
Coping strategies for temporal, geographical and
sociocultural distances in Agile GSD: a Case Study

Dávid Marcell Szabó and Jan-Philipp Steghöfer
Chalmers | University of Gothenburg, Sweden

szabodavidmarcell@gmail.com, jan-philipp.steghofer@gu.se

Abstract—Globally distributed software development teams
face a number of challenges in their work that are associated
with temporal, geographical and sociocultural distances. This
case study explores the relationship between agile practices and
these three distances in global software development. Data was
collected by interviews and secondary data analysis. The results
show that the three distances affect agile practices and the case
team modifies the agile practices accordingly. Agile practices, in
turn, affect the three distances by reducing communication, con-
trol and coordination challenges. Non-agile coping strategies such
as specialised communication strategies also play an important
role to alleviate the effects of the different distances.

Index Terms—Global Software Development, Agile Software
Development, Distances

I. INTRODUCTION

Globalisation is increasing in many industries, including the
software development industry. Interest in Global Software
Development (GSD) is rising where people from different
nations, organisational cultures and time zones are involved [1].
There are certain benefits to GSD [2], including that companies
gain access to workforce in developing countries, which reduces
the labour costs, that the time zone differences allow to develop
software nonstop, that businesses can take advantage of the
proximity to the market, and that is is possible to exploit
opportunities through the quick formation of virtual teams.

On the other hand, GSD needs to address temporal, geo-
graphical and sociocultural distances that pose challenges in
communication, control and coordination [3], [4]. Temporal
distance is a measure of the disruption of time between two
people who want to interact, geographical distance is a measure
of the effort of one person visiting the other and sociocultural
distance is a measure of a person’s understanding of another
person’s values and normative practices [5].

Agile methods in turn address key problems in software
development (low quality product, late delivery and high
cost of development) by a lightweight and fast development
process [2]. Agile practices rely on people, short, iterative
software development cycles, collaborative decision making,
inclusion of rapid feedback into the processes and development
and continuous code integration [6]. XP and Scrum are maybe
the two most well-known agile methods. They complement
each other as Scum is used for managing and tracking software
development and XP provides good engineering practices [7].

Previous research shows that agile methods can alleviate
GSD challenges by improving communication, coordination

and control [8]. They have been shown to improve communica-
tion and reduce coordination and control overhead in GSD [2],
[9]. However, key concepts of agile practices are difficult
to implement in GSD as a result of the project members
being distributed [10]. Face-to-face, informal and synchronous
communication is, e.g., difficult to implement when the
customer is not on site, team members are geographically
distributed or even in different time zones [9].

For practitioners who wish to handle the complexities of
GSD, it is crucial to understand the dynamics of the three
distances. This study analyses these distances in a distributed
development team of a pharmaceutical company. In particular,
we focus on the coping strategies currently employed and
how they impact the different distances. We distinguish agile
practices that are employed and other, not strictly agile, coping
strategies that support the agile ones. Our study thus allows
practitioners to better decide on concrete strategies, illustrates
the possible impact of off-shoring, and helps researchers
identify gaps in the current understanding of the combination
of agile processes and GSD. We follow the argument that more
empirical studies are needed to understand the use of Scrum
in GSD [11] and the need to test innovative viewpoints on
communication, coordination and control in distributed contexts
using agile practices [12]. Our main research question is thus:

RQ1: What is the relationship between agile practices
and temporal, geographical, and sociocultural distances in
a globally distributed software engineering project?

We are also interested in the combination of agile practices
with non-agile approaches in more general coping strategies:

RQ2: Which coping strategies does the team use to address
the three distances?

Concretely, we address the following sub-research questions:

• RQ1a: How are Scrum, XP and other agile practices
used by the case study team?

• RQ1b: How do agile practices affect temporal, geograph-
ical and sociocultural distances in the case study team?

• RQ1c: How do temporal, geographical and sociocultural
distances affect agile practices in the case study team?

Our results show that global software development introduces
temporal, sociocultural and geographical distances to the agile
teams. Agile practices do indeed affect the three distances and
the three distances affect the agile practices, thus establishing
a bi-directional relationship. To address the three distances a
combination of agile and non-agile practices is necessary.



II. BACKGROUND AND RELATED WORK

A. Globalisation in the Software Industry
With the rise of globalisation, offshoring software develop-

ment became popular in many companies [9]. In offshoring,
globally distributed virtual teams collaborate across coun-
tries [13]. To achieve this, the work is outsourced to an offshore
third party via offshore sourcing [14]. Offshore sourcing
also includes the insourcing of work within organisational
boundaries to one of the company’s department in an off-
shore location [9]. Increased geographical distance increases
management complexity due to problems in communication,
coordination and control [15]. It can also cause the offshored
parts of the teams to feel like they do not belong to the core
team [16]. This can create problems with trusting each other’s
work and can reduce team morale. Geographically dispersed
teams either use asynchronous modes of communication, such
as email or synchronous communication methods, such as
video chat and teleconferencing [9]. Also, globally distributed
teams collaborate with people from different nationalities,
thus increasing sociocultural distance [9]. In addition, globally
distributed teams are likely to work in different time-zones,
thus causing temporal distance.

B. Agile Software Development
Agile software development methodologies focus on respon-

siveness to customer needs, thus improving software quality and
enhancing productivity [17]. Furthermore, increased customer
satisfaction is achieved by early and continuous delivery of valu-
able software. Business representatives and developers ideally
work together during the development process and face-to-face
communication is preferred over formal communication [18].
Agile assumes that requirements change frequently and flexible
requirements management (e.g., through iterative requirements
gathering and analysis) is necessary.

1) Scrum: Scrum focuses on project management, rather
than on software development [19]. Scrum practices include
sprints, daily stand-ups, sprint planning, retrospectives and
sprint reviews [20]. A sprint is a short iteration, which lasts
usually two to four weeks. In a sprint, certain requirements
captured as user stories should be completed. User stories
are captured in a product backlog where they are prioritised
by the product owner on behalf of the customer. Sprints are
planned to identify and estimate the time required to implement
target functionality. Team members communicate in stand-up
meetings, which last around 15 minutes and give an overview
of current and next work and any potential impediments [3].
Scrum teams are self-organising, multidisciplinary “feature”
teams who develop small increments of working software [20].

