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Abstract: Accelerated multi-dimensional NMR spectroscopy is a 
prerequisite for studying short-lived molecular systems, monitoring 
chemical reactions in real-time, high-throughput applications, etc. 
Non-uniform sampling is a common approach to reduce the 
measurement time. Here, we introduce a new method for high quality 
spectra reconstruction from non-uniformly sampled data, which is 
based on recent developments in the field of signal processing theory 
and utilizes the so far unexploited general property of the NMR signal, 
its low rank. Using experimental and simulated data, we demonstrate 
that the low rank reconstruction is a viable alternative to the current 
state-of-the-art technique compressed sensing. In particular, the low 
rank approach is good in preserving of low intensity broad peaks, and 
thus increases the effective sensitivity in the reconstructed spectra.  

Achieving high spectral resolution and sensitivity while keeping a 
minimal measurement time, is of primary importance in many 
NMR applications such as studies of short-lived molecular 
systems, in-cell NMR experiments[1], characterizing intermediates 
of chemical reactions in real time[2], high throughput and 
metabolomic[3] applications, etc. The duration of a multi-
dimensional NMR experiment is proportional to the number of 
measured data points and increases rapidly with spectral 
resolution and dimensionality. The Non-Uniform Sampling 
(NUS)[4] approach offers a general solution for a dramatic 
reduction in measurement time.  

The reconstruction of a spectrum from a non-uniformly sampled 
signal is impossible without introducing additional constraints or 
assumptions on the signal in the time or frequency domains. Apart 
from computational issues such as convergence and stability in 
respect to noise and spectral artefacts, success of an algorithm in 
reconstructing a high quality spectrum depends largely on the 
correctness of the used constraints that are derived from known 
NMR signal properties. For example, the Compressed Sensing 
(CS) approach[5] exploit a reasonable notion that an NMR 
spectrum is sparse, i.e. that only a few time-domain frequencies 
give rise to true peaks while the rest of the spectral space contains 
only baseline noise. Despite the evident success of CS[3, 6], it was 
recently noted that sparseness of the NMR spectrum is a crude 
approximation and the quality of the CS processed spectrum 
obtained from NUS data can be significantly improved by 
additional signal pre-processing steps such as zero filling or 
virtual echo[7]. In particular, spectra with broad lines deviate from 
the sparseness assumption made in CS and line shape distortions 
and even suppression of signals might be observed. Hence, the 
question remains, can an algorithm, based on alternative general 
signal property assumptions, provide NUS spectra 
reconstructions of even higher quality and from fewer acquired 
data points?  

In this work, we introduce Low Rank (LR) spectrum 
reconstruction that is inspired by recent developments in the field 
of low rank matrix completion with many remarkable 
demonstrations in medical imaging[8], computer vision[9], and 
other applications. It has been proven that a low rank matrix can 
be recovered faithfully from limited number of its elements[10]. 
Unlike CS, which seeks for a spectrum with the fewest non-zero 
spectral intensities, the LR approach reconstructs a spectrum with 
the least number of spectral peaks. The latter assumes that the 
time-domain NMR signal can be approximated by a sum of a few 
decaying sine waves (or exponentials). This assumption has been 
applied to signal processing in NMR for decades, e.g. in linear 
prediction[11], filter-diagonalization[12], recursive multi-dimensional 
decomposition[13] and other algorithms. Yet, to the best of our 
knowledge, this signal property was never used as a constraint in 
non-parametric algorithms for the reconstruction of NUS spectra.  

Let vector  be the complete NMR signal that is called the free 
induction decay (FID) and the operator  converts it into a 
Hankel matrix[11] . The low rank of the FID means that the 
rank of its Hankel matrix X is low, i.e. the number of non-zero 
singular values of X is small. As it is illustrated in Supplementary 
Figure S1, the FID rank is equal to the number of exponentials in 

[11]. Notably, the rank is independent of the line width of the 
peaks in the spectrum. When the FID is non-uniformly sampled, 
the matrix  contains missing entries. Thus, the task of the 
spectrum reconstruction from the NUS data is equivalent to 
recovering the matrix  and can be formulated as a low rank 
matrix completion problem[10]: 

