
1 
 

This is the peer reviewed version of the following article: ”Gustafsson et al. 2018 Impact of 

Prior Distributions and Central Tendency Measures on Bayesian Intravoxel Incoherent 

Motion Model Fitting, Magnetic Resonance in Medicine 79:1674-1683” which has been 

published in final form at https://doi.org/10.1002/mrm.26783. This article may be used for 

non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-

Archived Versions. 

 

Impact of Prior Distributions and 
Central Tendency Measures on Bayesian 
Intravoxel Incoherent Motion Model 
Fitting 

Oscar Gustafsson1,2, Mikael Montelius1, Göran Starck1,2, Maria Ljungberg1,2 

1Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of 

Gothenburg, Gothenburg, Sweden. 

2Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 

Gothenburg, Sweden 

 

Word count: 4574 

Running title: Impact of Prior and Central Tendency Measure on Bayesian IVIM Model Fitting 

Key words: intravoxel incoherent motion; Bayesian estimation; prior distribution; central tendency 

measure 

Corresponding author: 

Oscar Gustafsson 

MRI center 

Sahlgrenska University Hospital 

Bruna stråket 13, 413 45 Göteborg, Sweden 

Email: oscar.gustafsson@gu.se  

https://doi.org/10.1002/mrm.26783


2 
 

Abstract 
Purpose: Bayesian model fitting has been proposed as a robust alternative for IVIM parameter 

estimation. However, consensus regarding choice of prior distribution and posterior distribution 

central tendency measure is needed. The aim of this study was to compare the quality of IVIM 

parameter estimates produced by different prior distributions and central tendency measures, and 

to gain knowledge about the effect of these choices. 

Methods: Three prior distributions (uniform, reciprocal and lognormal) and two measures of central 

tendency (mean and mode) found in the literature were studied using simulations and in vivo data 

from a tumor mouse model.  

Results: Simulations showed that the uniform and lognormal priors were superior to the reciprocal 

prior, especially for the parameters D and f and clinically relevant SNR levels. The choice of central 

tendency measure had less effect on the results, but had some effects on estimation bias. Results 

based on simulations and in vivo data agreed well, indicating high validity of the simulations. 

Conclusion: Choice of prior distribution and central tendency measure affects the results of Bayesian 

IVIM parameter estimates. This must be considered when comparing results from different studies. 

The best overall quality of IVIM parameter estimates was obtained using the lognormal prior. 

Key words: intravoxel incoherent motion; Bayesian estimation; prior distribution; central tendency 

measure 

  



3 
 

Introduction 
Intravoxel incoherent motion (IVIM) imaging has gained increased interest during the last years due 

to its applicability in abdominal imaging (1-3). It enables both diffusion and perfusion information to 

be extracted from MR images completely non-invasively. Commonly, IVIM is described by a 

biexponential model: 

𝑆𝑖 = 𝑆0 ((1 − 𝑓)𝑒−𝑏𝑖𝐷 + 𝑓𝑒−𝑏𝑖𝐷∗
) + ε𝑖                  [1] 

where Si is the measured signal using the ith b-value, D is the diffusion coefficient, D* is the pseudo 

diffusion coefficient, f is the perfusion fraction, S0 is the signal intensity without diffusion weighting 

and εi is a random deviation from the model following some appropriate distribution,  often assumed 

to be Gaussian (2). Since the signal attenuation due to perfusion effects is separated from 

attenuation due to diffusion in the model, the diffusion coefficient obtained from IVIM model fitting 

is less dependent on the choice of b-values as long as the effect of the dispersion of the diffusion 

coefficient at high b-values is avoided (4, 5). However, biexponential model fitting is significantly 

more difficult than monoexponential fitting, as the former cannot be transformed into a linear model 

and since it may have multiple, local, optima. Furthermore, in the limit as the perfusion fraction 

approaches zero, the biexponential model transforms into a monoexponential model and D* cannot 

be estimated, which may lead to unstable fitting results.  

The difficulties concerning the fitting of the IVIM model has resulted in several studies comparing 

model-fitting strategies (6-15). Most of these studies compare different least-squares methods, but a 

Bayesian approach was early shown to be a robust alternative (12). This was recently reported also 

by Barbieri et al. in a comparison between most of the IVIM model fitting strategies found in the 

literature (6), although the Bayesian approaches used in these studies were slightly different.  

