
Intro to Web Prolog for Erlangers
Torbjörn Lager

Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg

Sweden
torbjorn.lager@gu.se

Abstract
We describe a programming language called Web Prolog. We
think of it as a web programming language, or, more specifi-
cally, as a web logic programming language. The language is
based on Prolog, with a good pinch of Erlang added. We stay
close to traditional Prolog, so close that the vast majority of
programs in Prolog textbooks will run without modification.
Towards Erlang we are less faithful, picking only features
we regard as useful in a web programming language, e.g.
features that support concurrency, distribution and intra-
process communication. In particular, we borrow features
that make Erlang into an actor programming language, and
on top of these we define the concept of a pengine – a pro-
gramming abstraction in the form of a special kind of actor
which closely mirrors the behaviour of a Prolog top-level.
On top of the pengine abstraction we develop a notion of
non-deterministic RPC and the concept of the Prolog Web.

CCS Concepts • Software and its engineering→ Con-
current programming languages.

Keywords Prolog, Erlang, web programming

ACM Reference Format:
Torbjörn Lager. 2019. Intro to Web Prolog for Erlangers. In Proceed-
ings of the 18th ACM SIGPLAN International Workshop on Erlang
(Erlang ’19), August 18, 2019, Berlin, Germany. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3331542.3342569

1 Introduction
As a logic programming language, Prolog represents a pro-
gramming paradigm which at its core is unique and very
different from imperative or functional programming lan-
guages. Features such as built-in backtracking search, uni-
fication and a built-in clause database form the basis for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Erlang ’19, August 18, 2019, Berlin, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6810-0/19/08. . . $15.00
https://doi.org/10.1145/3331542.3342569

logic-based knowledge representation and reasoning, and
support for meta-programming, user-defined operators, a
term-expansion mechanism and grammars is also provided.
These are the features that underlie Prolog’s reputation as a
symbolic AI programming language. Also, they are features
that Erlang does not support. In this paper, we present Web
Prolog – a language which combines the most important
features of Prolog with those of Erlang.
The structure of the paper is as follows. The rest of this

section justifies the introduction of yet another dialect of
Prolog. Section 2 presents an IDE for Web Prolog, introduces
the notion of a node, and describes the interaction between
the IDE and a node over a WebSocket sub-protocol. Section 3
introduces the language of Web Prolog as such and compares
it with Erlang. Section 4 looks closer at the combination of
the actor model and the logic programming model, placing a
particular focus on non-determinism and backtracking. The
notion of a pengine is described in detail, and a notion of non-
deterministic RPC is developed. Section 5 describes some
earlier work, Section 6 provides a discussion, and Section 7
summarises and suggests avenues for further work.
The paper is written with an audience of Erlangers in

mind but some basic knowledge of Prolog is assumed.

1.1 Web Prolog is a Hybrid Programming Language
Web Prolog is not only a logic programming language but
also an actor programming language as it extends Prolog
with primitives for spawning processes and sending and
receiving messages in the style of Erlang, i.e. constructs
that made Erlang such a great language for programming
message-passing concurrency and distribution. Provided we
can accept using a syntax which is relational rather than
functional it turns out that the surface syntax of Prolog can
easily be adapted to express them. Since Prolog and Erlang
also share many other properties such as dynamic typing,
the use of immutable variables, and a reliance on pattern
matching and recursion, creating a hybrid between them
seems reasonable. Indeed, it allows us to regard Web Prolog
either as a new dialect of Prolog, or as a new dialect of Erlang.

1.2 Web Prolog is a Web Programming Language
There are more than a dozen Prolog systems around, and
we do not intend to compete with them, or with Erlang for
that matter. Although the proposed hybrid between Prolog
and Erlang would likely work as a general-purpose language,
this is not what we aim for. Instead, as suggested by the first

https://doi.org/10.1145/3331542.3342569
https://doi.org/10.1145/3331542.3342569

Erlang ’19, August 18, 2019, Berlin, Germany Torbjörn Lager

part of its name and in an effort to find new uses for Prolog,
we think of Web Prolog as a special-purpose programming
language – as an embedded, sandboxed scripting language
for programming the Web with logic and for implementing
web-based communication protocols in the style of Erlang.

Web Prolog is an embedded language, designed to be im-
plemented in a host language running in a host environment.
We have embedded our Web Prolog proof-of-concept imple-
mentation in SWI-Prolog [6] but we are convinced it can also
be embedded in other Prolog systems, in systems supporting
non-Prolog programming languages or knowledge represen-
tation languages, and in web browsers through transpilation
into JavaScript or compilation into WebAssembly.

Web Prolog is furthermore a sandboxed language, open to
the execution of untested or untrusted source code, possibly
from unverified or untrusted clients without risking harm to
the host machine or operating system. Therefore,Web Prolog
does not include predicates for file I/O, socket programming
or persistent storage, but must rely on the host environment
in which it is embedded for such features.

2 Running Web Prolog from a Browser
A proof-of-concept web-based IDE for Web Prolog has been
implemented in a combination of HTML, CSS and JavaScript.
The IDE is equipped with an editor and a shell. Figure 1
shows them as they appear in a browser window, with the
editor to the left and the shell to the right.

Figure 1. The proof-of-concept IDE.

The tiny program shown in the editor can be assumed to have
been written by a programmer who has then entered a query
in the shell in order to inspect the results produced one-at-
a-time in the usual lazy fashion typical of interactions with
a Prolog top-level. The scenario, depicted in Figure 2, also
involves a node, identified by the URI http://local.org,
to which the IDE has established a connection.

A node is an executing Web Prolog runtime environment.
Its purpose is to host pengines and other actors. A pengine
is an actor and a programming abstraction modelled on the
interactive top-level of Prolog. It can be seen as a first-class
Prolog top-level, accessible from Web Prolog as well as from
other programming languages.

Figure 2. The shell offers mediated communication between
a programmer and a pengine hosted by a node.

Despite what Figure 2 may suggest, the programmer may not
be alone in interacting with this particular node. Other pro-
grammers may be talking to other pengines running there.
They are completely shielded from each other, unless the
programs they are running have been written to allow them
to communicate. In any case, pengines do not share mem-
ory, so in order to share information, they must exchange
messages.
A node is equipped with comprehensive web APIs using

WebSocket and HTTP as transport protocols, over which a
client can run Web Prolog programs defined by the owner of
the client, the owner of the node, or by contributions from
both. The IDE must be run over the WebSocket protocol.
The task of the node’s actor manager is to handle the

reception of messages sent by clients and arriving over Web-
Socket connections. They may be messages requesting the
spawning of a pengine or termination of a pengine, or mes-
sages to be forwarded to the pengine addressed by a pid. The
actor manager is also responsible for the registration and
deregistration of pengines.

