with recommendations for
future research in this field.

2. LITERATURE REVIEW

According to Slack et al. (2010, 299), operations capacity is defined as ‘the maximum level of
value-added activity over a period of time that the process can achieve under normal
operating conditions’. For instance, capacity can be measured as the maximum number of
cars manufactured per day or the maximum number of patients treated per hour. Capacity is,
thus, a limitation on output in a process over a specified period (Krajewski et al. 2016).

For operations management, capacity is also defined functionally according to design capacity
and effective capacity. A process design capacity is the maximum output that can be achieved
under ideal operating conditions, that is, full utilization of productive time, often called ‘24-
7°. Effective capacity is the maximum output a process can achieve under normal conditions
(Slack et al. 2010). Design capacity is always greater than effective capacity, and the
differences between them can be explained by productive time under normal conditions that is
used for setups, maintenance, and breaks. Effective capacity in a process can be calculated as
a proportion of the ideal capacity under normal conditions. (Russell and Taylor 2006) Similar



concepts, theoretical, and practical capacity, with the same definition as design and effective
capacity, are used in the cost accounting literature to estimate the cost (fixed cost allocation)
per time or unit space of resources. As a rule of thumb, practical capacity is assumed to be

80—85% of theoretical capacity. (DeBruine and Sopariwala 1994; Hertenstein et al. 2006;
Horngren et al. 2012; Kaplan and Anderson 2004, 2007).

In practice, however, defining and measuring capacity under normal operating conditions are
not straightforward. Complexity characterizes many operations (Abril et al. 2008; Burdett and
Kozan 2006; McNair et al. 2010; Slack et al. 2010). For processes that provide a relatively
small number of standardized products or services, capacity in terms of output is relatively
easy to define and measure. For processes that provide a more complex mixture of products
and services and when the mixture varies over time, measuring capacity in terms of output
becomes more complicated. Capacity over a specified period depends on the mix of products
or services required during that period, that is, a different mix creates different bottlenecks in
the process (Adan and Vissers 2002; Plenert 1993; Slack et al. 2010; Sobreiro 2014; Vastag
2000). Capacity measurement in service organizations is further complicated by the extent of
customer participation in the production process (Bamford and Chatziaslan 2009; Corsten and
Stuhlmann 1998) and by service providers’ experience and skill levels (Combes et al. 2008;
Strum et al. 2000). These two conditions increase the variability of service time.

A heterogeneous range of products and services prevents a direct measurement of capacity
with respect to output. In this case, it may be more appropriate to define and measure capacity
in terms of input, such as rooms in a hotel, seats in a restaurant (Pullman and Rodgers 2010),
or time availability such as machine hours and labour hours (Corsten and Stuhlmann 1998;
DeBruine and Sopariwala 1994; Kaplan and Anderson 2004; Kaplan et al. 2014; Slack et al.
2010). Doing so assumes that the input and output parameters are proportionally related to
each other and demand can be measured by the input units required (Corsten and Stuhlmann
1998). In healthcare, for example, capacity is measured according to resources, such as the
total number of beds available, total operating time available per day, and the number of
nurses available per day or full-time equivalents (Adan and Vissers 2002; Bamford and
Chatziaslan 2009; Kuntz et al. 2007). However, some of these definitions of capacity are
questionable because the time dimension is ignored. According to the definition above, the
total number of beds in a hospital, total number of rooms in a hotel, or total number of seats in
a restaurant do not become a capacity measure until combined with, for example, the number
of patients treated per day (Schroeder 1993).

During our review of the literature on the subject, we identified two principal methodological
approaches to measuring capacity, measurements based on engineering and physical factors
and measurement based on time studies. We elaborate on these approaches below.

2.1 Capacity measurements based on engineering and physical factors

For example, studies that estimate optimum capacity in ports are largely based on engineering
and physical factors (Chang et al. 2012; Chu and Huang 2005; Talley 1988, 1994, 2006).
According to Chang et al. (2012), the engineering approach to capacity estimation is the
current practice when port planners in Asia estimate berth or port capacity for a specified
period. The approach can be illustrated by the following formula (Chang et al. 2012, 245).

