(T
-
i

Software illustrating a unified approach to
multimodality and multilinguality in the
In-home domain

Stina Ericsson (editor), Gabriel Amoresd&p Bringert,
Hakan Burden, Ann-Charlotte Forslund, David Hjelm,

Rebecca Jonson, Staffan Larsson, Peter Ljfngl
Pilar Manclon, David Milward, Guillermo Brez,

Mikael Sandin

Distribution: Public

TALK

Talk and Look: Tools for Ambient Linguistic Knowledge
IST-507802 Deliverable 1.6
May 11, 2007
—
=

= =
= -

Project funded by the European Community .B
under the Sixth Framework Programme for Inf ion Soci
Research and Technological Development '™ Orﬂ?ﬂg?ﬁcsoaety
The deliverable identification sheet is to be found on themsa of this page.

Project ref. no.
Project acronym
Project full title
Instrument
Thematic Priority
Start date / duration

IST-507802

TALK

Talk and Look: Tools for Ambient Linguistic Knowledge
STREP

Information Society Technologies

01 January 2004 / 36 Months

Security

Contractual date of delivery
Actual date of delivery
Deliverable number
Deliverable title

Type

Status & version
Number of pages
Contributing WP
WP/Task responsible
Other contributors
Author(s)

EC Project Officer
Keywords

Public

M36 = December 2006
May 11, 2007

1.6

Software illustrating a unified approach to multimodality

and multilinguality in the in-home domain
Report

Final May 11, 2007

121 (excluding front matter)

1

UGOT

All partners

Stina Ericsson (editor), Gabriel Amores, Bjorn Bringert,

Hakan Burden, Ann-Charlotte Forslund, David Hijel

m,

Rebecca Jonson, Staffan Larsson, Peter Ljunglof, Pilar
Manchon, David Milward, Guillermo Pérez, Mikael Sandin

Evangelia Markidou
Multimodality, Multilinguality, In-Home Dialogue Systesn

The partners in TALK are:

Saarland University USAAR
University of Edinburgh HCRC UEDIN
University of Gothenburg uGoT
University of Cambridge UCAM
University of Seville USE
Deutches Forschungszentrum fur Kinstliche Intelligenz DFKI
Linguamatics LING
BMW Forschung und Technik GmbH BMW
Robert Bosch GmbH BOSCH

For copies of reports, updates on project activities androfiALK-related information, contact:

TheTALK Project Co-ordinator
Prof. Manfred Pinkal
Computerlinguistik

Fachrichtung 4.7 Allgemeine Linguistik

Postfach 15 11 50
66041 Saarbriicken, Germany
pinkal@coli.uni-sb.de

Phone +49 (681) 302-4343 - Fax +49 (681) 302-4351

Copies of reports and other material can also be accessdtheviproject's administration homepage,
http:/iwww.talk-project.org

(©2006, The Individual Authors.

No part of this document may be reproduced or transmittechynfarm, or by any means, electronic
or mechanical, including photocopy, recording, or any iinfation storage and retrieval system, without
permission from the copyright owner.

Contents

SUMMANY . . . o e e e e 1
1 Introduction 2
2 Multimodality and Multilinguality in G oDIS 4
2.1 Dialogue management for multimodality and multilingya 4
2.1.1 Dialogue managementim®IS e 4
2.1.2 Multimodality in @DIS e e e 5
2.1.3 Multilinguality in GoDIS e 11
2.2 GF grammar work related tod®1S applications 11
221 Grammarsfor GTTIS o i i i e 13
2.2.2 Grammars common to alld®1S applications 15
2.23 Grammarsfor GTGODIS e 17
2.2.4 Grammars for BENDATALK i e 18
2.25 Grammarsfor DJ-GDIS 20
226 Grammarsfor GDIS-DELUX 21
2.3 GoDIS applications demonstrating multimodality and multiliadity 23
2.3.1 Introduction e 23
2.3.2 GOTTIS . v v e e e e e e e e e 23
2.3.3 GOTGODIS e 26
2.3.4 AGENDATALK o e e e e e e 34
2.35 DJ-®DIS 50
2.3.6 GODIS-DELUX o e 60
2.4 Conclusion e 68
3 Multimodality and Multilinguality in the Linguamatics In teraction Manager 70
3.1 Introduction e 70
3.2 SyStem SUMMaANY o o e e e e e e e e e 70
3.3 Issues Addressed e e e 71
3.4 Multilinguality e e 71
3.5 Multimodality e e 71
3.6 Speech Recognition e e 72

IST-507802 TALK D1.6 May 11, 2007 Page ii/121

3.7 Multimodal Output e e 73
3.8 Moving to a unified approach to multimodality and mutiguality 73
3.9 TheHome Domain Showcase i 73
3.10 Conclusion e e 75
4 Multimodality and Multilinguality in MIMUS 76
4.1 Introduction e e 76
4.2 SCeNANO o i 76
4.2.1 WoOZEXperiments e e e e 77
4.3 Infrastructure e e e e 78
4.4 TheISU Approachin MIMUS e wm 81
441 DTAC Information States e 81
4.4.2 Multimodal DTAC structure e 82
4.4.3 Updating the Information State inMIMUS 83
4.5 Multimodality and Multilinguality inMIMUS 84
45.1 Integrating OWLINMIMUS 84
452 FromOWLtotheHouselLayoutuu.. 87
4.5.3 From Ontologies to Grammars: OWL2Gra 87
4.5.4 Multilinguality inMIMUS 93
455 Multimodality in MIMUS e 96
45.6 Multimodal Presentation inMIMUS 100
4.6 Dialogue Examples e e e 101
4.7 Conclusion e e 104
5 Conclusion 106
5.1 Advantages over current state-of-the-art oo L. 106
5.2 Advantages oftheISUapproach0 ... 107
5.3 Implementation of research intheshowcases 108
Bibliography 109
A Software Library 114
A.l Softwarefor ®DIS e 114
ALl GrammarS. e e e e e e e e e e e . 114
A.1.2 Applications e e 118
A.2 Software for the Linguamatics Interaction Manager119
A.3 Software for MIMUS e 119
A.3.1 RootDirectory: BatchFiles ca..... 119
A3.2 VRM . . e a1
A33 TalkingHead e 119
A3.4 Ontology e e e 120

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page iii/121

A.3.5 MMInputPool. 120
A3.6 MIMUSCOre 120
A37 Merlin. . . . 120
A3.8 HomeSetup e 120
A.3.9 jDeviceManagerAgent e e e e e 120
A.3.10 [KManagerAgent e 120
A.3.11 jDisplayAgent e 120
A.3.12 jMenuAgent, jMP3Agent, jTelephoneAgent 121

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 1/121

Summary

This deliverable presents work on Task 1.6 in the TALK prbjethe research task focuses on multi-
modality and multilinguality for the Information State Ugté (ISU) approach in the in-home domain,
with particular attention paid to a unified approach to nmadtdality and multilinguality. Such a unified
approach involves contributions in different modalitiesl alifferent languages as concrete realisations of
common abstract representations, creating coherent,rpgwand efficient dialogue systems that allow
rapid development and porting.

The deliverable showcases three system©b(, the Linguamatics Interaction Manager, and MIMUS.
GoDIS is developed for four different applications, the contblights, an mp3 player, a calendar, and
public transportation information. The Linguamatics mation Manager allows the control of a large
number of different devices in the home, such as lights alediggon sets. MIMUS includes a talking
head, and lets the user control different devices in the hdd@IS and MIMUS are both multimodal
and multilingual, for input as well as for output. The Lingoatics Interaction Manager is also multimodal
for both input and output. The integrated approach to multiality and multilinguality for @DI1S has
been developed by connectingpB1S to the Grammatical Framework (GF), which supports rapitinp

of GoDIS to new domains, modalities, and languages. For instameepiothe GDIS applications has
been developed for seven different languages, of which tigei non-Indo-European language Finnish.
Languages can be changed on the fly, in the middle of a diaJaglbeth MIMUS and ®D1S. The two
systems together show two different ways of achieving lagguchange: either by pressing a button for
the desired language, or by naming the language using spBecimg language change, the Information
State maintains language-independent knowledge of tmerdustate, so it is possible to switch languages
in the middle of a task.

Version: May 11, 2007 (Final) Distribution: Public

Chapter 1

Introduction

An in-home interactive system that allows maximal flextgiland user-friendliness, and is accessible to
a wide variety of users, is one that handles several diffdegtguages, and that enables communication
in the modalities — speech, graphics, gestures, and so onst-matural to the user and the interactive
activity in question. Such an interactive system does alhisfin an efficient and powerful way, not only
from the perspective of the end user, but, of equally higharigmce to our concerns, from a design and
implementation perspective.

One way in which this can be achieved is through the unifioatfonultimodality and multilinguality in a
single framework, such as through the use of a single albséesentation for languages and modalities.
In this way, the same information can be used to generatee@nepresentations, both in various natural
languages such as English, Spanish, and Swedish, and énediffmodalities. From an interpretation
perspective, linguistic and non-linguistic informaticandoe unified into an abstract representation that can
be handled by the same dialogue management and other com@dméhe system. Thus, unified abstract
representations allow for a coherent view of multilingtyaéind multimodality, giving the dialogue system
designer and implementer a very powerful environment, hadghd user an integrated system.

Coupled with an information state update (ISU) approachitiea approach to multimodality and multi-
linguality creates a particularly potent approach. The Epigroach utilises structured information states
to keep track of dialogue information. These informaticatest can be read and updated by several differ-
ent modules which access precisely the information that tleed. This enables a modular architecture
which allows generic solutions for dialogue technologyr &mample,

o different language modules can interact with essentiathjlar information states, enabling rapid
porting of dialogues systems from one language to anottetrencreation of multilingual dialogue
systems

e coding of dialogue behaviour is supported independentrgiuage and domain, thus allowing for
the rapid porting of dialogue systems to different domains

e the use of structured information states allows straigivfod implementation of flexible dialogue
systems which can access and modify information in the imédion state in varying orders and
with varying means

Treating multimodality as additional “languages” in thet®m thus does not require a significant rebuild-
ing of an ISU-based unimodal system since the ISU technadrgyady allows for the modular addition of

2

IST-507802 TALK D1.6 May 11, 2007 Page 3/121

new languages. Among other things, we show in this delilerhbw a unimodal system can be rapidly
extended to a corresponding multimodal system.

We showcase a variety of systems, all implementing our reBean multimodality and multilinguality in
the in-home domain and with respect to the ISU approach.eRted in alphabetical order, we discuss
GoDIS, the Linguamatics Interaction Manager, and MIMUSBS, in Chapter 2, is concerned with
the integration of the Grammatical Framework (GF), for tbastruction of grammars, withRINDIKIT

and QDIS, for the ISU approach to dialogue. Four differert@B S applications are showcased, show-
ing multimodality and multilinguality in relation to the e abstract representation, as well as rapid
prototyping for new languages and new domains, and advatiakmjue management.

The Linguamatics Interaction Manager, in Chapter 3, fosusedomain reconfigurability, and explores
the relationship between reconfigurability on the one hand, multimodality and multilinguality on the
other. Domain reconfigurability and multimodality are batiplemented in the showcased system, and
a unified approach to all three of reconfigurability, multohabity, and multilinguality is explored from a
theoretical viewpoint.

MIMUS, in Chapter 4, explores a unified approach to multimibgand multilinguality using OWL
ontologies. Different approaches to multimodal fusion séinput are investigated and evaluated, and
several Wizard-of-Oz studies have been carried out, thdtsasf which have fed into the multilingual and
multimodal development of MIMUS.

Version: May 11, 2007 (Final) Distribution: Public

Chapter 2

Multimodality and Multilinguality In
GoDIS

This chapter addresses the issue of a unified approach tamoddlity and multilinguality in ®D1S
using the Grammatical Framework (GF). The issue is tackterklation to four ®@DIS in-home ap-
plications: GTGoDIS for information about public transport, GENDATALK for interaction with an
electronic calendar, DJ-@IS for the control of an mp3 player, ando®1S-DELUX for controlling
lights in the home. The chapter also includes1Gis, a non-GDiIS-based system implemented as a
form of baseline system for multimodality and multilingiyalin GF. This system was converted into the
GoDIS application ®TGoDIS to illustrate the dialogue management behaviour oDGS.

Section 2.1 tackles general issues that concern dialogumagaeent for multimodality and multilin-
guality in the context of ®DIS. Section 2.2 then traces the development of GF grammaiGdon S,
detailing multilingual and multimodal grammars folo®Tis and the ®DI1S applications, and Section
2.3 describes the four @1S applications and how they illustrate multilinguality andltimodality.

2.1 Dialogue management for multimodality and multilingud-
ity

This section briefly describes dialogue management aspéatsiltimodality and multilinguality as im-
plemented in @DIS. Dialogue management in the ISU approach has three comtgonieformation
state, update rules, and overall system architecture amiotoDialogue management modifications to
enable multimodality and multilinguality will thus be deted in terms of extended information states,
update rule modifications, and architectural/control rficdiions.

2.1.1 Dialogue managementin GDIS

This section offers a very brief introduction to dialoguenagement in @DIS in relation to current
state of the art. For a more detailed description o33S, see [13] and [12]. BDIS implements Issue-
based Dialogue Management, a general theory of dialogueesmg based on the notion of dialogue as,
essentially, raising and addressing questions (or “iSgu€ke current version of GDIS is implemented

IST-507802 TALK D1.6 May 11, 2007 Page 5/121

in the Information State Update approach using TrindiKit4.

One of the main challenges addressed in this WP is to combhiexisting advanced flexible dialogue
management and rapid prototyping capabilities of33S with multimodal and multilingual dialogue.

The domain-independent d®1S Dialogue Move Engine (DME) provides general solutionseeesal
generic problems of dialogue processing: grounding, faekllclarification, multiple simultaneous tasks,
sharing information between tasks, user initiative, hel@ision, and more. In current industrial state-
of-the-art dialogue system platforms such as VoiceXML séhgeneric problems have to be addressed
individually in each new application, while in@1S they are solved by the domain-independent DME.
Also, the dialogue management capabilities @3S go beyond VoiceXML in several aspects, such
as grounding on multiple levels, dealing with multiple sltaneous tasks initiated by the user, belief
revision, and plan recognition (dependent accommodation)

The modular structure of @DIS clearly separates dialogue management, overall systairotoand
domain-specific resources. In combination with generaltgwis to general dialogue management prob-
lems, this enables rapid, and thus cheap, prototyping ofamlications. The main application-specific
resources are domain knowledge (ontologies and dialoguespand GF grammars. The latter are com-
piled into grammar formats or SLMs which can be used for ASegading both of these components,
GoDIS uses pre-existing methods and resources to minimise tHengeded for developing and local-
ising new applications. Dialogue plans can be based onimxistenu interfaces, which thus provide
basic dialogue designs while allowing for advanced flexihldtimodal dialogue. Using a generic GUI
for graphical interaction minimises the need for develgmew GUIs for new applications. Finally, using
GF resource grammars and automatic ASR grammar generationGF grammars minimises the work
needed for localising applications to new languages.

2.1.2 Multimodality in GoDIS

This section describes multimodality indB®1S. First, we briefly review the Multimodal Menu-based Di-
alogue (MMD) approach implemented in severa@®S applications. We then describe how the@® S
information state (IS) has been extended to handle mulinioteraction. Next, we outline how@1S
has been modified for asynchronous control to adequatelyndiethe complexities of multimodal inter-
action. We also describe DynGUI, a generic MMD interactiddl @sed by several applications, as well
as the use of application-specific GUIs for multimodal iat#ion. Finally, we explain how GDIS deals
with multimodality across multiple domains.

Multimodal Menu-Based Dialogue (MMD)

Three of the UGOT TALK applications (6 GoDIS, GoDIS-DELUX and DJ-@®DIS) are based on
an approach to multimodality, developed in the TALK projeefferred to as Multimodal Menu-based
Dialogue (MMD). A more detailed description of this apprbaman be found in D2.1 [18].

By converting existing graphical menu-based interfacés dimlogue plans, GDIS applications can be
built which use the same basic menu structure but in addatilows flexible spoken dialogue interaction.
By keeping graphical and spoken interaction in sync, the Mdfiproach allows the user free choice
of modality as well as mixing modalities. The MMD approacts teeen used in the @IS-DELUX,
DJ-GoDIS and ®TGoDIS applications. AENDATALK has not been built with the MMD approach
as it does not use a menu-based interface. HoweveENMATALK makes use of many of the features

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 6/121

described in this section.
Features of MMD interaction include the following:

e MMD GUI interface can be used "as usual” (no speech)
e Application can be controlled using speech only
e Modalities can be freely mixed and changed at any point

e A novice can follow the menu structure step-by-step to leguplication capabilities, and an expert
user can bypass menus by asking questions or giving reqdiestsly, or by just providing some
piece of information relevant to her goals (in which casesysiem will accommodate the user’s
goal or ask a clarification question)

Extended information state for multimodality

This section describes how theoG1S information state (TIS) has been extended to deal withimaottal
utterance interpretation and generation.

Utterance interpretation in GoDIS can be regarded as a function from TIS variakieuT to TIS
variablesLATEST_MOVES andLATEST_SPEAKER

Prior to TALK, GoDIS used simple representations of utterances and uttenatecpritations.

e utterances represented as a string of text -
INPUT : String

e Utterance interpretations represented as an open quetsagfue moves -
LATEST_MOVES : Oqueue(Move)

e non-integrated moves represented as an open queue ofukatogyes -
IS/PRIVATE/NIM : Oqueue(Move)

e interpretation of latest utterance represented as a randichting speaker and a set of moves -
SPEAKER : Participant

IS/ISHARED/LU : MOVES : Set(Move)

e interpretation of previous utterance as an open queue tf pbspeaker and move -
IS/PRIVATE/NIM : Oqueue(Pair(Participant,Move))

However, these representations are insufficient to dehlmititimodality, where moves can be realised us-
ing different modalities. To improve feedback in multimbaderaction, @DIS has also been improved
by assigning ASR score to each individual move, and by afigviticreased system reconfigurability by
running several applications simultaneously (describddd.2 [19]). Taken together, these developments
require a more complex utterance representations, and veedmded for representing utterances and in-
terpretations as records containing several fields. Oneradge of this record-based representation is that
it can be extended without disrupting or requiring modifmas to existing dialogue processing.

The INPUT variable represents utterances observed by the systemuwesia gf records containing three
fields. The value of theokEeN field is a string of text, regarded by the grammar as a complteance.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 7/121

The string can contain both spoken words and GUI input. ibeALITIES field is the set of modalities
used to express that move (eitlpeech or gui), andscoOREis the ASR score (in case the speech modality
was used; otherwise, it is set to the maximum valué)1.0

TOKEN . String
(1) INPUT: Queue(MODALITIES : Set(Modality) |)
SCORE . Real

In LATEST_MOVES, theMoOVE field is a GoDIS dialogue move resulting from interpreting some segment
of input:

MOVE : Move
(2) LATEST_MOVES: Oqueue(MODALITIES : Set(Modality) |)
SCORE : Real

In GoDIS, utterance interpretations frarATEST_MOVES are added to the queue of non-integrated moves,
where they stay until integrated or discarded. The reptaden of non-integrated moves is identical to
that of LATEST_MOVES, except for the addition of aPEAKERfield (with valueusr or sys):

SPEAKER . Participant
) MOVE . Move
(3) 1S/PRIVATE/NIM : Oqueue MODALITIES : Set(Modality))
SCORE : Real

After integration, utterances are represented as parteo$liared 1S. To represent the latest and previ-
ous utterances in theHARED part of the ®DIS IS, somewhat truncated representations are used. In
IS/SHARED/LU, a TURN_CONT field (representing all contents communicated in a turevatice) groups
together all moves and corresponding scores.|$/@HARED/PM (representing the contents of the moves
in the previous utterance) only the therRN_CONT field is retained:

SPEAKER : Participant
(4) IS/SHARED/LU : | TURN_CONT : Set(MOVE Move)
SCORE : Real
MODALITIES : Set(Modality)
(5) |S/SHARED/PM:Oqueue£ MOVE MOVQ})
SCORE : real

To cater for these TIS extensionspB1S update rules have been modified. These modifications are of
limited theoretical interest and will not be discussedHarthere.

Utterance generation in GoDIS can be regarded as a function fromxT_MoVES : Ogueue(Move)

to ouTPUT : String andouTPUT.GUI : String. This function implements “modality fission”. In the
MMD approach, a very simple method of modality fission is ugggherate everything both as speech and
graphically, as far as possible.

The TIS variableouTPuT : String holds the text to synthesise, and TIS variallerPuT_GUI : String
holds MMD menu constructs as described above under “Dyn&géneric MMD interaction GUI agent”.

1This encodes an assumption that click input is always ctiyrperceived by the system.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 8/121

Asynchronous control for multimodal interaction

The MMD approach puts certain requirements on the dialogséem architecture. In many single-
modality spoken dialogue systems, barge-in capabilitiesvathe user to interrupt system utterances.
To allow the same freedom when the user is interacting matatiy, it is important to be able to inter-
rupt spoken utterances using other modalities, e.g., bkiolj on a button which answers a question that
the system is currently asking using speech. This meandé#nge-in cannot be handled internally by a
ASR/TTS agent, but must be handled by the dialogue managersystem must listen for spoken as well
as point-and-click input at the same time as it is speakitnjs dan be handled in an architecture allowing
for asynchronous control, i.e., running several systempmrants simultaneously.

TRINDIKIT4, developed in TALK, builds on RINDIKIT3.2 but adds important features, including asyn-
chronous control. RINDIKIT4 is more OAA-centered than previous versions, and featartseaded
control module. Apart from enabling multimodal barge-imistalso enables a degree of incrementality in
input processing. Even if the system starts working on infhé user can add more information at any
time. If the system was just going to say something, and tke instead continues her turn, new input
will be processed before the system takes the turn.

To handle asynchronous utterance processing, thBIS IS has been extended with two variables:

TOKEN . String
(6) INPUT_BUFFER: Queue(MODALITIES : Set(Modality) |)
SCORE © Real

(7) ACTIVE_INPUTS: Set(String)

The asynchronous @D1S applications uses queues for communication between e&ddaictive input
agents monitor input continuously, and write to a singleitrqueuaNPUT_BUFFER. This variable (which
has the same type as thePuT variable) allows several input agents to function indejeerigt by writing

to the same TIS variable. When the user has not provided gyt in a certain amount of time, the
INPUT_BUFFERcoNtents are considered as constituting one user turn armbpred to theNPUT variable.
Then, theINPUT_BUFFER is cleared and the system proceeds by parsing the input afsteturn and
updating the information state.

SinceINPUT_BUFFER is cleared before starting the interpretation and updateses) it is easy to keep
track of any new user input. If new input arrives, the systeithhandle it separately as a new turn after
integrating the previous input. Also, this architecturenpigs any number of input agents. The DME agent
need not know anything about them, they operate indepelgdamthe TIS.

When the user starts speaking or clicks on the GUI, the ingenizalso adds an element to the TIS variable
ACTIVE_INPUTS, which is a set of strings identifying input agents currgiitting used to provide input.
The setting oACTIVE_INPUTSt0 a non-empty value triggers the controller to send a messetpe output
agents to stop all output (barge-in). The recognised stsmgpresentation of the click is pushed to the
TIS INPUT_BUFFER variable, and the element is deleted from AT IVE_INPUTS Set.

DynGUI: a generic MMD interaction GUI agent

DynGUI, a generic GUI agent (written in Java) for graphicana-based interaction, has been developed
in TALK to enable Multimodal Menu-based Dialogue. This aiggisplays multimodal output in the form

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 9/121

you want to add 2 song to the playlist, is that correct?

add a song to the playlist

delete a song from the playlist

clear the playlist

shuffle the playlist

Figure 2.1: DynGUI screenshots

of menu constructs, when called by the output module. Whemigler interacts, e.g., by clicking a button,
the agent sends an OAA request transmitting multimodaltitgpthe information state.

Two screenshots of DynGUI are shown in Figure 2.1.
The protocol for this interaction contains the following MeConstructs (MC$)

e button(Text Input)

— Display button withT ext
— If clicked, sendclick(Input)

e menu([MCq,MCy,...,MC,]) or menu(Text [MCy,MCy,...,MC])

— Display menu (optionally with a text label)

— MC; (1 <i < n)isamenu construct (usually buttons)
e label(Tex): OutputTextmessage
e textentrybox(Text):

— Display Textand text entry box

— When user presses "return”, seimput werelnput is a string of text written by the user

Constructs in this protocol are generated by multimodal @fngnars (see Section 2.2.2). This ensures
that button text, labels and messages are rendered in thepaigpe language. The input to generation of
MMD constructs, and the output from interpretation of MMDnstructs, are GDIS dialogue moves. As
an example, the BD1S move

2Additional menu constructs not currently implemented is firotocol include scrollable lists. The motivation
for this is that such constructs have not been necessarypteinent the UGOT applications. For example, the
DJ-GoDiS uses an application-specific GUI to handle scrollable tisntaining playlist songs.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 10/121

(8) ask({ ?action(control_playback), ?action(manageplaylist) }) (“Do you want to control play-
back or manage the playlist”)

is converted into the following corresponding multimodatput construct:

(9) menu([button('handle the player’, answer(action(control_playback))), button(’'manage the play-
list', answer(action(manageplaylist))))

Multimodality in application-specific GUIs

In addition to DynGUI, which handles menu-based interatibis often useful to have an application-
specific GUI to deal with interactions which go beyond simplenus. For example, thedd GoDIS
application displays a map of tram stops where the user @antolselect departure and destination stops.

DynGUI input is generally unambiguous to the system. Howeweapplication-specific GUIs, there
are cases when a click can mean different things dependinbeospoken input occurring in the same
turn. For instance in the G GoDIS system (see sections 2.2.3 and 2.3.3) the clicks in thewfwify
two multimodal utterances end up having different meangiitsr being parsed by the multimodal GF
grammar:

(10) Usr> | want to go from here [clicks on chalmers] to brunnsparken
(11) Usr> | want to go here [clicks on chalmers] from brunnsparken

In the first case, the click is interpreted as providing a depa stop &nswer(dept_stop(chalmers)),
whereas in the second case itis interpreted as providingtmdgon stopgnswer(dest stop(chalmers)).
The difference in interpretation is caused by the phragesri‘fhere” and “here”, where the former leads
to interpreting the click as indicating a departure stop thiedatter indicating a destination stop.

Multimodal dialogue across multiple domains

In TALK, GoDIS has been extended to allow for offline plug-and-play andiamgpplication switching
(see D2.2[19]). The DynGUI is used by all applications inmpéanting the MMD approach.

When running several applications simultaneously, twaitanidl fields DOMAIN and PHRASEID are
added to the records representing individual moves inMtesT_MOVES queue.TheoOMAIN field is set
by the parser based on the subgrammar that was used to @ttrprmove; it is assumed that the move
is intended as input for the corresponding domain. FinelRASE.ID assigns a single unique number to
all moves in an utterance derived from the same phrase (gigaty maximal unit) in the input string.

Multimodality in A GENDATALK

As the calendar GUI is not a menu-based interface the MMDaampr for the development of FEN-
DATALK was not appropriate. Therefore, th& BNDATALK application does not use the MMD approach
per se but still makes use of many of the features describeekalf-ollowing the same approachGAN-
DATALK has asynchronous control of multimodality and uses the sdtesnce representation with an
extended Information State with ASR scores assigned twithehl dialogue moves. However, utterance

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 11/121

generation differs as we do not want to generate speech aptiigal output in parallell but instead im-
plements advanced context-dependent modality fissions Whik is described briefly in Section 2.3.4
and extensively in D3.1 [7]. Also, BENDATALK does not make use of the DynGUI agent.