Crucially, a node may host a Web Prolog program – a de-
ductive database, an expert system, a digital assistant, a home
control system, or another kind of application – perhaps re-
lated to AI and in need of knowledge representation and
reasoning. If it does, any pengine running on the node has
access to the predicates defined by this program in addition
to Web Prolog built-in predicates. The program – which we
shall refer to as the node-resident program – is typically main-
tained by the owner of the node. Unless programmers are
authorised to do so, they are not able to make any changes
to it, only the owner is allowed to do so. However, by means
of code injection in the workspace of the pengine, program-
mers are allowed to complement the node-resident program
with source code that they themselves have written.

When the programmer enters the URI of the node in the
browser’s address field, a WebSocket connection is first es-
tablished between the IDE and the node, and then used to
ask the node to spawn a pengine. Messages sent to a node are
strings, couched in the syntax of JSON, whereas messages
arriving back from a node are expressed in either Prolog or
in the JSON format. When talking to a browser, the pengine
is instructed to use JSON.

Intro to Web Prolog for Erlangers Erlang ’19, August 18, 2019, Berlin, Germany

Our proof-of-concept demonstrator of a Web Prolog node
is written in SWI-Prolog [6] and can be downloaded from
https://github.com/Web-Prolog, installed and taken for a trial
run. The IDE is included in the installation. The demonstrator
features an interactive tutorial which provides a tour of the
language. The editor and shell supports the usual interactive
edit-run cycle and allow users to compose and run their own
programs.1

3 Erlang-Style Programming in Web Prolog
Reading the code was fun – I had to do a double
take – was I reading Erlang or Prolog – they
often look pretty much the same.

Joe Armstrong (p.c. June 18, 2018)

Most Erlangers are probably aware that Erlang is related
to Prolog in more than one way. The first implementation
was written in Prolog [1], and syntactically they look rather
similar and share a lot of terminology. This is something
we try to take advantage of when designing Web Prolog
and we even name the predicates which support spawning
and messaging after Erlang primitives with similar syntax
and semantics. However, as we shall see, the primitives for
spawning and messaging in Web Prolog are in some ways
more expressive than the corresponding Erlang primitives.

3.1 A Simple Count Server
Just like in Erlang, source code which specifies the behaviour
of an actor to be spawned can be written in Web Prolog – the
kind of messages it will listen for, and the kind of messages
it will send to other actors. Such actors are referred to as
servers in the Erlang community.

In the editor, a count server can be written as follows and
then be loaded by means of injection into the workspace of
the pengine to which the shell is attached:

count_server(Count0) :-

receive({

count(Pid) ->

Count is Count0 + 1,

Pid ! Count,

count_server(Count);

stop(Pid) ->

Pid ! stopped(Pid)

}).

This code contains two primitives foreign to traditional Pro-
log. The predicate receive/1 is used to select and extract
messages appearing in the mailbox of the process running
the code. The send operator !/2 is used to send a message
to another process.

1In the future, we intend to use a Web Prolog node as a back-end to SWISH
[5], a much more mature online IDE for Prolog than the one offered by our
demonstrator. See https://swish.swi-prolog.org.

The example demonstrates a programming pattern fre-
quently found in Erlang programs and destined to become
very useful in Web Prolog as well: a loop is defined where a
call to the receive primitive is used to match a message in the
mailbox, do something with it, and then continue looping
by making a recursive call. The state of the counter is kept
in the argument of count_server/1.

The predicate spawn/2-3 is used to create actor processes
and it works almost like the spawn function in Erlang. How-
ever, while Erlang is a higher-order language in which the
spawn function takes an anonymous function as its argu-
ment, Prolog (or Web Prolog) is not a higher-order language
in this sense. In Web Prolog, spawn/1-3 is a meta predicate
which expects a callable goal to be passed in the first ar-
gument. Also, while the spawn function in Erlang exists in
more than a dozen variants, Web Prolog has only two, one
which takes a list of options and one which relies on their
default values. The options are used for the configuration of
the actor to be created. Here is how we can spawn the count
server from the shell and take it for a trial run:

?- spawn(count_server(0), Pid, [

monitor(true),

src_predicates([count_server/1])

]).

Pid = '8915b2d4'.

?- self(Self).

Self = 'f431a324'@'http://local.org'.

?- $Pid ! count($Self),

receive({Count -> true}).

Count = 1.

?- $Pid ! stop($Self).

true.

?- flush.

Shell got stopped('8915b2d4')

Shell got down('8915b2d4',true)

true.

?-

The src_predicates option ensured that the count server
source code injected into the workspace of the top-level
pengine was also injected into the workspace of the spawned
server process. Calling self/1 determined the identity of
the top-level pengine, and !/2 was used to send the current
count back to the client. Calling the utility predicate flush/0
– also borrowed from Erlang – allowed us to inspect the
content of the top-level mailbox, where a message stopped
as well as a down message was found.

Note also the use of another shell utility feature, borrowed
from SWI-Prolog, which allows bindings resulting from the
successful execution of a top-level goal to be reused in future
top-level goals as $Var. Together with flush/0, this facility
comes in handy during interactive programming in the shell.
In addition to the src_predicates option, spawn/2-3

supports a number of other options, some of which provide

https://github.com/Web-Prolog
https://swish.swi-prolog.org

Erlang ’19, August 18, 2019, Berlin, Germany Torbjörn Lager

alternative ways to inject source code into the workspace of
an actor. Furthermore, the node option allows the program-
mer to spawn an actor process on a remote node instead
of locally, and other options allow the caller to monitor the
spawned process or to terminate it should the caller die.
Links in Web Prolog are somewhat simpler than in Er-

lang. In contrast to Erlang’s bi-directional links, they are
uni-directional. As argued in [4], uni-directional links sim-
plify things and do not harm expressivity. The only kind
of link currently supported in Web Prolog is specified by
means of an option link to spawn/3 which, if set to true
(default), causes the child process to terminate if its parent
does. Only authorised clients can set it to false and thus
an unauthorised client cannot spawn a process which is not
linked to the process that spawned it. This is to avoid leaving
orphaned processes around on a node.
An obvious example of the use of links is that when a

programmer closes (or just leaves) the IDE, the top-level
pengine which serves the shell as well as any actors that
may have been spawned from this pengine are forced to
terminate. This might be seen as a supervision hierarchy
rooted in the process running the shell.

3.2 Node-Resident Actor Processes
In addition to node-resident source code, the owner of a
node may install node-resident actor processes. We show an
example below which uses register/2 to give a running
count server a mnemonic name:

?- spawn(count_server(0), Pid),

register(counter, Pid).

Just like in Erlang, the registered name can be used instead
of the pid when sending to the process:

?- self(Self).

Self = '51f40b45'@'http://local.org'.