The aim of a Bayesian IVIM model fit is to estimate the joint posterior distribution from which the 

marginal posterior distributions of the IVIM model parameters of interest, i.e. P(D|S), P(D*|S) and 

P(f|S) can be derived. The joint posterior distribution is given by Bayes’ rule: 

𝑃(𝐷, 𝐷∗, 𝑓, 𝑆0|𝑆) ∝ 𝑃(𝑆|𝐷, 𝐷∗, 𝑓, 𝑆0) ∙ 𝑃(𝐷, 𝐷∗, 𝑓, 𝑆0)         [2] 

where S is the measured data, P(S|D,D*,f,S0) is the likelihood function and P(D,D*,f,S0) is the joint 

prior distribution. Apart from choosing an appropriate likelihood function a prior distribution has to 

be chosen as well. Most previous studies involving Bayesian IVIM model fitting have used various 

non-informative or low-informative priors (6, 12, 16, 17), although some more advanced approaches 

have been proposed (13, 18). To make the result of a Bayesian fit more comprehensible, the 
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marginalized probability distributions need to be summarized, most importantly in terms of central 

tendency to describe the center or location of the distribution, but possibly also in terms of width 

and skewness. In previous studies the mode (6, 12) or mean (13, 16) have been used to describe the 

central tendency. Estimates of the mode and mean of the marginal posterior distributions are also 

commonly referred to as the marginal maximum a posteriori (MMAP) estimates and the minimum 

mean square error (MMSE) estimates respectively. 

Numerous studies concerning IVIM model fitting have been performed, and the Bayesian approach 

has shown great promise. Yet none of the previous studies has, to our knowledge, aimed to assess 

the impact of the methodology used in the Bayesian model fitting, most importantly including the 

choices of prior distribution and central tendency measure, which often differ between studies (6, 

12, 16, 17). These choices may impact parameter estimation performance, especially when noise 

limits the information available to the model fitting. Potential estimation bias due to these choices 

must be studied and taken into account when comparing results of studies with different Bayesian 

model-fitting approaches. 

The aim of this study was to evaluate the implications of the choice of prior distribution and 

posterior distribution central tendency measure on the IVIM parameters using simulations and in 

vivo data.  

Methods 
An IVIM experiment setup with 12 b-values (1.4, 5, 10, 20, 35, 50, 75, 100, 201, 401, 602 and 802 

s/mm2) was used and data were acquired both through simulations and in vivo measurements for 

subsequent analysis. The simulations enable separate analysis of bias and variability of the estimated 

model parameters. However, the simulations are only of interest if they are a good representation of 

the reality. If results based on simulations and in vivo measurements agree well, this warrants further 

conclusions to be drawn from the results based on the simulations. Therefore, the in vivo data was 

analyzed and compared with results from the simulations. 

Simulations 
Artificial data were generated by Monte Carlo simulations using the IVIM model (Eq. 1) with certain 

sets of tissue parameters and noise levels. 10,000 data series were generated for each noise level 

and white Gaussian noise was added independently to the real and imaginary part, followed by 

calculation of the absolute value. The standard deviation of the noise in the real and imaginary parts 

was equal and chosen such that the signal-to-noise ratio (SNR) levels before diffusion weighting were 

10, 20 and 40. The SNR was defined as the simulated S0 divided by the standard deviation of the 
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Gaussian noise. The tissue parameters used in the simulations were randomly generated from 

bounded uniform distributions except for S0, which was set to 100. Bounds for the remaining tissue 

parameters were D: [0.5 1.5] μm2/ms, D*: [10 100] μm2/ms and f: [0 0.3].  

In vivo animal study  
In vivo data were acquired from a tumor mouse model. Five female BALB/c nude mice (Charles River, 

Japan and Germany), with subcutaneous xenografts of the human midgut carcinoid cell line GOT1 

transplanted into the neck region, were subjected to MR imaging when the tumor diameters were 

approximately 15 mm. The study was approved by the ethical committee on animal research at the 

University of Gothenburg, Gothenburg, Sweden. 