V = NxCxExKxHxDxOxU



Where
V = annual capacity at a berth measured by the number of containers handled (TEU)
N = number of cranes at berth
C = crane capacity per hour
E = the efficiency ratio of a crane in comparison to its official rate from its design
specifications (%)
K = the efficiency after subtracting the interfering effect between cranes (%)
H = number of working hours per day
D = number of working days per year
O = utilization rate of berths (%)
U = the working rate of cranes (%)

V estimates a berth’s effective annual capacity and is a measure of a berth’s maximal output
under certain conditions (i.e. a given level of productive resources). V is thus sensitive to the
input values of the variables in the formula and, in some cases, the actual throughput is
significantly greater than the estimated berth capacity. This is one of the major weaknesses of
the engineering approach to capacity estimation, which also leads to inaccuracies in port
capacity planning (Abril et al. 2008; Chang et al. 2012; Chu and Huang 2005; Kozan and
Burdett 2005).

Similar methods to estimate design and effective capacity are used in a variety of industries
such as airlines (Mirkovic and Tosic 2014; NcNair et al. 2010), airports (Hockaday and
Kanafani 1974), breweries (McNair et al. 2015), railways (Abril et al. 2008; Burdett and
Kozan 2006; Kozan and Burdett 2005), manufacturing (Grando and Turco 2005), and
restaurants (Muller 1999). In the railway industry, for example, the analytical method (i.e.
mathematical formulas) is one of the most relevant standard methods to measure theoretical
and practical capacity. In this context, theoretical capacity is an approximation used to
measure capacity according to the number of trains that could run on the entire railway, on a
critical section of rail, or on railway lines during a specific period and under ideal conditions.
Practical capacity represents a more realistic measure of rail capacity under normal conditions
and is calculated as a proportion of theoretical capacity. Practical capacity is typically around
60—75% of theoretical capacity (Abril et al. 2008; Burdett and Kozan 2006; Kontaxi and Ricci
2012). The capacity in a manufacturing system is defined as the throughput value per unit of
time and is normally measured based on factors such as production rate per time unit, plant
calendar time (i.e. calendar time minus idle time because of vacations or holy days, for
example), net utilization, and defect rate (Grando and Turco 2005; Li et al. 2006; Reid and
Bulich 1996).

We draw two conclusions concerning the engineering approach to capacity estimation. First,
the method is sensitive to input values of the variables when calculating design (theoretical)
capacity. Second, it is difficult to determine what constitutes normal conditions. Thus, it is
also difficult to determine the proportional relationship between design and effective
(practical) capacity that provides a reliable estimate of effective capacity. This is particularly
true in situations where the mixture of products or services produced varies over time.

2.2 Capacity measurement based on time studies
Time studies have been used in manufacturing industries since Frederick W. Taylor created

the principles of scientific management in the early 20" century (Taylor 1923). One
application of time studies is to determine standard times for production process setup and



operations that are primarily used for capacity planning including capacity measurement,
operations scheduling, and cost accounting. (see, e.g. Kaplan and Anderson 2004, 2007; Wild
1995).

Time studies are based on direct or indirect time measurements. Direct time studies are
conducted by observations, interviews, or surveys while indirect time studies are based on
management knowledge and experience, historical data, or work measurement techniques. For
work measurement techniques, work tasks are broken down into constituent elements or
motions with time standards established for individual motions (Maynard et al. 1948; Razmi
and Shakhs-Niyaee 2008; Wild 1995). Work measurement techniques based on standardized
time modules are difficult to apply, particularly in service industries where service time varies
depending on customer needs and behaviour and on the service providers’ skills and ability to
provide the requested services. Direct time measurements and indirect time measurements
based on management knowledge and experience are, therefore, typically used in service
industries. (Bamford and Chatziaslan 2009; Combes et al. 2008; Corsten and Stuhlmann
1998; Larsson 2013; Prajogo 2006; Strum et al. 2000).

In the service industry literature, we found examples of direct and indirect time measurements
mainly in the healthcare industry (see, e.g. Finkler et al. 1993; Hollingsworth et al. 1998;
Pizziferri et al. 2005; Sittig 1993; Tang et al. 2007; Yen et al. 2009). Therefore, we will
continue to focus on time measurements in healthcare. Time-motion studies have been used
by hospital managers and researchers since their introduction in the early 20" century to study
costs and performance (or inefficiencies) in healthcare processes (Chase and Apte 2007;
Lopetegui et al. 2014). According to Lopetegui et al. (2014), three different groups of time-
motion data collection methods are used in healthcare; i) external observers who collect time
and motion data, ii) self-reporting by active tracking, self-reported work sampling, surveys,
interviews, and focus groups, and iii) automatic timestamps, that is, automatic task durations
created by computer systems.