2.1.3 Multilinguality in G oDI1S

This section briefly describes dialogue management aspegtsltilinguality in GoDI1S applications.

The ISU approach, as implemented irIWDIKIT, allows modular dialogue systems where language-
specific information (including multimodal grammars) igkeeparate from dialogue management and it
is therefore easy to preserve smooth dialogue managemdatsmtitching between languages at runtime.
The core of @DIS can thus be used for different languages, graphical agesf and operating situations,
and can therefore be easily adapted to different appliestidUGOT have implemented two different
methods for changing language. In D&BIS, GoDIS-DELUX and GOTGoDIS, language is changed
by clicking a checkbox in the DynGUI (see Section 2.1.2). I@EANDATALK, language switching is
accomplished verbally by naming the desired language. ppeach taken in AENDATALK is the same

as the approach to language switching in MIMUS, see Chapter 4

Concerning dialogue management, no extensive modificati@mme needed to handle multilinguality. The
TIS variableLANGUAGE keeps track of the current language used in ASR, interfpoetageneration, and
TTS. Using the asynchronous processing implementedrindi K114, GoDIS sets up triggers to handle
language switching. When the NGUAGE variable is set to a new value, triggers send requests tagehan
language to the modules and agents concerned.

One advantage of using GF grammars for multimodal outpuiasthe text components of multimodal
output (e.g., text on buttons) will be generated in the appate language, without any additional pro-
gramming effort.

2.2 GF grammar work related to GoDIS applications

The tools we use for multimodal grammar development areetlidsch have been exploited for multi-
lingual grammar development in the Grammatical Framew@k)(developed by Aarne Ranta. GF is
described in more detail by [23], in TALK deliverable D1.Z4,[and on the GF homepage:

http:/iwww.cs.chalmers.se/"aarne/GF/

The GF Resource Grammar Library contains grammar ruleslfteriguages, plus some more under con-
struction. These languages are Arabibanish, English, Finnish, French, German, Italian, Noraeg
Russian, Spanish, and Swedish. It aims to maintain an ajppataly equal coverage in syntax and mor-
phology libraries for all the languages. The coverage oféiseurce grammar is comparable to the Core
Language Engine as described in [24].

One of the UGOT tasks in TALK has been the integration of GHlie dialogue system development
toolkit TRINDIKIT.# This has involved the development of a library of multiliaggand multimodal gram-
mars related to some of the showcases involved in TALK. Thesmmars have related abstract syntax to

3The Arabic grammar does not cover the full resource API yet.
http:/lwww.ling.gu.se/projekt/trindi/trindikit/

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 12/121

several different concrete syntaxes corresponding tergifit natural languages and non-linguistic modal-
ities. Another UGOT task has involved extending these grarsrto integrate several modalities, such as
speech and pointing gestures. This has essentially cedsi$extending existing concrete syntaxes with
multimodal information.

One of the main reasons to use GF in connection withDGS/TRINDIKIT is the possibilities for rapid
prototyping and fine-tuning of dialogue system®@ S/TRINDIKIT is well suited for rapid development
of dialogue systems, and to this we now can add rapid devedopof grammatically correct, multilingual
and multimodal grammars for@1S dialogue systems.

To connect the application grammars with the@S dialogue manager, we have developed a multi-
lingual and multimodal resource grammar which containdiegion-independent utterances, pointing
gestures and combinations thereof. This common resouarergar reduces the sizes of the application
specific grammars by 25%—75% in our showcase systems.

The common ®DIS resource grammar is in turn implemented by using the GF lResdGrammar
Library. Of the 11 languages existing for the Resource Granlobrary, we have implemented 7 in the
GoDIS resource grammar. These languages are English, FinmafgH; German, Italian, Spanish, and
Swedish. One of the showcase systems, thd GoDIS Tram information system, described in section
2.2.3, is multilingual in all 7 languages.

Multilinguality

The separation of abstract and concrete syntax makes GFswid for developing multilingual gram-
mars. Each language becomes one concrete syntax of a conbsach syntax. Also, it is possible
to write language-independent grammars, where the gramutes are represented as syntax trees of a
multilingual resource grammar.

The common @DIS resource grammar is designed with the purpose of makiregsit ® write multi-
lingual application grammars. This means that the onlyghirat has to be provided when adding a new
language is a lexicon of a few application-specific lexenfres.our example applications, four out of five
are written as language-independent grammars.

Multilinguality is described in more detalil in deliverabl®1.1 [16] and D1.5 [14].

Multimodality

The possibility of several concrete syntaxes also openbaipdssibility for multimodal grammars, where
each modality is a separate concrete syntax. For thBIS applications we have implemented two kinds
of multimodal utterances, parallel and integrated multiality (see deliverable D1.2a [5] for definitions).
Parallel multimodality is when an utterance can be preseinteither modality separately. In thed®I1S
resource grammar there is support for multimodal systeararites, both via text-to-speech and through
a GUI. This is made solely in the resource grammar, which méaat the application grammar does not
have to contain any multilingual utterances.

Integrated multimodality is when the meaning of an utteeazen only be deduced from looking at several
modalities simultaneously. This is implemented in thed3S resource grammar by making it easy for
the application grammar writer to specify when e.g., a diicthe GUI can be combined with an utterance.

Multimodal integration is described in more detail in delables D1.2b [15] and D1.5 [14].

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 13/121

Application switching

Since there is a common resource grammar foDGS applications, it is very straightforward to combine
the grammars for two (or more) different applications int@ anified grammar. One only has to write a
wrapper grammar importing the different application graansn

In GoDIS there is always orectiveapplication which listens to what the user says. Sometimeswuld
not want to recognize all possible utterances for the imactpplications, but only e.g., the main requests
and questions. This is solved by splitting each applicagi@mmar into one global and one local grammar,
where the global grammar contains all utterances whichldhoel recognized whichever application is
active, and the local grammar contains utterances whighaam be uttered when the application is active.

Application switching is described in more detail in defisile D2.2 [19].

Compilation to low-level formats

From any GF grammar it is possible to create grammars in ddraralisms, e.g., context-free gram-
mars. The possible context-free output formats includended&rammar Specification Language (GSL),
JavaSpeech Grammar Format (JSGF), and the W3C Speech Rieco@nammar Specification (SRGS).
This means that the same GF grammar can be used both for ggeegdhnition and for parsing the recog-
nized utterance. This is described in more detail in dedioky D1.1 [16].

Another possibility is to create a corpus of utterances feo@F grammar, which then can be used for
training an SLM, which also can be used in speech recognitidhis is described in more detail in
deliverable D1.3 [30].

Structure of this section

The rest of this section contains short descriptions of tiaengnars for our example applications. First
a non-@DIS application is presented. Then there is a descriptioneottdmmon grammar library for
writing grammars for @D1S applications. Finally there are descriptions of the gramsifor four GDIS
applications: @TGoDIS, AGENDATALK, DJ-GoDIS, and ®DIS-DELUX.

2.2.1 Grammars for GOTTIS

This section briefly describes a multimodal and multiling@& grammar that has been developed for the
GOT Tram Information System (GOTTIS). GOTTIS was one of thet fxample systems developed in
the TALK Project, and is described in more detail in delideaD1.2a [5].

GOTTIS is not a ®DI1S application, and thus has a very limited dialogue managér.still include a
description in this chapter, as an example of a “baselinstesy with respect to dialogue handling capa-
bilities. The system has been rewritten into al@S application called GTGoDIS, which is described
later in section 2.2.3.

Multimodal input

User input is done with integrated speech and pointing nibelal The user may use speech only, or
speech combined with pointing gestures on the map. Poiggéstures are expected when the user makes

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 14/121

a query containing “here” (though “here” might also be uséithout gestures, see below). The supported
pointing gestures are clicks on stops, and drawings arowed af stops.

A pointing gesture is represented as a list of stops thateélstuge refers to. For a click, this is normally
a list containing a single bus/tram stop, but some stops ttigltlose enough that a click could refer to
more than one stop. The set might also be empty if the clickneaslose to any stop. For map drawings,
the list of stops contains the set of stops in the area dravithemap.

In the concrete syntax, the pointing data is appended togthech input to give the parser a single string
to parse. These are some examples using the English cosgree:

e “i want to go from brunnsparken to vasaplatsen;”
¢ “i want to go from vasaplatsen to here; [Chalmers]’

¢ “i want to go from here to here; [Chalmers] [Saltholmen]”

Indexicality

To refer to her current location, the user can use “here” auitta pointing gesture, or omit either origin
or destination. The system is assumed to know where the siserdted. Examples in English concrete
syntax:

e “i want to go from here to centralstationen;”
¢ “i want to go to valand;”

¢ “i want to come from brunnsparken;”

Ambiguity

Some strings may be parsed in more than one way. Since “hexg’bm used with or without a gesture,
input with two occurrences of “here” and only one gesturanbigiuous:

¢ “l want to go from here to here; [Valand]”

A query might also be ambiguous even if it can be parsed urgmbsly, since one click can correspond
to multiple stops:

e “I want go go from Chalmers to here; [Klareberg, Tagene]”

The current application fails to produce any output for agnbus queries. A real system should handle
this through dialogue management.

Multimodal output

The system’s answers to the user’s queries are presentegpeech and drawings on the map. This is an
example of parallel multimodality as the speech and the maywidgs are independent.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 15/121

The information presented in the two modalities is howeadridentical as the spoken output only con-
tains information about when to change trams/buses. Theaugqut shows the entire path, including
intermediate stops.

Parallel multimodality is from the system’s point of viewsjua form of multilinguality. The abstract
syntax representation of the system’s answers has oneatersyntax for the drawing modality, and one
for each natural language. The only difference between &teral language syntaxes and the drawing
one is that the latter is a formal language rather than aalatne.

Multilinguality

Currently, speech input and output in English and Swedistimplemented. The dialogue system itself
accepts input in either language, but speech recognizersftan only handle a single language at a time.

System output is linearized using the same language as¢eelsmput was in.
Adding support for a new language requires writing concsgtagaxes for the user and system grammars.

2.2.2 Grammars common to all @DIS applications

We have created a unified GF grammar library covering all ooDG applications — @TGoDIS,
AGENDATALK, DJ-GoDIS, and ®@DIS-DELUX. Much work has been spent on the design of the li-
brary, making it simple to write a grammar for a new domainea tanguage, or a new modality.

The reason why the GOT Tram Information System (GOTTIS) tamzduded in the library is that GOT-
TIS is not based on the@1S dialogue manager.

The grammar library is split into two main parts — systemnattees and user utterances. The dialogue
system has many different ways of talking about issues,igatsb, actions, feedback, etc. e.g., a predi-
cate can be mentioned in a wh-question, y/n-question, aneana report, or several different feedback
moves. Thus the grammar for system utterances must be a gramith a wide linguistic coverage,
which produces grammatically correct utterances for diffié dialogue moves.

This would be useful for the user grammar too, if it hadn’tioéar speech recognition. The main focus

of the user grammar is to restrict the number of utteranceslipthe ones that are really used, to be able
to improve speech recognition. Also, in some applicatiomdms there are commonly used utterances
that are not grammatically correct sentences, but shoutddmgnized anyway. Thus the user and system
grammars are quite different in their design, but there &Hetlsings that can be shared between the
grammars.

System utterances

An utterance in @DIS consists of a sequence of dialogue moves. For the systenmgna each dialogue
move is a separate utterance, which is mostly realized astarsee, but other forms are possible, e.g.,
noun phrases.

Entities in GODIS such as actions, predicates, propositions, and questbrsave their counterpart in
the grammar. For each way of building an entity, such as imgjld proposition from a predicate and an
individual, or building a y/n-question from a propositidhere is one or several corresponding grammar
rules. e.g., there is a rule for applying a predicate to aiviegial (forming a proposition), and there is a
rule for turning a proposition into a y/n-question.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 16/121

Many GoDIS entities can be used in several different ways by the di@@ystem. e.g., an action can
be uttered as a request (“play a song”), as a y/n-questiany(6d want to play a song?”), as a report (“I
am playing a song”), or in feedback and grounding moves (‘yant to play a song, is that correct?”).
In some languages all these different phrases can haveetiffecalizations, which means that it is not
possible to store the action as a pure string. Instead we oskef the GF Resource Grammar Library to
define the realizations for eachoB1S entity.

Here is a small list of the main @S entities, and the corresponding grammatical categaridsei GF
Resource Grammar Library:

Dialogue movesare realized as sentential phrases (which can consist ¢érsms, questions, noun
phrases, etc.)

Actions are realized as verb phrases
Propositions are realized as declarative clauses including all tenses
Questions are realized as question clauses including all tenses

Short answers are realized as noun phrases

How to form a realization of a dialogue move from e.g., anarctiepends on many variables — things
such as politeness level (e.g., should we use the polite”“gothe second person “you” in German or
Swedish), which exact words to use (e.g., should we use “It wanor “I would like to”), and how
informative we want to be (e.g., should we say “what” or “I'@rigy, | didn't hear what you said”), play a
role and are often different for different languages. Tfareethe specific grammar rules can be fine-tuned
for different languages.

The fact that the common system grammars are specializethdor different languages also has the
effect that application-specific details can be made varguage-independent. Thus, it is often simple to
implement the application grammar as a language-indep¢gammar.

Multimodal system utterances

We have extended the system grammar to automatically gendtarances in a tailor-made GUI descrip-

tion language. Different kinds of dialogue moves are realias different GUI elements. As an example,
an alternative question is realized as a menu of choices,eab@ wh-question is realized as a text entry
box.

The multimodal grammar reuses the previously describedlarite grammar for producing the text inside
buttons, menus and labels. This means that multimodalreystéput comes for free when designing a

new application grammar, in all languages for the applicatiomain.

User utterances

The common grammar for user utterances has a simpler steudhere are only four kinds of user utter-
ances — questions, actions, answers and short answerse ©@th#ér hand, each utterance can correspond
to several dialogue moves in sequence. A user utterancelsaeantain partial answers to some of the
follow-up questions. An example is the utterance “turn amliledroom light”, which is categorized as a

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 17/121

user request, but which also gives partial information alachich light to turn on. One part of the utter-
ance (“turn on the ... light”) corresponds to ®@BIS request move, while another part (“the bedroom”)
corresponds to a @D1S short answer.

The application grammar then has to list the possible userances, and connect them to a sequence of
dialogue moves. In many cases the system grammar can be siseiesource for specifying either the
dialogue moves or the utterances.

It is not necessary to specify the user grammar as a langandgpendent grammar. However, by doing
this it becomes very simple to add a new language for the @gmin domain. The only thing that has to
be done is to translate an application-specific lexiconctvini our example domains consists of not more
than 30-50 lexicon entries.

Multimodal user utterances

Multimodality is added to user utterances by adding a nevstitnient to the linearization categories of
guestions, actions, answers and short answers. The netitgensholds the pointing gestures and clicks
the user makes during the input phase.

Several useful operations are defined for making it possibdpecify that some utterances (e.g., “play this
song”) should have an associated click, while other uttarie.g., “play a song”) should not be uttered
in association with a click.

2.2.3 Grammars for GoTGoDIS
Implemented languages

All grammars for the @TGoDIS domain are written as language-independent grammarggevihe
utterances are specified using syntax trees from the GF Res@rammar Library. For the language-
specific lexicon entries there is a lexicon grammar with a2éuentries.

The GoTGoDIS domain is implemented in 7 different languages, of whioh @tinnish) is not an Indo-
European language. The time it takes to implement a new &gegior this application is less than one
day, for a fluent-speaking person who is a fairly competeng@mmar writer.

Tram stops and tram lines

The stops and lines of the trams, busses and ferries of thee@mirg public transport system, are stored
as a multilingual grammar resource which is used by bothyktem and the user grammar.

Each line and stop has a corresponding grammar rule, whilieiarized in different ways in different
languages. Especially for stops this can be very languagerilent — some places can have natural
translations, whereas others should be kept (e.g., pr@ees).

The system grammar

There are only three predicates and two actions@T GoDIS. Of the predicates one can be asked for by
the user (“what is the shortest route?”) and two by the sygtedmere do you want to go to?” and “where
do you want to go from?”). The actions are general actionsdstarting the system, and requesting help.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 18/121

When the system answers the question about the shortest ibamswers with a list of lines and depar-
ture/destination stops. The system utters this list as mmpaically correct sentence, while simultane-
ously drawing the route on the map.

The user grammar

The user grammar consists of different ways the user haseoifgjng departure and destination stops, by
clicking or speaking.

The grammar recognizes simple departures and destinasank as “from Chalmers” or “to Klippan”,
but also combinations of these, such as “from Chalmers topél”. Clicks in the map, and combinations
of clicks and utterances, are also recognized by the sammngama e.g., “from Chalmers to here” together
with clicking in the map is a valid utterance.

Furthermore, the grammar recognizes underspecified nttesai.e., uttering only a location (“Chalmers”),
and combinations of underspecified locations and depétestnations, such as “Klippan from Chalmers”.
As before, clicks and combinations of clicks and utterapassrecognized by the grammar, e.g., “Klippan
from here” together with clicking in the map.

There are several alternative ways of saying the same thisth, by combining clicks and utterances in
different ways, and by saying things like “| want to go to Kiam” or “to Klippan, please”.

2.2.4 Grammars for AGENDATALK

The goal for the AENDATALK GF grammars was to generate a corpus for SLM creation foruisar
ances without standing in the way for more extensive usearfuture. Thus the grammar is based on
the common @D1S resource grammar, making use of the unimodal structuckgemeral functions. As
focus is on the creation of an SLM, there is no extensive GEesygrammar for in use @ENDATALK .
System output is instead handled by alBS Prolog resource.

Implemented languages

The foundation of the AENDATALK grammar is a minimal language independent structure bsiiftgu
the resource grammar. It is then implemented in two langsidgeglish and Swedish.

The Booking resource

The Booking resource is a domain specific collection of itémas are used in order to compile theAN-
DATALK specific concept of a booking. It contains the classes Tinagge Bnd Event.

Event consists of actual events suchmsetingor lunch
Time consists of time related items like four, nine o’clock in the morning

Date consists of date related information includibgcember fifteenttMonday the sixth

A booking, in other words, is a composition of one or more afsth classes, for example the following
which is made up of an Event, a Time and a Déieeeting at four on the fifth of December”

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 19/121

In the future, other classes such as Location and Persod beuhcorporated, allowing for bookings such
as the following, which makes use of Event, Person, Locafdate and Time?lunch with Peter at Plaza
tomorrow at noon’

The user grammar

As opposed to the other grammars presented here, HENBATALK grammar is not used for parsing at
runtime and the goal is to focus on coverage. The user uttesaare written to be as extensive as possible
to form a large enough corpus for SLM generation. The gramasarwhole covers ten short answers and
their combinations, five predicates and six actions and thifferent combinations with answers. In its
current state, disregarding negations, this means adite 4 million utterances for the English corpus
and just under 2 million for the Swedish.

Because of the structure of thesANDATALK system as a whole the user utterances are considered uni-
modal. As the common resource library is adapted to allownfattimodal grammar building it is nec-
essary to explicitly call a function which marks the differenodalities of a certain type of utterance. In
the case of SENDATALK they are all to be considered unimodal, and has been markaathdy using

the noClick function supplied by the resource library. Segecexample below where we show a simple
delete request without any embedded answers to be recdgmyzéoD1S.

delete =
noClick (variants{ reql delete variants;
reqVP agenda_delete;
reqlx delete_variants
(optStr(a_booking_variants ++ from_agenda))});

This code shows the function "delete” which defines the diffié ways the user can prompt the system to
initiate the delete plan without also supplying answers.nmfntioned before we have defined the delete
function as unimodal using the noClick function. The uttees are then linearized in several different
variants. Apart from agenddelete, which is defined using thesENDATALK lexicon, we have a list of
possible synonyms to initiate the delete action, deletevariants The deletevariants is a list of verbs
such agemoveor erase They are all specified with additional functions: reql,\Bgand reglx which
are functions from the common grammar resource’s systegpemntient framework. This adds, among
other things, to the utterance structure including théahit would like to” and the closingplease”.

These can then be followed by things that have no semantigafisance to the systerfisomething”, "a
booking”, "to the agenda”or "to my calendar” for instance. These differ from the structural additions
inherited from the resource library in the sense that theyagplication specific.

The resulting user utterances in English for a simple deletemand then include:

"delete”
“remove an event please"
"I would like to delete something from my agenda"

Diverting from the structure Earlier we presented the general structure of the resousrergar.
Among other things we defined adB1S question as question clauses. In theeADATALK User gram-
mar there are severald®1S questions that are not at all posed as questions by the leseexample

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 20/121

"show me the schedulg'which is an ask(Xschedule(X)). These are easily added to the user grammar
without running into problems with the underlying struetur

Pronoun resolution The AGENDATALK system has a solution for pronoun resolution. The user has
the possibility of implicitly referring to the object in digssion. If, for example, it has been established
that user and system are talking about a meeting the usemoply prompt the system téadd it” and it

will be interpreted as "add meeting”. This type of resolatie easily handled in the GF grammar.

An interesting side-effect of this grants us the possipttitiet the user say things like "put it back”, which
will indicate the booking that was just manipulated.

2.2.5 Grammars for DJ-GoDIS
Implemented languages

The grammars for the DJ-@D1S mp3 domain have a language-independent backbone impiedngsing
the GF Resource Grammar Library. Two languages are thereimgited as extensions of the obtained
syntax trees, Swedish and English. This is done by usinggaubage-specific lexicon of roughly 40 words.

Musical resources

The musical resource for the mp3 domain consists of two parts for artists and one for songs. The
songs are defined as Song and the artists as Artist. So “Luakyis a Song and “Madonna” is an Artist.
Song and Artist are then used when defining the functionsdrsyistem and user grammars. Both songs
and artists are linearized using the GF Resource Grammaarlib NP type in order to easily fit them
into the concrete syntax.

System utterances

The system grammar consists of 15 predicates, three shawieas and 16 actions. Four of the predicates
are for grounding issues when the user has clicked in the DD4S GUI. The other predicates deal with
guestions about adding, deleting and playing songs arstsarkurthermore there are predicates for what
the current song is and which songs or artists are available.

Short answers can be a song, an artist or a song and an a&bbg", “Waterloo” and “Waterloo by Abba”
are all possible short answers.

Of the actions two are the generabB1S actions for returning to the top menu and giving the useqg.hel
Then there are two actions representing the next level inrtieu structure; controlling playback and
managing the playlist. Controlling playback can be donelayipg, pausing, fast forwarding/rewinding
or controlling the volume (which in turn can be done by lowgror raising the volume). Managing the
playlist can be done by adding or deleting an item or cle&simgfling the playlist.

User utterances

The user side of the grammars has predicates for asking atailsble songs and artists and the name of
the song currently being played. There are also two presidar when the user clicks in the DJoBGIS
GUI.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 21/121

There are three ways of giving non-spoken input in the usamngrar: The first alternative is by clicking
the DJ-Q®DIS GUI, the second alternative is to click the generic DynGhd the third alternative is to
write in DynGUI’s text field which corresponds to giving sgokinput through the TTS agent.

Combining the two modalities gives three possible modaligfigurations:
e Speech only: “| want to play a song by madonna”
e Graphics only: “click(answer(artigb_play(madonna)))”

e Speech and graphics: “Can you play this artist ; click(améwvgst to_play(madonna)))”

User utterances for multiple applications

Since the DJ-GDIS mp3 application is used together with the@ S-DELUX application the user
utterances are split into two grammars, a global gramm#edc®dP3Global and a local called MP3User.
MP3User is an extension of MP3Global.

The division used for the MP3 user grammars is done by réstgithe help and top questions to MP3User
together with the predicates for available artists and sofiis means that the currently active application
has to be the MP3 player in order to ask for help or get an answehat songs there are by Madonna.
Also, all short answers are declared in the local grammaesiney need the context of the mp3 domain
to be meaningful.

MP3Global has all functions that can be accessed while aiyglications are in focus. That means that
the global grammar holds all other actions together withghestion for finding out the name of the
current song. Furthermore MP3Global is where the click~gmedicates for playing or deleting a song in
the playlist and playing or adding a song in the media liby be found.

MP3Delux is then obtained by combining the MP3User grammiéir the DeluxGlobal grammar. For
English all that is needed are the following two lines:

--# -path=..../DeLux:../Common:prelude:alltenses
concrete MP3DeluxEng of MP3Delux = MP3UserEng, DeluxGloba [Eng ** {}

The resulting grammar covers all possible user actionst singwers and predicates for the mp3 domain
and all predicates and actions (except the requests foofhenenu and help) for the @1S-DELUX
domain.

2.2.6 Grammars for GODIS-DEL UX
Implemented languages

All grammars for the @DIS-DELUX domain are written as language-independent grammarsgvtther
utterances are specified using syntax trees from the GF Res@rammar Library. For the language-
specific lexicon entries there is a lexicon grammar with a2@uentries.

This domain is implemented in 2 different languages, Swedlsl English. Since the language-dependent
parts of the grammars are about the same size as®i€&36GDIS grammar in section 2.2.3, the time it will
take to implement a new language for this application shbeldess than one day, for a fluent-speaking
person who is a fairly competent GF grammar writer.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 22/121

Lamps and rooms

The rooms and lamps in thed®1S-DELUX domain are stored as a multilingual grammar resource which
is used by both the system and the user grammar.

The rooms grammar contains the different rooms in the examplse, e.g., “the bedroom” and “the
kitchen” The are even two grammars for lamps — one with umasified, general types of lamps which
the user can say, e.g., “the floor lamp” and “the ceiling lamphere is also a grammar containing the
specific lamps in the example house, e.g., “the bedroom féoop? and “the kitchen ceiling lamp”.

Each room and lamp has a corresponding grammar rule, whigtearized in different ways in different
languages.

The system grammar

There are five actions and four predicates. Of the actioresja general action for returning to the top
menu. The other four actions are about turning on and off damdning and undimming, lights. The four

predicates are used when the user asks which lamps are, an/ibfh specific lamp is on/off.

There are also a couple of auxiliary predicates which aré f@erequesting information about which

lamp a given action is supposed to act on.

The user grammar

The user grammar consists of different ways the user hathafreequesting things to be done with lamps,
or asking about the state of lamps. This can be done eithgrdaksng, or by modifying the lamps directly
(i.e., turning on/off physically).

The grammar recognizes action requests, both simple (&g, on the light”) and combined with ad-
ditional information (e.g., “turn on the floor lamp in the dlien”). There are only minor differences in
how the four modification actions are uttered (e.qg., “turinan“turn off”), and therefore we have unified
all four actions into one single grammar rule taking an eangument specifying the action to use. The
grammar also permits the user to specify simple quantifinatiamely to mentioall lamps orall rooms

in an action request.

The user can ask questions about the state of lamps, i.eh\wamps that are on/off, or if a specific lamp
is on/off. This can be done as a simple utterance (e.g., lwaimps are on”), or combined with additional
information (e.g., “which lamps are on in the kitchen”). &rthere is only a minor difference between
asking whether a lamp is on or off, the on/off questions haenltombined into one single grammar rule.
Furthermore, the grammar recognizes underspecified ntiesa i.e., uttering only a room (“the bed-
room”).

User input for multiple applications

The GoDIS-DELUX domain is intended to be used together with other applisati®ome of the domain-
specific user utterances are only supposed to be recogntruitive ®@D1S-DEL UX application is active,
e.g., short answers consisting of only a room or a lamp shwatlthe recognized when another application
is active.