2) Extreme Programming (XP): Extreme programming
focuses on the engineering aspect of software development
and is based upon four values: “communication, simplicity,
feedback and courage” [21]. These values are engrained in
twelve development practices: planning game, small releases,
metaphor, simple design, test driven development, refactoring,
pair programming, collective code ownership, continuous inte-
gration, 40-hour week, on-site customer and coding standards.

C. Agile in GSD

The common view is that agile practices are not suitable
for GSD because only some of the agile principles can
be applied [9]. The three distances of GSD, geographical,
temporal and sociocultural, make communication, control and
coordination more difficult [2].

As mentioned in Section I, informal, face-to-face commu-
nication and co-located teams are not achievable when team
members are located in different locales and often in different
time-zones. Pair programming, shared code ownership and
onsite customers are also difficult to implement in globally
distributed projects [18]. Hansen & Baggesen [22] claim that
Scrum practices, such as daily scrum, sprint planning and
retrospectives improve collaboration among distributed team
members, uncover hidden problems, build trust, and develop
team spirit. According to Paasvivaara et al. [23], daily stand-
ups provide transparency and support informal communication
among distributed team members.

Distributed agile teams can choose from a wide array
of tools for improving communication. Careful selection
of synchronous and asynchronous communication methods
minimises the differences in time zones, work day hours,
or public holidays [20]. Collaborative project management
tools, online meetings, social media and wikis can also help
in communication across distributed locations. Periods of co-
located work, visits, unofficial meetings, training activities,
or distributed documentation help overcome sociocultural
distances and can boost team morale [20].

According to Holmström et al. [2] temporal distance was
mitigated by pair programming and by increasing the overlap
in working time between the distributed developer pair. Joint
Scrum sprint planning addressed the geographical distance by
increasing the “teamness” feeling. The team published “sticky
notes” on a web page to share a visualisation of project progress.
These activities helped to reduce sociocultural distance by
increasing mutual understanding and collaboration.

Yadav [9] describes a flexible management approach that lies
between the traditional plan-based and the pure agile approach.
She proposes iterative prototyping to increase product quality,
frequent online meetings through web conferencing, lightweight
project planning practices, appointed site-coordinators to co-
ordinate work across distributed locations, using cloud-based
collaborative technologies for requirement gathering, project
wikis to help in coordination, and social media for informal
communication.

Lee et al. [8] describe “ambidextrous” coping strategies
where agile is balanced with rigour. Effective global software
teams need to sense unpredictable external changes rapidly
to make timely responses to changes. Frequent communica-
tion and increased team/task awareness help to respond to
problems. As coping mechanisms, the authors mention “24/7
command centres,” “project dashboards,” “weekly corrective
action meetings,” and “onsite customer representatives” for the
offshore teams to sense and respond to emergent problems.
On the other hand, due to the difficulties of global boundaries,



GSD teams in the study used rigorous processes. Detailed
documentation and user requirement specification helped to
reduce misunderstandings and ambiguity. Redundant roles in
multiple locations helped to reduce single points of failure.
Assigning on-site customers to offshore sites improved the
effectiveness of communication.

Kircher et al. [24] remove practices that are dependent on co-
location such as planning game, pair programming, and on-site
customers in “distributed extreme programming”. Practices that
are independent of co-location such as small releases, testing,
refactoring, collective code ownership, 40-hour week, as well
as coding standards are encouraged.

Hossain et al. [16] describe eight different mitigation
strategies that summarise the strategies mentioned above. They
also suggest synchronised work hours, both synchronous and
asynchronous communication methods including tool-supported
communication through instant messaging, frequent visits, an
iterative development approach with frequent opportunities to
monitor progress and correct issues, reviews that include all
stakeholders and provide feedback, and joint planing to scope
the work and available resources, and establish the processes.

III. CASE DESCRIPTION

The case is based on a cross-functional software development
team developing a platform for internal projects. The team is
working in a pharmaceutical setting with strict quality control.
The owner of the platform project is a programme manager.
The project is financed from internal projects that the platform
serves. The internal projects involve smart medical devices,
mobile apps, and big data analysis.

The core team is based in Sweden, the internal devOps team
is based in the US and in India, and two back-end developers
are based in Bulgaria at a supplier company. The Californian
team manages the Indian team, but does not work directly
with the Swedish team. Also, there is a quality assurance
(QA) professional working with compliance in Mexico with
non-overlapping working hours with the Swedish team. An
overview of the team and its members is given in Table I.

The core team follows Scrum with two-week sprints and
some XP practices. The Swedish team shares sprints with
the Bulgarian one, but daily stand-ups are independent as the
Bulgarian team adopted overlapping working hours with the
US. It thus starts working at eleven o’clock Swedish time and
holds its daily standup in the afternoon, together with two
of the developers from Sweden. The core team doesn’t have
overlapping hours with the Californian team and the Indian
team is always online during Swedish working hours. The core
team works with the Indian team as needed, but the Indian
team follows its own Scrum cycle and also provides devOps
services to other projects. Whenever the platform team releases
a new version or needs help in devOps activities, they contact
the Indian team members and create tasks for them on Jira.

The requirements for the platform are provided by internal
projects. The first project — a digital health project with smart
medical devices — was the source of 80% of the requirements.
This project is classified as a medical device, thus forcing

Table I
PLATFORM TEAM MEMBERS

Role Activities Location

Technology
Lead

Manages the Bulgarian team members, gathers
and analyses requirements, adapts architecture,
develops.

Sweden

Programme
Manager

Accountable for the projects the platform
serves and the platform itself.

Sweden

Project Man-
ager/Scrum
Master

Manages platform team and one of the projects
based on the platform. Responsible for regula-
tory documentation, release notes, and change
requests. Works with the compliance coordi-
nator. Supports team as Scrum Master.

Sweden

Product Owner Requirement gathering and analysis. Sweden

Back-end
Developers (3)

Develop the platform. Sweden

Mobile
Developers (2)

Develop the Android and IOS SDKs. Sweden

Full-stack
Developers (2)

Develop both backend services for the plat-
form and the user interfaces.