?- counter ! count($Self),

receive({Count -> true}).

Count = 1.

?- counter ! count($Self),

receive({Count -> true}).

Count = 3.

?-

Contrary to a server injected and spawned by a client, a node-
resident server is accessible from any client to the node that
knows the registered name of the server. (This explains why
3 rather than 2 was received in the example – another client
happened to increment the counter.)

3.3 The Syntax of Send and Receive
The syntax ofWeb Prolog is ordinary Prolog except that three
infix operators (!/2, when/2 and @/2) have been declared us-
ing op/3, which is the predicate for specifying user-defined
operators in Prolog.

As shown in the previous section, an actor process uses
the receive primitive to extract messages from its mailbox.
In Web Prolog, just like in Erlang, this operation specifies an
ordered sequence of receive clauses delimited by semicolons.
A receive clause always has a pattern (a term) and a body of
Prolog goals. Optionally, it may also have a guard, which is a
query prefixed with the when operator. As in Erlang, its role
is to make pattern matching more expressive.
To demonstrate the use of the when operator and the use

of two receive/2 options that causes a goal to run on time-
out, we show a priority queue example borrowed from Fred
Hébert’s textbook on Erlang [2]. The purpose is to build a
list of messages with those with a priority above 10 coming
first:
important(Messages) :-

receive({

Priority-Message when Priority > 10 ->

Messages = [Message|MoreMessages],

important(MoreMessages)

},[timeout(0),

on_timeout(normal(Messages))

]).

normal(Messages) :-

receive({

_-Message ->

Messages = [Message|MoreMessages],

normal(MoreMessages)

},[timeout(0),

on_timeout(Messages=[])

]).

Below, we test this program by first sending four messages
to the top-level process, and then calling important/1:
?- self(S),

S ! 15-high, S ! 7-low, S ! 1-low, S ! 17-high.

S = 'b0f80b2d'@'http://local.org'.

?- important(Messages).

Messages = [high,high,low,low].

?-

For comparison, here is Hébert’s version of important/0:
important() ->

receive

{Priority, Message} when Priority > 10 ->

[Message | important()]

after 0 ->

normal()

end.

Compared to the Web Prolog predicate, the Erlang function
is more succinct. There are three reasons for this. First, Web
Prolog has a relational syntax which does not allow nesting
of calls while Erlang is a functional language where such
nesting is the norm.

Intro to Web Prolog for Erlangers Erlang ’19, August 18, 2019, Berlin, Germany

Secondly, while op/3 allowed us to define the infix when
operator, not much can be done about the more complex
receive...after...end construct. Instead, Web Prolog de-
fines a binary predicate expecting an ordered sequence of
receive clauses wrapped in curly brackets in its first argu-
ment and the after... part as a list of options specifying
the behaviour around time-outs in the second argument.

Thirdly, while we could have taken advantage of the fact
that an Erlang tuple such as {Priority,Message} is valid
syntax in Prolog too, where it is a somewhat more complex
compound term of the form {}((Priority,Message)), we
chose not to. In Prolog it is always better to use less complex
terms, taking up less memory. The “pair operator” (-) was a
sensible choice here, but any valid Prolog term would do.
Three fairly major syntactic differences in such a small

program – where at least the first two contribute to the
program looking neater in Erlang than in Web Prolog – may
seem like a lot for a language that tries to appear as similar
as possible to Erlang. However, note that the example was
chosen exactly because it highlights many differences in a
tiny program. Usually, the differences are less conspicuous.
All in all, we believe that most Erlangers will find the

syntax of Web Prolog likeable and easy to work with. Fans
of Elixir may be less enthusiastic, at least if the Prolog-ish
syntax that Erlang inherited from Prolog is what drew them
to Elixir with its Ruby-ish syntax instead.

3.4 The Semantics of Send and Receive
Getting the semantics of receive/1-2 right is of course
more important than getting its syntax right and we believe
we have succeeded in doing that. As in Erlang, receive/1-2
scans themailbox looking for the first message (i.e. the oldest)
that matches a pattern in any of the receive clauses and
satisfies the corresponding guard (if any), blocking if no
such message is found. If a matching clause is found, the
message is removed from the mailbox and the body of the
clause is called. In Web Prolog, just like in Erlang, values of
any variables bound by the matching of the pattern with a
message are available in the body of the clause.
If no pattern matches a message in the mailbox, the mes-

sage is deferred, possibly to be handled later in the control
flow of the process. The receive is still running, waiting for
more messages to arrive, and for one that will match. Just like
in Erlang, this behaviour is particularly useful if we expect
two messages but are not sure which one will arrive first.
Note that the implementation of the priority-queue example
relies on this behaviour and would not work without it.

Most uses of receive in Erlang can be mechanically trans-
lated into uses of receive in Web Prolog that will behave in
the same way as in Erlang. However, three differences should
be noted. First, Erlang’s receive construct is an expression
(with a value given by the expression on the right hand side
of the arrow of a matching rule) rather than a statement (that
will succeed or fail as in Prolog, and will not return a value).

Secondly, Erlang enforces purity and efficiency by only
allowing a restricted set of primitives in guards, and com-
pletely disallows calling user-defined functions. For the use
cases the people behind Erlang had, it probably made sense
to impose such restrictions. In Web Prolog, although only
the first solution will be searched for, any query may be used
as a guard and values of variables bound by it are available
in the body. This makes the receive construct more powerful
than in Erlang, but it also means that the programmer is
made responsible for keeping guards as simple and efficient
as possible and to avoid side effects. Enabling the program-
mer to condition the matching of a receive clause on the
content of the whole Prolog database makes it worth it.
Finally, the receive construct in Web Prolog is a semi-

deterministic predicate, i.e. it either fails, or succeeds exactly
once. As will be shown in Section 4, this is a key property
of receive/1-2 which ensures that backtracking can be
handled in an elegant way.

3.5 Concurrent and Distributed Programming
Since the count server in Section 3.1 is running in parallel
to the pengine to which the shell is attached and is talk-
ing to it using asynchronous messaging, we have already
demonstrated the use of concurrency. Below, in a probably
more convincing example inspired by a user’s guide to Er-
lang,2 two processes are first created and then start sending
messages to each other a specified number of times:
ping(0, Pong_Pid) :-

Pong_Pid ! finished,

io:format('Ping finished',[]).

ping(N, Pong_Pid) :-

self(Self),

Pong_Pid ! ping(Self),

receive({

pong ->

io:format('Ping received pong',[])

}),

N1 is N - 1,

ping(N1, Pong_Pid).

pong :-

receive({

finished ->

io:format('Pong finished',[]);

ping(Ping_Pid) ->

io:format('Pong received ping',[]),

Ping_Pid ! pong,

pong

}).