This is solved by splitting the user grammar into two gransnane global and one local grammar, as
described in more detail for the DJa&B®1S application in section 2.2.5. The global grammar contaihs

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 23/121

utterances which should be recognized whichever appicasi active. The local grammar extends the
global utterances with e.g., short answers. Finally ther Wwrapper grammar which imports the local
GoDIS-DELuUx grammar and the global grammars from the other applicatiand this becomes the
multiple-application @D1S-DELUX grammatr.

2.3 GoDIS applications demonstrating multimodality and mul-
tilinguality

2.3.1 Introduction

This section describes theddTis and GoDIS in-home applications demonstrating multimodality and
multilinguality. We also provide examples of runningpB1S with multiple domains. While all applica-
tions are useful in an in-home environment, several of theuldvalso be useful in other environments.
For each application, we describe a scenario, the appitaifrastructure, the research issues addressed,
application functionality, multimodal and multilinguaspects of the application, and the application re-
source implementation. We also provide transcripts of giarmteractions.

2.3.2 GOTTIS

GoTTIS is a multimodal demonstration system for finding the shonteate through the Gothenburg
public transit system. GTTIS is not a GDIS application, but its purpose is to clearly demonstrate the
grammar-based approach to multimodalityo1Gis forms the basis for GTGoDIS and is described in
more detail in deliverable D1.2a [5].

Scenario

For example, a user might be at Brunnsparken, and wants to tioch is the shortest route to Lind-
holmen. She tells the system that she wants to go from Bramkap to Lindholmen. She can give this
information to the system using speech only, or a combinatibspeech and clicks on the map. The
system responds with the route she should take. The routevsson the map and spoken by the system.
Infrastructure

GoTTIs uses the Embedded GF Agent, NuanceWrapper and the Map Agsmgrammars used by the
Embedded GF Agent are produced by the GF system.

Research issues addressed

This system is the main demonstrator for the grammar-bapptbach to multimodality described in
D1.2a.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 24/121

Functionality

GorTis can find and present the shortest route through a publicittrzetsvork, given information about
the origin and destination stops, and a database desctiiéngetwork. The system has a concept of a
fixed current location, which is assumed to be the locatidgh®fiser when indexical expressions are used.

Multilinguality

The system supports English and Swedish input and outpus. iFlachieved by having multilingual GF
grammars for user and system utterances. Nuance GSL granamgagenerated automatically from the
user grammars.

Multimodality

User input is done with integrated speech and pointing nitbekal The user may use speech only, or
speech combined with pointing gestures on the map. Poigestures are expected when the user makes
a query containing “here” (though “here” might also be uséithout gestures, see below). The supported
pointing gestures are clicks on stops, and drawings arowsed af stops.

The system’s answers to the user’s queries are presentegpeech and drawings on the map. This is an
example of parallel multimodality as the speech and the mayidgs are independent. The information
presented in the two modalities is however not identicahasspoken output only contains information
about when to change trams/buses. The map output showstireegath, including intermediate stops.
The map is a generic OAA agent for displaying graphs withtims@d nodes and a background image.
Other agents can highlight paths in the graph and query tlpeageant for node selections made by the
user.

Implementation of application specific resources

The transit network information represents a subset of ta&hburg transit network. The shortest path
between two stops is calculated use Dijkstra’s shortest algiorithm. The database only includes stops
and time between stops, not departure and arrival times.

Dialogue examples

English The user says “i want to go from chalmers to here” and clickEimamnen.

The system produces the speech output “Take 6 from Chalmé&fssaplatsen. Take 2 from Vasaplatsen
to Brunnsparken. Take 5 from Brunnsparken to Frihamneralsth draws a path on the map, as shown in
figure 2.2 on page 25.

Swedish The user says “jag vill aka fran chalmers hit” and clicksFaihamnen.

The system produces the speech output “Ta 6 fran Chalme¥asiaplatsen. Ta 2 fran Vasaplatsen till
Brunnsparken. Ta 5 fran Brunnsparken till Frihamnen.” € Bnglish translation for this example corre-
sponds to the English example given just above). The maslaskn the previous example.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK

D1.6 May 11, 2007 Page 25/121

K bl
.{";l._@smansuﬁr-:laq
| S .
{_ wEjkopsgarden
'Z_'..-L.ifl:lm-\\men
= wlndby strand

.;'.---I-:rjksberg

(" wijsentung

[

gl l'_. ‘]-gbergi‘.ﬂrg-'—.'.
{ siippan I

il s friaplan

I qsqlﬁnaplan
{ -r’?;ngmen -
] -l_:a-'l.)

|:f. e53)holmen

,.-.l.at'j"ll'vf-}&l
= {eHagakwkan

/ (ebdanska — —_

@M grklandsgatan
&l Bah(siroms torg
{ sFrilunda torg

(" @Tynnerad

L:-.Q;Njgared !r.-;’.-j'tedala f:_-.-l'!érj sjon

['. dél-:cngnme
- —
{ wHinnebacksgatan |
. — [sSamlestadsiorget
[wHglmar Erantingsplatsen P s
X) (_mOjtra sjukhusst

.--l-{_-‘:ﬁ:'}rlallda

= .'.. ﬁgdL‘i'ﬁ'r_u-s_pl:L:ien
[“milyrdsian a

iha Bommen e [mOlskrokstorpet
gt i 4 .-Cglntrals'.ahnnen = | X
pRnsparken ([»Tarp

{ekdrralundsgatan

(-

f\wamu ["-'-fa_-kl Sigfrids plan

Sy itaniatsan |

F—- {BF<,
l'L-I- Bravagen

X l"..-;’fhinsqa:an
(wOlivedalsgatan 1
1 wlinépiatsen

L {-wadhigrenska

' aGdrgardsskolan (el Alleback
) {wWgwninsioys plats
(" wClldhaden

::'_:l;prﬁlals en

Figure 2.2: The map showing the path from Chalmers to Frileamn

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 26/121

2.3.3 GOTGoDIS

GoTGoDIS (Gothenburg Tram GD1S application) is a multimodal, multilingual route plangisystem

for the Goteborg tram/bus network for public transpoaiati Using speech and map clicks the user can
supply a departure and a destination stop and the systeneenaith a description of the shortest route
to take between the two stopsoGGoDIS is based on the GOTTIS system described in D1.2a [5], which
does not use the @S dialogue manager, .

Scenario

In an in-home setting, the @ GoDIS application can be used to quickly get tram route inforomati
using multimodal interaction. However, for a slightly maneciting scenario (requiring some additional
functionality compared to the current prototypave can imagine the application being available in a
public place. This is also a setting where multilingualgyektremely useful.

(12) The application is located in the Gothenburg bus termindhwi touch screen interface. An
English tourist wants to find the best way to travel with ptibinsportation from the terminal
to his hotel. The screen reads “Hej, Vad kan jaiyag for dig?” (Eng. “Hello, What can | do
for you?”

U: [user presses a button to select English as language]

S: What can | do for you?

U: | need to go to Quality Hotel 11

System assumes that the departure stop is the bus terminal
S: Okay. What time do you want to leave?

U: As soon as possible

S: Take Bus 17 at 13.21 from Centralstationen to Nordstaam thke Bus 16 from Nordstan
to Eriksberg.

S: Would you like to download this information to your mobjleone?
Being new in town the user feels it is a good idea

U: Yes

Graphically indicates that downloading has begun

S: Download finished

A route planning application, enabling interaction in, ,sd§ or 15 different languages, could be very
useful for helping people, in their own native language,@bagound using the local public transportation
network.

Infrastructure

The application uses thed® 1S dialogue manager and the Trindikit4 dialogue system toatid consists
of a collective of OAA agents organized as in figure 2.3. That@idler agent, DME agent, and the

5Specifically, adding timetable information and the abifity the user to download relevant information to her
mobile phone.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 27/121

MMD, ASR, and TTS agents areRINDIKIT agents, which communicate using the Trindikit4 OAA API
described in deliverable D1.2a [5].

e The controller agent coordinates the different modulesageahts by executing a set of serial control
algorithms in parallel.

e The timeout agent is used by the controller to determine whemser’s turn is over.

e The DME agent holds the total information state (TIS) andcthre dialogue management modules,
update and select, as well as interpretation and genenaibolules.

e The actual interpretation and generation is done by the @Rtaghich is called over OAA by the
interpretation and generation modules.

e The DynGUI input/output module agent is used to dynamiaahder graphical menus which can
be used for graphical input.

e The ASR module agent continuously listens for input andesrthe recognized result to TIS.

e The TTS module agent reads output from TIS and synthesizsspeech, when called from the
controller.

e The Map agent graphically draws the route description omthp and also offers a possibility for
the user to provide graphical input by clicking on the trard bas stops displayed on it.

e The Graph agent is used to compute the shortest route to ¢édkedn two stops.

Research issues addressed

The GoTGoDIS application addresses the following research issues:

Multilinguality and Rapid Application Localisation Using GF resource grammarsp&GoDIS
has been localised to 6 languages in addition to English:d&lveGerman, Spanish, French, Italian, and
Finnish® As mentioned in Section 2.2.3, localisation of theTB50oDIS prototype application to a new
language takes about a day for a fluent speaker of the languamis also a fairly competent GF grammar
writer. Related work is reported in D1.1 [16].

IBDM and Rapid application prototyping The GoTGoDIS application is implemented using a

single dialogue plan. Nevertheless, because of the doimd@pendent theory of Issue-Based Dialogue
Management (IBDM) implemented in thed®1S DME (see also D5.1.2 [3], D2.2 [19]), a wide range of
advanced dialogue management features are available apfhieation.

Integrated approach to multilinguality and multimodality By deploying multimodal (and mul-
tilingual) GF grammars, GTGoDIS demonstrates the integrated approach to multimodaliynaunlti-
linguality described in Section 2.2 as well as in D1.2b [1ad ©£1.5 [14].

8For some of these languages, ASR and TTS are not readilyablgiinstead, text input and output facilities are
provided.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 28/121

Controller

DynGui agent
4 ‘ input ’ output’ Timeout
TTS Y agent
\/ DME agent
[update] ‘ select ’ [interpret ’ generate] GE
ASR module) \module) (module) (module Agent

Graph
Agent

Figure 2.3: ®TGOoODIS system as a collective of agents

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 29/121

Functionality

The only functionality of @TGODIS is to answer user questions about the shortest route betwee
stops. In the GOTTIS system, the user could do this by comg@ispeech and map clicks, e.g.:

e | want to go from brunnsparken to vasaplatsen
¢ | want to go from vasaplatsen to here [user clicks on brumhspd

¢ | want to go from here to here [user clicks on brunnsparkenvasdplatsen]

As mentioned above, GOTTIS has no real dialogue managechwasults in problems when interacting
with GOTTIS using speech. For example:

e It requires that users supply all necessary informationsimgle utterance (in this case the issue to
be solved, a destination stop and a departure stop).

e It requires that an utterance has exactly one interpretatid@mbiguous user utterances cannot
be handled. For example, the system cannot ask for clarificiftfaced with an utterance like
“chalmers, find the route” - does the user mean from chalnets chalmers?

¢ It cannot deal adequately with ASR errors. The user utteramast be correctly interpreted the first
time.

With GOoTGoDIS we take advantage of the domain independent dialogue ey that @D1S sup-
plies. In Section 2.3.3 we look at example interactions @thT GoDIS to show how dialogue manage-
ment has increased both the usability and robustness oppilieation.

Multilinguality

GOTGoDIS now supports interaction in seven languages; EnglishdBWeFinnish, German, Spanish,
French and Italian. GF grammars are used for both parsingyaneration.The GF grammars foio®-
GoDIS are described in Section 2.2.3.

Multimodality

The available user input modalities are speech, DynGUI pudaiiion and map clicks. Speech and GUI
interaction may be combined in a single utterance. The systgtput modalities are speech and map
drawings.

System output about a route is presented by both spokentolpaGUI output and by drawings on the
map. The map is a a schematic map of the public transportagbmork in Gothenburg. The OAA Map
agent is described in D5.1.2 [3] and is basically the sambesrte used in the GOTTIS application
Figure 2.4 shows a screen-shot of the map with drawing icistms indicating the shortest route between
Olivedalsgatan and Torp.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 30/121

(sLAnsmansgdrden

{ dergdortedala («Bergsjin
5 s
{wBiskopsgarden

(ol
(«Skogome (&)
(sHinnebdcksgatan (aF

fstra sjukhuset

_.-

=i .J—‘l“arlanda

,ﬁed‘h'ergsplatzen
urds;aﬂ 3

_emralstaﬁdﬁé rokstorget

\" . "
Calllevi (alSarralunclsga

(«Riosenlund

ataﬂ £
LPilbAgsgatan

|gbergsmrget ; v
B wedalsgat

=02 = ;
ptamhé’gm&ﬁ ska .S‘nrgardbskulan altalleback

-*E‘El ﬁﬁ‘ﬁﬁ%ﬂ' celavrinskys plat:‘ql

.Nungssten 'Axeﬂrfml‘% Ff?glan “«Guldheden

(Saltholmen <Tynnered (4Broplatsen

(il‘ﬂilippan"'

Figure 2.4: Output map drawings after the user input “l warggd from here [clicks on olivedals-
gatan] to Torp”.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 31/121

Implementation of resources

Domain resource In GoTGoDIS, there are only two dialogue plans which govern dialogueage-
ment; thetop plan (which prompts the user with an open question, e.g.,a¥¢an | do for you?”) and
the ?x.shortest path(x) plan’
The plan for dealing with the issi®x.shortest path(x) is shown below:
ISSUE: ?x.shortest path(x)

findout(?x.dept_stop(x))

findout(?x.dest stop(x))
PLAN: | dev_query(graph,?x.shortest path_expl(x))

dev_query(graph,?x.shortest path(x))

dev_do(map,DrawRoute)

The twofindout plan constructs first in the plan are used to get requiredrmdtion about a departure
stop and destination stop. The device qudgy_query(graph, ?x.shortest path_expl(x)) then queries the
graph device for the shortest route between the specifiedrdep and destination stop. The returned
representation of the route consists of a list of legs ondheviing format:

leg(Line, Dept_stop, Dest stop, Weight)
The representation returned from the Graph agent mightlikekhis:

[leg(’s’, 'torp’, ’'harlanda’, '3.0"), leg(’5’, 'harlanda ,
'redbergsplatsen’, '2.0"),leg(’5’, 'redbergsplatsen’,

‘olskrokstorget’, '2.0"),leg(’5’, ’olskrokstorget’,

‘centralstationen’, '3.0)]

This explicit representation is needed for the Map agentdwdhe route on the map, but for the internal
representation in GDIS we can omit legs which do not require changing to a diffebemh line. This
motivates the second device quelgv_query(graph, ?x.shortest path(x)) which transforms an explicit
route description like the one above into the following:

lleg(’5’, 'torp’, 'centralstationen’)]

The last actiortdev_do(map, 'DrawRoute’) calls the map agent responsible for displaying the routénen t
map.

The plan?x.shortest path(x) described above alone covers all functionality of the GCH @pplication.

It should be emphasized that this single plan is sufficiepréwide the system with the advance®Bi S
dialogue management described in Section 2.1.1. Exampldssowill be shown in the interactions
described in Section 2.3.3.

’Strictly speaking, theop plan is superfluous in this simple prototype applicationwideer, it has been included
for compatibility with other ®DIS applications, and to enable easy extension of applicatipabilities.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 32/121

Device resources The device resource of & GoDIS consists of a graph device and a map device.
The graph device is used to retrieve the shortest route ketiveo stops. It can execute 2 queries:

e ?x.shortestpath_expl(x)

e 7?x.shortestpath(x)

The first query is performed as an OAA solvable sent to a Grggimta The query is executed by the
perform_query method shown below:

perform_query(X'shortest_path_expl(X), shortest_path _expl(Shortest_path)) :-
dev_get(dept_stop, Dept _stop),

dev_get(dest_stop, Dest_stop),

tkit_oaa:solve(shortest_path(Dept_stop, Dest stop, Sh ortest_path)).

The second query transforms the explicit route descriptoned in the systems private beliefs to a more
usable representation and stores it in its private beli€fe perform_query method associated with this
query is shown below:

perform_query(X'shortest_path(X), shortest_path(Path _term)) -
dev_get(shortest path_expl, Shortest path_expl),
create_godis_repr(Shortest_path_expl, Path_term).

The map device is responsible for drawing the route desenign the map. It can execute a single action,
DrawRoute, resulting in an OAA solvable being sent to the Map agent.

Dialogue examples

In this section we present sample interactions with tle¥ GoDIS application which show examples of
how the inherited dialogue management @fl@S has made the application both robust and flexible.

Example interaction 1 The purpose of this interaction is to show that interactjpmssible in GOTTIS
are also still possible in BTGODIS. The user specifies all required information in one utigzan

(13) S: What can | do for you
U: I want to go from Angered to here [clicks on biskopsgarden]

S: One takes tram number 8 from angered to gamlestadstarget,number 7 from gam-
lestadstorget to centralstationen, bus number 60 fronralstdtionen to brunnsparken and
then tram number 2 from brunnsparken to biskopsgarden.

the route is drawn on the map

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 33/121

Example interaction 2 This interaction shows accommodation of an unraised issejeafture stop),
negative perception feedback from the user, and belieSimvi The user first specifies chalmers as the
departure stop but then later changes his mind and says Hranrmsparken”.

(14) S: What can | do for you?
U: | want to go from here [clicks on chalmers]
: Okay. Let us see. Which stop would you like to go to?
: pardon
: Okay. Let us see. Which stop would you like to go to?
: from brunnsparken
: Okay. So, which stop would you like to go to?
: angered

S: One takes bus number 60 from brunnsparken to centratstati tram number 7 from cen-
tralstationen to gamlestadstorget and then tram numbemn8 glamlestadstorget to angered.

the route is drawn on the map

cCcCwnwcCcwmwcCcow

Example interaction 3 This interaction shows accommodation, grounding, anddaekl The sys-
tem, given the answealeparture_stop(biskopsgarden)accommodates the dependent issugxafhortest-
_route(x). The numbel.6 behind the utterance "from biskopsgarden” specifies a lmggeition score
and as a result of this the system provides interrogativabfaek (on the “contextual understanding” level).
Also we see how the system rejects the propositieat stop(solrosgatan)as this is not a valid stop in
the domain.

(15) : What can | do for you?

: from biskopsgarden [0.6]

. Alright. You want to know what the shortest route is.

yes

: Let's see. You want to go from biskopsgarden, is that cti*re
:yes

: Okay. Which stop do you want to go to?

: to solrosgatan

: You want to go to solrosgatan. Sorry, solrosgatan notid s&p. So, Which stop do you
want to go to?

U: [clicks on bergsjon]
S: One takes tram number 2 from biskopsgarden to brunngpdske number 60 from brunns-
parken to centralstationen and then tram number 7 fromalstdtionen to bergsjon.

the route is drawn on the map

WCWwWCwWCwcon

Example interaction 4 This fourth example interaction first shows how the userdveis from En-
glish to Swedish and then how the system handles the amliguterance "chalmers” by asking the user
a clarification question of whether he wants to go from chatnoeto chalmers ("Vill du aka fran chalmers
eller vill du aka till chalmers?”).

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 34/121

(16) S:What can | do for you?
U:[clicks on a button for Swedish language]
U: chalmers
S: Chalmers. Jag forstar inte riktigt. Visst. Du vill vetad som ar den kortaste rutten.

S: Eng. Chalmers. Sorry, | don't quite understand. Alright.u¥eant to know what is the
shortest route.

Jja

- Eng. yes

: Fa se. Vill du aka fran chalmers eller vill du aka titladmers?

:Eng. Let's see. Do you want to go from chalmers or do you wagottm chalmers?

: fran chalmers

: Eng. from chalmers

: Okej. Vilken hallplats vill du aka till?

: Eng. Okay. Which stop do you want to go to?

: torp

- Eng. torp

: Man tar sparvagn nummer 6 fran chalmers till vasaphatsparvagn nummer 3 fran vas-
aplatsen till valand, sparvagn nummer 4 fran valand dgitkagen och sedan sparvagn nummer
5 fran korsvagen till torp.

S: Eng. You take tram number 6 from chalmers to vasaplatsem tramber 3 from vas-
aplatsen to valand, tram number 4 from valand to korsvages then tram number 5 from
korsvagen to torp. the route is drawn on the map

nwncCccCcuuwmcCccwmwwmc-c

2.3.4 AGENDATALK

AGENDATALK is a multimodal and multilingual dialogue application bulith the GoDIS dialogue
manager and the RINDIKIT toolkit as a spoken interface to a freely available schedudmagement
software called the BORG Calendar. The user can askNDATALK about items noted in the calendar
e.g., “What time is the meeting?” as well as instruct theeysto take down notes e.g., “Add a meeting
the 6th of October at 17”. The calendar can also be accessadgththe graphical interface like in a
standard desktop calendar application in the in-home emrient.

Scenario

AGENDATALK works as a voice interface to a graphical calendar in theoménenvironment. The user
can access her calendar through spoken dialogue and hasdtibility to follow the updates made in
the calendar on the screen. Imagine the following scenahierevwe find our user relaxing on the sofa
listening to some music:

@ The mp3 player DJGoDIS is playing some music. The phone rings
Usr> Pause the music

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 35/121

User takes the call. A friend is calling to see if they can ggether at the end of March when
she’s in town. User tells her friend to wait a minute and tUAGENDATALK oOn.

Usr> What do | have the 13th of March?

The calendar interface jumps to March and highlights thekiogs that day. User turns back
to her friend on the phone and confirms an appointment. Fasighe call and turns back to
the agenda.

Usr> Add dinner that day at seven pm.

Sys> OK. Dinner the 13th of March at seven pm?

UsRrR> Exactly.

Sys> Scheduled.

The booking turns up highlighted on the screen

Usr> What time is the dinner tonight?

Sys> At nine pm.

System goes back to the current month and highlights thedirte dinner event. User takes
a glance at her watch, takes a seat in the sofa and addressésDi$

UsRr> Turn on the music again

Music goes on again

A talking calendar is not only useful in the in-home envir@mhbut could be a preferred choice of in-
teraction with your calendar in the in-car environment omdsrface to the calendar on a mobile device.
However, the behaviour of theGENDATALK system would need to be adapted to the different environ-
ments dependent on how much possibility the user has tanfalie graphical output.

Infrastructure

AGENDATALK has been built with the latestd®1S version and RINDIKIT4. It uses Nuance for ASR
and Vocalizer and Realspeak for TTS. It uses a Nuance wragest and some extra OAA agents for text
output and input for the text version.

Figure 2.5 shows the @ENDATALK architecture. The database resource is a MySQL calendaipaizd
connecting ASENDATALK with the graphical calendar application BORG by sharingdhme calendar
information. A wrapper for the BORG Calendar, the BORG Agdias been built to be able to commu-
nicate directly with the graphical interface to enable mudidal output. The AENDATALK system also
uses some additional@®1S modules to handle multimodal fission. These are describe@tail in [9]
and are therefore not included in the architecture hereaemdnly briefly mentioned below.

Research issues addressed

AGENDATALK makes use of the latest enhancements of to® (& system (e.g., dialogue move confi-
dence) and the new asynchronousINDIKIT4 which enables barge-in both via speech and via graphical
input. It uses SLMs generated from GF grammars accordingeartethodology in Task 1.3 and makes
use of the @DIS option of switching language on the fly. WP3 research onimattal fission and con-
tent reduction has been integrated intGENDATALK to make it possible to distribute the output over
modalities in a more sophisticated way. A simple implemigoeof reference resolution has been added

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 36/121

BORG calendar

TTS

N ——

)
Cow)
I ———

/ AgendaTalk DME agent

Controller
agent

update ‘ select’ ‘ interpret ’ generate’
module (module] | module || module
Y) TIS |
DB | RIVs 1 MIVs 3
server 1.) ’ L& ‘

S — sQL
ey
Calendar
DB /
N~

Figure 2.5: The SENDATALK Architecture

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 37/121

to make it possible to refer to previous mentioned bookidgSENDATALK makes use of aRINDIKIT-
specific logging format to log dialogue context to collectedfor future dialogue system research. All
this is enabled by an extended information state that hoifdsrnation used for multimodal fission and
reference resolution and that keeps track of the dialogsteryi for more complete logs.

Functionality

A graphical interface for a calendar may seem superior asitenface mode compared with a speech
interface in the in-home environment. In the special situadf the in-car environment or on a mobile
device the advantages are clearer. However, we would lik@ittt out that there are scenarios where the
spoken dialogue can be superior to the graphical one andovacyical e.g., when searching for bookings
not shown on the screen (i.e., the current month/week) wihereiser would have to go through every
month while AGENDATALK could give you the answer directly. In the same wayefADATALK could
give you the information if you are booked or not a certairedeithout having to step through the calendar
until that date. Apart from this, there are many situationthe in-home environment where speech is a
better interaction choice than keyboard input and mouskiolij. Importantly, the availability of both a
spoken and a graphical interface gives the user the adwemntddpoth modalities.

The AGENDATALK application supports the following functionality which kes it possible for the user
to both change her schedule, check her bookings or navigatgraphical calendar:

e Add a booking

¢ Reschedule a booking (date and/or time)
e Delete a booking

e Delete a whole day’s bookings

e Ask for the time of a booking

o Ask if booked a certain time or date

e Ask about bookings a certain date

e Ask for today’s date

e Ask for the date of a booking

e Ask for bookings on a certain part of the day
e (o to a specific date in the calendar

e (o to a specific month in the calendar

e Change language of the dialogue and the Calendar

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 38/121

Multilinguality

AGENDATALK works in Swedish and English and the user can switch betwesse ton the fly whenever
she wants, by giving a switch language command. The systdhthen switch grammars, language
models, ASR, TTS and change the language of the BORG CaleHdarever, the calendar information
will be kept as it is. After a language switch the system wilhtinue in the same state of the dialogue.
This is possible due to the modularity ofo®1S which keeps all dialogue management parts language
independent. The only language dependent parts are thed gcammars and language models for ASR.

For Swedish, AENDATALK uses an SLM generated from thesBNDATALK GF grammar using the
methodology in Task 1.3 and for interpretation we are usiRgahog Lexicon. Nuance is used for speech
recognition and Realspeak is used for Swedish TTS. For EmghGENDATALK uses an SLM generated
from the English version of the ZENDATALK grammar and for interpretation a Prolog Lexicon. Nuance
and Vocalizer are used for ASR and TTS. The language swittieafalendar is done by sending an OAA
solvable to the BORG Agent.

AGENDATALK would probably normally be used by the same user in one slaglguage. The switch-
ing has mainly been implemented to show the modularity ofGld® 1S system. However, for bilingual
speakers it is very easy to imagine bilingual scenarios agche following one where a bilingualckN-
DATALK would be useful:

(18) User, native English speaker, is talking with a Swedisheagjue
UsRr> Ska vi traffas nasta gang kl 15 pa man
Eng. Can we meet next time on Monday at 157
Colleague-Okej
Eng. OK
Usr> (to the system) Lagg till ett mote kl 15 pa mandag 13 nadvem
Eng. Add a meeting at 15 on Monday 13th of november
Sys> bokat
Eng. Scheduled
Colleague gets up to go
UsrR> Hejda
Eng. Bye
Colleague- Hejda
Eng. Bye
UsR> (to the system) Byt till Engelska
Eng. Switch to English
Calendar screen changes to English
Sys> What do you want to do?
UsRr> Change the yoga session on Monday to Tuesday
Sys> Tuesday at 15?
UsRr> Correct
Sys> Rescheduled

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 39/121

Multimodality

AGENDATALK can be run in three different modes: graphics-only (i.dngithe standalone BORG Cal-
endar), multimodal mode, and speech-only mode. The multihmode consists in the user choosing to
give input via voice and being able to see the changes intirmalmade in the calendar on a screen. The
system will keep the user informed of its actions both witeexgh and through the graphical interface.
The user also has the possibility of giving graphical inputhie form of clicking on days in the calendar
to inform the system of which date is considered. This candmedn a separate turn or combined with
speech in an integrated multimodal turn. The third mode ésclise when no screen is available or in
the case the user has less possibility to follow updates @sdleen e.g., while cooking (or in the in-car
environment). In this case the system would give all necgsaformation via speech.