 (1) 

where  is the acquired NUS FID data,  is an operator of the 
NUS schedule,  is the nuclear norm [14] defined as a sum of 
matrix singular values, and  trades the low rank constraint with 
the consistency between the reconstructed signal  and the 
experimental data y. It is worth noting that the LR constraint in Eq. 
(1) is imposed on the time-domain signal. Eq. (1) can be efficiently 
solved by the alternating direction minimization method[15] (see 
Supporting Information). 
Figure 1 shows a comparison between a simulated fully sampled 
reference spectrum and its NUS reconstructions obtained using 
the CS and LR algorithms. The spectrum contains five peaks with 
the same integrals but different line widths. Both NUS processing 
methods successfully recover the narrowest peak to the right in 
Fig. 1a-c. The broadest peak to the left is faithfully recovered by 
the LR approach but is seriously distorted by the CS. For the three  
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Figure 1. Reconstructions of the synthetic spectrum containing five peaks with 
different line widths. (a) Fully sampled spectrum, (b) and (c) are the CS and LR 
reconstructions, respectively, obtained from 20% NUS. Correlation analysis of 
spectral intensities in small regions around the peaks (3 times the line width) 
between the full reference spectrum and the LR (d) and CS (e) reconstructions,. 
The black, dashed grey, and solid grey lines in (d) and (e) connect results of the 
reconstructions using 20%, 15% and 10% NUS, respectively. The error bars are 
the standard deviations of the correlations over 100 NUS resampling trials.  

middle peaks with moderate line width, the CS produces clearly 
visible line shape distortions as shrinkage of the peaks. 
Correlation analysis of the spectral intensities, shown in Fig. 1d,e 
indicates that, for the NUS level in the range 10% - 20%, the two 
broadest peaks are recovered systematically better using the LR 
than by the CS. For the three remaining narrower peaks, the LR 
and CS provide comparable results.  
These observations imply that the LR, while performing similarly 
for the narrow peaks, outperforms CS when the peaks are 
relatively broad. 

This effect can be explained by using the basic CS theorem, 
binding the number of properly reconstructed spectral points, 
which is essentially a measure of spectrum sparseness, with the 
sampling level[5b]. For broad peaks, more points contribute to each 
signal in the spectrum and thus more data points are needed to 
fulfil the condition for a successful CS reconstruction. On the other 
hand, the rank of the FID signal is independent on the line width, 
and thus the LR produces correct reconstruction of line shapes 
for both sharp and broad peaks.  

Figure 2 shows a NUS 2D 1H-15N HSQC spectrum of the 
intrinsically disordered cytosolic domain of human CD79b protein 
from the B-cell receptor.  

Similarity between the LR reconstruction in Fig. 2a and the fully 
sampled reference spectrum in Fig. 2b illustrates the high quality 
of the LR reconstruction obtained from only 35% of the 
traditionally acquired spectrum. This qualitative observation 
corroborates with the faithful reproduction of the peak intensities 
shown in the inset of Fig. 2b. Similar results are obtained for a 2D 
NOESY spectrum of ubiquitin (see Supporting Information). The 
quality of the CS reconstruction obtained from the same NUS 
HSQC data (not shown) is generally as good, with the majority of  

Figure 2. 2D 1H-15N HSQC spectrum of the cytosolic domain of CD79b. (a) the 
LR reconstruction from 35% NUS data, (b) the fully sampled reference 
spectrum. The inset shows correlation of the peak intensities between the 
reference and the LR spectra; the correlation coefficient equals to 0.99. (c)-(f) 
representative reconstructions for the 11G, 37T, 38G, and 45G amide group 
peaks, respectively; dashed, grey, and black lines show 1D 15N-traces through 
the peaks in the full reference, the LR, and CS spectra, respectively.  
 