Sweden

Configuration
Manager

Manages the releases. Sweden

Automated
Tester

Works with automated software testing and
back-end development.

Sweden

QA Lead Works with the compliance coordinator. Sweden

Tester System and user acceptance tests. Sweden

Back-end
Developers (2)

Senior and junior; develop the platform. Bulgaria

devOps
Managers (2)

Manage the Indian team, revise the release
documents from a quality perspective.

California

devOps
engineers (2)

Perform devOps tasks for the platform and for
other projects.

India

Compliance
Coordinator

Responsible for the regulatory compliance for
the platform.

Mexico

strict regulatory compliance requirements on the platform. This
affects the release process that needs to be verified and signed
by the compliance coordinator in Mexico. The verification
process follows a waterfall approach. Other projects that use
the platform mostly reuse existing capabilities.

The core team has a product owner who works 50% with
the first digital health project and provides requirements
from the customers. The project manager also acts as a
Scrum master who helps with coordination and applying the
Scrum practices. The technology lead helps in the backlog
prioritisation and in managing the Bulgarian developers. The
rest of the platform team works with server-side development,
testing, configuration management, mobile app development
and front-end development.

The team uses a cloud-based agile project management
tool for issue tracking (Jira1), cloud-based project wikis
for team collaboration (Confluence2) and an online shared

1https://www.atlassian.com/software/jira, project mgmt. and issue tracking
2https://www.atlassian.com/software/confluence

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/confluence


Table II
INTERVIEWEE DESCRIPTIONS

Role Work
experience

Years at
case company

Location

Project Manager (Pilot) 20 years 1.5 years Sweden

Technology Lead 18 years 3.5 years Sweden

Product Owner 20 years 17 years Sweden

Configuration Manager 9 months 9 months Sweden

Senior software developer 7 years 1.5 years Bulgaria

Senior devOps engineer 6.5 years 1.5 years India

code repository (Bitbucket3). For informal communications
cloud-based instant messaging tools are used (Slack4 and
Skype5). Also, the team uses email for informal and formal
communications. There is no physical backlog but a shared
online backlog in the cloud-based issue tracking tool.

It is difficult to coordinate the teams due to the temporal,
geographical and sociocultural distances (cf Section V). The
platform team is stretched with meeting deadlines and com-
munication between the platform team and the devOps team
is tense. Also, the internal projects that the platform team is
serving find the delivery too slow. The platform team’s project
manager believes that despite the Scrum project practices and
the agile tools, the project is delivered in a waterfall fashion.
This can be due to the compliance process. Also, the regulatory
requirements on quality control are high, which puts additional
burdens to documentation and testing.

IV. RESEARCH METHODOLOGY

We applied a case study methodology [25] to provide
an in-depth explanation of the case. The research strategy
is qualitative since the research will try to understand a
phenomenon and generalize the results. This is an inductive
approach where the emphasis is on generation of theories.

A. Data collection

The primary data was collected by semi-structured in-
terviews from the case company. The secondary data was
collected through analysing the platform team’s documents.

1) Interviews: We conducted five individual interviews and
one pilot interview (cf. Table II). The purpose of the interviews
was to gain an understanding of how the team addresses the
three distances and how they use the agile practices to mitigate
them. We followed the following steps:

Step 1 – Question Forming: The interview guide was based
on Bass’ [20] study which examined the influences of agile
methods in globally distributed software development projects.
We added questions to address the research questions about
the three distances. To avoid bias and to put the questions in
a logical order flow, we iteratively refined the questionnaire.

3https://bitbucket.org/
4https://slack.com/
5https://www.skype.com/en/business/, video chat, voice calls, screen sharing

Step 2 – Pilot Interview: The project manager was inter-
viewed to test the interview structure and content. We received
constructive feedback and tested whether the questions were
understandable. We also measured the time of the interview to
establish a baseline. We took notes of the answers and used
these notes to support the analysis. We also clarified some
questions based on the feedback for future interviews.

Step 3 – Interviews: We conducted three interviews with the
core Swedish team: the product owner, the technology lead,
and the configuration manager. Two interviews were conducted
with offshored team members: a senior devOps engineer in
India and a senior developer in Bulgaria. The tech lead works
mostly with the Bulgarian team. The configuration manager
works mostly with the devOps team in India. We thus cover all
relevant roles for offshore and onshore teams. Each interview
took between 45 and 60 minutes and the employees were
interviewed individually. The interviews were recorded with
permission from the interviewees and then transcribed.

2) Secondary Data: We combined several qualitative meth-
ods to avoid reliance on a single approach [25] in analysing
secondary data and used it to test the interview data. It stems
from the documentation that the project team produces, i.e.,
tickets in Jira and wiki pages that detail the release process
and include information about retrospectives. The user stories
in Jira do not strictly follow the standard Scrum user story
definition. Descriptions were often very short. All user stories
had story points associated with them. We regarded all user
stories created between September 2017 and April 2018. The
wiki pages provide detailed release instructions instructions
intended for the Indian team for each release between May
2017 and June 2018. They were linked to a Jira ticket. Monthly
retrospectives were saved on wiki pages between January 2017
and December 2017. We considered all available wiki pages.

3) Direct Contact: We used email to contact the tech lead,
the senior offshore devOps engineer and the senior offshore
back-end developer to get quick answers to clarification
questions. We used this informal method when a formal
interview was inappropriate and to conduct member checking.

B. Qualitative Data Analysis
After transcribing the interviews, general statements in them

were noted down [26]. The statements were categorised and
each category was labelled. Then, the interviews were coded
using a mixture of pre-defined and emergent codes. Predefined
codes consisted of the labels and additional ones identified from
the literature: communication, control and coordination [27].
One of the emergent themes that came up was the bidirectional
relationship between agile practices and distances. The codes
were categorised into six themes: geographical, temporal,
sociocultural distance, Scrum, XP and rigor. Codes were
organised in a mind map and cross-relations were identified.
The final step was to interpret the findings and lessons learned
based on the literature.