A horizontal-bore 7T system (Bruker BioSpin 70/20AS MRI GmbH, Ettlingen, Germany; software: 

ParaVision 5.1), equipped with a maximum 400 mT/m gradient system, a 72 mm volume transmit 

coil, and an actively decoupled 4-channel array rat brain receiver coil (RAPID Biomedical GmbH, 

Rimpar, Germany) was used for image acquisition. Diffusion-weighted images were acquired with a 

spin echo-echo planar imaging (SE-EPI) method based on the Stejskal-Tanner pulse sequence (Δ = 9 

ms, δ = 4 ms), with three orthogonal gradient directions and the b-values listed above. Other imaging 

parameters were: TR = 1500 ms, TE = 22 ms, number of signal averages = 3, number of segments = 1, 

pixel size = 3202 μm2, slice thickness = 1000 μm, slice gap = 500 μm, partial Fourier acceleration = 1.5, 

EPI echo spacing = 0.3 ms. The field of view (FOV) included the tumor and only very small amounts of 

other tissues. The animal was anaesthetized and fixed in supine position on a custom made plastic 

cradle during image acquisition, and the tumor was immobilized in a cut out hole in the cradle to 

avoid motion artefacts. Total scan time was approximately 3 minutes. A 2x2 in-plane median filter 

was applied to reduce the effects of residual motion. 

The noise level in the in vivo images was estimate by calculating the square root of the mean squared 

error from a voxelwise monoexponential non-linear least squares fit of images with b-values higher 

than or equal to 200 s/mm2. The SNR in the images with the smallest b-value was 15-25 in the tumor 

tissue. 

Model fitting 
By assuming white Gaussian noise the likelihood function for the IVIM model is given by: 

𝑃(𝑆|𝐷, 𝐷∗, 𝑓, 𝑆0, 𝜎) = (2𝜋𝜎2)−𝑛/2 exp {
1

2𝜎2
∑ (𝑆𝑖 − 𝑆0 ((1 − 𝑓)𝑒−𝑏𝑖𝐷 + 𝑓𝑒−𝑏𝑖𝐷∗

)
2

𝑛
𝑖=1 }        [3] 
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where σ is the standard deviation of the noise and n is the number of b-values. Using a reciprocal 

prior on the noise parameter σ, an analytical marginalization was performed, as described by 

Bretthorst et al. (19), to yield the likelihood function: 

𝑃(𝑆|𝐷, 𝐷∗, 𝑓, 𝑆0) ∝ [
1

2
∑ (𝑆𝑖 − 𝑆0 ((1 − 𝑓)𝑒−𝑏𝑖𝐷 + 𝑓𝑒−𝑏𝑖𝐷∗

)
2

𝑛
𝑖=1 ]

−𝑛/2

                   [4] 

While the Gaussian likelihood function is the one most commonly used, a Rician distribution would 

be more appropriate when magnitude data is used and the SNR is low (20). The likelihood function 

based on Rician noise is given by:  

𝑃(𝑆|𝐷, 𝐷∗, 𝑓, 𝑆0, 𝜎) =
𝑆𝑖

𝜎2 exp {−
𝑆𝑖

2+𝑆(𝑏𝑖)2

2𝜎2 } 𝐼0 (
𝑆𝑖𝑆(𝑏𝑖)

𝜎2 )  [5] 

where I0 is the modified zeroth order Bessel function of the first kind (20). When using the same 

reciprocal prior on the noise parameter σ as for the Gaussian likelihood (eq. 4), an analytical 

marginalization is not available. Instead, σ was marginalized numerically as described below for the 

IVIM model parameters. 