When start/0, defined below, is called, the behaviour of
this program exactly mirrors the behaviour of the original
version in Erlang.
2See http://erlang.org/doc/getting_started/conc_prog.html

http://erlang.org/doc/getting_started/conc_prog.html

Erlang ’19, August 18, 2019, Berlin, Germany Torbjörn Lager

start :-

spawn(pong, Pong_Pid, [

src_predicates([pong/0])

]),

spawn(ping(3, Pong_Pid), _, [

src_predicates([ping/2])

]).

Another thing that Web Prolog has in common with Erlang
is that spawning and sending work also in a distributed
setting. In Web Prolog we can pass the node option to the
spawn operation to invoke a process on a remote node and
subsequently communicate with it using send and receive.
For example, if the option node(’http://remote.org’) is
passed to any of the above calls to spawn/3, the game of
ping-pong will be played between two nodes.

3.6 Programming Patterns in Erlang and Web Prolog
As long as languages do deterministic and sequential com-
putation only, i.e. when neither search nor concurrency is
involved, functional programming and logic programming
are fairly similar in the way they work, and methods used
to achieve success with one often transfer to the other. Im-
mutable variables, pattern matching and recursion, for exam-
ple, typically play important roles in both kind of languages.
When concurrency is involved, language designers must

choose a good approach and a suitable set of primitives to
express it. In a post to the erlang-programming mail list,
the renowned programming wizard and Prolog and Erlang
specialist Richard O’Keefe writes that he “would prefer multi-
threading in Prolog to look as much as possible like Erlang”.3
We do agree, but note that it might be too late since at least
four Prolog systems have already implemented the proposed
ISO Prolog standard for multi-threading.4 Be that as it may,
for a special-purpose dialect such asWeb Prolog, Erlang-style
concurrency appears to be an excellent choice, especially
since it generalises to the distributed case as well.
As a consequence of this choice, Erlang and Web Prolog

share not only a great deal of syntax and a lot of terminology
but many programming patterns as well, such as the use of
concurrency and recursion for maintaining state, the use of
protocols, and various abstractions for asynchronous and
synchronous communication between processes which may
or may not run on the same machine or CPU core. Indeed, as
the programs in Section 3 demonstrated, it is usually straight-
forward to translate Erlang programs into Web Prolog.

The close affinity between Erlang andWeb Prolog leads us
to believe that behaviours such as those offered by the OTP
might be implemented in future versions of Web Prolog. To
ensure the uninterrupted service of node-resident actors, for
example, the supervisor behaviour would be great to have,

3https://groups.google.com/d/msg/erlang-programming/1jdsnqZ4XfQ/
ve9WfFl2YBwJ
4https://logtalk.org/plstd/threads.pdf

and as a way to implement complex protocols in the style of
Erlang, the state machine behaviour might be useful.

4 Backtracking beyond Erlang
As we now turn to examples that go beyond what Erlang
can easily do, it is probably wise to entertain a suspicion of
unexpected interactions between language features and pos-
sible impedance mismatches between the two paradigms –
between Prolog’s relational, non-deterministic programming
model and Erlang’s functional and message passing model.
Howwell do the Erlang-ish constructs mixwith backtracking
for example? In the next section we show an example which
suggests that the mix is both sound and easy to understand.

4.1 Handling Non-determinism
Suppose the query given in the argument to spawn/2 has
more than one answer, a query such as ?-mortal(Who) for
example. Below, a goal containing this query is called, the
first solution is sent back to the calling process, and then
receive/1 is used in order to listen for a message of the
form next or stop before terminating:

?- self(Self),

spawn((mortal(Who),

Self ! Who,

receive({

next -> fail;

stop -> true

})

), Pid).

Pid = 'a4b940a8',

Self = 'c4806702'@'http://local.org'.

?- flush.

Shell got socrates

true.

?- $Pid ! next.

true.

?- flush.

Shell got plato

true.

?- $Pid ! stop.

true.

?-

As this session illustrates, the spawned goal generated the
solution socrates, sent it to the mailbox of the Prolog top-
level and then suspended and waited for messages arriving
from the top-level process. When the message next arrived,
the forced failure triggered backtracking which generated
and sent plato to the mailbox of the top-level shell pro-
cess. The next message was stop, so the spawned process
terminated.

For an Erlang programmer this particular use of receive/1
may come as a surprise. After all, the Prolog concepts of

https://groups.google.com/d/msg/erlang-programming/1jdsnqZ4XfQ/ve9WfFl2YBwJ
https://groups.google.com/d/msg/erlang-programming/1jdsnqZ4XfQ/ve9WfFl2YBwJ
https://logtalk.org/plstd/threads.pdf

Intro to Web Prolog for Erlangers Erlang ’19, August 18, 2019, Berlin, Germany

failure and backtracking and the use of failure to force back-
tracking are foreign to Erlang. Prolog programmers may
recognise a behaviour due to the fact that receive/1-2 is a
semi-deterministic predicate, i.e. a predicate that either fails,
or succeeds exactly once. The only way receive/1-2 will
fail is if the goal in the body of one of its receive clauses
fails. To see how it pans out in a corner case, consider the
following two receive calls:

receive({m(X) -> true}) receive({m(X) -> fail})

The call on the left will succeed if a message matching the
pattern m(X) appears in the mailbox. The call on the right
will fail (and possibly cause backtracking) once a message
matching the pattern m(X) appears. Only by the left call will
the variable X be bound. Both calls will remove the matched
message from the mailbox.
The tiny examples in this section highlighted a vital fea-

ture of the Web Prolog design as they showed how Prolog-
style search and Erlang-style concurrency can be integrated
and how a non-deterministic query can be supplied with a
deterministic interface. This is precisely the point where the
logic programming model and the actor programming model
– represented here by Prolog and Erlang – interface with each
other. This suggests that Prolog’s backtracking mechanism
is perfectly compatible with, and in fact complements, the
proposed Erlang-like mechanisms for spawning actors and
handling the communication between them.

The first example above demonstrated an actor adhering to
what might be seen as a tiny communication protocol accept-
ing only the messages next and stop. We need to observe,
however, that the goal to be solved was hard-coded into the
program, and that the program handles neither failure of the
spawned goal, nor exceptions thrown by it. There is clearly a
need for something more generic. In the next section we will
describe the API to a full-blown generic pengine abstraction
– an actor adhering to a considerably more complex protocol.