C. Threats to Validity
Validity means whether the record truly reflects what hap-

pened [28]. To improve validity we used triangulation, which

https://bitbucket.org/
https://slack.com/
https://www.skype.com/en/business/


refers to combining two or more views/approaches/methods in
an investigation to get a more accurate view on the phenomena
[28]. This was done by analysing secondary data in addition to
the semi-structured interviews. Also, for additional feedback,
the data was discussed with an agile coach at the case company.
In addition, constant comparison technique was used to check
the accuracy and consistency of the interpretations. A coding
list helps in this technique as each time a passage of text is
coded it can be compared to the existing definitions in the list.
This helps to avoid definitional drift [28].

Reliability means that the result of the analysis would
be acquired if different researchers repeated the study [28].
Reliability was improved by member checking. Respondents
were consulted about the interpretations that the data analysis
generated. Moreover, evidence is included in form of quotations
from interviews. The interviews for this study have been done
remotely and not face-to-face. This threat was also mitigated
by member checking with the tech lead and the product owner.

V. RESULTS

This section presents the results of the interviews and the
secondary data analysis. Table III provides a summary of the
issues and the coping strategies described below and relates
them to similar issues in the literature. Tables IV, V, and VI
provide an overview of different agile practices we found and
how they are used by the team.

A. Temporal Distance
The case description shows that the Swedish team does not

have overlapping working hours with the US and Mexico. This
creates a significant communication delay and slows down
the release process. When the product owner is emailing the
Mexican team members he has to wait a day for a reply: “You
send something in the afternoon and they respond the next day
in their working day and then you can work with it next day
and they respond the next day after that.

The Indian devOps team adjusted its working hours to have
overlapping hours with the Swedish team. This was done with
working overtime, i.e., between 12 and 16 hours a day. As
the technology lead says: “they are working a lot, they are
almost always available when we need them”. One way to
mitigate the non-overlapping hours with the US team is that
the Swedish team tries to speak with the Indian team members
whenever they can instead of the US ones.

The Bulgarian team starts working at 11:00 Swedish time
because of the adoption of the US company culture. This
causes them to miss the daily stand-ups of the Swedish team
in the morning and thus are not updated on the latest issues
and cannot contribute to the other team members’ problems.
As the tech lead says: “[the Bulgarians] miss a lot and don’t
get the context”. Participating in the daily stand-ups provides
background and context to the project and to the problems that
the Swedish team members are working on.

As it can be seen, communication and coordination are
challenged by temporal distance. According to the respondents
the main problem is the delay in responses. In addition, project
control becomes more difficult with no overlapping hours [2].

B. Geographical

The physical distance creates a division among the teams
from the different countries. The Bulgarian team does not share
social time with the Swedish team and does not take part in
the discussions. As the product owner puts it: “with that kind
of distance and not being present all the time, you can sense
that they are not part of the sort of core team”. This was
acknowledged by both parties. Mitigation strategies include a
shared project backlog, occasional visits, and calls.

Also, because of the geographical distance, the Bulgarian
and the Indian team are not able to collaborate closely with
the Swedish team. In an agile setting, interactions happen
quickly and small decision are taken all the time. As the
tech lead puts it: “the team takes small decisions all the time,
you need to discuss things very often, small details, and it is
very hard to bring them into those discussions”. Arranging
a meeting with the offshored teams takes more time than an
ad-hoc collaboration or meeting. For example, when there was
a problem that the offshored team could not resolve within
three weeks, they travelled to the Swedish site and resolved
the issue in two hours. However, such visits are not frequent.

In addition, the Swedish team does not have a designated
video meeting room for its stand-ups. Additional time would
be required to set up a video meeting for each stand-up with
the Bulgarian team. The Swedish team thinks that setting up a
video meeting would slow down the local team. As the product
owner said about a desirable solution: “at the stand-up have
all the screens already connected, just go into the room”.

Moreover, the geographical distance creates a communication
lag, too. As the senior Bulgarian developer said: “when I ask a
question it takes quite some time to get the answer because you
are not present. You can’t just go [. . . ] and ask them directly”.
The senior Bulgarian developer mentioned that the people who
are present have priority in getting their questions answered:
“they get an email from me and somebody goes to the technical
lead and of course the person next to the technical lead will be
more important, because the person is there, that person will
get their answers and after that if there is time we will get our
answers in an email”. This issue is mitigated by a designated
person who is responsible for delivering the Bulgarian team’s
questions to the right parties and ask them in person.

Trust issues can also be found. Some of the Swedish team
members do not trust the quality of work of the Bulgarian team.
The company does not mitigate this by any agile practice. The
tech lead mentioned that there may be a trust issue with the
Indian team that keeps the development and test environments
very closed. The Swedish team does not have full access to
these and can not execute certain commands on them. This
may be related to the security of the environments and the
fact that the Indian team is accountable for them, but impedes
progress for the Swedish team.

C. Sociocultural

A major issue that exacerbates the sociocultural distance
is language. The Swedes report that members of both the
Bulgarian and Indian team have accents that are difficult to



Table III
SUMMARY OF THE ISSUES AND COPING STRATEGIES FOUND IN THE CASE TEAM. HIGHLY SUCCESSFUL STRATEGIES ARE highlighted.

Issue in the team Issue source Similar issue in literature Coping strategies in the team

Communication
delay

• Offshore senior developer
• Configuration manager
• Offshore Senior devOps Engineer
• Product owner

Holmström et al. [2];
Yadav [9]; Lee et al. [8]

• speak with the offshore team with extended working hours
• designated person to answer offshored team’s questions
• visits
• teleconference, phone calls

Missed daily
stand-ups

• Tech lead
• Product owner
• Offshore senior developer

• separate stand-up with the offshored team
• visits
• iterations
• reviews

One team feeling • Tech lead
• Product owner
• Offshore senior developer

Holmström et al. [2] • shared project backlog
• visits
• Skype calls

Close collaboration • Tech lead
• Product owner

Yadav [9] • visits
• ad-hoc meetings

No designated
meeting room

• Product owner Hossain et al. [11] • visits

Trust • Tech lead Lee et al. [8] • frequent communication (e.g., on Slack)
• visits
• sprint reviews
• give complex tasks to the offshore back-end team

Language • Tech lead
• Product owner
• Configuration Manager

Holmström et al. [2];
Lee et al. [8]