In order to be able to estimate the marginal posterior distributions of the model parameters (D, D*, f 

and S0) a joint prior distribution P(D, D*, f,S0) must be chosen. Focusing on the simple priors used in 

most published studies, three distinguished kinds of priors where identified in the literature and 

included in this study. The joint prior was given by the product of the individual marginal priors with 

the additional constraint D < D*. This constraint was implemented by setting the joint prior 

distribution to zero where D* < D. The marginal priors were bounded uniform distributions for f and 

S0, while the distributions over D and D* were either bounded uniform (denoted 1 in figures) (6, 17), 

reciprocal (1/x) (12) or lognormal (logN) (16). The reciprocal prior is described by: 

𝑃(𝜃) ∝ 1/𝜃                          [5] 

whereas the lognormal distribution is described by: 

𝑃(𝜃|𝜇𝜃 , 𝜎𝜃) =
1

𝜃𝜎𝜃√2𝜋
exp {−

(ln 𝜃−𝜇𝜃)2 

2𝜎𝜃
2 }            [6] 

where μθ and σθ are the mean and standard deviation of the natural logarithm of the random 

variable Θ. The lognormal priors for D and D* both had σθ = 1, while μθ was -6 for D and -3.5 for D* 

with units translating into mm2/s.  

The marginal posterior distributions were estimated using a Markov Chain Monte Carlo (MCMC) 

setup based on Gibbs sampling and the Metropolis-Hastings algorithm, similar to the voxelwise 
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method described by Orton et al. (13). The procedure was performed for each data series 

(simulations) or voxel (in vivo experiment) separately. The start values for the MCMC algorithm were 

the true model parameter values in the simulations and based on a two-step fit for the in vivo 

experiments (6). The step length parameters used in the MCMC procedure were updated every 100th 

iteration during the first 2000 iterations to reach a level where approximately 50 % of the samples 

were accepted, to improve convergence rate. All step length parameters were initialized as one tenth 

of the start value of the corresponding model parameter. The initial magnitude of the step length will 

only affect the convergence speed and is thus not important as long as the number of iterations is 

large enough. Another 2000 iterations were run before the start of the sampling which lasted 40,000 

iterations. By studying the results from different chains based on the same data, this was found to be 

sufficient to assure convergence. For each kind of prior distribution, parameter estimates were 

obtained by calculation of the mean and mode of the resulting marginalized parameter distributions. 

The mode was calculated using the half sample mode method (21). All prior distributions were set to 

zero outside the limits given by D: [0 5] μm2/ms, f: [0 1], D*: [0 1000] μm2/ms and S0: [0 2Smax], where 

Smax is the overall maximum measured or simulated signal depending on the context. For the 

simulated data parameter estimation was performed using both the Gaussian likelihood (eq. 4) and 

the Rician likelihood (eq. 5), whereas for the in vivo data parameter estimation was only based on 

the Gaussian likelihood. MATLAB R2014b (The MathWorks, Natick, MA, USA) was used for all 

simulations and model fitting. 

Evaluation of estimation methods 
Parameter estimation error, defined as estimated value minus simulated value, was used to assess 

the bias and variability of parameter estimates based on simulated data. For in vivo data, parameter 

estimates and local standard deviation, calculated in 3×3 neighborhoods around each pixel in the 

parameter maps, were used to analyze relative differences in estimation bias and variability between 

methods.  

Results 
Representative data sets from simulations and in vivo examinations were chosen to illustrate the 

impact of different prior distribution and central tendency measures. Individual data points and 

signal intensity curves derived from Eq. 1 using the estimated parameter values based on the 

Gaussian likelihood (Eq. 4) can be seen in Figure 1. Figure 2 shows the corresponding prior and 

posterior parameter distributions based on the same data. Parameter maps of a representative 

tumor chosen from the five tumors included in the study are shown in Figure 3. These examples 

show that the uniform and lognormal priors resulted in similar estimates of D and f, but produced 
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different estimates of D* where the marginal posterior distribution was highly affected by the prior. 

Estimations based on the reciprocal prior were much more sensitive to noise, as demonstrated for 

example in the posterior distribution of D (Fig. 2), which is dominated by the information in data only 

for the highest SNR level. In contrast, the uniform and lognormal priors resulted in distinct posterior 

distributions of D even at the lowest SNR level. Parameter maps of all other slices in tumor number 

one and also the remaining four tumors show similar results as those seen in Figure 3 and can be 

found in Supporting Figures S1-S34. 

The difference between estimation with the Gaussian likelihood function (Eq. 4) and the Rician one 

(Eq. 5) was in general small. The only clear trend was a slightly larger bias and variability with the 

Rician likelihood for D at large values of f and D, when combining the uniform prior and the mean as 

central tendency measure. A detailed comparison of the bias and variability of the two likelihood 

functions can be found in Supporting Figures S35-S52. All results presented below refer to estimation 

using the Gaussian likelihood. 