Research on content reduction and multimodal fission [9]de&s integrated into @ENDATALK which
makes it possible to distribute different parts of a systeessage over different modalities, in this case
the graphical calendar and the spoken output. This meah&&m=NDATALK can decide how and where
to present the informative part of a message, i.e., the fangthe backgrounded part, the ground. Each
modality can either realise both the focus and the grourst,the ground, just the focus or nothing at
all. In this way, AGENDATALK generates multimodal contributions that help the user tmkwhat to
focus on in her schedule. The graphical output is made bylighgng or flashing calendar information in
different colours to produce focus and ground. The speefgubtealises focus by using SSML emphasis
tags for the TTS.

The graphical calendar system chosen to be used WitENDATALK is the calendar system BORG
(http://borg-calendar.sourceforge.net/) which is annepeurce calendar application written in Java. To
enable multimodal fission we have developed an OAA wrappethi® BORG system to be able to con-
trol the graphical interface in a better way (see D3.3) ¢oghighlight some information in the calendar.
AGENDATALK is also connected with the BORG system by altering the saneQlydatabase and in that
way share the same information. Th&e BNDATALK application interacts with the database via the SQL
Prolog API agent described in D5.1.2 [3]. Whenever anytlgnghanged in the databaseGANDATALK

will tell the BORG Agent via OAA to update the graphical irfeare.

In addition, an OAA wrapper processing iCal files, the iCakAf has been developed not to close doors
for other calendar applications to be connected WiBEADATALK (see D5.1.2 [3]).

Implementation of application specific resources and modas

AGENDATALK has four resources apart from the lexicon/grammar ressurBeENDATALK’S domain
resource holds the domain knowledge with the domain plasisdinects the dialogue. Apart from this,
AGENDATALK holds calendar knowledge gathered in a separate resounesdeéVice resource manages
the communication with the database resource and the BORBtAGGENDATALK also has some ad-
ditional GoDIS modules to be able to handle multimodal fission. This sectitl describe all these
application specific resources and modules.

Calendar Resource The calendar knowledge holds all knowledge about dates raciddies deictic
information and information about inconsistent dates. ileg the number of a month or day e.g., that
March is month number three of the year. The calendar res@lso helps AENDATALK to know which
dates are valid and which are not. e.g., that February hasag® sbme years, that April just has 30
days and thereby that the 31st of April is not a valid date héf iser gives a date that is not valid, the

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 40/121

system will point this out and ask for the date once again.rifpam this, the calendar resource supplies
AGENDATALK with information about what date an expression such as “Rexrtay” refers to. It also
holds information about times and gives back disambigutiteds e.g., that 4.00 pm means 16.00 in a
24-hour notation.

Domain Resource In AGENDATALK we have the following 15 domain plans to direct the dialogue:

e top

alter_calendar

e getinfo

e add event

e deleteevent

e deletecurrent_event
o deleteall_events
e changeevent

e changelanguage
e goto

e usage

e ?x.time(x)

o ?x.date(x)

e ?x.bookings)

e 7?x.todaysdatef)

As can be seen, we have two different types of plans: theractiented ones (where the user requests an
action to be performed), and the issue-oriented ones (wheraser asks a question) which are the last
four ones.

We will start by specifying the plans dealing with actionsietop plan is loaded at start-up and looks as
follows:

ISSUE: top
forgetall
| raise(?x.action(x))
PLAN: (
findout(?action(alter_calendar),)
?action(getinfo)

This plan has as its only action to find out what action the wserts to perform or what issue
she wants to raise. This action is realised as the questidrat\do you want to do?”. In BEN-
DATALK, the choices would be either to alter the calendar or to getrimation of a specific event

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 41/121

noted in the calendar. This would correspond to the morafspphbrase “Do you want to change
something in the calendar or check your bookings?” whichbwalgenerated if the user does not
answer the more generic question above. The dialogue widya return to this top plan when
other actions/plans have been finished and the system wilaaething like “Returning to top”.
Theforget_all action is used to call an update rule that clears the infaomatate which includes
deleting e.g., all propositions in private beliefs and alltoally agreed propositions in shared
commitments to prepare itself for new actions or issues.

The following two plans in the list deal with the two diffettelmigh-level options i.e., alter the
calendar or get some information in a more specific way. Itiger requests to alter her calendar,
the system will ask what kind of action she wants to perforntheffollowing: add a booking,
delete a booking, reschedule a booking or navigate the datenterface by jumping to a month
or date. However, if the user is not a novice she would prgbgbldirectly from the topmost
plan to the specific plan she wants by raising the correcbaaig., adding a booking. These
plans exist to guide novice users stepwise.

A more advanced plan in@eENDATALK is the plan corresponding to tiaeld_eventaction.
ACTION : addevent

findout(?x.event.to_store(x))

findout(?x.date(x))

findout(?x.start_time_to_store(x))

findout(?x.am_or_pm(x))

dev_query(agenda,?booked

if booked

then | findout(?doublebook

else [findout(?take_down_even

PLAN: | if takedown event
dev_do(agenda,AddEvent)
then | report(AddEvent,done)
forgetall
[if doublebook
dev_do(agenda,AddEvent)
then | report(AddEvent,done)
forgetall
report(AddEvent,failed(doublebook))
i | forgetall
POSTCOND: done(AddEvent))|| status(AddEvent,failed())

This plan consists dindout plan constructs to get the required information from the,usebe
able to add a booking in the calendar database. The systeaia teeBnd out the event, the date,
the time and to disambiguate what day-half the time cornedpdo (i.e. AM or PM) to be able
to note down an event in the calendar. Tineout plan constructs correspond &8k moves in
the lexicon which are then translated to natural languageiti the following example:

else

else

findout(X"event_to_store(X))

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 42/121

output_form(ask(X"event_to_store(X)),['What kind of ev ent are we talking about?').

When all the information has been gathered (either by the preeiding the information step-
wise or in one single turn) the next action is to check with ¢claéendar whether the user is
booked or not at the agreed time slot before adding it to thendar. This is done by query-
ing the database with th#ev_query(agenda,booked) action. If the user already has a booking
at the agreed time slot (i.e. the conditibooked is fulfilled) the system should make the user
aware of the possible double booking and verify if the usalyavants to doublebook. Oth-
erwise, if the time slot is available, the system needs todumdif the user wants to take down
the information understood (i.e., the event, the date,ithe)tusing the simple findout construct
findout(take_down_event)which corresponds to a yes/no question. If that is the chedet_do
action communicates to the agenda device resource to pedonAddEvent action i.e., add the
booking to the calendar database. If it succeeds, the udldseninformed that the information
has been taken down. In the case the user is informed of abp@skiuble booking the user
has the option of adding the booking anyway. Otherwise, yistesn will not alter the calendar.
Finally, a postcondition is added to the plan. The postdommdchecks when the action (i.e., the
plan) AddEvent has been completed successfully (i.e. introduced in trendal database). The
GoDIS update rulexecdev_do adds to the private belief in the information state that amoac
has been done after it has been performed. This is what iketiegith the postcondition to
assure that the action has actually been performed. Foollog/ing plans we will exclude the
postcondition descriptions as they work in a very similaywad is not of particular interest.

Thedelete eventplan is the plan for deleting a booking from the calendar. &able to do this
we minimally need to find out the booking and the date of thekbrap If the user specifies a
time it should only look for bookings at that time (in the c#isere exist various similar bookings
the same date). Thieind construct in the plan binds information that the user maypbup
but are not required to and will therefore not trigger any duidactions. This is the case of
time specification. This implies that the system will nevek &r the time of a booking to
be able to perform a delete action but in the case the usetissippis information it will be
used in the search of the event to delete. The last part oflmehwlds the actual delete action
dev_do(agenda,DeleteEvent) which calls the device resource to perform a deletion of amev

ACTION : deleteevent
findout(?x.event.to_store(x))

findout(?x.date(X))
PLAN: | bind(?x.start_time_to_store(x))

bind(?x.am_or_pm(X))

dev_do(agenda,DeleteEvent)
POSTCOND: done(DeleteEvent)| done(DeleteEvent,failed()
The delete current_event plan makes it possible to delete all the information theeyshas
gathered about an event during a dialogue in case it doemuatide at all with what the user
wanted to take down. Thaelete all_eventsplan enables the functionality to delete all bookings
a specific date. This means that the user can perform actimisas “delete all bookings on
Monday”. The only required information to be able to do tlsisiidate.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 43/121

The changeevent plan handles rescheduling of bookings either by changiegtithe of an
event or moving a booking from one day to another. This is & wessted plan due to all the
possibilities in rescheduling. To be able to perform a cleasiga booking the system minimally
needs to know what booking should be rescheduled and whattdatbooked at the moment.
Apart from this, the system needs to find out what kind of cleathg user wants to perform i.e.,
rescheduling the time, the date or both. If the user givescargs in her request of what type of
change it is the system should use these clues to direct éhegdie correctly. For example, if
the user says “change the meeting on Friday to Monday” thesyshould draw the conclusion
that this is a change of date as the user is giving a new datetamtje the date of the booking.
However if the user says “reschedule the meeting on Fridag’system needs to find out what
changes the user wants to perform and find out the necesdargnation e.g., a new date or a
new time. The user also has the possibility of changing Haothdate and the time of a booking
which will result in two different device actiorGhangeTime andChangeDate.

The goto plan makes it possible to navigate the graphical calendguimping forward and
backward between months or go to a specific date or month ioaleadar. If the user requests
the system to go to a specific date the device actomoDate will be activated. In the case the
user wants to go to another month theToMonth action will apply. Otherwise, if the user does
not specify date nor month (e.g., by saying just “jump in takendar”) the system will ask for a
date and apply the GoToDate action when the date has beefiegppey the user.

Thechangelanguageplan enables the language switch explained in the sectiomutilingual-
ity. This plan will get activated on user initiative with neests such as “Change the language”.
To be able to perform a language switch the system minimaéds to find out what language
to switch to. This corresponds to the constriiladout(?x.languagef)). Thechangelanguage
construct on the plan will trigger an update rule which cremtheLANGUAGE variable in the
information state. This will then trigger a change of langgieesources such as grammars, ASR,
and TTS. Thelev_do(agenda,ChangeLanguage) construct forces the device resource to execute
the changelanguagecommand which sends an OAA solvable to the BorgAgent request
change of language in the graphical interface.
ACTION : changelanguage

findout(?x.languagek))
PLAN: | changelanguage

dev_do(agenda,ChangelLanguage)
POSTCOND: done(changelanguage)|| done(ChangeLanguage,failed))
The usageplan comes into action if the user asks for help explainirgubkage of the AEN-
DATALK application.

The last four plans on the list above correspond to user ggi@bout scheduled events. These
are the issue-oriented plans. The first one simply finds al#ys date by querying the device
resource. The next plan treats queries about the time of larogpo

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 44/121

ISSUE: ?Xx.time(X)
[findout(?x.event.to_store(x))

bind(?x.date(x))

if date()

then | dev_query(agenda,?time(_))

dev_query(agenda,?date())

L dev_query(agenda,?time(_))

It minimally needs the type of booking and the date of the lrgko query the device resource
for the time set for the booking. The date information is opél by using a bind construct. This
means that if the user provides this information it will bedigo look for the time of an event
the specified day. In the other case, the system will firstygties device (i.e. the calendar)
about the date of the user-specified event and then seartheftime. The time search is done
by querying the device with thdev_query(agenda,?time()) command. How a device query
works is described in the device resource section.

In the case the user wants to find out the date of a booking stersyminimally needs to know
what type of eventitis. In the case the user supplies additioformation such as the time of the
event the device query will search with these conditionss behaviour is captured iPx.date(x)
plan. The last plan in the ligx.bookings) takes care of user queries of what is scheduled a
certain date or time. It minimally needs the date but if therwsipplies additional information
such as a specific time or a part of the day (e.g., in the afternthe system will restrict its
search with these parameters. Again a query is sent to theedesource which makes use of
the database resource to convert the query into SQL andstharcalendar database shared with
the BORG Application.

Apart from these plans we have added commands to the degimerce that performs the device
actions and queries appearing in the plans by interactitigtive calendar database and the Borg
Agent as described in the following section.

PLAN:

else

Device Resource The device resource is the interface to the database resimtiecacting with
the SQL Prolog API Agent (see D5.1.2 [3]) and also the intafto the BORG Agent. In
this resource, the (non-communicative) actions and gsi¢hiat the device will perform have
been defined, with associated arguments. In addition, anetdr executing the device actions
has been added. The device resource can execute 16 diféatons performed as database
commands or OAA solvables sent to the BorgAgent.

actionAddEvent

actionDeleteEvent

actionDeleteAllEvents

actionChangeTime

actionChangeDate

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 45/121

actionGoToDate

e actionGoToMonth

e actionChangelLanguage
e actionStartCalendar

e actionColorEvent

e actionColorDay

e actionColorTime

e actionFlashEvent

e actionFlashDay

e actionFlashTime

e actionSetToDefault

In addition, it can execute 7 queries to the database or teadar resource.

e query?.xtime(x)

query?xbookings)

guery? xtodaysdatef)

query? xdate(x)

query? xdatetime(x)

gueryconsistentdate

e querybooked

The device commands and queries are controlled partly fhaptan but also from the gener-
ation module to control the graphical interface for multohabfission. The plans in the domain
resource correspond here, in the device resource, to go@ahacFor example, thBeleteEvent
plan in AGENDATALK's domain knowledge corresponds to the goal acbeleteEvent defined
with its corresponding parameters as follows:

action('DeleteEvent’,[event_to_store, date]).

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 46/121

In the device resource, the values of the device parametkizevget by taking the values of the
shared commitment propositions in the information stateARED/COMMITMENT, and interpret
them pragmatically. This is in order to handle dates in a nspexific way such as converting
the piece of informatiodate with the value 'today’ into today’s date (e.date(2006,12,25)).
This is done using the calendar resource mentioned earlier.

The next step is to get the device to perform the current @aig., to delete an event, by first
getting all the values of the parameters needed to deletokirigpin the calendar database.
The information is then sent to the database agent.pEnfierm _commandfor the DeleteEvent
action realises the command and calls the database dgeitaseagendato alter the calendar
database and sends OAA solvables to the BORG calendar tteuppa@agraphical interface.

In a similar way the device resource performs the actidaslEvent, DeleteAllEvents, Change-
Time and ChangeDate by interacting with the database resource. The actiGdoDate, Go-
ToMonth, ChangelLanguage and StartCalendar do not alter the database but are performed by
sending OAA solvables to the BORG Agent which will then realthe corresponding action.
Theperform _commandfor the ChangeLanguage action exemplifies this:

perform_command('ChangeLanguage’):-
|

dev_get(language,Lang),
lang2borglang(Lang,BorgLang),
tkit_oaa:solve(change_language(BorgLang)).

We can see that theaANGUAGE variable needed will be picked up from the information state
with the dev_get method and converted into the format BORG has for languagsad the
lang2borglang predicate) and thereafter the OAA solvablange_language will be sent using
TRINDIKIT OAA facilities. The Borg Agent will then force the BORG Cattar to switch GUI
language.

The other remaining actions on the list (e.g., ColorTime)tae ones controlling the colouring of
the graphical calendar interface used for multimodal fissidhese also interact with the BORG
Calendar via OAA as described in [8].

In the case of querying the schedule in the calendar datab@sdevice resourcewill take

a query and construct a command with the type of search andatinesponding parameters
needed to call thdatabaseagent. However, for some general queries we will calldhlendar
knowledgeresource. The seven queries enumerated above correspowerifying if a date

is consistent using the calendar knowledge resource, tsagrthe calendar database for what
bookings are scheduled a certain date or time, searchirgptiadase for the time scheduled for
an event, searching the database for the date of a bookidmdiout if the user is booked to be
able to inform of scheduling conflicts and finally querying ttalendar knowledge resource of
today’s date. An example of how such a query is performedhigndase querying the database
for the time of a booking) can be found below:

perform_query(time(Time),time(Time)):-
!1

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 47/121

dev_get(event_to_store, E),

dev_get(date, D),

date2dbdate(D,DBDate),

database_agenda:selectDB(_Table,time,set([text=E,ap pt_date>>DBDate]),
appt_date=[DateTime|Rest]),

(DateTime == empty, Time = empty

dbdate2datetime(Date Time,Date, Time)).

The query is performed by getting the type of booking and tite ¢and converting the date to
the specific calendar database format usingddie2dbdate predicate) and thereafter call the
databaseresource (i.e., the SQL Prolog API) with teelectDBcommand to convert the query
into a SQL SELECT command. Finally, tidatabaseresource will call the MySQL database to
get the time for the booking at the given date. Again, a cagigarfrom the obtained database
date and time format is carried out to get @@ S time proposition (using thdbdate2datetime
predicate). In the case the system does not find any evenetldb& given date, the system will
inform of the absence of this data.

Database Resource The database used is a MySQL database holding the calerloianation
that appears in the Graphical Interface. The database caltdoed either directly by using the
graphical interface BORG (e.g., delete an event by selgdtiand deleting it) or by using the
dialogue system and managing the calendar via voice. Ceargeing from either source will
be reflected in the other mode.

We have developed a simple SQL interface written in Prologdionect AGENDATALK with
the MySQL calendar database. This interface is used to leetaldlter or query the graphical
calendar application’s database table. The SQL interfakestProlog lists and constructs SQL
commands from these, calls the MySQL database and finallgtaaris an appropriate answer
in return.

The interface offers five basic functionalities:
e search for answers to queries
e add items to the database

delete items from the database

count number of items having certain values

update values of items in the database

The database agent is described in more detail in D5.1.25&keProlog API) [3].

Information structure Module and Multimodal Fission Modul e In order to enable a flexible
system behaviour with regard to content reduction and madtbaation, two new modules have
been added to AENDATALK : an Information Structure module and aMultimodal Fission

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 48/121

module. Thdnformation Structure module operates on the output given by Sedectmodule,
that is, on the next moves, and their contents, to be genkbgtéhe system. Thiformation
Structure module determines the information structure of these maveents, dividing the
pieces of content into focus (the “new”, informative pasd,explained above) and ground (the
backgrounded, already known part, as also explained above)

The Multimodal Fission module operates on the information structure-determiredents
given by the Information Structure module. Based on a nurobewntextual factors, this Fission
module determines whether a content reduced contribugitmbe realised, that is, whether just
the focus or both focus and ground are to be realised. It asermines media allocation, that
is, which parts of the contribution are to be realised in thcdality.

The Generation module has also been modified to handle information stracteieces of con-
tent marked as focus and to be realised using speech, arenapped to an SSML tag giving
emphasis (see example (19) below).

These three modules are described in detail in [9].

Dialogue examples

The following illustrative example dialogues from intetiaos with AGENDATALK shows the
multimodal and multilingual behaviour and some functiayadf the application.

Example interaction 1 The following dialogue shows the multimodal fission behaviof
AGENDATALK and some simple reference resolution.

(29) Usr> i want to add a dinner next Friday at seven pm
Sys> Do you want to take down: dinner Friday the 1st of Decembegat 1
Usr> Correct
Sys> Scheduled
Booking appears on screen highlighted
Sys> What do you want to do?
UsRrR> What time is the dinner next Friday?
Sys> The dinner is akemphasis- 19 </emphasis

The content word with the time of the dinner is blinking on sheeen, the dinner
event is highlighted and the TTS puts emphasis on the timg GSML

Usr> Am i booked at seven pm next Friday?
Sys> You have a<emphasis- dinner</emphasis- that time.

The content word with the event is blinking on the screentjtieis highlighted and
the TTS puts emphasis on the event using SSML

Sys> What do you want to do?
Usr> Change the time of it to eight pm

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 49/121

The system changes the time of the last considered boo&inthe dinner the 1st of
December

Sys> Rescheduled

Example interaction 2 This example dialogue shows both topic and language switBlGsEN-
DATALK as well as how multimodal input can be intertwined in thealiale.

(20)

Srs> What do you want to do?
Usr> i want to add a booking
Sys> What kind of booking?
UsR> a meeting
Sys> OK. What date?
UsR> [clicks on a date (Dec 10)]
Sys> What time is the meeting?
UsrR> am i booked at ten am?
Sys> you have no bookings at that time
Sys> So. What time is the meeting?
UsRr> Switch to Swedish
System switches language and switches the language ofléredea interface
Sys> OK. Vilken tid ar motet?
Eng. OK. What time is the meeting?
Usr> Klockan 9 pa morgonen
Eng. At9 am
Sys> Vill du lagga till: mote den tionde december klockan 9?
Eng. Do you want to add: meeting the tenth of december at 9 am?
Usr> jajamen
Eng. yes
Sys> Scheduled
Usr> Byt sprak till engelska
Eng. Change language to English
System switches language and switches the language oflémeleainterface
Sys> OK. What do you want to do?
Usr> Delete the meeting [clicks on the 10th of December]

The system deletes the meeting the specified day by the mtickdisappears from
the calendar screen

Sys> Deletion done

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 50/121

235 DJ-GoDIS

The DJ-QDIS application is a multilingual multimodal interface to arPBl player, where
the user can use a combination of spoken natural languagpanting gestures to create and
manipulate a playlist, play songs from the playlist, cohtlee volume and query the music
database in different ways.

Two MP3 player systems have been developed in TALK, DOPES being one andAMMIE
[1] the other. The motivation for having two systems is tHayt explore different research
issues,SAMMIE the in-car domain and multimodal output strategies, amdhgrdssues, and
DJ-GoDIS notably the in-home domain, the integration of multimagiaind multilinguality,
and multimodal menu-based dialogue.

Scenario
In the following scenario, the user wants to listen to somsimu

(21) UsrR> Play Massive Attack
Sys> OK. What song do you mean?
Usr> What songs do | have?
Sys> Angel, Sly and Teardrop.
Sys> Returning to playing a song, which song do you want to play?
UsRr> Teardrop
Music starts playing
Usr> Add Sly to the playlist too
Sys> Okay. | have added a song to the playlist.

Infrastructure

The application uses thed®1S dialogue manager and th& NDIK T4 dialogue system toolkit
and consists of a collective of OAA agents organized as indi@u6. The Controller agent, DME
agent and the MMD, ASR and TTS agents are Trindikit agents&ciwbommunicate using the
TRINDIKIT4 OAA API described in TALK deliverable D5.1.2 [3].

e The controller agent coordinates the different modules agehts by executing a set of
serial control algorithms in parallel.

e The timeout agent is used by the controller to determine vihemiser’s turn is over.

e The DME agent holds the total information state (TI1S) anddbre dialogue management
modules, update and select, as well as interpretation amergon modules.

e The actual interpretation and generation is done by the &atagvhich is called over
OAA by the interpretation and generation modules.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 51/121

e The DynGUI input/output module agent is used to dynamicadlyder graphical menus
which can be used for graphical input.

e The ASR module agent continuously listens for input andesrthe recognized result to
TIS.

e The TTS module agent reads output from TIS and synthesizssspeech, when called
from the controller.

e The MP3 GUI agent displays a graphical representation afaedola songs and the current
playlist as two lists, and offers the possibility for the use make graphical input by
clicking on the list items. It also eavesdrops on the commasaht to the MP3 player
agent and updates its playlist representation whenevdewearde MP3 player solvable is
called.

e The MP3 player agent plays music files.

Controller
agent

DynGui

/ DME agent \

update | | select interpret || generate GF
ASR module| |module] | module || module Agent

Timeout
agent

/

TIS
RIVS || MIVs |

MP3

IS |
_see
|
E=ma
A

Figure 2.6: DJ-®DIS system as a collective of agents

Research issues addressed

DJ-GoDIS addresses the following TALK research issues:

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 52/121

Integrated approach to multilinguality and multimodality = By deploying multimodal (and
multilingual) GF grammars, DJ-@DIS demonstrates the integrated approach to multimodality
and multilinguality described in Section 2.2 as well as inZi[15] and D1.5 [14].

Multimodal menu-based dialogue DJ-GoDIS demonstrates the MMD approach to multi-
modal dialogue management, as described in Section 2.d.R21 [18].

Dynamic reconfiguration DJ-GoDIS demonstrates implicit application switching and offline
plug-and-play, as described in D2.2 [19]. The DMBS and ®DI1S-DELUX applications have
been implemented independently and no knowledge of the aff@ication is hard-coded into
grammars or resources. Nevertheless, they can be run amaoltsly with a seamless interface
presented to the user.

Asynchronous multimodal dialogue management DJ-GoDIS makes use of the asynchronous
capabilities of RINDIKIT4 as described in D5.1.2 [3] to enable multimodal barge-ohiaare-
mental interpretation.

Functionality

MP3 players are generally controlled via some sort of messed graphical interface. The DJ-
GoDIS system can be seen as a testbed for the concept of Multinvietal-based Dialogue
(MMD), where graphical as well as spoken output is generatpdrallel from the same abstract
representation, and spoken and graphical input can be oeehi, and parsed as, one utterance.
One of the ideas behind MMD is that the user can choose at ar@yduring the dialogue what
modality/ies to use. The generic DynGUI displays dynanyaaindered GUI components which
are used to perform graphical input. In DIBDBIS there is also a more traditional application-
specific graphical interface showing the songs in the megliarly and songs in the playlist.

The following functionality is supported by DJd@BR1S, and can be accessed using spoken input,
graphical input or a combination of the two:

e add a song to the playlist

e delete a song from the playlist
e clear the playlist

¢ shuffle the playlist

e play the current song

e stop playing

e play a specific song

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 53/121

e control volume

e ask about available songs and artists

Multilinguality

DJ-GoDIS can be used in English and Swedish. The GF grammars usedtéopretation
and generation are described in Section 2.2.5. For ASR ttersyuses English and Swedish
recognition grammars generated from the correspondinkicagipn GF user grammars. At any
time during the course of the dialogue the user can changeéaye.

Multimodality

In DJ-GoDIS graphical input can come from two sources. The user caereititk on dynam-
ically generated buttons in the DynGUI or click on songs e nJ-GoD1S GUI (see figure 2.7
for the MP3 GUI). In both cases the input method is the sangeagient in question appends the
string representation of he input to teUT_BUFFER TIS variable. Speech and GUI interaction
may also be combined in a single utterance.

The system output modalities are speech and graphicaloatpynGUI and in the DJ-GDIS
GUI.

MP3'GUI

Media Librany

Eeborn Eeton - Another World *|Madonna - Like A Prayer
Beborn Beton - Deeper Than The Usual Feeling | |[Massive Attack - Teardrop
Clash - London Calling Pixies - Debaser

Clash - Should | 5tay Or Should 1 Go
Covenant - Dead Stars

Covenant - Figurehead

Covenant - Leviathan

Covenant - Like Tears In Rain
Covenant - Stalker

Creeps - Oh | Like It

Cure - Friday Im In Love

Eagle Eye Cherry - Save Tonight
Enigma - Sadness

Europe - The Final Countdown -
kl‘.]arl:uilll:nl: - | Think Im Paranoid >

Figure 2.7: The DJ-GDIS MP3 GUI

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 54/121

Implementation of application specific resources

The application specific part of DJ@BIS consists of three RINDIKIT resources and the ap-
plication grammars described in section 2.2.5. The domasource contains the DJaBIS
plan library and the domain ontology. The database devieauree contains information about
the currently available songs. The player device resosrased to communicate with the actual
mp3 player, which is a separate OAA agent.