the peaks reproduced equally well by the CS and LR. This is 
illustrated for the amide group of Gly11 in Fig. 2c. Nevertheless, 
several low intensity peaks are notably compromised in the CS 
spectrum as shown in Fig. 2d-f. While peaks for Thr37 and Gly45 
show clear line shape shrinkage, the peak of Gly38 is completely 
lost. The opposite situation, when a true peak is present in the CS 
but is missing in the LR reconstruction, never occurred in our 
spectra. It should be also noted that the virtual-echo pre-
processing used for all of the CS reconstructions in this work 
improves quality of the spectra but requires prior knowledge about 
the signal phase[7]. In general, when the phase is unknown, the 
virtual-echo cannot be used and the comparison between the CS 
and LR would be even more in favour of the LR method. The 
experimental results are fully consistent with the simulations 
shown in Fig. 1 and lead us to the conclusion that the LR produces 
at least as good spectral reconstructions as the CS and often 
outperforms it for broadest and weakest peaks. Effective 
sensitivity of a spectrum reconstruction method from NUS data is 
defined as a possibility to detect weak peaks and discriminate 
them from eventual false signals[16]. Thus, the observed good 
reconstructions of the low intensity peaks by the LR indicate high 
sensitivity of the new method. 

We introduce the LR reconstruction as a new general technique 
for obtaining high quality spectra from a small number of NUS 
data points. The method allows a significant reduction in 
measurement time, which is particularly useful for high throughput 
applications, studies of short lived systems, time resolved 
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experiments, and many other practical cases. We demonstrate 
the first NUS reconstruction algorithm using the low rank property 
of the NMR time-domain signal. The LR and CS approaches are 
based on distinctly different assumptions and in future work we 
envisage design of an even more powerful NUS processing 
algorithm that combines the low rank and sparseness signal 
properties.  
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Supplementary Information 
 

Theory 

Convert FID data into Hankel Matrix 
Let us start from 1D FID data and denote the sampled FID at the time point  as x(n) where  is the Nyquist 

sampling interval. Then the FID vector x is rearranged as 

 

,          (1) 

where , is a Hankel matrix with dimension .  In the current study,  is chosen as 0.1N assuming 
the maximum rank of  is less than 0.1N. In an operator form: 
 ,                              (2) 
where  is an operator that rearranges vector x to the Hankel matrix. 

For a 2D experiment, the FID data has one direct and one indirect dimension, only the indirect dimension is 
undersampled to achieve fast data acquisition. After the Fourier transform along the directly detected dimension, each of 
the 1D FID data in the indirect dimension is converted into a Hankel matrix and processed separately. The missing data 
points are recovered using the low rank method as described bellow.  

Alternating Direction Minimization method (ADMM) 
The low rank minimization problem for the NMR signal reconstruction is formulated as 

 ,   (3) 

where  is the FID to be estimated,  are the acquired data points,  is a nuclear norm of , defined as 

the sum of the singular values,  is an undersampling operator, and  is a parameter to tradeoff the nuclear norm 
and data consistency. 
Eq.(3) is equivalent to 

 .   (4) 

The Lagrangian form of Eq.(4) is 

    (5) 

where  is the Lagrangian multiplier, and  is the inner product in the Hilbert space of matrices defined by 

 and  denotes the real part. The augmented Lagrangian	of	Eq.(3)	is	
 ,  (6) 

where  means the Forbenius norm and  is a parameter. By interchanging min-max, the dual problem is obtained 
as follows 

 .         (7) 
Then, Eq. (7) is solved by a gradient ascent algorithm with aspect to . In ADMM[1], the gradient is approximated by one 
step alternating direction minimization, and this leads to 
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  , (8) 

where  is the step size. The first line in Eq. (8) is equivalent to 

 , (9) 

whose solution is 

  (10) 

and  stands for transpose. 
The second line in Eq. (8) is equivalent to 

 .  (11) 

All matrices involved in Eq. (11) are complex-valued. One can extend Theorem 2.1 in [2] to complex-valued matrices 
without too much difficulty and obtain the solution of Eq. (11) as follows 

 ,   (12) 

where  is a soft singular value thresholding operator on a matrix [2], leading to low rank enforcement on a matrix. For 

example, for a matrix  with singular value decomposition , where  is a diagonal matrix, the 

soft singular value thresholding operator  means  where  denotes the positive part 

of , namely,  [2].  
 
The third line  
    (13) 

in Eq. (8) is a simple update on the dual variable . 
Altogether, we get the ADMM solver as shown in Table 1. If the step size  , this algorithm in Eq. (8), 
solving Eq.(3), converges. 
 