Parameter estimation errors are presented as boxplots in Figure 4. It shows that the estimation error 

of D and f is similar using the uniform or lognormal prior and substantially smaller compared with the 

error when using the reciprocal prior. The choice of central tendency measure did in some cases tend 

to affect either bias or variability. This is for example seen for D* and the uniform prior where the 

mode resulted in smaller bias but larger variability compared with the mean.  

As a result of the range of simulated values and the fixed limits of the priors, the maximum negative 

and positive errors depend on the simulated parameter values. Figure 5 shows how the error of D 

depends on the simulated parameter values for the reciprocal prior and with mode as central 

tendency measure, while other combinations of parameter, prior and central tendency measure are 

found in Supporting Figures S53-S70. One can see in the leftmost column of Figure 5 that a majority 

of the estimates of D are fixed at the lower limit for SNR = 10 and 20. This effect cannot be visualized 

in an ordinary boxplot (Fig. 4 and right column in Fig. 5). To quantify the dependence of the 

estimation error on simulated values Spearman correlation coefficients were calculated (Fig. 6 for 

SNR = 20 and Supporting Fig. S71 and S72 for SNR 10 and 40 respectively). Strong negative 

correlations are seen, for example, between the error in D* and simulated f for the uniform prior, as 

a result of the decreasing estimation bias of D* as f increases (Supporting Figs. S65 and S66), and 

between the error in D* and simulated D* for the reciprocal prior, as a result of estimation at the 

lower limit similar to that seen for D in Figure 5 (Supporting Figs. S67 and S68). Negative correlation 

was also found between error in f and simulated f for all prior distributions using the mean as central 



9 
 

tendency measure. This correlation was substantially smaller for the uniform and lognormal priors 

when the mode was used as central tendency measure (Fig. 6 and Supporting Figs. S53-S58). 

The tumor median parameter estimates for all five tumors are shown in Figure 7. A high degree of 

similarity between the median error derived from simulated data and median estimated value from 

in vivo data was seen (compare Figures 4 and 7). When comparing in vivo estimation variability (Fig. 

8) with the estimation variability from simulations (interquartile range seen in Figure 4) a good 

agreement was seen for most methods. 

Discussion 
In this study we have explored the characteristics of Bayesian IVIM model fitting for three prior 

distributions (uniform, reciprocal and lognormal) and two distribution central tendency measures 

(mean and mode) found in the literature. The choice of prior distribution was found to have a major 

impact on the resulting parameter estimates, whereas the central tendency measure appeared to 

have a less pronounced role. Results from simulations were in agreement with the results from in 

vivo data, indicating high validity of the simulations.  

The median estimation error derived from simulations and median estimated parameter value from 

in vivo data showed similar dependencies on choice of prior and central tendency measure (Figs. 4 

and 7). For an appropriate simulation this is to be anticipated since the estimated value is the true 

value, which is the same for all estimation strategies, plus the estimation error. Also the variability of 

the estimation error derived from simulations and the local variability of estimated parameter values 

from in vivo data showed similarities. Although the use of standard deviation in small neighborhoods 

is a less straight forward approach it gives a rough estimate of the estimation variability under the 

assumption that the variability of the true tissue parameter value from pixel to pixel is small. Due to 

the good correspondence between results based on simulations and in vivo data conclusions based 

on simulations are likely to apply also to analysis of in vivo data. 