Domain Resource The DJ-@DIS plan library consists of dialogue plans corresponding to
the tasks listed in figure 2.8, which also describes the faki@al menu structure of the plan

library.
Hierarchically ordered tasks:

— Top level plan

— Playback control
— Play current song in playlist
— Play a specific song in playlist
— Stop

Fast forward

Rewind

Control volume

— Turn volume up

— Turn volume down

— Playlist manipulation
— Add song to playlist
— Clear playlist
— Delete song from playlist
— Shuffle playlist

Tasks outside menu structure:

— Next song

— Previous song

— Query what songs are available by a specific artist
— Query what artist made a specific song

— Basic help

Figure 2.8: DJ-@DIS dialogue plans

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 55/121

An advantage of the MMD approach as that the hierarchicarord of domain functionality

enables naive users to get an overview of the system cdjehilivhile GOD1S accommodation

enables expert users to address subtasks of the menu strdicactly. We show five of the plans
below, each one showing different aspects oS functionality.

The top level plan, which is executed at startup, looks devid:

ACTION : top
forgetall
PLAN: raise(?x.action(x))
' findout({ ?action(control_playback), })
?action(manageplaylist)

POSTCOND: false

First the system raises the question “What can | do for yolifig idea of starting with an open
guestion is to not force the user to navigate the menu steidtahe does not want to. However,
if the initial question is left unanswered by the user, thetem will ask the alternative question
“Do you want to control playback or manage the playlist”. §huestion is what makes the top
level plan act as the topmost node of the task hierarchy, emwe &s postconditiorfialse will
never be true, the top level plan will be reraised wheneweyRRIVATE/PLAN IS field becomes
empty.

Themanageplaylist plan is a typical example of a menu node plan. Its only purposeguide
the user through the menu hierarchy, listing the possilaiglisk manipulation actions in the form
of the alternative question: “Do you want to add a song to thglist, delete a song from the
playlist, clear the playlist or shuffle the playlist?”

ACTION : manageplaylist

?action(playlist.add),

?action(playlist.delete),

?action(playlist_clear),

?action(playlist shuffle)

POSTCOND: done(playlistadd) || done(playlistdelete)|| done(playlistclear) || done(playlist shuffle)

The four different alternative postconditionsmianageplaylist are those associated with the
actions listed as alternatives in the alternative quesiibie consequence is that when the system
has executed one of the subtasks, it has also executedktin@ge playlist task.

Theplay plan is an example of a simple action plan which communicattfsa device. When
executing the plan, ®lay’ command is sent to the player device.

ACTION : play

PLAN:[dev_do(player,Play)

POSTCOND: done('Play’)

Theplaylist_add plan is a more complex plan which involves communicatiomwibth devices.
First, the user is asked what song title and artist she waratdd to the playlist. Domain specific
inference rules will ensure that if the song title is knowng dhere is only one matching artist,
the system will not raise the artist issue. This also worka aorresponding way if the artist is
known.

After figuring out song and artist, the system queries theltege device for the path to the music
file in question. If the path is known, it sends tRdaylistAdd’ command to the player device,

PLAN: | findout(

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 56/121

which then puts the file last in the current playlist. If thetps not known, i.e., the file does not
exist, the system reports failure and clears informatiayuabong title and artist.

ACTION : playlistadd

[findout(?x.songto_add(x))
findout(?x.artist _to_add(x))

if artistto_add@)

then [dev_set(dbase artist,a)

if songto_addg)
then [dev_set(dbase,song,s)
PLAN: dev_query(dbase, ?x.path(x))
if path()
then [dev_do(player,PlaylistAdd)
| if artistto_add@)
if songto_adde)
else then report(playlist_add,failed(notexist(a, S)))
then | forget(artist_to_add(.))
i forget(song-to_add(.))
POSTCOND: done(’PlaylistAdd’) || status(playlist add,failed())

The ?x.available_song) plan is used for querying the application about which somgswsail-
able by a certain artist. If the artist is not known from thetext, the system will ask the user
what artist she wants to search for. When the answer to tis¢ igsgue is known, the system will
guery the music database device for all available songs éwaitist. The device will return a
resolving answer and the system will provide the answerd¢ater.

ISSUE: ?x.available_song)

findout(?y.artist _available_songg))
dev_queryAll(dbase, ?x.available song))

PLAN:

Player Device Resource The player device serves as the connection between the dghaais
and the actual MP3 player JLGuiAgent, described in delbvier®5.1.2 [3]. The device func-
tionality can be divided into a set of device queries, usedéting information from the device,
and a set of device actions, used for changing the state afaviee. The execution of device
gueries and actions can depend on the content ofsheRED/COM and PRIVATE/BEL fields,
which store the shared commitments and (system’s) privaltefb, respectively.

The player device queries are:

e ?x.usagek) — get general help

item_to_play_is_in_playlist — find out whether the song to play is already in the playlist

item_to_play_is_in_playlist — find out whether the song to delete is in the playlist

?x.index_to_play(x) — find out where in the playlist the song to play is

?x.index_to_deletef) — find out where in the playlist the song to delete is

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 57/121

o ?xplaylist_item(x) — given a path, find out song title and artist
The player device actions are:

e Play — starts playing the current playlist from its current piosit

e Pause — pauses playback

e Playltem — plays a specific song number in the playlist

e FF —fast forward

e Rew —rewind

e Next — plays next song

e Previous — plays previous song

e IncreaseVol — increases the volume

e DecreaseVol — decreases the volume

e PlaylistAdd — adds a song to the playlist

e PlaylistDelete — deletes a song from the playlist

e PlaylistClear — clears the playlist

e PlaylistShuffle — shuffles the playlist

Music Database Device Resource The music database device holds information about what
songs are available. Its only device action is the following

e ReadMusicDB — scans a pre-specified directory for MP3 files and adds posisining
their full path, artist name and song title to the database.

The device queries are:

e ?x.path(x) — find out the directory path of a song
e ?x.available_song) — find out whether a certain song is available, given an aréiste

e ?x.available_artist(x) — find out whether a certain artist is available, given a samge

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 58/121

Dialogue examples

Example interaction 1 The following example dialogue (22) shows how a naive user ca
navigate through the menu structure using speech only.

(22) Srs> Hello.
Sys> Let’'s see. What can | do for you?

Sys> Do you want to control playback or manage the playlisynGUI displays
two buttons, one with the text “control playback” and the etlwvith the text “manage
the playlist”)

UsRrR> manage the playlist

Sys> Okay. Let's see. Do you want to add a song to the playlisttdelesong from
the playlist, clear the playlist or shuffle the playlis(@ynGUI displays four buttons,
one for each alternative)

Usr> add a song to the playlist

Sys> Okay. Let’s see. Which song do you want to ad(@ynGUI displays the text
“Which song do you want to add?” and a text input field)

UsRr> london calling by the clash

Sys> Okay. | have added a song to the playligiThe song London Calling by the
Clash appears on the MP3 Gui playlist)

Example interaction 2 The next example (23) shows how the user can accomplish the sa
thing using graphical input.

(23) Svs> What can | do for you?
Sys> Do you want to handle the player or manage the playli@ynGUI displays
two buttons, one with the text “control playback” and the etlvith the text “manage
the playlist”)
Usr> (clicks on the“manage the playlist™-button)
Sys> Okay. Let’s see. Do you want to add a song to the playlisttd@eong from
the playlist, clear the playlist or shuffle the playlis(@ynGUI displays four buttons,
one for each alternative)
Usr> (User clicks on the*add a song to the playlist™-button)
Sys> Okay. Let's see. Which song do you want to ad{@ynGUI displays the text
“Which song do you want to add?” and a text input field)
Usr> (User clicks on the song “Clash - Should | Stay Or Should | Gothe MP3
GUI)
Sys> Okay. | have added a song to the playligiThe song London Calling by the
Clash appears on the MP3 Gui playlist)

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 59/121

Example interaction 3 The next example (24) shows an example of a multimodal user-ut
ance. It also shows an example 0dbBIS grounding. Since graphical input is assumed to be
perfectly recognized, the system will only ask a check-joesegarding the spoken part of the
utterance:

(24) Srs> Hello.
Usr> add this (low recognition scordklicks on “Ace Of Base - All That She
Wants” in the MP3 Gui)
Sys> Okay. You want to add a song to the playlistPDynGUI displays the text
“You want to add a song to the playlist?”, a “yes” button and ad” button)
Usr> (clicks on the DynGUI “yes” button)
Sys> Okay. | have added a song to the playliffThe song All That She Wants by
Ace Of Base appears on the MP3 Gui playlist)

Example interaction 4 The following two dialogues are examples of dialogue withtiple
applications (see section 2.1.2 and deliverable D2.2)]18} addition to DJ-@®DIS, the user
here interacts with the @D1S-DELUX application described in section 2.3.6.

Example dialogue (25) shows an example of a multidomainaritee involving two indepen-
dent tasks. Note that the tasks are specified in separateioesaurce files which have no
knowledge of each other. The two domains are glued togethardbombined GF grammar, as
described in section 2.2.5.

(25) UsR> clear the playlist and turn on the light in the kitchen
Sys> Okay. | have cleared the playlis(The MP3 Gui playlist is cleared)
Sys> Okay. | have turned on the light(The kitchen light is turned on)

Example interaction 5 In example dialogue (26) the user switches to theDES-DEL UX
application and engages in a dialogue about turning ondigidtead of answering a system
question. When the light has been turned on, the systensesréhie pending question of what
song to add. Instead of answering the question the user lasl®tinter-question “What songs
are available?”. Since the artist issue has already be@ftveesfor the Play-task, the system
infers that the user wants to know about Madonna songs andeasnishe question. Finally the
user selects one of the Madonna songs by clicking in the DynGU

(26) Usr> play madonna

Sys> Okay. Let's see. Which song do you want to pldip¥nGUI displays the text
“Which song do you want to play?” and a text input field)

UsRr> turn on the light in the living room

Sys> Okay. Let’s see. Which lamp do you mearn(®ynGUI displays the text
“Which lamp do you mean?” and a text input field)

UsR> the ceiling lamp

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 60/121

Sys> | have turned on the lighfrhe living room ceiling light is turned on)

Sys> So. Let’s see. Which song do you want to plaffynGUI displays the text
“Which song do you want to play?” and a text input field)

UsRr> which songs are available

Sys> Like a Prayer. Lucky Star. Material GirlDynGUI displays three buttons,
one for each song name)

Usr> User clicks on the “material girl” button
Sys> Okay. (Material Girl by Madonna shows up on the MP3 Gui playlist and
starts playing)

2.3.6 GODIS-DELUX

GoDIS-DELUX is a GoDIS application for the in-home domain. The application letg gon-
trol the lights in a house and ask about the status of a spéanifip (if it is on or off) or ask, in
general, which lamps are on or off. A lamp can also have a dinatt@ched and this means that
you can also dim or turn up the light on that lamp.

Scenario

(27) User is late for work, in a hurry, and just about to leave theibe.
U: Turn off all lights
All lights in the house are turned off
Later that night the user arrives home from work carrying agboth hands.
U: Turn on the hall light and living room light
The hall light and living room light is turned on

User puts down his bags, walks into the living-room, sitsmow the sofa and turns
onthe TV

U: Dim the lights

Living-room lights are dimmed
U: Is the hall light on?

S: Yes, itis on.

U: turn it off

Infrastructure

The application uses thed®1S dialogue manager and th& NDIK T4 dialogue system toolkit
and consists of a collective of OAA agents organized as indi@ud. The Controller agent, DME
agent and the MMD, ASR and TTS agents armNDIKIT agents, which communicate using the
TRINDIKIT4 OAA API described in D5.1.2 [3]

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 61/121

e The controller agent coordinates the different modules agehts by executing a set of
serial control algorithms in parallel.

e The timeout agent is used by the controller to determine vihemiser’s turn is over.

e The DME agent holds the total information state (T1S) andcbre dialogue management
modules, update and select, as well as interpretation ametgigon modules.

e The actual interpretation and generation is done by the @&atagvhich is called over
OAA by the interpretation and generation modules.

e The DynGUI input/output module agent is used to dynamicadlyder graphical menus
which can be used for graphical input.

e The ASR module agent continuously listens for input andesrthe recognized result to
TIS.

e The TTS module agent reads output from TIS and synthesizssspeech, when called
from the controller.

e The GoDIS-DELUX GUI agent displays a schematic map of the house showing aagh |
in its specified location. According to the user actions thdl G modified to reflect the
current status of each lamp in the house.

Research issues addressed

Dynamic reconfiguration GoODIS-DELUX demonstrates implicit application switching and
offline plug-and-play, as described in D2.2 [19]. The D33S and ®DIS-DELUX applica-
tions have been implemented independently and no knowlefitee other application is hard-
coded into grammars or resources. Nevertheless, they camIsamultaneously with a seamless
interface presented to the user.

Integrated approach to multilinguality and multimodality = By deploying multimodal (and
multilingual) GF grammars, GDIS-DELUX demonstrates the integrated approach to multi-
modality and multilinguality described in Section 2.2 adlas in D1.2b [15] and D1.5 [14].

Multimodal menu-based dialogue GoDIS-DELuUX demonstrates the MMD approach to mul-
timodal dialogue management, as described in Section 2 22.1 [18].

Asynchronous multimodal dialogue management GoDIS-DELUX makes use of the asyn-
chronous capabilities of RINDIKIT4 as described in D5.1.2 [3] to enable multimodal barge-in
and incremental interpretation.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 62/121

Controller

DynGui agent
4 ‘ input H output ’ TG
TTS ‘ agent
\ / DME agent \
update | | select interpret] (generate GF
ASR module] module] | module || module Agent

DelLux Gui
Agent

input

Figure 2.9: ®DIS-DELUX system as a collective of agents

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 63/121

Functionality

The GoDIS-DELUX application offers the following functionality. The userti@ns are:

e Turn on one or several lights. ("turn on all lights in the tigiroom”)
e Turn off one or several lights. ("turn off the kitchen light”
e Dim the light on one or several lamps. ("dim the living roomht”)

e Turn up the light on one or several lamps. ("turn up the liviagm light”)

The issues that can be raised by the user are:

e Ask if a specific lamp is on. ("is the bedroom ceiling lamp on”)
e Ask if a specific lamp is off. ("is the kitchen light off”)
e Ask which lights are on. ("which lights are on in the bedrogm”

e Ask which lights are off. ("which lights are off”)

Multilinguality

GoODIS-DELUX supports interaction in English and Swedish. GF grammarsised for both

parsing and generation. The GF grammars faDES-DELUX are described in Section 2.2.6.
The speech recognition grammars are automatically gestefiaim GF. At any time during the
dialogue the user can switch language using buttons in thdythamic GUI (see Section 2.1.2).

Multimodality

GoDIS-DELUX implements the MMD approach to multimodality described actt®n 2.1.2,
and uses the DynGUI (see Section 2.1.2) for graphical masedinteraction. It also has an
application-specific GUI.

The user can provide input to the application via either thdS3r using speech. The output
modalities are speech together with graphical output irGbs. The application is connected
to the GUIs via an OAA agent. Thed®I1S-DELuUX GUI graphically shows each lamp and its
location in the house. The@1S-DELUX GUI is shown in Figure 2.10.

Implementation of resources

Domain resource In GoDIS-DELUX there are nine domain plans which are arranged in a
very flat menu structure (with a depth of only two). There i® doplevel plan for selecting
which subtask to engage in; four plans dealing with actians, four plans dealing with issues.
The action plans are:

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 64/121

rDeLux House
living_room kitchen bedroom hall
e e Jo— —o— [o]|l o

Figure 2.10: ®DIS-DELUX GUI

e turn _on_light
o turn _off_light
e dim_light

e undim_light
The plans for dealing with issues are:

e ?xlight_on(x)
o ?X.light_off(x)
e ?light_status.on

e ?light_status off

What the plans achieve is fairly easily understood fromrthames, and we will only include de-
tailed descriptions of two of the plans, namely, the thoseesponding to the actidnrn _on_light
and the issu@x.light _off(x).

In all action plans it is possible to specify several lampsomms by saying “all lamps” or “all
rooms”, e.g., “turn on all lamps in the bedroom” or just “@hips” as answer to the question
“Which lamp do you want to turn on”.

First, we look at the plan corresponding to the actienm _on_light®:

8This dialogue plan has been slightly edited for easier cetmgnsion.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 65/121

ACTION : turnon light
[findout(?x.room_turn _on(x))
findout(?x.lamp_turn _on(x))
dev_queryAll(device_database,?x.deviceturn _on(x))
forall_dev_query(?x.light _off(x))
forall_dev_query(?x.dimmer_on(x))
if ~device()
then [report(turn_on_light,failed(—~3x.devicek)))

if =light _off(_) and—dimmer_on()
else | then | report(turn_on_light,failed(all _lights_on))
i else | forall_dev_do(TurnOnLight)
POSTCOND: done(TurnOnLight) || status(failed())
Two findout actions is used to get the information regarding room andlawsition needed
to perform the action. Theev_queryAll action queries the database device to find the relevant
sockets for the devices which should be turned on, basedeogpécified room and lamp. If
successful, the result of this query is the addition to th&tesy’s private beliefs of a set of
propositiongdevice@) whered is a device socket.
Next, to check for possible problems and informing the uséhnese (e.q if the lights are already
on, or if the specified lamp does not exist in the specifiedtiong, the plan first queries each de-
vice fulfilling the given constraints on room and lamp pasit{forall_dev_query(?x.light _off(x))
andforall_dev_query(?x.dimmer_on(x)) for their status and then, using conditionals, an appropri-
ate action is taken.

If no lamp fulfilling the given constraints exists, the syateeports this, using:

PLAN:

report(turn_on_light,—3x.device())

If all specified lights are already on it reports thisport(turn_on_light, failed(all_lights_on)))
otherwise it tells each lamp device fulfilling the consttaito perform thefurnOnLight action
(forall_dev_do('TurnOnLight’)).

The postconditions are used to check whether an action sidened done. In this case this is
true either when the action has been performed or when thersygs reported a reason for not
performing the action (thus adding a proposition indiagstatusto the shared commitments).
The plan shown next corresponds to the isdulght _off(x) which would be activated if the user
e.g., asked the question "Which lamps are off in the livingmd®.

9This dialogue plan has been slightly edited for easier cetmgnsion.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 66/121

ISSUE : ?x.light _off(x)
[bind(?x.room_light _off(x))

bind(?x.lamp_light _off(x))

dev_queryAll(device_database, ?X.device/light _off(x))

if ~device()

then | assume(—3x.devicelight _off(x))

forall_dev_query(?x.light _off(X))

else | if— light_off(.)
i then | assume(—3x.light_off(x))
First, two bind actions are used to get optional information from the usérthé questions
?x.room_light __off(x) or ?x.lamp_light __off(x) are addressed in the user utterance the answer will
be integrated with the question and stored among the sharethitments. If not addressed, the
two bind actions will be popped off the plan. As opposeditdout actions bind actions are not
actively performed by the system, i.e., they are not redlegask moves.
Then, as for the platurn _on_light, the dev_queryAll action queries the database device to find
the relevant sockets, with possible restriction to a spEtifbom or lamp.
Then, if there are nalevice() propositions in private beliefs (the database query foradev
sockets returned an empty answer), the system assumekighigtliecause there exists no such
lamp; this will eventually be gives as the answer to the user.
If there aredevice() propositions among the private beliefs, the system quatiésmp devices
to get their status. This information is stored as a set opgstions in the system’s private
beliefs. All propositiongdight _off(d) stored in private beliefs together with the unresolvedassu
?x.light_off(x) will eventually trigger the system to perform answer move. If none of the
lamps are off, the system answers by saying this, otherwiaeswers by enumerating all lamps
that are off.
Plans dealing with issues have no postconditions. Insiesdes are considered resolved when
an answer to the raised issue exists in the shared commgment

PLAN:

Device resource Each specific lamp in the house is connected to a socket, ahdseaket is
controlled by a lamp device. In this implementation ther seven lamps and thus also seven
lamp devices. Each lamp device holds information about téteis (on/off, dimmed etc.) of the
lamp.

Each lamp device can execute the following actions perfdrageOAA solvables:

action TurnOnLight

action TurnOffLight

action DimLight

action UndimLight

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 67/121

Each lamp device can also execute 7 different queries whehsed to find out e.g., if the lamp
is on, if the dimmer is on, if it is already dimmed as much asait be etc. These queries are
called from within plans to get the information needed todeon an appropriate action to take.

The database device is mainly an interface to the databasd¢sbuwsed by the GDIS Dialogue
Move Engine to compute inference. An example from tleDES-DEL UX application would be

if a user says “turn on the light in the kitchen”. Accordingthe database only one lamp exists
in the kitchen and therefore the system can infer that thistipe the lamp the user wants to turn
on. Therefore the system can omit the question regardinghwliamp to turn on and instead,
without asking, turn on the lamp. Another example would bibéf user made a request to dim
the light in a room where only one lamp has a dimmer attachede Hhere is no need to ask the
user to specify which lamp she wants to dim.

Database resource The specification of which lamps exist and their locationhia house is
made in a prolog database. Each lamp device is also connecsesbcket. The database is also
used as input to the @1S-DELUX GUI agent.

Dialogue examples

We now give sample interactions with theoG1S-DEL ux application.

Example interaction 1 In this interaction we see how the system uses inferencerntpuote
which lamp to turn on after the user has answered “kitchethéoquestion “In which room do
you mean” (only one lamp exists in the kitchen). Due to thaoks not need to ask the question
“Which lamp do you mean”. This is also the case when the us&ema request to dim the light
in the living room. The only lamp that has a dimmer attachdatiesceiling lamp so the question
regarding which lamp to turn on can be omitted.

(28) S: What can | do for you?
U: turn on the light
: Okay. Let’s see. In which room do you mean?
: the kitchen
: Okay. | have turned on the light.
: Returning to restart. What can i do for you?
: turn on the livingroom light
: Okay. Let’s see. Which lamp do you mean?
: the ceiling lamp
: Okay. | have turned on the light.
: Returning to restart. What can i do for you?
: which ceiling lamps are on
: The kitchen ceiling lamp. The livingroom ceiling lamp.

ncCcuoouncCcnuncCcumuwmwcCcow

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 68/121

U: dim the livingroom light

S: Okay. | have dimmed the light.
U: turn off all lights in all rooms

S: Okay. | have turned off the light.

Example interaction 2 In this interaction we see how the system reports a reasondor
performing the requested action. In this case it is becéhwere tis no floor lamp located in the
kitchen. We also see how the system decides to give intaivegaedback to ground the user
utterance “the desktop lamp” which has got a low recognisicore (indicated by 0.3).

(29) S: What can | do for you?
U: turn on the kitchen floor lamp

S: Okay. Let’s see. | failed to turn on the light because tlere such lamp in the
room

: Returning to restart. What can i do for you?
: turn on the bedroom light

: Okay. Let’s see. Which lamp do you mean?
: the desktop lamp 0.3

: You mean the desktop lamp, is that correct?
:yes

: Okay. | have turned on the light.

: Returning to restart. What can i do for you?
> dim the bedroom light

: Okay. | have dimmed the light.

: Returning to restart. What can i do for you?
- is the hall light off

: The light is off.

nCcCcuuwcCcuwtncCcumwcuwmwcow

2.4 Conclusion

This chapter has addressed the issue of multimodality artlinguality in GoDIS, focusing

in particular on a unified approach to multimodality and ntinlguality using GF, and on the
development of GDIS applications that offer practical solutions to theowdtissues of multi-
modality and multilinguality.

We have shown how dialogue management can be straightidignaatapted in an information-
state-based system to handle both multimodality and rmgtiblity. For GoDIS this has in-
volved extensions to and modifications of the informati@testthe update rules, and the overall
system architecture and control. The highly modular aechitre of G®DIS has greatly facili-
tated the incorporation of new modalities and languages.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 69/121

The technique of MMD (Multimodal Menu-Based Dialogue), \wdi®y an existing graphical
interface for some device is converted into dialogue plansaDIS, has been shown to create
useful and natural multimodal dialogue, allowing commatimn in both speech and graphics
— separately or simultaneously — withoB1S offering its full range of flexible and advanced
dialogue management capabilities also for multimodatadion. MMD is incorporated in three
of the GoDIS applications showcased: DJ0BIS, GOTGoDIS, and ®DIS-DELUX.

The ISU approach and the modularity obBI1S also give clear advantages for multilinguality,
both at the development stage, where only clearly sepalatgdage-specific components need
to be modified, and at run-time, when the separation of lagenspecific information from other
parts of the system make it possible to change language® imithdle of a task, maintaining
the information state as it were before the language chaAgewe have shown, no extensive
modifications of dialogue management are needed for thesiaei of new languages in@®1S.
We have provided two different ways of achieving languagenge in G®DIS applications:
using speech in the middle of a dialogue iIBBNDATALK, and by clicking a check box in the
DynGUI for DJ-GoDIS, GoTGoDIS, and ®DIS-DELUX.

Grammar development using GF has made use of the separétarstoact syntax from con-
crete syntax, where an abstract syntax has been relateddamkdifferent concrete syntaxes,
each concrete syntax corresponding either to a languageodality. The unification of multi-
modality and multilinguality in @D1S/GF has thus been approached in a very direct and explicit
way, with the same underlying representations connectitig different languages and different
modalities.

The grammar work has involved an application-independeautilingual and multimodal re-
source grammar containing all contributions in common lier &pplications. The rapid devel-
opment of this grammar has been enabled through the alreggting GF Resource Grammar
Library, currently available in eleven languages, of whsohfar at most seven has been used for
a GoDIS application.

In addition to this common grammar, a number of differentli@ggion-specific grammars have
been implemented for all the applications, handling théigaars of each application. Detailed
descriptions of the applications themselves, includimgrtprecise multimodal and multilingual
behaviour, and the interactions they allow, give practicabf of the feasibility of the theoretical
issues involved in the unification of multimodality and niliriguality in the in-home domain.
Implementational specifications are further given in Apgprm, separated into the grammars
that are developed, application by application, and akotklevant files for each application.
The integration of GF and the ISU-based S has provided a highly workable and productive
environment for rapid prototyping of dialogue applicasdar new domains and new languages,
using a unified approach to multimodality and multilingtyaliThe unified approach provides a
coherent, powerful, and flexible technique for interactystems.

Version: May 11, 2007 (Final) Distribution: Public

Chapter 3

Multimodality and Multilinguality in the
Linguamatics Interaction Manager

3.1 Introduction

The primary focus of the Linguamatics Interaction Managatamain reconfigurability. In this
chapter we look at how multimodality is currently handledty Linguamatics Interaction Man-
ager, and explore the relationship between reconfigutahitid multimodality and multilingual-
ity, and how a uniform approach fits with this.

3.2 System Summary

The Linguamatics Interaction Manager is used to control dmimachine communication. It
interprets speech or a mouse click, and responds by spedaj moviding a new graphical
display, or a combination of the two. The system is desigadðighly reconfigurable to enable
use in dynamic scenarios where the whole task or ontologtoatture, and the vocabulary can
change. This contrasts with more standard scenarios wherask and ontological structure
remain constant, and the only change is in the instantiagog, the contents of a database for a
flight booking database.