 
Table S1. Algorithm for ADMM 

Initialization: Input , , , , , step size  and tolerance of solution in iterations 

 . Initialize the dual variable  and initial solutions , ,  .  
Main: 
While  

1) Given , , update  by solving Eq.(10); 
2) Fix  and , update  by using Eq.(12); 
3) Update  according to Eq. (13);  

4) Compute . 

Output:  and the reconstructed spectrum is obtained by performing Fourier transform on . 
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Illustration of the Low Rank FID property  
on the simulated data 

The synthetic time domain signal was simulated as a sum of decaying exponentials: 

 
,  (14) 

where J=5 is the number of sinusoids, Aj, ∅" , τj and ωj are the amplitude, phase, decay time and frequency, respectively, 
of the jth exponential[3]. 

  

Figure S1. Dependence of the spectrum rank on peak line width. (a) Three simulated spectra with peaks of different 
line width, (b) singular values of the corresponding FIDs rearranged into the Hankel matrix. 

  
Figure S1a shows three simulated spectra composed of five Lorentizian peaks. The signals ware simulated (Eq. 14) with 

unit amplitudes, zero phases, and the decay parameters τ are listed in Table S2. Figure S1b presents singular values of the 
Hankel matrix of the time domain signal. The FID rank, which is defined as the number of non-zero singular values [3-4], is 
5 for all three spectra. This implies that the rank of the spectrum equals to the number of peaks, which is typically small, 
and does not depend on the line widths.  

 

Table S2. Decay times for the synthetic data in Figure S1. 
Peak # 1 2 3 4 5 

τ (s) black spectrum  0.005 0.010 0.015 0.020 0.030 
red spectrum 0.010 0.020 0.030 0.040 0.060 

blue spectrum 0.020 0.040 0.060 0.080 0.120 
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Low Rank reconstruction of 2D NOESY spectrum of ubiquitin 

Figure S2. 2D NOESY spectrum of 1 mM ubiquitin, measured at 25o C, 500MHz Varian UNITY Inova equipped with a 
room temperature probe. A. Region of the fully samples reference spectrum acquired with 300 complex points in the 
indirect spectral dimension. B. The LR reconstruction of the same region from 150 non-uniformly sampled complex 
points. The first contour level is set 1.4 times higher than in the reference spectrum in order to compensate for the 
expected increase of the noise level due to the reduced measurement time of the NUS experiment. C. 1D slices from the 
reference (green) and Low Rank (blue) spectra are taken at the position indicated by the red dashed line in panel B. E-F. 
Correlations of the cross-peak intensities in the Low Rank (abscissa) and reference (ordinate) spectra, correlation 
coefficient equals to 1.0, 0.999 and 0.983 respectively. Values of the peak intensities are given in units of noise in the 
reference spectrum scaled up by 1.4 to compensate for the reduced time of the NUS experiment. 

Experimental Section 

300 µM 15N-13C labeled sample of cytosolic CD79b in 20 mM sodium phosphate buffer, pH 6.7 was prepared as described 
previously [5]. Fully sampled 2D 1H-15N HSQC with 256 complex points in the 15N dimension (143.5 ms acquisition time) 
was acquired at 55 °C on 800 MHz Bruker AVANCE III HD spectrometer equipped with 3 mm CPTCI cryoprobe. The 
directly detected dimension of the amide region of the full reference 2D spectrum (8.75-7.85 1H ppm) was processed using 
NMRPipe software[6] and imported in MATLAB for consecutive reconstruction by the LR and CS VE-IRLS[7] methods. 
The 35% sparse non-uniform Poisson-gap sampling table was produced according to reference[8].  
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Calculations 

The LR reconstruction on the synthetic data and experimental spectra were performed using the algorithm described 
above with the Lagrangian multiplier l=103. The results of the calculations are not sensitive to the setting of l. The LR 
calculations we performed in Matlab (MathWorks Inc) on a laptop computer with 2 Cores 2.6 GHz CPU and 12 GB 
RAM. The computational time for reconstruction of the 2D HSQC and NOESY spectra were about one minute. All the 
CS reconstructions were performed using the iterative re-weighted least squares (IRLS) algorithm and the virtual-echo 
signal pre-processing[7]. In all cases, the NUS was performed according to a Poisson distribution[8].  
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