Westbury et al. (2009) used surveys to measure the mean duration of several common
operations and used the data to estimate the demand for total surgical operation time, that is,
needed capacity. According to the authors, this measure of demand might be a more accurate
data input for a capacity planning process compared to the usual methods of measuring
demand, that is, demand in terms of the number of patients waiting for surgery. Larsson
(2013) examined the accuracy of two methods for estimating surgical operations time, one
based on estimation by surgeons and the other based on historical data in computer systems.
The results of this examination showed that estimations based on computer systems are more
accurate than estimations by surgeons. Bratt et al. (1999) used a time-motion study based on
direct observations as a benchmark and compared the results with other data collection
methods including interviews and self-reports. The results indicated that time data collected
by interviews and self-reports largely underestimate non-productive time.

Time-motion data collection methods have been called into question for the behavioural
problems that they cause and the measurement errors and inaccurate capacity and cost figures
that they can produce. Data collection by interviews, surveys, and self-reports are considered
unreliable because the resulting estimates have poor validity. These methods underestimate
non-productive time and overestimate productive time significantly because employees have a
strong incentive not to report unused time or non-productive time (Balakrishnan et al. 2012;
Bratt et al. 1999; Cardinaels and Labro 2008; Kaplan and Anderson 2004, 2007; Lopetegui et
al. 2014). A consequence of this unavoidable measurement error is overestimated capacity



utilization (Balakrishnan et al. 2012). Data collection by direct observations is questionable
because of the potential risk of the Hawthorne effect (Campbell et al. 1995; Franke and Kaul
1979; Lopetegui et al. 2014; Roethlisberger and Dickson 1939; Wickstrom and Bendix 2000).
According to the Hawthorne effect, a process is affected by the fact that it is observed. For
example, staff might work either more or less efficiently than they would under normal
conditions because they know that their performance is being measured. Moreover, time-
motion data collection methods are often considered irritating by employees, which could lead
to additional measurement error (Kaplan and Anderson 2007).

In summary, the two principal methodological approaches to capacity measurement identified
and discussed in this section suffer from different types of drawbacks. Measurements based
on engineering and physical factors are sensitive to the input values of the variables and the
proportional relationship between design and effective capacity. Measurements based on time
studies are questionable because of the behavioural problems that they can cause, such as the
Hawthorne effect and the fact that employees tend to underestimate non-productive time
leading to measurement errors. Thus, regardless of which approach to capacity measurement
is most suitable for use in a specific situation, measurement bias exists. In the next section, we
propose a concept for the measurement of effective capacity based on queueing models,
which can overcome these drawbacks.

3. USING QUEUEING MODELS TO ESTIMATE CAPACITY

In a recent paper, Lantz and Rosén (2016) introduced queueing models to obtain effective
system capacity estimates. The authors used the theoretical relation between the arrival rate A,
the service rate u, and the expected queueing time Wq (or length of the queue Lg). Because A
and Wy (or Lg) can typically be estimated objectively based on empirical data, they can be
used to derive an objective estimate of u without direct observation of the service process
itself, thereby avoiding, for example, the Hawthorne effect. More formally, the idea was to
rearrange the standard queueing formula W, = f (4, ) (or L, = f(4, 1)) to u= f(4,W,) (or

u= f(4,L,)) and to use the resulting formula to estimate the capacity in a system based on

empirical observations of the average waiting time in the queue (or length of the queue) and
arrivals to the system. This is the fundamental idea that this paper develops. Hence, traditional
formulas for the expected queueing time and the expected length of the queue are used to
derive formulas that can be used to estimate effective capacity in different types of systems
based on queue data only. To save space, this paper will only illustrate the idea in detail for an
M/M/1 system. However, similar analyses have also been done for the relation between A, u,
and Lq in M/M/2, M/D/1, M/Er/1, M/G/1, and G/G/1 systems. These results can be found in
Lantz and Rosen (2017).