4.2 A Pengine is an Actor with a Protocol
In traditional Prolog the top-level is lazy in the sense that
new solutions to a query are only computed on demand.
However, the top-level is not accessible to programs, i.e. a
program cannot internally create a top-level, pose queries
and request solutions on demand. In Web Prolog, a pengine
is a programming abstraction modelled on the interactive
top-level of Prolog. A pengine is like a first-class interactive
Prolog top-level, accessible from Web Prolog as well as from
other programming languages such as JavaScript.
What distinguishes a pengine from other kinds of actors

is the protocol it follows when it communicates, i.e. the kind
of messages it listens for, the kind of messages it sends, and
the behaviour this gives rise to. The protocol must not only
allow a client to ask queries and a pengine running on a node
to respond with answers, it must also allow the pengine to
prompt for input or produce output in an order and with a

content as dictated by the running Web Prolog program. All
pengines follow this protocol. The shell adheres to it as well,
and even a human user of a shell talking to a pengine must
adapt to it in order to have a successful interaction with the
pengine.

The design behind pengines is in fact inspired by the infor-
mal communication protocol that we as programmers adhere
to when we invoke a Prolog shell from our OS prompt, load a
program, submit a query, are presented with a solution (or a
failure or an error), type a semicolon in order to ask for more
solutions, or hit return to stop. These are “conversational
moves” that Prolog understands. There are even more such
moves, since after having run one query to completion, the
programmer can choose to submit another one, and so on.
The session does not end until the programmer decides to
terminate it. There are only a few moves a client can suc-
cessfully make when the protocol is in a particular state, and
the possibilities can easily be described, by a state machine
for example, as we shall do in the next section.

4.3 The Pengine Communication Protocol
Figure 3 depicts a statechart specifying the Pengine Commu-
nication Protocol (PCP) – a protocol for the communication
between a client and a server (in the Erlang sense of these
terms). The server is a pengine running on a node. The client
can be any process (including another actor or a JavaScript
process) capable of sending the messages and signals in bold
to the server. The server is responsible for returning the
messages with a leading / back to the client.5

/output

/prompt

respond

/error

/failure

/success(false)

ask

/success(true)

next

stop/stop

exit/down*

abort/abort

I
D
L
E

I
D
L
E

W
O
R
K
I
N
G

I
D
L
E

s2 s3

s4

s1

* /down is
sent only if
process is
monitored

Figure 3. Statechart specifying the PCP for a complete Web
Prolog session. The transitions are labeled with message
types. Types in bold are sent from the client to the pengine,
whereas message types with a leading / goes in the opposite
direction, from the pengine to the client.

Web Prolog comes with built-in predicates which allow a
client to spawn a pengine (pengine_spawn/1-2), and send
it messages in bold (pengine_ask/2-3, pengine_next/1-2,
5The use of a statechart allows us to show that no matter the current state
of the protocol, abort will always take it to the state from which a new
query can be asked and exit will always terminate the pengine process.

Erlang ’19, August 18, 2019, Berlin, Germany Torbjörn Lager

pengine_stop/1, pengine_respond/2, pengine_abort/1
and pengine_exit/1). For communication from the pengine
to the client, pengine_input/2 and pengine_output/1 are
available.

4.4 In Conversation with a Pengine
Below, we show how to create and interact with a pengine
process that runs as a child of the current top-level process.

?- pengine_spawn(Pid, [

node('http://remote.org'),

src_text("p(a). p(b). p(c)."),

monitor(true),

exit(false)

]),

pengine_ask(Pid, p(X), [

template(X)

]).

Pid = '7528c178'@'http://remote.org'.

?- flush.

Shell got success('7528c178'@'http://...',[a],true)

true.

?- pengine_next($Pid, [

limit(2)

]),

receive({Answer -> true}).

Answer = success('7528c178'@'http://...',[b,c],false).

?-

There is quite a lot going on here. The node option passed
to pengine_spawn/1-2 allowed us to spawn the pengine
on a remote node, the src_text option was used to send
along three clauses to be injected into the process, and the
monitor options allowed us to monitor it. These options are
all inherited from spawn/2-3.

Given the pid returned when calling pengine_spawn/1-2,
we then called pengine_ask/2-3 with the query ?-p(X),
and by passing the template option we decided the form
of answers. Answers were returned to the mailbox of the
calling process (i.e. in this case the mailbox belonging to
the pengine running our top-level). We inspected them by
calling flush/0. By calling pengine_next/2with the limit
option set to 2 we then asked for the last two solutions, and
this time used receive/1 to view them.

We passed the option exit(false) to pengine_spawn/2,
so although the query has now run to completion, the pengine
is not dead and we can use it to demonstrate how I/O works:

?- pengine_ask($Pid, pengine_output(hello)),

receive({Answer -> true}).

Answer = output('7528c178'@'http://remote.org',hello).

?-

Wewill not show it here, but input can be collected by calling
pengine_input/2, which sends a prompt message to the
client which can respond by calling pengine_respond/2.

The pengine is still not dead so let us see what happens when
a non-terminating query such as ?-repeat,fail is asked:

?- pengine_ask($Pid, (repeat, fail)).

true.

?-

Although nothing is shown, we can assume that the re-
mote pengine is just wasting CPU cycles to no avail. Fortu-
nately, we can always abort a runaway process by calling
pengine_abort/1:

?- pengine_abort($Pid),

receive({Answer -> true}).

Answer = abort('7528c178'@'http://remote.org').

?-

When we are done talking to the pengine we can kill it:

?- pengine_exit($Pid, goodbye),

receive({Answer -> true}).

Answer = down('7528c178'@'http://remote.org',goodbye).

?-

Note that messages sent to a pengine will always be handled
in the right order even if they arrive in the “wrong” order
(e.g. next before ask). This is due to the selective receive
which defers the handling of them until the PCP protocol
permits it. This behaviour guarantees that pengines can be
freely “mixed” with other pengines or actors. The messages
abort and exit, however, will never be deferred.

4.5 Non-deterministic RPC
For the purpose of a very straightforward approach to the dis-
tribution of programs over two ormore nodes,Web Prolog of-
fers rpc/2-3, a meta-predicate for making non-deterministic
remote procedure calls. Such calls are synchronous and no
explicit concurrency is involved, and this is what makes
rpc/2-3 remarkably easy to use.

The rpc/2-3 predicate allows a process running in a node
A to call and try to solve a query in the Prolog context of
another node B, taking advantage of the data and programs
being offered by B, just as if they were local to A. (Recall
that pengine_spawn/1-2 can also do this, but only in a more
roundabout way.) AWeb Prolog client process queries a node
by calling rpc/2 with the first argument a URI pointing to
the node, and the second argument a query to be run over
the predicates offered by the node. Here is a trivial example
of its use:

?- rpc('http://remote.org', mortal(Who)).

Who = socrates ;

Who = plato ;

Who = diogenes.