• asynchronous communication
• frequent communication
• get used to the accents
• have a shared glossary of terms

Offshore team not
taking decisions

• Tech lead Highsmith [6] • reviews
• frequent communication
• delegating work in work packages

No shared calendar • Offshore senior developer Lee et al. [8] None

Not challenging
the work tasks /
misunderstandings

• Tech lead
• Product owner
• Configuration Manager

Ågerfalk and Fitzgerald [15] • ad-hoc meetings
• visits
• sprint planning and reviews
• provide and iterate detailed instructions in advance

Bureaucracy in
decision making

• Configuration Manager Ågerfalk and Fitzgerald [15];
Lee et al. [8]

• shared understanding on how each party makes decisions
• frequent communication

Summer vacation
and public holidays

• Tech lead
• Product owner

Bass [20] • dedicated member of Swedish team present during
vacation time

Internal politics • Tech lead
• Configuration Manager

Bass [20] • escalate to programme manager

understand. This can create misunderstandings in the team. The
offshored team members in turn did not mention a problem
with understanding the Swedes’ accent.

Second, according to the tech lead: “[the Bulgarian devel-
opers] are also very keen on that we take decisions” and
“[. . . ] you need to have developers that are independent and
can take decisions themselves.”. This includes class names
and detailed questions where the tech lead would expect
autonomous decisions. This is mitigated by the Swedish team
defining work packages for the Bulgarian team, which slows
down the Swedish team. On the other hand, the Bulgarian team
believes that architectural changes need to be approved by the
tech lead because he is responsible for the platform while they
only give advice. They say that this is a contractual agreement
between the Bulgarian vendor company and the case company.

Moreover, because the offshored team works in a different
company team members do not have access to the Swedish

team’s calendar. This makes it difficult to book meetings to
resolve problems together. The project manager needs to find
a time slot for joint meetings with a Swedish team member.
This problem is coupled with the fact that the Swedish team
does not always answer emails immediately when they receive
a question from the Bulgarian team: “when they get questions
they say, well, I will answer the question in about an hour
[. . . ] and it takes several days because they forget”. Booking
a meeting can take a day for the Bulgarian team: “until they
answer me the working day will be over and I won’t be able
to book a meeting time”. For these reasons, the Bulgarian team
members switch to a different task until they get an answer.

Third, according to the tech lead the Indian team members
“tend not to challenge what you say. They often say, yeah, we
will fix it, but they don’t understand what they will fix”. This
affects the quality of their work as the product owner puts it:



“The quality of their delivery is not as we expect it to be”. This
is somewhat mitigated: “We tend to have a 2 weeks period
time when we send instructions to them and iterate it between
us, until we feel comfortable that they have understood those
instructions”. On the other hand, the Bulgarian developers
according to the tech lead “won’t give up until they understand
what we mean.”

Fourth, the Indian team is more bureaucratic. According
to the configuration manager there is a “differing view on
management structure and who takes what decision and how
many layers of management do we need to go through before
we make a decision”. The Swedish team is organised in a
less hierarchical way. This can create problems in reaching
agreements which increases lead times.

Fifth, public holidays are not addressed in a good way. As
the tech lead puts it: “We are almost never aware when they
have public holidays in California and India. Suddenly, they
are not reachable”. Also, the Swedish team has a contiguous
summer vacation from middle of July to end of August and
this slows down the development of the offshored teams.

Sixth, office politics create tension between the Californian
team and the Swedish team. As the configuration manager put
it: “when we need to communicate it can be a bit like two
heads bashing together”. This issue is, however, outside of the
Swedish team’s jurisdiction and is addressed on the level of
the programme manager.

VI. DISCUSSION

This research explores the relationship between temporal,
sociocultural and geographical distances and agile practices in
a globally distributed software development team in a phar-
maceutical setting. We interviewed six onshore and offshore
team members. The results show that there is a bidirectional
relationship between the agile practices and the distances. An
agile practice can be affected by a distance and the agile
practice can have an effect on a distance.

A. Agile practices to address the distances

The team uses various agile practices in a GSD setting
(RQ1a: How are Scrum, XP and other agile practices used
by the case study team?). We can see that the platform team
cherry-picks certain XP practices (cf. Table IV). According
to Appelo et al., complete adoption of agile practices is not
necessary [29], validating this approach.

In contrast to Smite et al. [18], shared code ownership
was partly used by the platform team for back-end software
development, but not for front-end. Of the XP practices
suggested by Kircher et al. [24] for GSD, the platform team uses
metaphors and 40-hour work week partly and simple design,
refactoring, and collective code ownership fully. They do not
use small releases, test-driven development, or coding standards.
Since planning game, and on-site customers are dependent on
co-location [18], they are not used. Pair programming is only
used on-site.

From Scrum, the Swedish team uses daily stand-ups, sprint
reviews, sprint planning, and retrospectives which is in line

Table IV
SUMMARY OF XP PRACTICES

Practice Practised? Comment

Test-driven
develop-
ment

No Test-driven development is not practiced. As
the Bulgarian senior developer puts it: “usually
the business wants something developed fast
and test-driven development usually means
spending more time on creating a test first”.

Metaphors Partly This practice is used among the developers but
not in the user stories (secondary data).

Small
releases

No The team releases every other sprint. The
production and QA environments are handled
by the Indian devOps team and are under
regulatory approval by the Mexican team.

Planning
game

No The developers use the Scrum planning prac-
tice.

Coding
standards

No Coding standards are currently being imple-
mented.

On-site
customers

No The customer is represented through the Prod-
uct Owner.

Pair pro-
gramming

Partly Pair programming is practised within teams but
not between the Swedish and offshored teams.

Refactoring Partly According to the senior Bulgarian developer:
“small refactorings are done once per a couple
of months at most” and “two bigger refactorings
[have been going on for] almost a year now
and they are not yet implemented”. According
to user stories, one to two refactorings are
completed per month.

Collective
code
ownership

Partly Collective code ownership exists at the platform
team, but not on the mobile or front-end
development.

Simple
design

Yes The senior Bulgarian developer said that “we
usually have some kind of design initially.
We try to use that and just add additional
functionality using that design” and he agreed
that “design is an ongoing activity, simplify
existing work, backlog is not stagnant, don’t
add functionality before it is scheduled”.