The M/M/1 model is characterized by a Markovian arrival process, exponential service time,
and a single server. In other words, the model assumes that customers arrive at the system
according to a Poisson distribution and the service time follows an exponential distribution.
The mean number of arrivals is A per unit of time (e.g. per hour), and the mean service time is
1/ wunits of time. Hence, u is considered effective system capacity in terms of the maximum
number of customers that, on average, can be served by the system during one unit of time.
The expected waiting time in the queue W, can be written as

)
1 S —
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Solving (1) for u yields
@ wu=Al2+ (2127 + AW,

which can be used as a formula to estimate the capacity in an M/M/1 system based on
empirical observations of the average waiting time in the queue and the arrivals to the system.
For example, if the average waiting time in the queue has been empirically point estimated to
be 0.2 hours and the average arrival rate to the system has been empirically point estimated as
four jobs per hour, the effective capacity of the system can, by applying equation (2), be point

estimated to 4.0/2+ \/(4.0/2)2 +4.0/0.2 =6.9 jobs per hour. The expected number of
customers in queue L, inan M/M/1 system can be written as

2
@) L, =i—.
p(p—A4)

Solving (3) for u yields

2
@ - AL, + 44, +4L,

2L,

which can be used as a formula to estimate the capacity in an M/M/1 system based on
empirical observations of the average number of customers in the queue and the arrivals to the
system. For example, if the average number of customers in the queue of a system has been
empirically point estimated to 2.25 customers, and the average arrival rate to the system has
been empirically point estimated to three customers per hour, the effective capacity of the
system can be point estimated to four customers per hour based on straightforward application
of equation (4).

From a theoretical perspective, using point estimated parameters to point estimate another
parameter implies that the statistical uncertainty is escalated. In other words, we must
consider the combined uncertainty of the point estimated input parameters when using them to
create a confidence interval for the true effective capacity. However, it is beyond the scope of
this paper to provide a deeper analysis of this phenomenon. Moreover, as Lantz and Rosén
(2016) mentioned, a confidence interval for the effective capacity would still be narrow if the
analysis is based on large quantities of data.

4. DISCUSSION

Capacity is not easy to measure, particularly in service organizations (McNair et al. 2010;
Sasser 1976: Slack et al. 2010). In the literature section of this paper, we identified various
deficiencies associated with the two main methodological approaches to measuring effective
capacity. The validity of the output of these measurements is questionable because of these
deficiencies. However, the suggested methodology to measure effective capacity is based on
arrival rates and queueing time (or queue length), which are typically easy to measure
objectively with high validity. Queueing models are already applied to capacity planning and
control in many industries (see, e.g. Lakshmi and lyer 2013; Pullman and Rodgers 2010; Rao
et al. 1998; Shabayek and Yeung 2000) and could be an appropriate alternative for capacity
measurement.

Therefore, how should queueing models be used in practice to measure the capacity of a
system based on observed averages for the queueing time (or length of the queue) and the
arrival rate? First, the most suitable queueing model for the specific situation must be



selected. Parameters such as the number of servers and the queueing discipline are typically
known, but the actual distribution of the service process and the arrival process may be more
difficult to determine. If jobs are known not to arrive according to a Poisson process to a
system with one server, the G/G/1 model should be the natural choice. If jobs do arrive
approximately randomly to a system with one server where the variance in the service time is
high, obtaining estimates of the variance and then applying the M/G/1 model should be
attempted. When jobs arrive approximately randomly to a system with one server where the
variance in the service time is low, system capacity lies somewhere between the indications of
the M/M/1 model and the M/D/1 model. Typically, the calculated values for u based on
specific values for A and Wy differ relatively little between the M/M/1 model and the M/D/1
model. Moreover, if data regarding queueing times as well as queue lengths are available,
more reliable estimates of capacity can be obtained because the average of these two
individual estimates can be used rather than just one.

When jobs arrive approximately randomly to a system with one server where the service
process consists of several phases with similar service times in sequence, the M/Ek/1 model is
the best option. If the phases are relatively unequal with respect to service time, it is better to
view the service process as a whole and use the M/G/1 model to measure its capacity.