?-

Intro to Web Prolog for Erlangers Erlang ’19, August 18, 2019, Berlin, Germany

4.6 An Implementation of rpc/2-3
Below, we show an implementation of rpc/2-3 which is
built on top of a pengine spawned on a remote node and a
local loop that waits for answers arriving from it:
rpc(URI, Query, Options) :-

pengine_spawn(Pid, [

node(URI),

exit(true),

monitor(false)

| Options

]),

pengine_ask(Pid, Query, Options),

wait_answer(Query, Pid).

wait_answer(Query, Pid) :-

receive({

failure(Pid) -> fail;

error(Pid, Exception) ->

throw(Exception);

success(Pid, Solutions, true) ->

(member(Query, Solutions)

; pengine_next(Pid),

wait_answer(Query, Pid)

);

success(Pid, Solutions, false) ->

member(Query, Solutions)

}).

Note how the disjunction in the body of the third receive
clause and the use of member/2 in the third and fourth
clauses turn the deterministic calls made by pengine_ask/3
and pengine_next/1 into the expected non-deterministic
behaviour of rpc/2-3.

4.7 Reducing the Number of Network Roundtrips
Time spent in remote shell-pengine or pengine-pengine in-
teraction can be the dominant factor in the user-perceived
performance of a web application. Some of the backtracking
involved in the search for solutions is taking place over the
network, and network roundtrips take time – a lot of time in
comparison with other computational steps programs typi-
cally perform. Since calling a remote program may involve
very many roundtrips during backtracking, the times may
add up to a significant slowdown compared to making a
local call. By passing the limit option to rpc/3 (inherited
from pengine_ask/3) we can make the communication less
“chatty” and avoid many roundtrips. Here is an example:
?- rpc('http://remote.org', mortal(Who),[

limit(10)

]).

Who = socrates ;

Who = plato ;

Who = diogenes.

?-

As the example tries to convey, the behaviour of the call, as
seen from the point of view of the client, does not change.
After having been presented with the first solution to the
query the programmer still needs to type a semicolon in
order to see the next solution. But under the hood, the next
solution has already been computed and returned to the
client as the second member of a list containing all three
solutions. Thus no new request to the node needs to be
made. So while the retrieval of the three solutions to the
query required three network roundtrips before we applied
the option, it will now only require one roundtrip. More
generally, a query with n solutions would (normally and by
default) require n roundtrips if we wanted to see them all,
but if we set limit to i , the same query would only require
n/i roundtrips, or just one roundtrip if n/i < 1.

Use of the limit option is fine also from a purity point of
view – it has nothing to do with logic and the declarative
reading of the query, but must be treated as a pragma – as a
language construct that specifies the granularity with which
the conversation between the client and the node should be
conducted. Passing the option limit(10) can be understood
as saying: “Send me the answers in chunks of 10. I will be
looking at them one-by-one, but I want them in batches.”
Although adding the limit pragma to a query will have no
effect on the meaning of the query, it can have a significant
effect on performance when running the query over a cluster
of nodes.

4.8 Shuffling Code and Data Back and Forth
On the internet, the cost of shuffling code and data back and
forth across remote boundaries is significant, yet cannot be
avoided. But in which direction should the shuffling be made
in order to bring down the cost? The answer is most likely
that it varies and that programmers should be given a choice.

The obvious way to bring code to the data in Web Prolog
is to inject source code into the remote process created by
rpc/2-3. With the following call, we do just that:

rpc('http://remote.org', foo(X), [

src_text("foo(X) :- mortal(X).")

])

The default value of the node option for spawn/2-3 and
pengine_spawn/1-2 is the special-purpose URI localnode.
Thus it follows, perhaps a bit counter-intuitively, that in
combination with the src_uri option rpc/3 can also be
used to bring the data to the code. Here is an example:

rpc(localnode, mortal(X), [

src_uri('http://remote.org/src')

])

The source held by the node at http://remote.org is in-
jected into the workspace of the underlying pengine before
the query ?-mortal(X) is tried, thus isolation is provided.

Erlang ’19, August 18, 2019, Berlin, Germany Torbjörn Lager

These two examples suggest a useful symmetry which
allows Web Prolog code to flow in either direction, from the
client to the node or from the node to the client. The choice
is determined by the programmer’s selection of options con-
figuring the actor to be spawned, but it can in principle also
be decided programmatically at runtime.
4.9 More about the Underlying Web APIs
An IDE for traditional Prolog is a fairly demanding type of
web application. Although the conversation between the
programmer and the pengine must always be initiated by
the programmer using the shell, the interaction may at any
point turn into a mixed-initiative conversation driven by
requests for input made by a running query. What makes
unconstrained mixed-initiative interaction feasible is the
support for efficient bi-directional messaging offered by a
node thanks to the use of the WebSocket protocol.
Other kinds of web applications may have no need for

mixed-initiative interaction. In order to serve such appli-
cations, a Web Prolog node offers a stateless HTTP API.
Interestingly, it also turns out that since rpc/2-3 does not
produce output or request input, it can be run over HTTP
instead of over the WebSocket protocol. In our proof-of-
concept implementation this is the default transport.

To retrieve the first solution to ?-mortal(X) using HTTP,
a GET request can be made with the following URI:
http://remote.org/ask?query=mortal(X)&offset=0

Here too, responses are returned as Prolog or as Prolog
variable bindings encoded as JSON. Such URIs are simple,
they are meaningful, they are declarative, they can be book-
marked, and responses are cachable by intermediates.

To ask for the second and third solution to ?-mortal(X),
another GET request can be made with the same query,
but setting offset to 1 this time and adding a parameter
limit=2. In order to avoid recomputation of previous solu-
tions, the actor manager keeps a pool of active pengines. For
example, when the actor manager received the first request
it spawned a pengine which found and returned the solution
to the client. This pengine – still running – was then stored
in the pool where it was indexed on the combination of the
query and an integer indicating the number of solutions
produced so far (i.e. 1 in this case). When a request for the
second and third solution arrived, the actor manager picked
a matching pooled pengine, used it to compute the solutions,
and returned them to the client. Note that the second request
could have come from any client, not necessarily from the
one that requested the first solution. This is what makes the
HTTP API stateless.

The maximum size of the pool is determined by the node’s
settings. To ensure that the load on the node is kept within
limits, the oldest active pengines are terminated and removed
from the pool when the maximum size is reached. This may
mean that some solutions to some subsequent calls must be
disposed of, but this will not hurt the general performance.

5 Previous Work
Technology-wise, Web Prolog can be seen as an attempt
to rethink and redesign our work on library(pengines)
[3], which is the library serving SWISH [5]. As a library for
JavaScript-Prolog communication it works well enough to
support SWISH, but it also makes promises that it cannot
really live up to, in particular when it comes to concurrent
and distributed programming. It is not possible, for exam-
ple, to spawn two remote pengines and make them play
ping-pong with each other. One way to put it is to say that
library(pengines) fails to implement the actor model. A
layer of predicates beneath the pengine abstraction in the
form of a small set of programming primitives that support
actor-based programming is a much better design, and in
addition establishes a clear and direct link to Erlang.