Continuous
integration

Yes Continuous integration is handled by the Indian
devOps team.

40 hour
workweek

Partly The Swedish and the Bulgarian teams do not
work overtime but the Indian team does.

with suggested practices for distributed agile [23], [22], [2]
(cf. Table V). The stand-up practice is used partly by having
an extra stand-up with the Bulgarian team. User stories do not
all follow the structure proposed by Scrum and metaphors are
not used in the tasks or user stories either. This can create
misunderstandings and rework.

Moreover, of the agile practices suggested in Appelo et
al. [29] (cf. Table VI), the platform team uses developer
wikis, synchronous (phone calls, videoconferences, Skype calls)
and asynchronous communication (emails, Slack and Skype
messages), visits, iterations, and synchronised working hours
which is in line with suggested scrum practices in GSD [16].
Also, the team practices version control, test automation, unit
testing, and build verification testing fully. Code reviews are
partially adopted.



Table V
SUMMARY OF SCRUM PRACTICES

Practice Practised? Comment

Daily
stand-up

Yes The Bulgarian team has a daily stand-up at 13.00 Swedish time with the tech lead while the core team has its daily stand-up
at 9.30. The Indian team does not participate in the core or Bulgarian Scrum meetings.

Sprint
reviews

Yes Only the PO is involved in the sprint reviews, not the customers. The configuration manager sees room for improvement: “It’s
usually been: ‘okay, you done that, you done that, that’s good. I don’t really know what that is’”.

Sprint
planning

Yes According to the senior offshore back-end developer, sprint planning takes too long since all developers participate in the story
point estimation.

Retrospectives Yes Notes from team retrospectives are part of the secondary data. The team allocates all available time and does not leave slack:
“Should we plan 100% of resources time or 90-95%?”. This can create a problem when the team needs to do unplanned work:
“still have too much work coming in from outside the Jira. (unplanned)”. Also, actions are not taken on the retrospectives,
impeding improvements of team performance: “We haven’t had any reflection/actions on the retrospective comments issued”.

Iterations Yes The platform team uses Scrum sprints and iterative development.

User Stories Partly The product owner comments: “In the backlog we are not working with user stories, the user stories are in a shape of an
epic, if I have a new user story, we create a new epic. And the epic will have story [tickets] connected to it where we work
with the actual analysis and implementation of the features”. According to the tech lead: “I would recommend having very
well specified tasks, simple to understand what you say. We don’t have that.” The configuration manager’s point of view:
“Very seldom a description or who ordered this, what use case are we trying to solve.”. According to the secondary data, the
team has tasks, user stories, epics and bugs. The tasks are developer-centric, the user stories may come from developers,
from the project manager or from the product owner. User stories sometimes have acceptance criteria or are connected to a
customer. Some stories are extremely brief and do not always provide enough information to the developer. They are not
always connected to an epic. Some epics are currently worked on but are not “In Progress”.
According to the notes from the retrospectives the Jira tasks/user stories are not detailed enough: “Write more crispy Jiras, i.e.,
complete one-liners with more information before bringing the Jiras into the sprints” and “Requirements are vague or totally
missing, e.g., goals”. This issue was also mentioned in the interview with the tech lead.

To answer RQ1a, we see that the platform team cherry-picks
XP, Scrum, and other agile practices that the three distances
and the organisational barriers (separate devOps team, internal
politics) allow them to use. What both XP and Scrum practices
suggest are on-going retrospectives with actionable results [29].
However, as profit is connected to the delivery of working
software, billable hours and the delivery of new features might
be prioritised over the learning.

B. Effect of agile practices on distances
A number of agile practices affect the three distances (RQ1b:

How do agile practices affect temporal, geographical and
sociocultural distances in the case study team?). We observed
that sprint planning and review reduce the sociocultural distance
since they are used to clarify misunderstandings and thus,
improving communication and coordination [16]. Also, these
practices affect the geographical distance even when meetings
are held using online collaboration tools, such as video
conferencing and screen sharing. These tools make it possible
to have the meeting across borders, improving communication
and coordination.

We also observed that daily stand-ups had an effect on the
sociocultural distance because frequent communication helps
the team to sense and respond to problems which improves
communication, as also observed in [8]. They also help with
the geographical distance as they increase task awareness
(coordination) and help to convey the vision and strategy
(control) [16].

The shared online backlog used by the team affects the
geographical distance since it increases coordination by allow-
ing everyone to keep track of their tasks. Our observations

are thus similar to those in [2]. Also, it helps management to
control and to keep track of the team’s progress according to
the interviews.

Retrospectives as used by the team affect the temporal
distance by using synchronous communication tools to reflect
upon what works and what does not (communication). Also,
they affect the geographical distance as they increase critical
task awareness (coordination). These communication tools also
help with sociocultural distance as they reduce conflicts arising
from misunderstandings (coordination) [16].

Continuous Integration affects the geographical and temporal
distance. The build server is up 24 hours a day and the
developers can push code to it whenever they want to. We
observed that this supports control by providing feedback on
the quality of the integrated code in real time.

Automated unit and build verification tests reduce the
geographical and temporal distance since the tests are executed
automatically and the results are available online. We observed
that the team executes the tests and monitors their status from
anywhere at any time, reducing coordination and control costs
according to the interviews.

On-site visits reduce the sociocultural distance as the visits
improve collaboration and improve communication according
to our data. They support informal communication by allowing
the team members to get to know each other better, thus
improving commincation that takes place over a distance at
later points in time. Lack of informal communication was
found a problem in Holmström et al.’s [2] study.

As we can see from the discussion above, the answer to
RQ1b boils down to several scrum ceremonies and other agile



Table VI
SUMMARY OF OTHER AGILE PRACTICES ACCORDING TO APPELO [29]

Practice Practised? Comment

Version
control

Yes As the senior devOps engineer said: “ev-
erytime a developer does a checkin [. . . ]it
automatically triggers a build and it deploys
it to the dev environment. We do version it
and push it to the shared online repository.”