The home environment is a particularly good example of a dyoaacenario. There is no fixed
set of rooms, or fixed set of devices. Over time, new devicélsneed to be added, and new
applications or services. The system has been installdteaadvantica Test House in Lough-
borough. It was configured for the 8 rooms in the house, atkedirio a task manager to control
a number of home devices, including lights and blinds. Lduogbugh University published the
results of a trial using the system which involved twentyhearticipants. Users found the voice
activation clear, and useful. 81% of interactions achidghedyoal at the first attempt [6].

70

IST-507802 TALK D1.6 May 11, 2007 Page 71/121

3.3 Issues Addressed

The Linguamatics Interaction Manager takes a very stropgageh to reconfigurability, allow-
ing new applications and devices to be added, even at rum-flfhe theoretical approach taken
combines Ontology-Based Dialogue with the Informationté&tdpdate Approach. The main
focus of Linguamatics work is WP2, and the description ofltiteraction Manager is in Deliv-
erables D2.1 [18] and D2.2 [19]. In the next two sections wi fecus on how multimodality
and multilinguality are treated in the system.

3.4 Multilinguality

Although multilinguality was not a focus of our work, we havede steps towards making the
Linguamatics Interaction Manager multilingual. Most oétEnglish specific implementation
has been removed, although there are remnants, for examgihe igeneration of definite de-
scriptions, both for output and for language models.

Two main approaches to multilinguality were considerede Titst was to treat multilinguality
as an instance of reconfigurability. To use a new languagengletely new ontology would
need to be provided, with new synonyms and preferred termsach concept. This approach
would have required relatively little change to the systether than the removal of the rem-
nants of English-specific implementation. However thisrapph would have some limitations.
Firstly, it does not allow any mixing of different languageshich could be useful, for example,
in providing multiple labels for terms on the same graphdiaplay. Secondly, it means that
ontologies for different languages can get out of step, Wwbauld cause maintenance problems
in the longer term.

The second approach, and the one which has been adopteallisxdor preferred terms and
synonyms to be provided for more than one language. Thisn#asito the approach taken by
the W3C SKOS Core Vocabulary scheme for thesauri writtenDdr 28], which provides an
optional language tag based on ISO-639-2 for synonyms agfdrped terms. There are some
scenarios however, where even this seems too limiting. ¥ample, we may want different
preferred terms for different purposes even though theuageg is the same. For example, “Sony
10789” may be appropriate for the shopkeeper, but “Sonyc32HDTV” may be more appro-
priate for the shopper. This indicates that we may want tth&rdistinguish preferred terms
according not only to language, but also for purpose.

3.5 Multimodality

The current approach to multimodal input in the Linguansaliteraction Manager is relatively
simple. For input, it assumes independent events via maoksabr via a spoken command.
Output is achieved either by speech synthesis, or by chgrtm graphical display, or most
commonly, using both modalities.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 72/121

There is a small amount of adaptation across modalitiegdicigpto which of the modalities are
available. For example, if speech synthesis is availabVe griority messages such as “Pardon”
are only provided in the spoken modality, and not also on tlaplycal display. There is also
some adaptation of messages. For example, if both speedrapitics are available the system
will use the question “please give your name”. If the only ralitgt available is graphical, this is
changed to “please click on your name”.

All the modality settings which are described below can kenged by sending a message to the
system from another application. This may be useful if, faraple, the user is moving around
the house and sensors can detect that the user will not becabée a screen from their new
position so will need a full set of options to be enumerated/dige. Changes to settings can
also be made by users themselves by using speech or by usingrascreen as part of a normal
interaction. This is achieved by including a “Settings” sntology. For example, the leaf node
arrived at by traversing “Settings” then “Prompts” then fhese” is associated with a command
to change the prompt setting to “Verbose”.

3.6 Speech Recognition

The system dynamically generates appropriate languagelsméat the speech recogniser ac-
cording to the ontology and the current Information Stateer€ are three settings: safe, default
and expressive. The default setting is currently equivdtethe expressive setting.

The safe setting is used in noisy environments. Language®ade restricted to only recognise
one of the currently available options, or escape optionk a8 “help” or “back to the top”. The
expressive setting not only includes the currently avéelalptions as defined by the Information
State, but also any concepts subsumed by the current otemesding to the ontology. This
allow users to skip many levels of interaction, for exampjeshying “cinema booking” when
presented with the top-level menu items. The expressiv@getiso includes a larger contextual
grammar if this is available. For example, in the home dontlagre is a statistical language
model which allows full commands such as “turn on the lightia living room”. The statistical
language model uses dynamic classes, and these are pdpatateding to the ontology and
the current context (which is part of the Information Stat&)r example, at the top level of the
home, the language model includes devices which exist snhiithine according to the ontology.
If the context moves to the kitchen, the language model ordiudes kitchen devices.

The current expressive setting therefore allows referémtge current options or anything more
specific. This allows the vocabulary to be kept relativelyairat all times, while coping with
most utterances that are appropriate for the user to sayeigitlen context. Utterances which
are not currently captured are ones which would involve gjort of context e.g., saying “inci-
dentally can you check the cooker is off” when in the middl@a@inema booking dialogue.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 73/121

3.7 Multimodal Output

Multimodal output combines spoken output with HTML or XMLrfgraphical output. The set
of options displayed on screen is generated dynamicaliy iaombination of the Information
State and the ontology. For example, when traversing a mieactgre the alternatives shown
will correspond to the visible concepts below the curremtoapt. When asking for a clarifica-
tion, the set of options will be created dynamically from bhirmation State. More information
on the graphical output is provided in Deliverable D2.1 [18]

Spoken output has three settings: minimal, standard armbser The standard setting is cur-
rently equivalent to the minimal setting. The minimal seitiries to keep prompts as short as
possible. This is particularly appropriate if the user hagea of the available options on screen.
Options are enumerated if there are just two options. Ofiservthe system asks for a concept
which covers all the items in the option list. For examplegegithe options, lounge television,

hall light and dining room radio, the standard output will'aich device?”. The verbose output

is useful if, for example, the user has poor sight, or is nokiog at the screen. This enumerates
all the options currently available. For the example abtive output using the verbose setting
would be “would you like lounge tv, hall light or dining roomadio?”. Prompts are synthesised
to provide spoken output, and also rendered on the screemtas t

3.8 Moving to a unified approach to multimodality and mul-
tilinguality

In the current Linguamatics System, there is a separatesttatzture which associates concepts
with images. We are looking to replace this treatment witk amere icons are provided as
preferred terms, just in a different language. To achieigewie intend to include “graphics” as
one of the possible languages. Allowing for multiple iconghvdifferent properties (small or
large icons for example) will require a secondary tag, aedseparallel to allowing for different
linguistic preferred terms using a “purpose” tag.

Although we intend to provide a similar datastructure totaondifferent views of an object,
whether graphical or linguistic, and for different langaagthis does not mean that generation
within each modality will be exactly parallel. For examphes would expect to retain the current
behaviour where the availability of a graphical modalitylwet the prompts to the “minimal”
setting, unless set otherwise by the user.

3.9 The Home Domain Showcase

As an example for in-home applications, the Linguamati¢sraction Manager was linked to
home simulation software developed by the University of glaoorough and configured with
an example initial ontology including 15 rooms, 20 differé&mds of devices or sensor (over
100 individual devices), and several different servicetuding restaurant booking, and recipe

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 74/121

reading. There is also the ability to add extra devices andcss at run time.

The graphical display was developed as part of the UK DTI &ah8ervice Aggregation Trial
and is shown in Figure “TV Interface”. The graphics were geed to be readable on a standard
television linked to a set-top box.

3 5A Demonstrator - Microsoft Internet Explorer - o] x|
File Edit View Favortes Tools Help | an
1 A = -y - B e A = | e
@Back Tilgd T \ﬂ @ o) | - Search 5 & Favorites Q-:’!'| o= B~ _] _‘3 Liriks
=
ﬁ —

— . 0000 }

|.§| Applet HttpPushClient skarted l_ l_ l_ l_ l_ |4 Internet s

Figure 3.1: TV Interface

The graphical display provides a menu structure which tleg aan follow, either by clicking
on options, or by uttering one of the options. However, usarsalso use voice to skip several
stages. For example, “lounge please” would take the usbetlmtinge context. The graphics are
then renewed to reflect all the devices in the lounge whichdcbe controlled. A new prompt
“which device?” is displayed and synthesised (assumingudeprompt mode). The user can
also take initiative and provide a full command e.g., “Tume tv to channel four”. The system
will attempt to execute this command, and will respond adicwy to the state of the house as
returned by the home simulator, with either: “turned theotehannel four” or “the tv is already
on channel four”. If a command is not fully specified, the sysivill take back initiative and ask
for clarification e.g., asking “which television?” if theiemore than one in the current context.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 75/121

3.10 Conclusion

In this chapter we have described how multimodality is auttyehandled in the Linguamatics
system, and how the language models and the output are degend the ontology and the
Information State. We have also outlined an approach whights multilinguality similar to
multimodality, and how this would fit with an ontology-baseamework. The combination of
Information State for providing a description of contexigdahe use of a single ontology to de-
scribe the domain knowledge has provided a powerful framlewtere the input (the language
models for the speech recogniser) and the set of multimedpbnses are both relatively simple
functions from the Information State, the ontology and tredality settings.

Version: May 11, 2007 (Final) Distribution: Public

Chapter 4

Multimodality and Multilinguality In
MIMUS

4.1 Introduction

Task 1.6 in TALK involved aProof of concept dialogue system using the multimodal gramm
library. This chapter summarizes MIMUS, the showcase of a unifiedoggp to multimodality
and multilinguality in the In-Home domain. Although the sado has already been described
in previous reports, a brief description has nonetheless ligcluded. The chapter continues
then to summarize the WoZ experiments results and their eginpa the final showcase. The
following section provides an overview of the infrastruetuwhich outlines the main MIMUS
agents and their interconnection. Then, the main reseapibstaddressed by USE during the
project are described, specially multimodality and mimi¢guality. Finally, a complete set of
dialogue examples is presented, as well as a sum up with timeamaclusions about MIMUS.

4.2 Scenario

As mentioned in previous Deliverables, USE has worked omlévelopment of multimodal and
multilingual applications in the In-Home domain. Althoutte results can be extrapolated to
other user profiles, MIMUS has focused on wheel—-chair bowsgtsuand their special circum-
stances.

In this particular scenario, users are able to access thersyfsom their wheel—chair through
different modalities, that is, using speech and/or a gatmterface (see Figure 4.1). The sce-
nario includes microphones, speakers and a touch screer Wigenformation can be displayed
and introduced or selected.

Wheel—-chair bound users represent a particularly integeset of users due to their difficulties
to move around and therefore their motivation to use theegysand due too to the wheel-chair
itself and the assumption that the touch—screen would hié&hbiato them at all times. In this
particular case, enquiring about the home and the statuls dé\aces becomes more than ever

76

IST-507802 TALK D1.6 May 11, 2007 Page 77/121

Figure 4.1: Scenario Description

an important issue.

MIMUS lets the user control On—Off devices and dimmers (walues ranging between “0” and

“100”, e.g., blinds). In this context, “control” means bathanging their state or enquiring about
it. The user can interact with the system naturally usingesber the tablet—PC pen. A set of
dialogue examples illustrating MIMUS interaction capdias is presented in section 4.6.

4.2.1 WoZ Experiments

In order to collect first—hand information about the useegunal behavior in this scenario, USE
has conducted several WoZ experiments. A rather sophisticaultilingual WOZ experimental
platform was built for this purpose. This platform howevastended up being also an interesting
result of the project, since it may be used for future researother experiments.

The set of WOZ experiments conducted at USE was designedén tw collect data. In turn, this
data helped determine the relevant factors to configuremuaital dialogue systems in general,
and MIMUS in particular. Additional relevant informatioras also collected:

e any possible obstacles or difficulties to communicate

e any biases that prevent the interactions from being comlyleatural

e a corpus of natural language in the home domain

e modality of preference in relation to task

e modality of preference in relation to task and scenario

e output modality of preference in relation to the type of imf@tion provided
e modality preference in relation to system familiarity

e task completion time

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 78/121

combination of modalities for one particular task
inter—modality timing

user evolution, learnability and change in attitude

how additional modalities affect interaction in other miaiits
context relevance and interpretation in multimodal envinents
pro—activity and response thresholds in multimodal emnrents
relevance of scenario specific—factors/needs

multimodal multitasking: multimodal input fusion and amgbity resolution

A detailed description of the results obtained after thelyemms of the experiments and their
impact on the overall design of the system may be found inverdble D6.4 Part Il.

4.3

Infrastructure

MIMUS has been developed as a set of OAA agents linked thrthugibentral OAA Facilitator.
Most of the agents are either clients or servers, but someeof thave a double role, providing
and using solvables from other agents. An overall view ofsiygtem is provided in figure 4.2:

Dialogue Rulej

: OWL2GRA
Lexicon | | Grammar -

=

States

Ontology

Lexicon

Figure 4.2: Architecture

The main agents in MIMUS are briefly described hereafter:

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 79/121

e The system core is tH@ialogue Manager, which processes the information coming from
the different input modalities agents and provides the @mpaite output. It is by means
of the output modalities agents that the DM can do this, wtaleng into account the
contextual information in the Ontology and the applicatgents.

e The main input modality agent is the&SR Manager. MIMUS can work with any ASR as
long as there is an OAA wrapper with the solvables describg?]i USE has implemented
these wrappers for Nuance and for Atlas.

e TheHomeSetupagent displays the house layout, with all the devices anid skege. All
the information about the house elements (including wédisps, blinds, etc.) is loaded
from the common knowledge resource: an OWL ontology. Whenawdevice changes
its state (i.e., a light is switched on), the HomeSetup iffiedtand the graphical layout is
updated.

e TheDevice Managercontrols the physical devices. The current implementaises the
X10 protocol. When a command is sent, the Device Managefiemthe HomeSetup and
the Knowledge Manager, guaranteeing the coherence ofeadilédiments in MIMUS.

e TheKnowledge Manageris a key part of MIMUS, connecting all the agents to the com-
mon knowledge resource, by means of an OWL Ontology.

e TheTalking Head is a new feature in MIMUS and represents a significant improa/e
with respect to the previous wrapper for Microsoft Animaéagents. MIMUS virtual char-
acter is also known as Ambrosio, and includes complex phergmeme synchronization
strategies (Loquendo TTS), and the ability to express emstand play some animations
such as nodding or shaking the head. A more detailed descrigan be found in [27].

A detailed agent description can be found in [2], including $olvables offered by each agent. A
sequence diagram for a simple interaction where the ussr(askbally) to switch on the kitchen
light is presented in Figure 4.3.

In this figure the Dialogue Manager receives the verbal iffsutitch on the kitchen light”); this

is parsed by its NLU submodule, yielding the following Infoation State:

[DMOVE . specifyCommand
TYPE - On
ARGS . [DeviceType_.ocatior
[DMOVE : specifyParameter
DeviceType : TYPE : DeviceType
| CONT : light
[DMOVE : specifyParameter
Location : TYPE : Location
i | CONT : kitchen I

1The Information State has been deliberately simplified karification purposes. The multimodal metadata, for
instance, will be described in section 4.4.2

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 80/121

ASR Dialogue Manager Device Manager KM Talking Head HomeSetup

Putinput(‘voice’,’switch on the

Kkitchen light,1.2.750) GetIndividualsFromDorhain(Device,[[locate

din,Kitchen],[DeviceType,light]],)
—

GetIndividualsFromDomain(Lamp_1,[[locatedIn,
Kitchen],[DeviceType,light]],)

ExecuteCommand(on,Lamp_1
SetProperty(Lamp_1,state,on)

won(nod)

NAII right)

\wate(umpton)

Figure 4.3: Sequence Diagram

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 81/121

The Dialogue Manager then performs reference resolutiearching the ontology (by means
of the Knowledge Manager agent) for all individuals whosevVizeType” is “light” and whose
“Location” is “kitchen”. The Dialogue Manager builds thisery automatically from the “Type”
and “Cont” fields, keeping it therefore domain independefihe answer from the Dialogue
Manager (there is one light in the kitchen) is used to updadrformation State:

DMOVE : specifyCommand
TYPE : On
ARGS . [DeviceType.ocatior
[DMOVE : specifyParameter
DeviceType : TYPE : DeviceType
| CONT : light
[DMOVE : specifyParameter
Location : TYPE : Location
| CONT : kitchen |
[Quantity : 1
Label . Lampl
ReferenceResolution RRL : Location : Kitchen
DeviceType : Light

This updated Information State is now used by the Dialogueaddar to send the correct com-
mand to the Device Manager Agent. The latter translatesdhermand to the appropriate X10
physical instruction (to switch on the actual device), updahe ontology through the Knowl-
edge Manager and updates the House Layout through the Haione &gent.

Finally, the Dialogue Manager commands the talking headtdiion the correct execution of
the command. This confirmation could be verbal, visual ohbot

4.4 The ISU Approach in MIMUS

The main element of the ISU approach in MIMUS is the dialogiséolny, represented formally
as a list of dialogue states. Dialogue rules update thiststrel either by producing new dialogue
states or by supplying arguments to existing ones.

4.4.1 DTAC Information States

The information state in MIMUS is represented as a featutesire (also called a DTAC struc-
ture) which originally (i.e., before the TALK project) haddr attributesDialogueM ove, Type,
Arguments ancontents. A detailed explanation of the meaning of thesaifeatcan be found
in the Siridus Deliverable D3.2 [22].

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 82/121

1. DMOVE ' This feature identifies the kind of dialogue move.

2. TYPE: This feature identifies the specific dialogue move in thellif the correspond-
ing DMOVE. While theDMOVEclassification intends to be domain and implementation
independent, the set of TYPEs will be domain dependent. imessense, th€YPE classi-
fication instantiates theMOVENnodel to the specific domain.

3. ARGS: TheARGSfeature specifies the argument structure oQNE®VH YPE pair.

The following example illustrates a DTAC representationtfte utterancé.lama a luis (Call
luis).

[DMOVE : specifyCommand]
TYPE : MakecCall
ARGS : [Desi
DMOVE : specifyParamete
Dest : TYPE : Name
i CONT : luis]

More attributes may be added in the course of the dialoguatepds for example the expecta-
tions EXPT) generated by each dialogue rule. As illustrated in fonthicg sections, during the
TALK project, additional attributes were added to the araifour: Modality, Initial Time and
End Time. The information state may be updated by a certaiof sgdate rules which may in
turn be triggered by a specific setaiilogue moves The latter contain declarative information,
specific instructions to update the information state. Hatihconsists of a rule name, a priority
level, preconditionsTriggeringConditionyand actionsRreActions PostActionsandRecovery-
Actiong. Additionalupdate strategiesdetermine the specific rule(s), from the set of applicable
ones, that must be used at any given time.

4.4.2 Multimodal DTAC structure

As illustrated in the previous section, the original DTA@usture is no longer sufficient. Modal-
ity and Time information are needed in order to implemenidinstrategies at dialogue level.
The new extended DTAC has therefore three new attributaevairs:

e MODALITY
o TIME_INIT
e TIME_END

This additional information is also useful in terms of prasgion strategies (multimodal output),
since the input modality is one of the relevant factors t@deine the output modality/ies.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 83/121

These new fields (together with the ASR confidence scoreomsdered to be meta—information
because they are not semantic or syntactic constituerits ofser’s utterance. Therefore, it seems
convenient to group them under a “meta—info” special aiteb

This new multimodal DTAC structure is illustrated below:

[DMOVE specifyCommand
TYPE MakeCall
ARGS [Dest
[DMOVE : specifyParameter
Dest TYPE Name
| CONT luis
[MODALITY VOICE
TIME_INIT 00:00:00
META-INFO TIME_END 00:00:00
i | CONFIDENCE 700]

4.4.3 Updating the Information State in MIMUS

In this subsection we provide an example of how the Inforama8tate Update approach is ap-
proached in MIMUS. The MIMUS Dialogue Manager follows thaldgue rules manually de-
fined by the designer. These dialogue rules are triggereddygilie moves (any dialogue move
whose DTAC structure unifies with the Attribute—Value palesined in the fieldriggeringCon-
dition) and may require additional information, defined as diaébgupectations (again, those
dialogue moves whose DTAC structure unify with the Attrisdvalue pairs defined in the field
DeclareExpectations).

For instance, consider the following DTAC, which represehte information state returned by
the NLU module for the sentenssvitch on

[DMOVE specifyCommand
TYPE SwitchOn
ARGS [Location DeviceTypg
MODALITY . VOICE
TIME_INIT 00:00:00
META-INFO TIME_END 00:00:00
i CONFIDENCE 700]

Consider now a dialogue rulé&N” defined as follows:
(RulelD: ON; [* Rule name. */
TriggeringCondition:
(DMOVE:specifyCommand,TYPE:SwitchOn);
DeclareExpectations: {
Location<=(DMOVE:specifyParameter,TYPE:Location);

[* DMove that tri ggers this rule */

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 84/121

DeviceType<=(DMOVE:specifyParameter,TYPE:DeviceType);
[* Expectations linked to
the previous Dialogue Move.
The rule will not apply the
PostActions until the
expectations are fulfilled */
}
ActionsExpectations: { [* Actions to be executed when
an expectation is missing */
[Location, DeviceType] =>
{NLG(RequestLocationDeviceType);} /* What do you want to s witch on? */
}
PostActions: {
[* Actions to be executed
when all the expectations
are fulfilled */
ExecuteAction(@is-ON); /* Sends the command to the Device M anager Agent*/
}
)

The DTAC obtained foswitch ontriggers the dialogue rul®N, since that information state
unifies with itsTriggeringConditions. However, since two declared expectations are still mgssin
according to this dialogue rulé¢cation andDeviceTypg, the dialogue manager will activate
the ActionExpectations and wait for new inputs from the user.

Figure 4.4 shows a graphical sequence of how the Inform&iate is updated when an expec-
tation is fulfilled as a continuation of the dialogue above.

4.5 Multimodality and Multilinguality in MIMUS

This section describes USE’s unified approach to Multimibgdahd Multilinguality, and how it
has been implemented in MIMUS. Our approach is based on tmbioed use of two compo-
nents in our system: the NLU module and the OWL Ontology. €medules are complemented
with the ISU approach to dialogue management, therefongrgrgsrapid porting to new domains
and languages while keeping the naturalness and flexibitityeved through the ISU approach.

45.1 Integrating OWL in MIMUS

Initially, OWL Ontologies were integrated in MIMUS in ord&y improve its knowledge man-
agement module. This functionality implied the impleméotaof a new OAA wrapper capable
of querying OWL ontologies.

As the project progressed, ontology—based dialogue mamagegained importance in MIMUS.
Overall, the system is now much more coherent because nma&hand multilingual grammars

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 85/121

User Inputs —7—4 Switch on The lamp

What do you want
fffffffffffffffffffffff to switch on?

System Outputs

Dialogue Manager \

Information State Update

D: SpecifyCommand
T: SwitchOn

A: [DeviceType, Location]

Mi: Modality: Voice
D: SpecifyCommand D: SpecifyParameter Time_init: 00
Time_End 01
. T: SwitchOn T: DeviceType o)
Information States)) T) DeviceType D: SpecifyParameter
A: [DeviceType,Location] C: Lamp T: DeviceType
MI: Modality: Voice MI: Modality: Voice C: Lamp
Time_Init: 00 Time_Init: 02 Mi: Modality: Voice
Time_End 01 Time_End 03 Time_lnit: 02
Time_End 03

Figure 4.4: Information State Update

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 86/121

ROOT

_Devape
[[tame] [Radio Outdoor

Figure 4.5: Former USE Ontology

can now be generated from OWL ontologies, and also, bechaddduse layout is loaded from
the OWL ontologies.

In former versions of the system a naive ontology managsiinvplemented [21], which allowed
us to define semantic graphs of the in—home domain. Thesbglapked like the tree shown in
figure 4.5.

In order to work with such graphs, a Knowledge Manager (KM} Wailt as an OAA agent
that solved reference resolution queries over tree—shgiaguhs. The goal of each query was to
identify one or several unknown devices by means of a lispokttive” and “negative” filters.
That is, it specified the values to be satisfied (or not) by teaods within the graph (color,
device type, etc.). For instance, given the user request:

User Could you please turn on all the big lamps except the one
in the bedroom?

the KM would solve a query such as:

KMDevRes(Positive[size:big,devtype:lamp],
Negative[location:bedroom])

As shown in this example, the KM enables the system to haveialéanteraction with the user
using natural language commands and reference resolullemertheless, this agent could be
improved in a number of ways.

As the current needs were analyzed and some research ont@taredards and tools was carried
out, it was determined that the already existing standard@V¢onjunction with the querying
language RDQL and the reasoners included within the opemesdena platform could help a

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 87/121

great deal, as detailed in Deliverable D2.1 [18].

Once it was determined that using OWL, Jena and RDQL the dietdrobjectives could be
achieved, an independent agent had to be implemented ttitatéoshe previous Knowledge
Manager. This agent had to comply with the following preiisijes:

Reusability: It should provide a mechanism to make abstract (domain ewtdgnt) queries,
useful for any ontology.

Expressivity: The agent should allow the dialogue manager to generatéegubat might turn
out to be necessary during the dialogue.

Both prerequisites were fulfilled by implementing two difat OAA solvables

¢ One to solve queries about tdemainof the property.

e A second one to solve queries aboutrd@age

This approach is completely independent of the particuténlogy used and therefore reusable
in any domain.

4.5.2 From OWL to the House Layout

MIMUS home layout does not consist of a pre—defined staticctire only usable for demon-
stration purposes. It is actually dynamically loaded atcekien time from the OWL ontology
where all the domain knowledge is stored, assuring the eolcerof the layout with the rest of
the system.

This is achieved by means of the previously described OWLQRMrapper. The Home Setup
agent (please refer to D3.3 for a complete description) ie@sjthrough this agent the location of
the walls, the label of the rooms, the location and type ofas/per room and so forth, building
the graphical image from these data.

4.5.3 From Ontologies to Grammars: OWL2Gra

As can be inferred from the previous sections, OWL ontolegiay a central role in MIMUS.
This role is limited, though, to the input side of the systefmat is, the ontology is not used
(yet) to generate dialogue rules, and is not used on the bsigel of the system, although the
architecture designed for Multimodal Presentation assutingt OWL ontologies will also be
used at this stage, as described in Deliverables D3.2 [9P&n8 [8].

In MIMUS, the domain—dependent part of multimodal and nhinjual production rules for
context—free grammars is semi—automatically generated &n OWL ontology. This approach
is analogous to the combined use of GF and ontologies in Galtiimugh with less expressive
power.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 88/121

In MIMUS, this approach has achieved several goals: it keyes the manual work of the lin-
guist, and ensures coherence and completeness betweemnithearDKnowledge (Knowledge
Manager Module) and the Linguistic Knowledge (Natural Laage Understanding Module) in
the application.

Solution overview

The generation of linguistic knowledge from ontologies hasn proposed previously. Russ et
al. [26] proposed a method for generating context—free granrules from JFACC ontologies.
Their approach was based on including annotations all albegontology indicating how to
generate each rule. They implemented a program that wasogtdese the ontology and produce
the grammar rules.

As previously mentioned, the USE approach focuses on graimuies generation: no automatic
lexicon hierarchy generation has been considered. To esinerence between the lexicon and
the grammar, the list of potential non—terminal types isaoted from the list of all the entities
within the ontology. The linguist decides which entitiesrir this list shall remain in the final
dialogue application.