6 Discussion
Communicating Prolog engines is a great idea –
this is more or less what Erlang started as – but
I didn’t like the idea of backtracking over nodes.

Joe Armstrong (p.c. June 16, 2018)

The ability to backtrack over nodes must indeed be seen as
part of the essence of Web Prolog. Basing the distribution
of Prolog processes on the actor programming model seems
to require this ability. If the idea of backtracking over nodes
is abandoned, then the idea of backtracking within an actor
or over actors within a node does not seem attractive either.
Thus, the move to a functional language with its simpler
syntax and deterministic operational semantics becomes the
logical next step – a step that unfortunately, as it were, does
away with the “logic” in “logic programming” and with a lot
of useful features that a language such as Prolog provides.
We hasten to add that in no way should this be seen to

imply that we think that Armstrong and the other inventors
of Erlang made a mistake when they abandoned Prolog in
favour of a simple functional language. Given that Prolog is
fairly difficult to learn and to use correctly, given the nature
of the problems with programming telephone switches that
they set out to solve, and perhaps in an attempt to avoid
being dragged down by the post fifth generation dismissal of
logic programming, they probably made the right decision.
After all, Erlang is a very successful programming language,
more successful than Prolog when it comes to industrial uses.
Almost fifty years have gone by since Prolog was intro-

duced as a promising language for AI, and more than thirty
years have passed since Erlang was invented. Today, AI is
booming again, Prolog has evolved considerably, the internet
is much faster and a lot more reliable than it used to be, the
multi-core hardware revolution is in full swing, and Erlang-
style concurrency has emerged as a sensible way to program
such hardware. Perhaps now is the right time for the idea
of communicating Prolog processes and backtracking over

Intro to Web Prolog for Erlangers Erlang ’19, August 18, 2019, Berlin, Germany

nodes to make a comeback. With this paper we are making
an attempt to show how this idea might be realised.

6.1 A Hierarchy of Useful Abstractions
In Web Prolog, just like in Erlang, the actor is regarded as
the fundamental unit of computation and as the single ab-
straction that solves the two problems of concurrency and
distribution and provides a form of network transparency. In
Web Prolog, just like in Erlang, other network-transparent
programming abstractions can be built on top of the actor. In
Web Prolog, the most prominent and universally useful such
abstraction is the pengine, followed closely by the abstrac-
tion for making non-deterministic remote procedure calls.
These are both abstractions that would not fit easily into
Erlang, but which are natural in Web Prolog. Abstractions
such as these can be compared to Erlang behaviours. They
are not always easy to build, but once they are built they can
easily be instantiated and tailored to specific tasks.
We note that these three abstractions – the actor, the

pengine and the remote procedure call – form a hierarchy
where predicates on the higher levels inherit some of their
options from predicates on the lower levels. rpc/3 inherits
options from pengine_spawn/2 and pengine_ask/3, and
pengine_spawn/2 inherits options from spawn/3 in turn.

6.2 Web Prolog and the Programmable Prolog Web
A node has a dual identity. It can be seen not only as a Web
Prolog runtime system but also as a node in the network
forming what we will refer to as the Prolog Web. The tradi-
tional Web is distributed, decentralised and open, and these
are traits we want the Prolog Web to share. Whereas dis-
tribution is nicely conceptualised in the actor model, and
nicely handled by an actor programming language such as
Erlang or Web Prolog, decentralisation and openness require
features we choose to rely on the Web as such to contribute.
Here, the humble URI is a key concept, as it allows us to

link a Web Prolog program to another Web Prolog program,
a running actor to another running actor, or a Prolog query
to its answers, in much the same way as HTML documents
are linked to other HTML documents.

Another key feature of the Prolog Web is that communica-
tion among nodes relies only on HTTP and the WebSocket
protocol. This allows it to pass through firewalls, and pro-
vides security-related features such as methods for authenti-
cation, HTTPS and CORS (Cross-Origin Request Sharing).6
Distributed programming in Erlang typically involves a

number of nodes connected into a cluster. Erlang nodes usu-
ally rely on TCP/IP for transport and are, for reasons of
security, assumed to be operating in a closed, trusted envi-
ronment where we directly control the machines involved.
In other words, when Erlang runs on a cluster, it is a cluster
that is closed. In comparison, the Prolog Web might be seen
as a cluster as well, but one that is as open as the Web itself.
6https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

6.3 Would the Prolog Web Scale?
By adopting a computational model capable of scaling out
not only to multiple cores on one machine but also to mul-
tiple nodes running on multiple machines, by introducing
an option allowing clients to limit the number of network
roundtrips it takes to run a query to completion, by embrac-
ing the WebSocket transport protocol with its low overhead
per message, by offering also a stateless HTTP API, and by
leaving ample room for old as well as new forms of caching
on both clients, nodes and intermediaries, we have made our
best to ensure our high hopes for the scalability of the Prolog
Web are not unfounded.

For the Prolog Web to be able to scale really well, nodes
must also be able to spawn verymany actors, creating and de-
stroying actors must be fast, and the communication among
them efficient. Since actors created by the Erlang virtual ma-
chine are famous for having exactly those properties, this is
certainly yet another reason for us to look closely at Erlang.

An implementation of a Web Prolog node in Erlang might
be interesting since it would most probably have a perfor-
mance profile different from our implementation in SWI-
Prolog. Interestingly, there is already Erlog – a fairly com-
plete Prolog implementation in Erlang written by Robert
Virding – which might serve as a point of departure.7 Erlog
is an interpreter so the basic Prolog machinery (e.g. uni-
fication and backtracking) is likely to be slower in Erlog
compared to (say) SWI-Prolog, whereas the super-fast light-
weight processes of Erlang have other advantages, probably
allowing it to scale better to very many simultaneous clients
on a network. For the networking part, we note that Erlang is
particularly famous for extremely efficient implementations
of web-related technologies such as web servers (e.g. Yaws
and Cowboy) and this could also be a distinctive advantage
for an Erlang implementation of Web Prolog.

The holy grail for a Web Prolog runtime system is a com-
piler targeting a virtual machine with BEAM-like properties,
capable of producing code which when run will create pro-
cesses as small and efficient as Erlang processes, yet with
the useful capabilities that Prolog offers. We do not dare to
guess whether building such a virtual machine is feasible.