Build
verification
testing

Yes According to the senior devOps engineer:
“. . . for each CI build they have test cases”
and “When the test case failed the build fails
automatically and they have to fix it.”

Test
automation

Yes The secondary data shows that the team uses
end-to-end testing so that all APIs can be
tested by running test scripts.

Unit testing Yes From the secondary data review, the team uses
JUnit testing.

Code reviews Partly Secondary data shows that the team started to
use code reviews frequently from May 2018
but only with the Bulgarian team.

Developer
documenta-
tion
(wikis)

Yes Confluence holds developer documentation
about the architecture, branching strategy,
developer how-tos, cookie policy, onboarding
a new project, and developer guidelines.

Synchronised
work hours

Partly The Indian team works overtime and syn-
chronised its working hours with the Swedish
team. The Bulgarian team has overlapping
work hours with the US team.

Synchronous
communica-
tion

Yes The Indian and Bulgarian teams use individual
or conference calls with the Swedish team.

Asynchronous
communica-
tion

Yes The Indian and Bulgarian teams use email,
instant messaging, and wikis with the Swedish
team.

Visits Partly The Bulgarian team has visited the Swedish
team several times in the past two years.

Frequent com-
munication

Yes Ad-hoc communication, e.g., on Slack, is
common among the team members.

practices as these help with the three distances. Also, there are
some tools (such as online collaboration tools, backlog in the
cloud, build server) that are not necessary agile, but support
these agile practices, and help reduce the three distances.

C. Effect of distances on agile practices

The three distances have an effect on how the agile practices
can be used and how effective they are (RQ1c: How do
temporal, geographical and sociocultural distances affect agile
practices in the case study team?).

Sprint planning and review are affected by geographical
distance by the lack of a dedicated meeting room. Therefore, it
takes longer to set up the meeting than to set up a face-to-face
meeting and coordination costs increase. Similar issues have
been observed by Hossain et al. [11].

Daily stand-ups are affected by the temporal distance since
two meetings need to be conducted, one with the Swedish team
and another meeting with the Bulgarian team. This increases
the coordination effort [11].

User stories are affected by the sociocultural distance
since the Indian team tends to agree to tasks without deeper
discussion. There are also persistent misunderstandings and
language problems. To mitigate this and reach agreements, the
Indian team gets very detailed instructions. This increases the
communication effort.

Simple design is affected by the sociocultural distance by
not making decisions without approval of the tech lead. This
increases the communication effort.

40-hour work week is affected by the temporal distance as
the Indian team works overtime to have overlapping working
hours with the Swedish team. This also has a negative impact
on sustainable pace.

Pair programming is affected by the geographical distance.
Coordination costs are increased as it is more difficult to
organise meetings without shared calendars (coordination).
Also, the team members have to communicate through online
tools and not face-to-face. On the other hand, Holmström
et al. [2] found pair programming a practice to increase
understanding and time overlap between the onshore and
offshore colleagues.

Release planning is affected by all three distances. Temporal,
as the Indian team deploys the code to production and
the Mexican QA lead verifies the signed off documents.
Geographical and socio-cultural, because the Swedish team
works with offshore teams. This increases communication,
control and coordination costs and the platform team does not
deliver a release in every sprint. It was found in Bass’ [20]
study that teams in similar situations also struggle to deliver
functionality in every sprint.

Co-located teams are affected by geographical distance
by not being able to sit at the same place. This increases
communication, control and coordination costs.

The points mentioned above show how the three distances
affect the feasibility and efficacy of some of the agile practices
the team is practising. All distances affect the communication,
coordination, and control costs in a negative way.

D. Coping strategies

There are different coping strategies that the team uses to
mitigate the three distances (RQ2: Which coping strategies does
the team use to address the three distances?, cf. Table III). The
Indian team synchronised its working hours with the Swedish
team [16]. On the other hand, the Bulgarian team’s working
hours are not synchronised with the Swedish team’s working
hours. This creates problems in communication, coordination
and control. The team uses ICT-mediated synchronous com-
munication for formal and informal communication through
phone calls and conference calls. These tools are available
regardless of methodology [16]. The platform team also uses
ICT-mediated asynchronous communication, such as instant
messaging through Slack and Skype and project wikis through
Confluence. These tools help to minimise the disruption in time-
zones, work day hours, or public holiday differences [20], [9].
On-site visits by the Bulgarian team help to build relationships,
trust and to get to know each other’s cultures [20]. Frequent



communication enables detecting changes quickly, clear up
misunderstandings and to solve problems in a collaborative
fashion. Iterations are important to monitor progress and resolve
issues in a repetitive way. The team uses Scrum release cycles
of a month with two week sprints. The shorter the sprints the
more iterations the team goes through that help in monitoring
progress and resolving issues. Reflections in the team occur
during Sprint retrospectives, but the team does not always
act on the reflections. This inhibits learning and performance
improvement in the team. Sprint planning helps with scoping
the work, resourcing, and scheduling. The team goes through
planning once a month which they perceive as increasing the
amount of work. According to the senior Bulgarian developer
the planning takes up too much time.

There are coping strategies that are not categorised as agile
in the literature but are used by the team to address the
three distances. They include having a separate stand up with
the Bulgarian team to mitigate the context loss, assigning a
designated person to answer the offshored team’s questions
to mitigate the communication delay, giving complex tasks to
the offshore back-end team to mitigate trust problems, giving
detailed instructions to the Indian devOps team two weeks in
advance, iterating the questions until sufficient understanding
is reached to mitigate misunderstandings, escalate issues to
the programme manager to deal with internal politics and to
synchronise working hours to deal with the time difference.
As we can see, purely agile practices do not solve all the
problems this globally distributed team has and other strategies
are needed.

VII. CONCLUSION

In summary, we concluded that the three distances —
temporal, geographical and sociocultural — have an effect
on agile practices and that agile practices have an effect on the
three distances. We report how the team uses agile practices
with the offshore team members in a modified way. Some
practices are used only partially or not at all. Moreover, the
platform team uses agile and rigorous coping strategies that
arise from the three distances with a varying degree of success.
We thus provide guidance for practitioners as to which agile and
non-agile practices can be combined to address the distances,
in how far issues are addressed, and which challenges persist.