The choice of prior distribution is an important choice since the prior distribution combined with the 

likelihood function gives the posterior distribution that is used in Bayesian model fitting (Eq. 2). The 

choice of prior distribution is even more critical at low SNR, which is common in diffusion-weighted 

imaging. Comparisons of estimates based on the different priors showed that the uniform and 

lognormal priors resulted in similar estimates of D and f, while the reciprocal prior dominated the 

posterior distribution, yielding estimates of low quality. A closer inspection of Figure 4 reveals that 

the bias imposed by the priors is different for D and f when comparing the uniform and lognormal 

priors, however, the choice is mostly a question of taste. The uniform prior is less informative and 
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may therefore be considered more attractive, whereas the bias appears to be slightly smaller using 

the lognormal prior. On the other hand, the estimation of D* is of substantially higher quality using 

the lognormal prior compared with the other ones. It is especially seen for lower values of D* and 

when the mean is used to summarize the marginal posterior distribution. This is reasonable since the 

lognormal prior on D* is fairly informative and has most of its density in the region 3-40 μm2/ms (>50 

% of the peak value of the distribution in this range), while the mean is able to include information in 

the right tail of the distribution thereby possibly reducing the bias for high values of D*. Furthermore, 

when visually inspected, the D* maps obtained using the lognormal prior show an apparent good 

quality with pattern and characteristics not clearly seen in the other parameter maps. Due to the 

informative prior the estimates may be strongly biased, but may still prove interesting in for example 

comparisons between groups or longitudinal analyses. The parameter estimation using reciprocal 

priors was in general poor, but for high SNR (40 in this study or higher) the performance seems to 

move towards that of the other priors. The good performance reported by Neil et al. (12) is thus 

limited to examinations with SNR substantially higher than what is commonly seen in diffusion-

weighted MRI.  

The choice of central tendency measure has no impact on the parameter estimate as long as the 

marginal posterior distribution is symmetric. It is clear, however, from Figure 2 that there are cases 

with strongly skewed distributions. Choosing the most suitable central tendency measure could have 

a substantial influence on the quality of the results in these cases. Almost all of the marginal 

posteriors of f seen in Figure 2 are rightly skewed, resulting in smaller parameter estimates using the 

mode compared with using the mean as central tendency measure. This difference is seen in Figure 4 

which shows that using the mean imposes a positive bias on the estimate of f. The effect of skewed 

distributions are also seen for D* where the estimates based on a uniform prior have smaller bias 

using the mode compared with using the mean. The opposite was seen when using a lognormal 

prior. The overall tendency was that using the mode instead of the mean resulted in reduced bias but 

slightly higher variability of the parameter estimates. For D and f it was also seen that the mode 

resulted in reduced dependencies between the error and the true parameter values (Fig. 6). 

The clinical goal is the ability to differentiate between different tissues, for example tumor and 

normal tissue, or to be able to assure if parameters change in time e.g. after treatment. To be able to 

accomplish this using model parameter estimates will depend on the variability of parameter values 

within the groups and the difference between groups. Since the difference between groups is 

reduced by a negative correlation between the parameter estimation error and the true parameter 

value, the correlation of the bias must be taken into account when choosing the model fitting 

approach for a study. Such a negative a correlation was found for f using the mean as central 
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tendency measure, but not when the mode was used in combination with a uniform or lognormal 

prior (Fig. 6). The mode may thus be preferable in that case. However, the optimal choice will depend 

on sample size and statistical method. The Gaussian and Rician likelihood functions were found to 

give similar results. For high SNR this is expected since the Rician distribution then is well 

approximated by a Gaussian (20). However, at low SNR (< 5) the signal is substantially positively 

biased, especially at SNR < 2. Such SNR levels are only found for the highest b-value in this study (800 

s/mm2) and the most attenuating IVIM model parameter combinations (in our simulations D = 1.5 

µm2/ms and f = 0.3 respectively). The gain in estimation performance when using a Rician likelihood 

function would thus most likely be largest for large values of D and f. However, no such trend was 

seen in the simulations (Supporting Figures S35-S52). Instead an increased bias and variability was 

seen when using the Rician likelihood for D at large values of f and D for the combination of uniform 

prior and mean as central tendency measure. A possible explanation of this result may be that the 

combination of a Rician likelihood and a uniform prior is too flexible and thereby more sensitive to 

noise.  Based on these results, estimation using the Gaussian likelihood is preferable since it is less 

complicated and appears to yield estimates with similar or smaller bias and variability. However, it 

should be noted that the effect of Rician noise may be more pronounced with fewer or higher b-

values where the influence of single, high b-values would be larger.  

The results in this study indicate that an informative prior is needed for stable estimation of D*. 