6.4 Rebranding Prolog
Rebranding is a marketing strategy in which a
new name, term, symbol, design, or combination
thereof is created for an established brand with
the intention of developing a new, differentiated
identity in the minds of consumers, investors,
competitors, and other stakeholders.Wikipedia

While the paradigms of imperative, functional and object-
oriented programming have a vigorous following, the para-
digm of logic programming with its flagship Prolog has fallen

7https://github.com/rvirding/erlog

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://github.com/rvirding/erlog

Erlang ’19, August 18, 2019, Berlin, Germany Torbjörn Lager

behind. People both inside and outside the community have
at various occasions voiced their fears about the future of
Prolog, noting that there are too many incompatible systems
around, resulting in a fragmented community and an ISO
standard that few systems conform to.
We suggest rebranding as a strategy for reviving Prolog,

and offerWeb Prolog in the hope that it may serve as a lingua
franca allowing different Prolog systems to communicate,
and possibly aid the “defragmentation” of the community.
The strategy of rebranding as such is not a new idea. In

fact, we would suggest that Elixir might be regarded as a
rebranded Erlang. Since Elixir appears to be more popular
than Erlang, rebranding seems to have worked. However,
since we do not propose to change the syntax of Prolog, only
its purpose, our approach to rebranding is different.

7 Summary and Future Work
In accordance with our rebranding strategy, we choose to
present our summary in the form of two “elevator pitches”.

Imagine a dialect of Prolog with actors and mail-
boxes and send and receive – all the means nec-
essary for powerful concurrent and distributed
programming. Alternatively, think of it as a di-
alect of Erlang with logic variables, backtracking
search and a built-in database of facts and rules
– the means for logic programming, knowledge
representation and reasoning. Also, think of it
as a web logic programming language. This is
what Web Prolog is all about.

Web Prolog – the elevator pitch

Imagine the Web wrapped in Prolog, running
on top of a distributed architecture comprising
a network of nodes supporting HTTP and Web-
Socket APIs, as well as web formats such as
JSON. Think of it as a high-level Web, capable
of serving answers to queries – answers that
follow from what the Web “knows”. Moreover,
imagine it being programmable, allowing Web
Prolog source code to flow in either direction,
from the client to the node or from the node
to the client. This is what the Prolog Web is all
about.

The Prolog Web – the elevator pitch

Our work on the design and implementation of Web Prolog
has so far resulted in a somewhat sketchy language spec-
ification and a proof-of-concept demonstrator featuring a
fairly comprehensive interactive tutorial. As for future work,
our next goal is to make sure the demonstrator is robust and
secure enough to allow people to play with the language
online without having to download anything.

In parallel to investing more work into building something
that can be used in production, we are considering making
an early attempt to create a standard for Web Prolog, based
on a suitable subset of ISO Prolog, but developed under the
auspices of the W3C this time rather than ISO, or under a
liaison between these organisations. As a first move in this
direction, we might create a W3C Community Group,8 as
this appears to be an easy way to find out if enough interest
can be generated among people of appropriate expertise.
A realistic but ambitious deadline for a standardisation

effort would be to aim for 2022, the year when Prolog cele-
brates its 50th birthday. We find it difficult, in fact, to think of
a better way to celebrate this occasion than to release version
1.0 of such a standard along with software implementing it.

We believe that Erlang technology might have something
to contribute to Web Prolog, and, of course, that Prolog tech-
nology has something to contribute to Erlang (and by that
we mean more than it has already contributed by once upon
a time having inspired Erlang). Nowadays, there is not much
contact between the Prolog community and the Erlang com-
munity. In the best of worlds, the language of Web Prolog
might serve to open a new line of communication between
the two communities.

Acknowledgments
The author is grateful to late Joe Armstrong for his enthusi-
astic support. Richard O’Keefe and Markus Triska provided
encouraging and constructive comments and suggestions.
Jan Wielemaker kindly helped with the implementation of
the demonstrator, and he also came up with the original
idea on which the stateless HTTP API is based. Anonymous
reviewers offered a number of additional useful suggestions.

References
[1] Joe Armstrong. 2007. A history of Erlang. In Proceedings of the Third

ACM SIGPLAN History of Programming Languages Conference (HOPL-
III), San Diego, California, USA, 9-10 June 2007. 1–26. https://doi.org/10.
1145/1238844.1238850

[2] Fred Hebert. 2013. Learn You Some Erlang for Great Good!: A Beginner’s
Guide. No Starch Press, San Francisco, CA, USA.

[3] Torbjörn Lager and Jan Wielemaker. 2014. Pengines: Web Logic Pro-
gramming Made Easy. Theory and Practice of Logic Programming 14,
4-5 (2014), 539–552. https://doi.org/10.1017/S1471068414000192

[4] Hans Svensson, Lars-Åke Fredlund, and Clara Benac Earle. 2010. A
unified semantics for future Erlang. In Erlang Workshop, Scott Lystig
Fritchie and Konstantinos F. Sagonas (Eds.). ACM, 23–32. http://dl.
acm.org/citation.cfm?id=1863509

[5] Jan Wielemaker, Fabrizio Riguzzi, Bob Kowalski, Torbjörn Lager, Fariba
Sadri, and Miguel Calejo. 2019. Using SWISH to realise interactive
web based tutorials for logic based languages. Theory and Practice
of Logic Programming 19, 2 (2019), 229–261. https://doi.org/10.1017/
S1471068418000522

[6] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.
2012. SWI-Prolog. Theory and Practice of Logic Programming 12, 1-2
(2012), 67–96.

8https://www.w3.org/community

https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1017/S1471068414000192
http://dl.acm.org/citation.cfm?id=1863509
http://dl.acm.org/citation.cfm?id=1863509
https://doi.org/10.1017/S1471068418000522
https://doi.org/10.1017/S1471068418000522
https://www.w3.org/community

	Abstract
	1 Introduction
	1.1 Web Prolog is a Hybrid Programming Language
	1.2 Web Prolog is a Web Programming Language

	2 Running Web Prolog from a Browser
	3 Erlang-Style Programming in Web Prolog
	3.1 A Simple Count Server
	3.2 Node-Resident Actor Processes
	3.3 The Syntax of Send and Receive
	3.4 The Semantics of Send and Receive
	3.5 Concurrent and Distributed Programming
	3.6 Programming Patterns in Erlang and Web Prolog

	4 Backtracking beyond Erlang
	4.1 Handling Non-determinism
	4.2 A Pengine is an Actor with a Protocol
	4.3 The Pengine Communication Protocol
	4.4 In Conversation with a Pengine
	4.5 Non-deterministic RPC
	4.6 An Implementation of rpc/2-3
	4.7 Reducing the Number of Network Roundtrips
	4.8 Shuffling Code and Data Back and Forth
	4.9 More about the Underlying Web APIs

	5 Previous Work
	6 Discussion
	6.1 A Hierarchy of Useful Abstractions
	6.2 Web Prolog and the Programmable Prolog Web
	6.3 Would the Prolog Web Scale?
	6.4 Rebranding Prolog

	7 Summary and Future Work
	Acknowledgments
	References