It is worth noting that this tool is only meant as a helpingideya tool for the linguist. There-
fore it does not provide a ready—to—use grammar. Using tiuk the grammar will be more
easily generated and more consistent with the domain krgglebut, in any case, the resulting
grammar must be supervised and completed manually in adet@se.

Configuration files

As outlined above, the linguist must define a configuratiantfiiat will be used in conjunction
with the ontology in order to generate the grammar ruleshis ¢onfiguration file, the linguist
has to identify the properties that may appear in the granamathe way in which their domain
and range will be included in the associated rules. In ordefotit, an easy XML syntax has
been defined (see DTD below).

Basically, the linguist can define the generation rules bgmsef nesteébrEachloops handling
the properties (and subproperties) of the ontology, anagugariables to identify the elements
from its domain and range.

<IDOCTYPE rulesList [
<IELEMENT rulesList (forEach+)>
<IELEMENT forEach (forEach|rule+)>
<IELEMENT rule (left,right)>
<IELEMENT left (#PCDATA)>
<IELEMENT right (#PCDATA)>

<IATTLIST forEach property CDATA #IMPLIED>

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 89/121

<rulesList </left

<forEach <forEach

PROPERTY

</forEach </rule

</forEach

</rulesList

Figure 4.6: FSM for the configuration file parser

<IATTLIST forEach subPropertyOf CDATA #IMPLIED>
<IATTLIST forEach domain CDATA #IMPLIED>
<IATTLIST forEach range CDATA #IMPLIED>

<IATTLIST rule lang (ES|EN|GR) #REQUIRED>
>

In order to better understand this structure as well as tiectwe of the tool, a set of examples
including the relevance of the ontology, the configuratidm &ind the resulting grammar rules
are shown in the following sections.

Overview of the algorithm

In order to better illustrate how the algorithm works, thestson will describe in more detail its
functions. The algorithm consists of three major steps:

1. Parse the OWL ontology. The goal of this parsing is to gateeain internal representation
of the relevant ontological elements. This representatidhin turn be used to make
gueries over the ontology.

2. Parse the configuration file. The objective here is to gaadhe list of all applicable rules.

3. Generate the output of rules. In this step, the script gloesigh the previous list of
applicable rules, substituting the reference to classdgewperties by the corresponding
Input Form from the ontology.

The first two steps described have been implemented throfigheastate machine (FSM) illus-
trated in Figure 4.6.

For each state in the FSM, only one set of attributes can seg@aiThese are mentioned in the
previous DTD structure:

Base:

e No attributes are expected in this state.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 90/121

Iltems Descriptor Location Command
hasHNumber hasColor locatedIn A/?\A

hasLNumber hasSize

hasEName hasDeviceCommand hasFunction hasTelephoneCommand

hasLName

hasEMail

hasRelationShip

hasWNumber SwitchOn Undo Redial
SwitchOff Help Call

Close ind

Open CancelTransfer
List
Transfer
MakeConference

Figure 4.7: Ontology Structure

Property :

propertyRef: Indicates the word that references the ptgpethe rule description

subPropertyOf: Indicates a super property. All the sub eridgs of this one (includ-
ing the indicated one) will be treated by the algorithm

Triplet :

domainRef: Indicates the word that references the domaimeimule description.

rangeRef: Indicates the word that references the rangeiruth description.

Rule :

lang: Indicates what language the rule is valid for.

Sample Rules

The example below illustrates a common case in which the gpamules will be generated.
Our examples are taken from a smart—-house domain in whicbrttedogy describes both the
hierarchy of devices in the house as well as the actions (@ntands) which can be performed
over those devices, suchagitch on the lamp in the kitcheithus, consider an ontology where a
set of properties are grouped as subproperties of a gdrem@kviceCommand property. These
properties are graphically displayed in Figure 4.7:

In this example we are going to analyze the portion desagithe device—related commands.
For example, the fact that the properties SwitchOff and &wiin have the classystem as their
domain and range over the clas$es, Heater, Lamp, Radio and TV, is expressed in XML as
follows:

<l-- hasDeviceCommand Subproperties -\rightarrow
<owl:ObjectProperty rdf:ID="SwitchOff">
<rdfs:subPropertyOf
rdf:resource="#hasDeviceCommand"/>

<rdfs:domain rdf:resource="#System"/>

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK

D1.6 May 11, 2007 Page 91/121

<rdfs:range>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Fan"/>
<owl:Class rdf:about="#Heater"/>
<owl:Class rdf:about="#Lamp"/>
<owl:Class rdf:about="#Radio"/>
<owl:Class rdf:about="#TV"/>
</owl:unionOf>
</owl:Class>
</rdfs:range>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="SwitchOn">
<rdfs:subPropertyOf
rdf:resource="#hasDeviceCommand"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range>
<owl:Class>
<owl:unionOf
rdf:parseType="Collection">
<owl:Class rdf:about="#Fan"/>
<owl:Class rdf:about="#Heater"/>
<owl:Class rdf:about="#Lamp"/>
<owl:Class rdf:about="#Radio"/>
<owl:Class rdf:about="#TV"/>
</owl:unionOf>
</owl:Class>
</rdfs:range>
</owl:ObjectProperty>

Similarly, the propertie€lose andOpen haveSystem as their domain anglind as their range.

<owl:ObjectProperty rdf:ID="Close">
<rdfs:subPropertyOf
rdf:resource="#hasDeviceCommand"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Blind"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="Open">
<rdfs:subPropertyOf
rdf:resource="#hasDeviceCommand"/>

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 92/121

<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Blind"/>
</owl:ObjectProperty>

In this particular case, the linguist has detected thatralberties are actually actions (expressed
as theZ portion of the production below), that is, they correspomdhte Commandso be per-
formed by the system over all the elements in the range (egpckas th¥ portion of the pro-
duction below), in this case, all devices within the ontglobhis can be easily expressed by the
following configuration file, which will create rules of therin:

Command— Action_Property Device

<rulesList>
<forEach property="Z2" subPropertyOf="hasDeviceCommand ">
<forEach domain="X" range="Y">
<rule lang="ES">
<left>Command</left>
<right>Z Y</right>
</rule>
</forEach>
</forEach>
</rulesList>

Now, once the application is run indicating the appropraiefiguration file, the following re-
sults are obtained:

Command— SwitchOff Fan
Command— SwitchOff Heater
Command— SwitchOff Lamp
Command— SwitchOff DimmerLamp
Command— SwitchOff Radio
Command— SwitchOff TV
Command— SwitchOn Fan
Command— SwitchOn Heater
Command— SwitchOn Lamp
Command— SwitchOn DimmerLamp
Command— SwitchOn Radio
Command— SwitchOn TV
Command— Close Blind
Command— Open Blind

Itis important to note that even with this toy ontology, sieth grammar rules have been generated
using just two nestetbrEachloops.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 93/121

A more detailed description of the strategies to generatémmdal and multilingual grammars
from existing abstract knowledge representations in OWhrésented in Deliverable 1.5. [14].

4.5.4 Multilinguality in MIMUS

Multilinguality in MIMUS will be considered from two pointsf view. First, we will show how
(some portion of) multilingual grammars can be generatedutih OWL2Gra. Then, we will
outline how language change is achieved in the system.

Although there are no language restrictions, at the momeRtWs is ready to be used in three
languages: Spanish, English and German. USE has builteiitdn, grammar and dialogue
specification modules allowing interactions in each of ¢bsee languages:

e The lexicon modules are obviously language—dependent.

e The grammar modules in MIMUS are semantically oriented gsoeed to syntactically
oriented grammars. These semantic grammars are autohygpicaduced by OWL2Gra.
However, after the automatic process, a manual review lagprto be mandatory.

e At dialogue level however and although the system may vely/veee separate modules,
the configuration was simplified and the dialogue flow is igehfor all three languages.
This may not be generalized for any language under any dorbatnworks fine for re-
stricted domains and similar languages such as these. Asith oéthis simplification, the
dialogue specification module is currently shared by thedtteinguages. It is important to
note that even though this is so now, the system is not restrin any way and it may have
different dialogue configurations for each language. Iis® anportant to highlight that
MIMUS allows for language switching on—the—fly while keegpithe dialogue context.

Capturing Multilinguality through OWL2Gra

Due to the structural differences among the human langudgésent rules must be generated
for different languages.

For example, to indicate the location of a given device, itlddoethe kitchen lighin English,
whereas in Spanish the word order chandg#uz de la cocingthe light of the kitchen).

Once the target language has been chosen, specific languegenust be generated.

Consider then the following fragment taken from the ontglggeviously shown, describing
which elements can be affected by the prop&styatedin:

<owl:ObjectProperty rdf:ID="locatedIn">
<rdfs:domain>
<owl:Class>
<owl:unionOf
rdf:parseType="Collection">
<owl:Class rdf:about="#Lamp"/>

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 94/121

<owl:Class rdf:about="#Radio"/>
<owl:Class rdf:about="#Heater"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
<rdfs:range>
<owl:Class>
<owl:unionOf
rdf:parseType="Collection">
<owl:Class rdf:about="#Bedroom"/>
<owl:Class rdf:about="#Kitchen"/>
<owl:Class rdf:about="#Hall"/>
<owl:Class rdf:about="#LivingRoom"/>
</owl:unionOf>
</owl:Class>
</rdfs:range>
</owl:ObjectProperty>

The multilingual configuration file that captures the stanat differences mentioned above would
be the following.

<rulesList>
<forEach property="P"
subPropertyOf="Location">
<forEach domain="X" range="Y">
<rule lang="ES">
<left>X</left>
<right>X P Y</right>
</rule>
<rule lang="EN">
<left>X</left>
<right>Y X</right>
</rule>
</forEach>
</forEach>
<frulesList>

Now, if only English grammar rules are to be generated, th@ieion must be run with the
option "-lang=EN?”", obtaining the following result:

Lamp— Bedroom Lamp
Lamp— Kitchen Lamp
Lamp— Hall Lamp

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 95/121

Lamp— LivingRoom Lamp
Radio— Bedroom Radio
Radio— Kitchen Radio
Radio— Hall Radio

Radio— LivingRoom Radio
Heater— Bedroom Heater
Heater— Kitchen Heater
Heater— Hall Heater
Heater— LivingRoom Heater

Change of Language in MIMUS

MIMUS controls the language switching by means of a specild at dialogue level, where
the language—dependent agents (ASR, TTS) as well as thmieand grammar modules are
reconfigured.

(RulelD: SWITCH,; [* Rule name. */
TriggeringCondition:
(DMOVE:specifyCommand, TYPE:SwitchLang); /* DMove that t riggers this rule. */
DeclareExpectations: {
Lang<=(DMOVE:specifyParameter, TYPE:Language);
[* Expectation linked to the previous
Dialogue Move.
The rule won't apply the PostActions
until the expectation is fulfilled.*/
}
ActionsExpectations: { /* Actions to be executed when an exp ectation is missing */
[Lang] =>
{ApplyTemplate(SwitchLanguage);} /* Which language do yo u want to speak? */
}

PostActions: { /* Actions to be executed once all expectatio ns are fulfilled */

@if (@is-SWITCH.Lang.CONT == "english")

{
LoadNLU(English); [* Load Lexicon and Grammar*/
setGrammar(English); [* ASR configuration */
setLanguage(English); /* TTS configuration */

}

@if (@is-SWITCH.Lang.CONT == "spanish")

{
LoadNLU(Spanish); [* Load Lexicon and Grammar*/
setGrammar(Spanish); [* ASR configuration */

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 96/121

setLanguage(Spanish); /* TTS configuration */
}
ApplyTemplate(SwitchLangConfirm); ¥ O.K., let's speak e nglish/spanish now */

}

4.5.5 Multimodality in MIMUS

As for multilinguality, multimodality will be considereddm two points of view in MIMUS.
First, we will show how multimodal grammars can be obtainredugh OWL2Gra, and then,
how multimodal fusion is achieved. MIMUS allows fully mutibdal interaction, ranging from
speech—only to click-only productions, and any combimatibthese (multimodal fusion). Full
multimodal ineraction also implies that MIMUS has the dito generate accurate graphical and
verbal answers (multimodal presentation). As previougplaned, the USE information state
or DTAC structure has been extended to allow for multimodaidn. Regarding multimodal
presentation, USE has defined a complete architecture satetvel, based on three layers: a
Content Planner, a Presentation Planner and a Realizatoiu gl

Capturing Multimodality through OWL2Gra

Now let us assume the same scenario (i.e. the same ontology)chuding multimodal entries;
namely voice and pen inputs. Following Oviatt’s results][20may be expected that the mixed
input modalities (voiceswitch this onpen: click on the lamp icon) may also include alternative
constituent orders, that is, different to the voice onlyunpThe NLU module may therefore
receive inputs such atamp switch or(verb at the endy?

This new set of rules can be easily accounted for by addirigppesrule to the configuration file:

<rulesList>
<forEach property="P"
subPropertyOf="hasDeviceCommand">
<forEach domain="X" range="Y">
<rule>
<left>Command</left>
<right>P Y</right>
</rule>
<rule>
<left>Command</left>
<right>Y P</right>
</rule>
</forEach>

2Note that linguistically speaking this order is also pokesib English in topicalized or left—dislocated construc-
tions such a3 he lamp, switch it on

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 97/121

</forEach>
</rulesList>

The new output will be the same as before but including theserales:

Command— Fan SwitchOff
Command— Heater SwitchOff
Command— Lamp SwitchOff
Command— DimmerLamp SwitchOff
Command— Radio SwitchOff
Command— TV SwitchOff
Command— Fan SwitchOn
Command— Heater SwitchOn
Command— Lamp SwitchOn
Command— DimmerLamp SwitchOn
Command— Radio SwitchOn
Command— TV SwitchOn
Command— Blind Close
Command— Blind Open

Multimodal Fusion Strategies

We have developed three different fusion strategies in TAakd two of them have been imple-
mented. The first solution is largely based on Johnston'&\idr] [10], and involves modifying
our parser to cope with simultaneous multimodal inputs, tandclude temporal constraints at
unification level. The second implementation proposes ainal solution to the problem, and
involves combining inputs coming from different multimddhannels at dialogue level. A third
strategy has been recently presented [17], and to put inmiards, it combines the best features
of the previous approaches.

A brief summary of these strategies is provided here, ajhca more detailed description is
available in D1.2b [15].

Strategy 1

The first strategy implemented is based on Johnston’s pabpasing a unification—based parser
and including modality and temporal constraints at uniitcatevel. The MIMUS implementa-
tion differs from Johnston’s in that a higher level of fleityiis provided.

The main motivation behind this strategy is that multimdglad conceived of as a single commu-
nicative act between two participants, and as such, it shisellhandled by a single multimodal
grammar. This strategy is therefore implemented at NLUIIésee figure 4.8). As expected,

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 98/121

MIMUS allows for the communicative act to range from speextlyto clicks—only or hybrid
inputs, and all are considered equal as far as the grammancemed. This is an advantage
as long as only single—task interactions are considerading aside multiple task interactions.
The pragmatic ambiguity which may result in multimodal nitisking cannot be resolved by a
single grammar.

When the parser receives an input sentence (either spadghelack—only or mixed-modality),

it calls the lexical analyzer adding two new feature-valagg MODALITY, TIME_ST. These
features are then used in conjunction with a set of logicarajors to define complex expres-
sions in order to enforce modality and temporal constraints

Speech
Speech Recognition
Click User
User Input ———
Graphical Inteface
User
Input
T Voice I
Multimodal Input Pool Presentation Layer Text To Speech

System Output

Multimodal Fusion
Lexical and
Grammatical
/
//

Analysis ’/ \
| |

|
|
/

k\ NLU Module

Figure 4.8: Strategy 1

Dialogue Manager|

~—
—_— —

Strategy 2

The second strategy combines simultaneous inputs conongdifferent channels (modalities)
at Dialogue Level (see figure 4.9). The idea is to check theimatial input pool before launch-
ing the actions expectations waiting an “inter—modalityie.

This strategy is implemented at dialogue level (Dialoguen®ger Module) and assumes that
each individual input can be considered as an independaitadRie Move.

In this approach, the multimodal input pool receives andestall inputs including information
such as time and modality. The Dialogue Manager checks fh& ool regularly to retrieve
the corresponding input. If more than one input is receivednd a certain time frame, they
are considered simultaneous or pseudo—simultaneousisioabe, further analysis is needed in
order to determine whether those independent multimogaitgare truly related or not.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 99/121

Speech

Speech Recognition

Click User
User Input ———
Graphical Inteface
User
Input
T Voice I
Multimodal Input Pool Presentation Layer Text To Speech

System Output
Input

Lexical and
Grammatical
\ Analysis

[\
[\

‘\ Dialogue Manager 4_}‘— NLU Module

\wmodal Fusio/

— _—

System

Figure 4.9: Strategy 2

Dialogue Rules may also be configured with the same logicataiprs mentioned in Strategy
one, since the Dialogue Manager actually uses the unificatiodule of the parser. Similar rules
could be configured within the Dialogue Manager.

Basically, the difference lies iwherethese rules are applied: for Strategy one, the coverage is
determined by the symbols (terminals and non terminald)iwithe grammar rules, while the
coverage for Strategy two are the DTAC structures that destine DMoves.

Strategy 3

Comparing the pros and cons of the previous strategiesyitidze concluded that:

1. Strategy 1 is more coherent in terms of the definition of mmaoinicative act as a single
event that may be more or less complex (single vs. multipldatites).

2. Nonetheless, strategy 1 implies a significant computatilmad and is more dependent on
time measures, which is not the case in strategy 2. This digpey and precision need
for strategy one implies as well larger amounts of real us¢a tb tune the multimodal
grammatr.

3. When dealing with additional or alternative modalitigng inter-modality disambiguation
will no longer be between pairs (one or the other), but woulgly the generation of
full disambiguation lattices. In this case strategy 2 wonddch a significant degree of

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 100/121

complexity whereas strategy 1 could handle it more easiherTagain, there would be a
significant computational overload with strategy 1.

4. Strategy 2 can handle independent simultaneous taskidaredt modalities (multimodal
multitasking), which would not be possible with strateg\bnetheless, strategy 2 presents
a potential theoretical problem that arises from the assimmghat every uni-modal input
can generate a dialogue move. No examples of this case hamddaend, but the opposite
has not been proven either.

The goal of this new strategy is to take advantage of the igesstde of each of the previous
strategies: including multimodal grammar entries and malgand modal constraints as in strat-
egy 1, but delegating the decision to the dialogue managesrder to take into account the
additional information involved in the strategy 2 decismmocess. Fortunately, this can be done
in MIMUS without much effort at all. The parser within MIMUSnders all possible parsing
chunks. In previous versions of the system (speech-onkiaes), the most likely chunk would
be selected by an internally developed criterion based guireral data. However, when this
selection strategy is deactivated, all possible parsiaglteare outputted. This basically means
that given a grammar where simultaneous or pseudo-sinadteamultimodal entries may or not
be related, the parser will output all possibilities: twaelated events in different modalities, or
one complex multimodal event. It will then be up to the dialegnanager to select which option
is more likely to be appropriate, instead of having to build tmost appropriate construction by
a post-parsing unification process.

4.5.6 Multimodal Presentation in MIMUS

MIMUS offers graphical and voice output to the users throagtelaborate architecture com-
posed of a TTS Manager, a HomeSetup and GUI agents. The rodkirpresentation architec-

ture in MIMUS consists of three sequential modules. Theasurversion is a simple implemen-

tation that may be extended to allow for more complex thézakissues hereby proposed, and
detailed in [27]. The main three modules are:

e Content Planner (CP): This module decides on the informatdoe provided to the user.
It is encoded as attribute-value pairs in a variant of the OT&otocol. As pointed out
by [29], the CP cannot determine the content independeraiy the presentation planner
(PP). In MIMUS, the CP generates a set of possibilities, framch the PP will select one,
depending on their feasibility.

e Presentation Planner (PP): The PP receives the set of fmssittent representations and
selects the “best” one in three steps:

1. First, it checks the contents proposed against the @lairaodalities, creating vari-
ants for those that are ambiguous, and discarding unfeasbions.

2. Then, it uses manually predefined selection rules toicesitie set of possible pre-
sentations.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 101/121

3. Finally, it checks whether there are concurrent opticets in which case it applies
an optimization algorithm based on [31] to select one of them

Along these steps, the PP uses the following external krdy@eesources, all of them en-
coded as OWL ontologies and accessed through the Knowledgad&r (KM): a Modal-
ity Model (based on Bernsen taxonomy, [4]), a User Model, at€&t Model, a set of
Multimodal Election rules and the Dialogue History.

e Realization Module (RM): This module simply takes the prgagon generated and se-
lected by the CP-PP, divides the final DTAC structure and seadh substructure to the
appropriate agent for rendering.

4.6 Dialogue Examples

The following is a single dialogue currently supported byMWS. Before each utterance, a brief
explanation of the phenomena illustrated is provided:

e HOTWORD: Shows how the system remains asleep until the keg ¥gpronounced.

— (Voice Input) Ambrosio
— (Voice Output) A su servicio... (at your service)

DEVICE MANAGER AND TALKING HEAD: Shows the system at work. Abmosio
nods while executing the physical command

— (Voice Input) Enciende la cocina (switch on the kitchen)
— (Visual Output) Expression—NOD

MULTIMODAL SYMMETRY: Shows how the same task can be accorsipéid graphically

— (Click Input) CommandOn - Patit
— (Visual Output) Expression-NOD

MULTICOMMAND: Shows how the user can say two commands in glgimtterance

— (Voice Input) Enciende la entrada y sube la persiana (swaitcthe hall and raise the
blind)

— (Visual Output) Expression—NOD (2)

CONTEXT CHANGE: Shows how the OWL ontology is automaticailyanged to take
into account a context change.

— (Moice Input) ¢, Cuantas luces hay encendidas? (how malniglage on?)
— (Voice Output) Hay tres luces encendidas (there are thgeéslion)

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 102/121

NATURAL LANGUAGE GENERATION: The system offers a more naailanswer taking
into account how the question is asked:

— (Voice Input) ¢ Cuantas luces hay encendidas en la coch@a® hany lights are on
in the kitchen?)
— (Voice Output) Hay una luz encendida en la cocina (there & laght on in the
kitchen)
COLLABORATIVE DIALOGUE: MIMUS asks for the piece of infornteon missing.

— (Voice Input) Apaga la luz (switch off the light)

— (Voice Output) ¢ Qué luz desea apagar? (which light do yainta switch off?)

— (Voice Input) La cocina (the kitchen)

— (Visual Output) Expression—NOD
MULTIMODAL FUSION: MIMUS fuses the information coming psdasimultaneously
if the inputs are complementary. The system does not askiftrer information.

— (Moice Input) Apaga esta luz (switch off this light)

— (Click Input) Patial

— (Visual Output) Expression—NOD
MULTIMODAL MULTITASKING: The system does not fuse pseudarsiltaneous in-
formation if the inputs are NOT complementary.

— (Voice Input) Enciende la cocina (switch on the kitchen)

— (Click Input) CommandSwitch - TELEPHONE

— (The Telephone GUI pops up)

— (Visual Output) Expression—NOD

RESTRICTIONS AND QUANTIFIERS: MIMUS handles quantifierdlfand restrictions
(except)

— (Voice Input) Enciende todas las luces menos el dormitauatCh on all the lights
except the bedroom)
— (Visual Output) Expression—NOD

— (Voice Input) Apaga todas las luces menos el patio (switélalbthe lights except
the patio)

— (Visual Output) Expression—NOD
MULTILINGUALITY ON THE FLY: MIMUS can change languages atmgtime:

— (Voice Input) Cambia a inglés (switch to English)

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 103/121

— (Voice Output) Very well. We'll speak English from now on.

e CONTEXT AWARENESS: MIMUS is context aware. The bathroonhligs switched on
without disambiguation.
— (Click Input) CommandZoomin - Bathroarh
— (Moice Input) Switch on the light
— (Visual Output) Expression—NOD
— (Click Input) CommandZoomOut
e DIALOGUE HISTORY AND RECOVERY ACTIONS: MIMUS recovers incoplete di-
alogue moves. The dialogue history is preserved throughgukge change.
— (Voice Input) Switch on the light
— (VWoice Output) Which light do you want to switch on?
— (Voice Input) Switch to Spanish

— (Voice Output) Muy bien. Hablemos (Very well. We’ll speaka®ysh from now on)
espafiol a partir de ahora.

— (Voice Output) Previamente indicd que queria encenderlun. ‘Qué luz desea
encender? (you previously requested to switch on a lighticiMbne do you mean?)

— (Voice Input) El dormitorio (the bedroom)
— (Visual Output) Expression—NOD

e MULTIMODAL FUSION OF MULTIPLE INPUTS: MIMUS fuses pseudo+#aultaneous
information including a multicommand.

— (VMoice Input) Apaga esta luz y enciende esta (switch offligist and switch on this
one)

— (Click Input) Patial

— (Click Input) Kitchenl

— (Visual Output) Expression—NOD

e BYE!

— (Voice Input) Adibs (goodbye)

— (Voice Output) Si me necesita, llameme. Ahora con su perymg retiro. (Alright
then. Let me know if you need me. Bye for now!)

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 104/121

4.7 Conclusion

In this chapter, an overall description of MIMUS showcasetf@ in home domain has been
provided, including the references as to where to find motaildd information. Throughout

this project and in order to develop a fully multimodal andltingual in-home showcase, a
number of tasks have been carried out:

e Develop and implement multimodal and multilingual strageg
e Extend the IS to allow for multimodality

¢ Design 3 different fusion strategies

e Develop a fully functional home ontology in OWL

e Use the ontologies as the knowledge source for most tasks
e Develop a multimodal presentation architecture

e Implement a dynamic 3D Home Set-up

e Implement a 3D virtual character

e Design and implement a fully multimodal a multilingual WoXperimental platform
e Conduct a series of multimodal experiments

e Collect MIMUS, a multimodal corpus for the in-home domain

e Use UCD (User Centered Design) strategies for the design@nfijuration of the MIMUS
system

e Design and implement strategies to handle multimodal nasking
e Design and implement the MIMUS showcase

¢ Other tasks such as the implementation of additional teaizppers, etc.

In relation to multimodality, two approaches to multimofisdion have been implemented. Both
approaches make use of the same extended information sgpateed in WP3. The first results
have concluded that performing multimodal fusion at thdodjae level (by means of a mul-

timodal input pool) poses some advantages over a grammad lmagltimodal fusion strategy.

However, it is expected that the implementation of the teirdtegy should provide even more
reliable results.

MIMUS approach to multilinguality is similar to the fusiotrategy two, in the sense that both
are controlled at dialogue level. There is a special disdogue in charge of controlling the
language switching, where the ASR, the TTS and the NLU cordigpns are updated.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 105/121

With regard to knowledge management, MIMUS performs refegeresolution through RDQL
gueries over an OWL ontology describing the devices in tradaaVIIMUS has shown how the
same ontology may be used in generating multilingual dossgacific grammars, thus allowing
for a unified approach to multilinguality in the system. Tapgproach is similar to that described
for GoDiS in the GF paradigm, as described in [2].

The combined use of this unified approach to multimodalitgt arultilinguality and the ISU
approach has proved extremely profitable, and highly sap#wicurrent state—of-the—art dia-
logue systems: the naturalness and flexibility providedheylSU approach combines with the
rapid prototyping and coherence achieved through the uaedomain ontology in OWL. This
approach will promise to be more fruitful if dialogue rulemnde generated semi—automatically
from the ontology as well.