Using the voxelwise priors that have been studied here, this can only be achieved by choosing priors 

with a narrow shape. However, recently more advanced priors, which exploits the information of 

neighboring voxels or voxels in a region of interest, have been proposed (13, 18). The benefit with 

these approaches is that the narrowness and location of the prior is deduced from the data itself 

instead of a priori knowledge. However, while the results are promising, assumptions regarding the 

joint prior distribution of model parameters across voxels need to be made and a recent study 

showed that these approaches may give unwanted results such as disappearing structures (22). 

Further studies are thus needed to improve and validate these methods. 

The results of this study show that different prior distributions and distribution central tendency 

measures profoundly affect the quality of Bayesian IVIM model fitting, and that these differences 

must be considered when comparing the results of studies using different model fitting strategies. 

Our results show that the same data may give very different results even though the quality of the 

resulting parameter maps appears satisfactory with seemingly acceptable noise levels (e.g. D when 

comparing uniform and lognormal priors in Fig 7). Therefore, comparative studies, such as this and 

others (6-15), are important for better comparability between past and future studies, but also in 
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order to reach consensus regarding model-fitting strategies, which will increase comparability 

between future studies. 

The need of a thorough analysis of estimation errors in simulation studies as this is apparent in Figure 

5 and Supporting Figures S53-S70. This type of data is often visualized as boxplots; however, all 

important information cannot be visualized in a boxplot if a range of parameter values are simulated. 

This is clearly demonstrated if one compares columns 1-3 with column 4, where the graphs are 

equivalent to boxplots, in these figures. Depending on the simulated range this could lead to a 

misleading boxplot. Although more complicated, the graphs in the leftmost column in Figure 5, 

showing the error of D as a function of simulated D, gives substantially more information and should 

preferably be supplied as a complement to boxplots.  

There are limitations in this study. First, only one set of b-values was used. It is, however, similar to 

what is used in many clinical IVIM studies (23). Second, only one in vivo setup was used, resulting in 

only one SNR level and one type of tissue being examined. Third, the studied central tendency 

measures and prior distributions were limited to those used in previous IVIM studies. Among other 

possible central tendency measures, the median is probably the most appealing. Compared with the 

mean, it is less sensitive to skewed distributions, while it is substantially easier to obtain from a 

sampled distribution compared with the mode. Furthermore, the lognormal and uniform priors may 

be altered by choosing their parameters differently. The parameters used for the lognormal prior in 

this study were based on the ones used by Dyvorne et al. (16) whereas the limits for the uniform 

priors are similar to those used by Barbieri et al. (6). These parameters give reasonable results, but 

might be optimized and also further studied. 

Conclusions 
At practically achievable SNR levels in IVIM imaging, the choice of prior distribution and distribution 

central tendency measure plays an important role in the performance of Bayesian IVIM model fitting. 

In particular, the choice of prior distribution was found to have a significant impact. Among the priors 

assessed in this study, the uniform and lognormal priors provided more stable estimates in both 

simulations and in vivo experiments. However, it should be noted that the bias imposed by the two 

priors were of opposite sign. The choice of central tendency measure was of minor importance for 

the estimation of D and f, but our results indicate that a proper choice could give an increased 

number of voxels where the estimation error of the D* parameter was of acceptable magnitude, 

especially for the uniform prior. The lognormal prior had the best overall performance, although the 

uniform prior could be considered if only D and f are of interest and high objectivity is prioritized. The 
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actual choices of prior distribution and central tendency measure need to be taken into account 

when comparing results from different studies. 
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Figures  

 

Figure 1. Signal vs. b-value for both simulated (a single noise realization) and in vivo data (single voxel 

from tumor 1 seen in Figure 3, 6 and 7). Simulated values were D = 0.7 μm2/ms, D* = 20 μm2/ms and 

f = 0.1. Using uniform or lognormal priors, the estimates of D and f based on in vivo data were similar 

to the simulated ones. Signal curves were calculated from parameter estimates using the Gaussian 

likelihood (Eq. 4) and all combinations of prior and central tendency measure through insertion into 