For the practical application of the proposed method to measure effective capacity, the model
parameters (i.e. A and Wq or Lg) must be accurately estimated from historical data at an
appropriate level of detail (Brown et al. 2005; Dragovic et al. 2006; Gans et al. 2003; Koole
and Mandelbaum 2002; Papadopoulos and Heavey 1996). In Lantz and Rosén (2016), the
case study was based on a data set extracted from the hospitals admission database, which
included the arrival and queueing times for triage for 30,000 arrivals to the emergency
department during a one-year period. It was possible to estimate parameter values and to
verify the distribution of the arrival process. Similar data, on an individual level, were used in,
for example, Brown et al. (2005), Kim et al. (1999) and McManus et al. (2004). In other
cases, data are reported or summarized as average in fixed consecutive time periods and not
on an individual level. These periodical data are assumed to be Poisson random variables with
a constant rate for each period (Brown et al. 2005; Gans et al. 2003; Palvannan and Toew
2012; Shabayek and Yeung 2000). In further cases, arrival data are recorded but not the data
on service time (see, e.g. Green et al. 2006 and Liu et al. 2006). When applying the proposed
measuring method, a corresponding situation can occur concerning data on waiting times or
queue length (Mani et al. 2015). When data are not available, they must be collected, which
can be costly (Gans et al. 2003; Green 2006; Palvannan and Teow 2012). A lack of data can
limit the application of the proposed capacity measuring method and queuing theory in
general (Liu et al. 2006; Lu et al. 2013). However, as information systems are developed and
large quantities of data are stored and analyzed at reasonable cost, the availability of relevant
data will increase in many industries (Gans et al. 2003; Green et al. 2006; Kesavan and Mani
2015; Lu et al. 2013).

Finally, although parameter assumptions, such as statistical distributions, should be tested
when plausible, we believe that it is more important to avoid the potential biases associated
with human decision making than to ensure that a certain assumption is 100% valid. As
Daniel Kahneman (2011) has shown, human judgement is generally inferior to algorithms.
Hence, the ability to measure the capacity of a system in model terms without direct
interaction or with direct knowledge of the system is valuable in several respects.



5. CONCLUSION

Accurate capacity data input is essential to effectively fulfil capacity planning in both
manufacturing firms and service organizations. It is, therefore, important to develop reliable
capacity measurement methods for this purpose. In this study, we have recognized two major
methodological approaches to capacity measurement and discussed their shortcomings. To
avoid these shortcomings, we have proposed an approach to measure effective capacity
indirectly, but objectively, based on queueing models. The estimations are based on two
variables, the arrival rate and queueing time (or queue length), which are usually easy to
measure objectively and empirically with high validity in contrast to the service rate (i.e.
effective capacity). Hence, and this represents the primary argument, the queueing model
approach suggested here does not require direct data collection from the shop floor or the
application of rules of thumb for the relationship between design and effective capacity. In
other words, the conceptual problems related to measurements based on engineering and
physical factors as well as those related to time studies can both be avoided since the
manufacturing or service process itself is considered a black box when the queueing model
approach is applied.

The capacity measurement approach suggested here can be used to estimate the effective
capacity of most manufacturing and service processes if the arrival process and the waiting
times can be observed and the assumptions of a relevant queueing model are valid.

The fact that queueing models are often used for other purposes in capacity planning and
control in a range of industries indicates that the suggested approach to capacity measurement
could be an appropriate alternative to traditional methods for capacity measurement in many
cases. In a previous study (Lantz and Rosén 2016), we used the queueing model approach to
estimate the effective capacity of the triage process in an emergency department of a medium-
sized Swedish hospital. During one year, approximately 30,000 patients arrived at the
emergency department. The exact time of arrival and the exact waiting time before triage
were recorded for each patient on an individual level. Using these data, the expected arrival
rate and the expected queueing time during different hours of the day were estimated with
some precision, and the capacity of the triage process and its variation during the day was
calculated based on the estimates. The results showed several differences in these estimates
compared to the traditional way that the capacity of the triage function was measured. First,
the effective capacity in the triage process is not a linear function of the number of nurses —
the marginal effect on capacity of adding another nurse is decreasing. Second, there is a
substantial difference in capacity between an experienced nurse and an inexperienced nurse.
Third, actual service levels in the triage process vary substantially during the day and night.
These results warrant further research towards the implementation and evaluation of the
proposed approach to measuring effective capacity in other types of processes.

Another area of further research is directed toward the development of the proposed
measurement methodology. As mentioned earlier, the math quickly becomes complex as the
number of servers increases, indicating a need for reliable approximations for more complex
queueing models. Approximations will be an unconditional necessity for such complex
models where service rate (i) cannot be derived from the standard queueing formulas.
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