Overall, MIMUS is a fully multimodal and multilingual showee defined by a unified approach
to multimodality and multilinguality in the Extended Infoation State Update approach. A
number of theoretical and practical issues have been addtasiccessfully, resulting in a user—
friendly, collaborative and humanized system.

Version: May 11, 2007 (Final) Distribution: Public

Chapter 5

Conclusion

The work described in this deliverable has addressed themleng research questions of how
to unify multimodality and multilinguality in a common fraawork, what advantages this gives,
how the Information State Update (ISU) approach can be us#dd regard, and how to imple-
ment a unified approach. All these issues have been exploretation to the in-home domain.
The practical issue of implementation has been answeredibprovision of three ISU-based
showcase systemsd®IS, the Linguamatics Interaction Manager, and MIMUS, alistrating
various aspects of multimodality and multilinguality.

In this concluding chapter, we discuss our work on multimibgland multilinguality focusing
on three issues: current state-of-the-art systems, theafldoach, and the implementation of
research in our showcase systems.

5.1 Advantages over current state-of-the-art

In a general way, the TALK systems showcased here add to seameh and commercial ap-
plications fields by investigating the unification of multahality and multilinguality in several
interesting ways. The particular unification approach Watnvestigate is in itself an advantage
over state-of-the-art systems, as demonstrated by therhdwiexible, and coherent system
behaviour that follows.

An specific advantage of GF for multimodal grammars is thptutrfrom different modalities
can be combined, through the use of discontinuous constguén a way that is not possi-
ble in context-free grammars such as Regulus [25], exceghfough potentially costly post-
processing.

Another advantage of our work is the combination of an ISUeyssuch as GDIS with a
multilingual grammar framework such as GF, which enablegrprototyping, and the porting
of a dialogue system to a new language, a new domain, or a nelalityo

A clear advantage of the systems showcased here over cundeistrial state-of-the-art systems,
such as systems developed using VoiceXML, is the capasilfor advanced dialogue manage-
ment, giving highly flexible and natural interactions witietuser. This advantage pertains to

106

IST-507802 TALK D1.6 May 11, 2007 Page 107/121

the ISU approach, as do a number of advantages over curegatadtthe-art systems. Such
advantages are described in the next section.

5.2 Advantages of the ISU approach

The ISU approach has proven highly advantageous in the @@weint of a unified approach to
multimodality and multilinguality, and for the systems sloased for the in-home domain here.
A key to this is both the use of a central repository of infotimathat is maintained throughout
a dialogue, and the highly modular system architecturedates with an ISU system.

The success of the ISU approach is quite generally showrdsutcessful porting of the systems
showcased here, from unimodal and unilingual incarnationsday’s fully flexible, multimodal
and multilingual systems. This is shown by MIMUS throughiitslusion of English and Span-
ish, a graphical display of an apartment, and a talking hi#aslshown by G®DIS through En-
glish and Swedish being included in alb®1S applications showcased, and a number of other
languages incorporated in theoBGGoODIS application, including the non-Indo-European lan-
guage Finnish. The GDIS applications also include a number of different non-spesodal-
ities. The success of the ISU approach is also shown by thgulaimatics Interaction Manager,
where reconfigurability in relation to multimodality hasgmea major issue.

More specifically, the ISU approach enables the coding dbdige behaviour independent of the
languages and domains involved, so that dialogue behagarube developed separately from
domain and linguistic knowledge, and dialogue behaviounmanents can be reused when the
system is ported to another language or domain. This enedgbed porting of an ISU dialogue
system to another domain as well as to a new language. It #tsesamultilingual systems,
and the incorporation of several different domains witlia same system, while maintaining
coherence for system dialogue behaviour.

MIMUS and GoDIS showcase the advantages of the ISU approach through theendence
of dialogue behaviour from specific languages, both at tiveldpment stage, where dialogue
behaviour can be modified and extended in isolation fromulistic resources and vice versa,
and for the user at run-time. At run-time, MIMUS andBIS both allow the user to switch
languages in the middle of a task, and the information statelsmodular nature of both sys-
tems ensure that the task can be continued in the new langathgelevant information being
maintained in the information state.

The porting of an ISU system to a new domain is illustrated ilMS through the inclusion
of a number of different devices, functionalities, and typé dialogue, in the same system. In
GoDIS it is illustrated through the porting of the system to a nandf different applications,
and also through the possibility of application switchingidg a dialogue. The Linguamatics
Interaction Manager here takes a similar approach to tred us MIMUS, through the inter-
action with a very large number of different devices enabigtiin the same system. In this
regard, the Linguamatics Interaction Manager has also dstraied real-life success of their
system through its integration in an actual house.

For all three showcase systems, a central repository affivdtion in the form of the information

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 108/121

state has provided an adaptive locus for multimodalityhat the same basic information state
has been maintained for the move to multimodality, givingreohotonic” implementation of a
multimodal system from a unimodal system. For instanceglation to MIMUS we have de-
scribed how a pre-TALK unimodal DTAC structure has been agmgped to a multimodal DTAC.
In general this means that there has been no need to cornypieteite update rules and other
dialogue system control, but that existing rules could belifrexl and new ones added, without
the disruption of already existing system behaviour. Farrtiore, for all three systems, a central
repository of information in the form of a structured infation state provides a coherent and
accessible representation of the current context, as ddedéhe determination of multimodal
and multilingual aspects.

The use of structured information states is also highly athgeous from an interactional per-
spective. An information state allows information to beessed and modified through different
means and in different orders, which provides a possildityery advanced dialogue behaviour
giving highly flexible dialogue systems. For instance, thitaken full advantage of in @D1S,
which includes solutions for a number of dialogue challengech as grounding, feedback, clar-
ification, multiple simultaneous tasks, information shgrbetween tasks, user initiative, belief
revision, and so on. All these are enabled and given elegdutians through the existence of
a structured information state, and, importantly, the 1$lgraach also allows these dialogue
processing factors to be solved domain-independentliyadhey can be reused by anpBIS
application. In fact, the GTGODIS application is specifically designed with this in mind,tas i
ports the ®TTIS domain to ®DIS, receiving all the GDIS dialogue solutions for free.

5.3 Implementation of research in the showcases

The present deliverable provides software for the implasgkin-home showcases, with a fo-
cus on the implementation of multimodality and multilingitya In this section we provide a
concluding overview of how the research has been implerdentine three showcases.

The GoDIS showcase system includes four different applicatiords GoD1S work is also sup-
plemented by the separate systemm1@Is. The multimodal and multilingual GF grammars for
the GoDIS applications involve, first of all, a commoroBI1S resource grammar, that contains
all contributions that are in common ford®1S applications. This common resource grammar is
implemented using the GF Resource Grammar, which existefaral languages. Secondly, the
GF implementation involves application-specific gramm&sTTIS only contains such specific
grammars, as it is not a@1S application.

All GF grammars implement the unified approach to multimisdaind multilinguality through
the distinction between abstract and concrete syntax, evtiexr concrete syntax corresponds
to the different natural languages and the different maidali all unified through the abstract
syntax.

The implementation of the actual applications showcasethmmars and different input and
output modalities, as well as dialogue management aspé&tis.GoTTIS system implements
English and Swedish GF grammars. It implements integrgteeéch and pointing modalities

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 109/121

for user input, with the pointing being enabled through at&bnic map. System output is
implemented using the same map, as well as speech.

GorTTisincludes minimal dialogue management capabilities. Thédle and advanced capabil-
ities enabled by the ISU approach are therefore implementakl GoDIS applications directly
in GoD1S, in the form of the information state, the update rules, thedoverall system archi-
tecture and control. This includes extensions for multialitgd and multilinguality. G®DIS is
in turn built using the TrindiKit4 for ISU modelling.

GoTGoDIS, DJ-®DIS, and ®DI1S-DELUX all implement graphical input and output using
the DynGUI, a generic GUI agent developed in TALK that enaltlee implementation of the
research on the Multimodal Menu-based dialogue (MMD) aagho Graphical input and out-
put in AGENDATALK is achieved through the stand-alone Borg calendar ageithwias been
enhanced in TALK to allow advanced control of graphical aiitp

Speech input and output ford®1S is implemented using Nuance for ASR, and Vocalizer and
Realspeak for TTS. OAA is used to wire togethen[@ S applications and the various compo-
nents used for multimodality and multilinguality.

Table 5.1 shows an overview of the mapping between reseasties and showcaseoB1S
applications. In addition to multimodality and multilinglity, the table includes information
on the use of GF and features for dynamic reconfigurationli@jmn switching and plug and
play). The DICO application, developed outside of TALK bdapated for English in the project,
is included for reference.

The Linguamatics Interaction Manager is designed to haveall $ootprint. The core code
is implemented in C. Message passing uses a proprietargrrauitten in Java. The Nuance
Recogniser has been used for speech recognition, and Nvacakzer for speech synthesis. For
the installation at the Advantica home, Loughborough Ursiig supplied a graphical rendering
program and a task manager which communicated with the e&viCommunication with the
Loughborough system is via message passing, with XML usegréphical output.

The MIMUS implementation focuses on light control over ateractive 3D floorplan of an
apartment running on a Tablet—PC. Input may be by speech didl¢s only, or a combination
of both. The user may interact in English, Spanish and Geratdrough language change is only
implemented for English into Spanish and viceversa. Theetlwersions share the same OWL
ontolgy, from which three different NLU grammars have beenayated. Separate recognition
grammars have also been developed for English, Spanish anda® in Nuance format. A
single set of dialogue rules is used for the three languaagess the case of templates in the
NL generation module. Output may be graphical and/or spokeough a talking head and
home setup specifically developed for the project. The TT&ldsr English and Spanish has
been Loquendo, and Mary for German. The sofware has beeeingpited in C++, and agents
communicate via OAA solvables.

Appendix A.1 lists all the relevant software for the threewbases.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 110/121

DJ-GoDIS | GoDISDELUX | GOTGODIS | AgendaTALK | DICO
Multimodal | Yes, MMD | Yes, MMD Yes, MMD | - -
input
Multimodal | Yes, MMD | Yes, MMD Yes, MMD | Yes Yes
output
Languages | Swedish, | Swedish, Swedish, Swedish, Swedish,
English English English, English English
Finnish
Italian
French
Spanish
German
Language Button Button Button Dialogue Offline
switching click click click
Use of GF Parsing, Parsing, Parsing, ASR SLM -
generation,| generation, generation,
ASR ASR ASR
Application | Implicit Implicit (Implicit) - Explicit
switching
Plug and play| Offline Offline (Offline) - -

Table 5.1: Mapping research to showcases foDES applications.

Version: May 11, 2007 (Final) Distribution: Public

Bibliography

[1] Tilman Becker, Nate Blaylock, Ciprian Gerstenbergendfeas Korthauer, Nadine Perera,
Peter Poller, Jan Schehl, Frank Steffens, Rosmary StegraadnJochen Steigner. In-car
showcase based on talk libraries. Deliverable D5.3, TAL&j&ut, 2006.

[2] Tilman Becker, Staffan Larsson Peter Poller, Oliver loam Guillermo Pérez, and Jan
Scheh. D5.1: Software infrastructure. Deliverable 5.1k Paoject, 2006.

[3] Tilman Becker, Peter Poller, Staffan Larsson, Oliveman, Guillermo Pérez, Jan Schehl,
Karl Weilhammer, and MORE AUTHORS. Software infrastrueturDeliverable D5.1,
TALK Project, 2006.

[4] N. O. Bernsen. Multimodality in language and speechayst from theory to design
support tool.Multimodality in Language and Speech Syste?@91.

[5] Bjorn Bringert, Robin Cooper, Peter Ljunglof, and AarRanta. Development of mul-
timodal and multilingual grammars: viability and motivati Deliverable D1.2a, TALK
Project, 2005.

[6] K. Clarke, M.R. Lewin, D. Atkins, and R.S. Kalawsky. Tegg a framework for multimodal
control in the home environment. Rroc. Perspectives in Pervasive Computipgges 87—
95, IEE, London, 2005. DTI.

[7] lvana Kruijff-Korbayova (editor), Gabriel Amores, Ma Blaylock, Stina Ericsson,
Guillermo Pérez, Kalliroi Georgila, Michael Kaisser, fa Larsson, Oliver Lemon, Pilar
Manchoén, and Jan Schehl. Extended information state rmgddDeliverable D3.1, TALK
Project, 2005.

[8] Ivana Kruijff-Korbayova (editor), Gabriel Amores, dan Bockgard, Stina Ericsson,
Ciprian Gerstenberger, Rebecca Jonson, Oliver Lemonr;, Fidaenchon, David Milward,
Peter Poller, Aarne Ranta, and Jan Schehl. Modality—speesiources for presentation.
Deliverable D3.3, TALK Project, 2006.

[9] Stina Ericsson, Ciprian Gerstenberger, Pilar Manclabid Jan Schehl (editor). Plan library
for multimodal turn planning. Deliverable D3.2, TALK Prajg 2006.

[10] Michael Johnston. Unification—based multimodal pagsin Coling—ACL, pages 624-630,
1998.

111

IST-507802 TALK D1.6 May 11, 2007 Page 112/121

[11] Michael Johnston, Philip R. Cohen, Sharon L. Oviatt daMcGee, James A. Pitman, and
Ira A. Smith. Unification—based multimodal integration.AGL, pages 281-288, 1997.

[12] Staffan Larsson.lssue-based Dialogue ManagemerRhD thesis, Goteborg University,
2002.

[13] Staffan Larsson, Gabriel Amores, Rebecca Jonson,@&lQesada. Siridus system archi-
tecture and interface report (enhanced version). Progtastable 6.3, SIRIDUS, 2002.

[14] Peter Ljunglof, Gabriel Amores, Hakan Burden, PiManchon, Guillermo Pérez, and
Aarne Ranta. Enhanced multimodal grammar library. Dedilbr D1.5, TALK Project,
2006.

[15] Peter Ljunglof, Gabriel Amores, Robin Cooper, Davigelh, Pilar Manchon, Guillermo
Pérez, and Aarne Ranta. Multimodal grammar library. Behlble D1.2b, TALK Project,
2006.

[16] Peter Ljunglof, Bjorn Bringert, Robin Cooper, Anrh@rlotte Forslund, David Hjelm, Re-
becca Jonsson, Staffan Larsson, and Aarne Ranta. The TAdidrgar library: an integra-
tion of GF with TrindiKit. Deliverable D1.1, TALK Project,@05.

[17] P. Manchon, G. Perez, and G. Amores. Multimodal fusidnnew hybrid strategy for
dialogue systems. IiProceedings of International Congress of Multimodal Ifaees
(ICMI06), Banff, Alberta, 2006.

[18] David Milward, Gabriel Amores, Tilman Becker, Nate Black, Malte Gabsdil, Staffan
Larsson, Oliver Lemon, Pilar Manchon, Guillermo Pérex] dan Schehl. Integration of
ontological knowledge with the isu approach. Deliverab®RI TALK Project, 2005.

[19] David Milward, Gabriel Amores, Nate Blaylock, Staffararsson, Peter Ljunglof, Pilar
Manchoén, and Guillermo Pérez. Dynamic multimodal irae€f reconfiguration. Deliver-
able D2.2, TALK Project, 2006.

[20] Sharon Oviatt, S. L., DeAngeli, A., and Kuhn K. Integoat and synchronization of input
modes during multimodal human—computer interactionPioceedings of Conference on
Human Factors in Computing Systems: CHI '91097.

[21] J. F. Quesada and J. G. Amores. Knowledge—based reteresolution for dialogue man-
agement in a home domain environment. In M. Ellen J. Bos andl&heson, editors,
Proceedings of the sixth workshop on the semantics and @aggrof dialogue (Edilog)
pages 149-154, September 2002.

[22] José F. Quesada, Doroteo Torre, and J. Gabriel AmoBeEsign of a natural command
language dialogue system. Project deliverable 3.2, SIFEP2000.

[23] Aarne Ranta. Grammatical Framework, a type-thecsieicammar formalismJournal of
Functional Programmingl4(2):145-189, 2004.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 113/121

[24] M. Rayner, D. Carter, P. Bouillon, V. Digalakis, and M.ildh. The Spoken Language
Translator Cambridge University Press, 2000.

[25] Manny Rayner, Beth Ann Hockey, and Pierrette Bouill®utting Linguistics into Speech
Recognition: The Regulus Grammar Compil€SLI Publications, 2006.

[26] T. Russ, A. Valente, R. MacGregor, and W. Swartout. #taktexperiences in trading off
ontology usability and reusability. IRroceedings of the Knowledge Acquisition Workshop
(KAW99) Banff, Alberta, 1999.

[27] Jan Schehl, Gabriel Amores, Stina Ericsson, Ciprianst@aberger, and Pilar Manchon.
Plan library for multimodal turn planning. Deliverable 3Talk Project, 2006.

[28] W3C. Simple knowledge organisation system (skos), 6200
http://mww.w3.0rg/2004/02/skos/core/.

[29] W. Wabhlster, E. Andre, W. Finkler, H. Profitlich, and TdRi Plan-based integration of
natural language and graphics generatiriificial intelligence pages 287-247, 1993.

[30] Karl Weilhammer, Rebecca Jonson, Aarne Ranta, ance¥Mawng. Generation of language
models using GF. Deliverable D1.3, TALK Project, 2006.

[31] M. X. Zhou and V Aggarwal. An optimization-based appmbado dynamic data content
selection in intelligen multimedia interfaces. Pnoceedings of the 17th annual ACM sym-
posium on User interface software and techno|&f04.

Version: May 11, 2007 (Final) Distribution: Public

Appendix A

Software Library

This chapter lists the software in the deliverable. Withshstems in alphabetical order, Section
A.1 gives the software for GDIS, Section A.2 the software for the Linguamatics Interarctio
Manager, and Section A.3 for MIMUS.

A.1 Software for GoDIS

This section lists the software for theo®1S applications @DIS-DELUX, DJ-GoDIS, GoT-
GoDIS, and AGENDATALK, and for the ®TTIS system. Following the structure of Chapter 2,
grammars are listed first, in A.1.1. Software for the appitces are then listed in A.1.2.

A.1.1 Grammars
Grammars for GOTTIS

In addition to the grammars listed below, there are a numiapdules which link them together.

e Common grammars

— Transport : Defines the category of transit network stops.
— Lines : Defines the category of transit network lines.

e City-specific grammars

— Gbg: Defines the Gothenburg transit network stops.
— GhbgLines : Defines the Gothenburg transit network lines.

e System grammars

— Route : Abstract module which defines the routes given as answetfsdogystem.

114

IST-507802 TALK D1.6 May 11, 2007 Page 115/121

— RouteMap : Concrete syntax for drawing output.
— RouteEng , RouteSwe : Concrete syntax for speech output.

e User grammars

— TransportQuery : Defines the (multimodal) queries which the user can givénéo t
system.

Common GoDIS grammars

The grammars are divided into grammars for System uttesahmeUser utterances, and general
resources.

A typical GF grammar (saysram) consists of one abstract syntax which is calf@&hm and

a number of concrete syntaxes. One of the concrete syntaxesics the @DIS semantics,
this will be calledGramSem. Then there is a number of syntaxes for the differentulages of
the domain, e.g.GramEng, GramSwe, GranmSpa, ... If the grammar is written as a language-
independent grammatr, it is call&kaml. Finally the multimodal system grammars are called
GramMMI, GramMMEnNg, GramMMSwe, etc. In the following we list all these grammars as
one single multilingual grammar, which we c&@ram Note that one such cluster does not
necessarily contain all the mentioned files, it depends egtammar.

e General resources

— Prolog : Contains resources for building terms in Prolog syntax

— GodisApp : Contains resources for combining several applications

— GodisMM: Contains resources for multimodality, both input and atitp

— GodisResource : Contains general language-independent resources

— GodisLexicon : Contains general language-specific resources

— GodisLang : More language-independent and language-specific reseurc

e System grammars

— GodisCat : Contains (language-independent) definitions of the categused in sys-
tem utterances

— GodisSystem : Contains (language-specific) definitions of domain-iredegent sys-
tem utterances

e User grammars

— GodisUser : Contains definitions of domain-independent categoriesuser utter-
ances

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 116/121

Grammars for GoTGoDIS
e General resources

— Lines : Contains definitions of trams, busses, and ferry lines
— Stops : Contains definitions of tram/bus/ferry stops
— TramLexicon : Contains language-specific definitions of lexical items

e System grammars

— TramSystem : Contains language-independent definitions of domaimiipesystem
utterances

e User grammars
— TramUser : Contains language-independent definitions of domaimiipeiser utter-
ances
Grammars for AGENDATALK
e General resources

— BookingDates : Contains definitions of the concept of Date.

— BookingTimes : Contains definitions of the concept of Time.

— BookingEvents : Contains definitions of the concept of Event.

— Booking : The union of BookingDates, BookingTimes and BookingEsent
— AgendalLexicon : Contains language-specific definitions of lexical items.

e System grammar
— AgendaSystem : Contains definitions of domain-specific system utterances
e User grammar

— AgendaUser : Contains definitions of domain-specific user utterances

Grammars for DJ-GoDIS
e General resources

— MusicArtists : Contains definitions of artists

— MusicSongs : Contains definitions of songs

— Music : The union of all artists and songs

— MP3Lexicon : Contains language-specific definitions of lexical items

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 117/121

e System grammars
— MP3System: Contains language-independent definitions of domaimiBpesystem
utterances

— MP3SystemDelux : The union of the System grammars of this application an®Gs-
DELUX

e User grammars
— MP3Global : Contains definitions of domain-specific user utterancés;are global

and accessible by other applications

— MP3User: Extends the global utterances with utterances which aa to this appli-
cation

— MP3Delux : The union of this application’s local grammar (MP3Usenx éhe QDI S-
DELUX global grammar (DeluxGlobal)

Grammars for GoDIS-DEL ux
e General resources

— Lamps: Contains definitions of different kinds of lamps

— Rooms Contains definitions of the available rooms

— Socket : Contains definitions of the available lamps in each room

— DeluxLexicon : Contains language-specific definitions of lexical items

e System grammars

— DeluxSystem : Contains language-independent definitions of domaimiipsystem
utterances

— DeluxSystemMP3 : The union of the System grammars of this application and DJ-
GoDIS

e User grammars
— MP3Global : Contains definitions of domain-specific user utterancés;are global
and accessible by other applications

— MP3User: Extends the global utterances with utterances which aa to this appli-
cation

— MP3Delux: The union of this application’s local grammar (DeluxUsamnd the DJ-
GoDIS global grammar (MP3Global)

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 118/121

A.1.2 Applications
GoTTIS

The GoTTIS software can be found astamdemo library, separate from the @IS applica-
tions.

GoTGoDIS

GoTGoDIS software can be found in tlemain-tram library. This library contains the do-
main modulegram-multimodal-dme.pl andtram-multimodal-control.pl and configura-
tion files needed to start the application. The GF grammaad f parsing and generation and
the speech recognition grammars are found irgtammars directory.

The domain dependent resources used @1 GoDIS are located in the directoResources .
Here we find the device filedevice _graph.pl anddevice _map.pl , the filedomain _tram.pl
andsemsort _tram.pl

To run the application you would also need the tiidndemo.jar ~ which includes the OAA map
agent and OAA graph agent.

AGENDATALK

All A GENDATALK software can be found in thégomain-agendatalk library. This includes
domain knowledge and lexica in the libraResources , as well as device files for the Borg
calendar. It also included speech files, and modules fordkareced generation capabilities in
AGENDATALK .

DJ-GoDiIS

The DJ-GDiSsoftware is in thelomain-player library. This library contains domain mod-
ules, grammars, various resources, and all other softwatéé application.

GoDIS-DEL uUx

GoDIS-DELUX sofware can be found in treomain-delux library. This library contains the
domain moduleslelux-multimodal-dme.pl and delux-multimodal-control.pl and con-
figuration files needed to start the application. The GF grammsed for parsing and generation
and the speech recognition grammars are found igrdmemars directory.

The domain dependent resources useddDGS-DEL UX are located in the directoBesources .
This is the location of the device files for each lamp and ferdatabase device. Located here is
also the prolog database containing specification of to®&-DELUX home (latabase.pl).

We also find the filedomain _delux.pl andsemsort _delux.pl

Files needed for the @D1S-DELUX gui is found in the directorelux _gui . This includes the
OAA GoDIS-DELUX agent used in the application.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 119/121

A.2 Software for the Linguamatics Interaction Manager

The Linguamatics Interaction Manager consists of the ¥alg modules:
1. A Java router
2. A C executable
3. The following configuration files:

(a) Specification of path information for temporary files
(b) Communication strings for sending messages to the resexgy house etc.

(c) Formatting options for graphical output (including défon of XML tags if appro-
priate)

(d) Escape options for the grammar
(e) The ontology

A.3 Software for MIMUS

This section lists the software and resources included asrtaop MIMUS, each subsection
corresponding to a different directory. The structure aaches refer to the CD attached to this
deliverable. The software components are OAA agents destm deliverable 5.1 [2].

A.3.1 Root Directory: Batch Files

At the root directory there is a set of initial batch files @th Their names are variations over
“domo-Talk” whose extension depends on the language inlwliggcwant to use MIMUS (“en”
= English, “es” = spanish, “ger” = german) and whether we Walhtrace active or not (“test”).

The BaseDirectory path has to be modified to specify where the MIMU&cliory structure is
placed and where the OAA facilitator is installed.

A3.2 VRM

VRM stands for “Voice Recognition Manager”. This directancludes the Nuance Wrapper.
Nuance 8.5 must be installed in the computer where the sddtiseexecuted, and the License
Manager script has to be modified, filling the field “PUT-YOUWREENSE-HERE".

A.3.3 Talking Head

MIMUS avatar, expressing emotions graphically and syn#iveg voice through Loquendo TTS.
Needs VS.Net framework and Loquendo 7.0.1 installed.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 120/121

A.3.4 Ontology

OWL ontology with all the in-home knowledge configured apleis Subject—Property—Object.

A.3.5 MMiIinputPool

External pool for multimodal inputs storage. Provides tlements upon request acting as a
FIFO queue.

A.3.6 MimusCore

This directory includes the MIMUS Dialogue Manager. A sudéy named “ConfigFiles” in-
cludes the lexicon, grammar and dialogue configuration, filessified by language. There is a
special folder called “commarules” with dialogue rules that apply to all languages.

A.3.7 Merlin

As an alternative to the Talking Head for those users with@mguendo installed, the agent
“Merlin” is included, a wrapper for the Microsoft Animatedg@&nt that uses the TTS provided
with Windows XP. Needs the Microsoft Animated Agent softevarstalled (free with Windows
XP).

A.3.8 HomeSetup

This agent represents the house layout, loaded from theldgytat runtime. Needs VS.Net
framework installed.

A.3.9 |DeviceManagerAgent

Agent which translates the software commands to physia trough the X10 protocol. Needs
the HomeControl software installed.

A.3.10 jKManagerAgent
Agent that queries the OWL ontology by means of the RDQL Laggu

A.3.11 |DisplayAgent

Agent whose role is to present graphically the system osfpeither by text or by a list of
clickable options. The decision on how to present the infdrom is taken by the MIMUS
Dialogue Manager.

Version: May 11, 2007 (Final) Distribution: Public

IST-507802 TALK D1.6 May 11, 2007 Page 121/121

A.3.12 jMenuAgent,]MP3Agent, jTelephoneAgent

The idea behind these agents is to provide a centralizedat@fiimore complex devices that are
likely to be found in the house, like a telephone or an MP3@laliowever, in its current status,
only the graphical representation of these modules is shawtim no further funcionality.

Version: May 11, 2007 (Final) Distribution: Public