Equation 1  
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Figure 2. Prior and posterior distributions, using the Gaussian likelihood (Eq. 4), for all IVIM model 

parameters and priors based on the same simulated and in vivo data as in Figure 1. Simulated values 

were D = 0.7 μm2/ms, D* = 20 μm2/ms and f = 0.1. Using uniform or lognormal priors, the estimates 

of D and f based on in vivo data were similar to the simulated ones. The maximum height of the 

distributions was normalized in the figure for better visibility. Kernel density estimation with a 

Gaussian kernel was used to illustrate the posterior distributions  

 

Figure 3. IVIM parameter maps, estimated with a Gaussian likelihood function (Eq. 4) and  all 

combinations of prior and central tendency measure, of the central slice in a representative tumor 

(tumor 1 in Figures 7 and 8). The display ranges are D: [0 1.5] μm2/ms, D*: [0 50] μm2/ms and f: [0 
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0.5]. A mask based on manual delineation of the tumor has been applied so that only tumor tissue is 

visible in the maps 

 

Figure 4. Parameter estimation error for all combinations of prior, central tendency measure and 

SNR based on simulated data, for a) f, b) D and c) D* respectively. The three tightly clustered 

boxplots represent, from left to right, SNR = 10, 20 and 40. Each boxplot shows the median (dot in 

circle), the 25th and 75th percentile (lower and upper limit of the box), and the 1st and 99th percentile 

(endpoints of the whiskers). The horizontal black lines indicate an error equal to zero 
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Figure 5. Parameter estimation error for D, using a reciprocal prior and mode as central tendency 

measure, plotted as a function of simulated parameter values for all SNR levels. The error was 

defined as estimated value minus simulated value. Errors are summarized by the 1st, 25th, 50th, 75th 

and 99th percentiles (bottom dashed black line to top dashed black line respectively). The horizontal 

thin black lines indicate an error equal to zero. Since only one value was simulated for S0 the 

rightmost plot contains similar information as the boxplot in Figure 4. The almost straight lines with 

negative slope seen in the leftmost column and especially at low SNR is due to that a large 

proportion of the parameter estimates are at the lower limit. Since the distance from the lower limit 

increases as the simulated value increases, the magnitude of the maximum negative error increases. 

The variability in the errors seen in the columns 2-4 is thus mainly due to the varied simulated values. 

Note that this lack of information in the estimates is not easily seen in the other plots in the same 

row. This phenomenon can appear in plots of error of a certain parameter vs. the simulated value of 

the same parameter. See Supporting Figures S53-S70 for all other combinations of IVIM parameter, 

prior and central tendency measure 
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Figure 6. Spearman correlation between parameter estimation error (estimated value minus 

simulated value) and simulated parameter value for all combinations of prior and central tendency 

measure at SNR = 20, for a) f, b) D and c) D* respectively. Strong correlations may for example 

appear in cases of consequent underestimation or if the estimation bias increases/decreases as a 

function of a parameter, which is seen in many cases when the dependence on f is studied (Fig. 5 and 

Supporting Figs. S53-S70) 
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Figure 7. Tumor median parameter estimates for all combinations of prior and central tendency 

measure, for a) f, b) D and c) D* respectively. IVIM parameter estimates from all slices included in the 

region defined as tumor were included in the calculation of the median 



22 
 

 

Figure 8. in vivo estimation variability quantified as median local standard deviation derived from 3x3 

neighborhoods for each pixel, for all combinations of prior and central tendency measure, for a) f, b) 

D and c) D* respectively. Local standard deviation measures were included from the region defined 

as tumor in all slices when calculating the median, i.e. the same regions as used in Figure 7 
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Supporting Figure captions 

Supporting Figures S1-S34: Parametric maps as seen in Figure 3 displaying all slices in all tumors 

included in the study except the one seen in Figure 3 

Supporting Figures S35-S52: Bias (median estimation error) and variability (IQR of estimation error) 

vs. simulated parameter value based on a Gaussian (Eq. 4) and a Rician (Eq. 5) likelihood function for 

all combinations of prior distribution and central tendency measure 

Supporting Figures S53-S70: Estimation error vs. simulated parameter value as seen Figure 5 for all 

other combinations of prior distribution and central tendency measure 

Supporting Figures S71-S72: Correlation between estimation error and simulated parameter value as 

seen in Figure 6 for SNR = 10 and SNR = 40 

 