For future research it would be interesting to measure the
benefits vs. the cost of the distance-agile relationship in terms of
communication, control and coordination. Also, the relationship
of traditional, non-agile practices and the three distances is an
interesting subject of further investigation.

REFERENCES

[1] S. Sahay, “Global software alliances: the challenge of ‘standardization’,”
Scandinavian Journal of Information Systems, vol. 15, no. 1, p. 11, 2003.

[2] H. Holmström, B. Fitzgerald, P. J. Ågerfalk, and E. Ó. Conchúir, “Agile
practices reduce distance in global software development,” Information
systems management, vol. 23, no. 3, pp. 7–18, 2006.

[3] J. D. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,” IEEE
Transactions on software engineering, vol. 29, no. 6, pp. 481–494, 2003.

[4] D. Damian, “Workshop on global software development,” SIGSOFT
Software. Eng. Notes, vol. 27, no. 5, 2002.

[5] P. J. Agerfalk, B. Fitzgerald, H. Holmstrom Olsson, B. Lings, B. Lundell,
and E. Ó Conchúir, “A framework for considering opportunities and
threats in distributed software development,” 2005.

[6] J. Highsmith, “The great methodologies debate: Part 2,” Cutter IT Journal,
vol. 15, no. 1, 2002.

[7] B. Fitzgerald, G. Hartnett, and K. Conboy, “Customising agile methods
to software practices at intel shannon,” European Journal of Information
Systems, vol. 15, no. 2, pp. 200–213, 2006.

[8] G. Lee, W. DeLone, and J. A. Espinosa, “Ambidextrous coping strategies
in globally distributed software development projects,” Communications
of the ACM, vol. 49, no. 10, pp. 35–40, 2006.

[9] V. Yadav, “A flexible management approach for globally distributed
software projects,” Global Journal of Flexible Systems Management,
vol. 17, no. 1, pp. 29–40, 2016.

[10] H. Holtz and F. Maurer, “Knowledge management support for distributed
agile processes,” in Proceedings of the Workshop on Learning Software
Organizations (LSO), 2002.

[11] E. Hossain, M. A. Babar, and H.-y. Paik, “Using scrum in global software
development: a systematic literature review,” in 4th IEEE Int. Conf. on
Global Software Engineering (ICGSE 2009). IEEE, 2009, pp. 175–184.

[12] G. K. Hanssen, D. Šmite, and N. B. Moe, “Signs of agile trends in
global software engineering research: A tertiary study,” in 6th IEEE Int.
Conf. on Global Software Engineering Workshop (ICGSEW). IEEE,
2011, pp. 17–23.

[13] E. Carmel and P. Tjia, Offshoring information technology: Sourcing and
outsourcing to a global workforce. Cambridge University Press, 2005.

[14] E. Carmel and R. Agarwal, “Tactical approaches for alleviating distance
in global software development,” IEEE Software, vol. 18, no. 2, pp.
22–29, 2001.

[15] J. Ågerfalk and B. Fitzgerald, “Flexible and distributed software processes:
old petunias in new bowls,” Communications of the ACM, vol. 49, pp.
27–34, 2006.

[16] E. Hossain, P. L. Bannerman, and D. R. Jeffery, “Scrum practices in
global software development: a research framework,” in International
Conference on Product Focused Software Process Improvement (PRO-
FES). Springer, 2011, pp. 88–102.

[17] K. Kaur, A. Jajoo et al., “Applying agile methodologies in industry
projects: Benefits and challenges,” in Int. Conf. on Computing Com-
munication Control and Automation (ICCUBEA). IEEE, 2015, pp.
832–836.

[18] D. Šmite, N. B. Moe, and P. J. Ågerfalk, Agility across time and space:
Implementing agile methods in global software projects. Springer
Science & Business Media, 2010.

[19] K. Schwaber, Agile project management with Scrum. Microsoft press,
2004.

[20] J. M. Bass, “Influences on agile practice tailoring in enterprise software
development,” in AGILE India. IEEE, 2012, pp. 1–9.

[21] C. Larman, Agile and iterative development: a manager’s guide.
Addison-Wesley Professional, 2004.

[22] M. T. Hansen and H. Baggesen, “From cmmi and isolation to scrum,
agile, lean and collaboration,” in Agile Conference (AGILE’09). IEEE,
2009, pp. 283–288.

[23] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Distributed agile
development: Using scrum in a large project,” in IEEE Int. Conf. on
Global Software Engineering (ICGSE). IEEE, 2008, pp. 87–95.

[24] M. Kircher, P. Jain, A. Corsaro, and D. Levine, “Distributed extreme
programming,” Proceedings of the Internation Conference on Extreme
Programming and Flexible Processes in Software Engineering (XP 2001),
pp. 66–71, 2001.

[25] A. Bryman and E. Bell, Business research methods. Oxford University
Press, USA, 2015.

[26] J. W. Creswell and J. D. Creswell, Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications, 2014,
4th edition.

[27] A. Fruhling and G.-J. D. Vreede, “Field experiences with extreme
programming: developing an emergency response system,” Journal of
Management Information Systems, vol. 22, no. 4, pp. 39–68, 2006.

[28] G. Gibbs, C. Taylor, and A. Lewins, “Online QDA – Quality of
qualitative analysis,” accessed 28 April 2018. [Online]. Available:
http://onlineqda.hud.ac.uk/Intro QDA/quality.php

[29] J. Appelo, “The big list of agile practices,” accessed 18 June 2018.
[Online]. Available: https://dzone.com/articles/big-list-agile-practices

http://onlineqda.hud.ac.uk/Intro_QDA/quality.php
https://dzone.com/articles/big-list- agile-practices

	Introduction
	Background and Related Work
	Globalisation in the Software Industry
	Agile Software Development
	Scrum
	Extreme Programming (XP)

	Agile in GSD

	Case Description
	Research Methodology
	Data collection
	Interviews
	Secondary Data
	Direct Contact

	Qualitative Data Analysis
	Threats to Validity

	Results
	Temporal Distance
	Geographical
	Sociocultural

	Discussion
	Agile practices to address the distances
	Effect of agile practices on distances
	Effect of distances on agile practices
	Coping strategies

	Conclusion
	References

