
Enhanced Multimodal Grammar Library

Peter Ljunglöf Gabriel Amores Håkan Burden
Pilar Manchón Guillermo Pérez Aarne Ranta

Distribution: Public

TALK
Talk and Look: Tools for Ambient Linguistic Knowledge

IST-507802 Deliverable 1.5

15/08/06

Project funded by the European Community
under the Sixth Framework Programme for
Research and Technological Development

The deliverable identification sheet is to be found on the reverse of this page.

Project ref. no. IST-507802
Project acronym TALK
Project full title Talk and Look: Tools for Ambient Linguistic Knowledge
Instrument STREP
Thematic Priority Information Society Technologies
Start date / duration 01 January 2004 / 36 Months

Security Public
Contractual date of delivery Jun 06
Actual date of delivery 15/08/06
Deliverable number 1.5
Deliverable title Enhanced Multimodal Grammar Library
Type Report
Status & version Public Final
Number of pages 55 (excluding front matter)
Contributing WP 1
WP/Task responsible UGOT
Other contributors USE
Author(s) Peter Ljunglöf, Gabriel Amores, Håkan Burden, Pilar

Manchón, Guillermo Pérez and Aarne Ranta
EC Project Officer Evangelia Markidou
Keywords grammar, multilingual, multimodal, multimodal fusion,

OWL, ontology, dialogue systems, Grammatical Frame-
work, TrindiKit, GoDiS, DelfosNCL

The partners in TALK are: Saarland University USAAR

University of Edinburgh HCRC UEDIN

University of Gothenburg UGOT

University of Cambridge UCAM

University of Seville USE

Deutches Forschungszentrum fur Künstliche Intelligenz DFKI

Linguamatics LING

BMW Forschung und Technik GmbH BMW

Robert Bosch GmbH BOSCH

For copies of reports, updates on project activities and other TALK-related information, contact:

The TALK Project Co-ordinator
Prof. Manfred Pinkal
Computerlinguistik
Fachrichtung 4.7 Allgemeine Linguistik
Postfach 15 11 50
66041 Saarbrücken, Germany
pinkal@coli.uni-sb.de
Phone +49 (681) 302-4343 - Fax +49 (681) 302-4351

Copies of reports and other material can also be accessed via the project’s administration homepage,
http://www.talk-project.org

c©2006, The Individual Authors.

No part of this document may be reproduced or transmitted in any form, or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system, without
permission from the copyright owner.

Contents

Summary . 1

1 Introduction 2
1.1 OWL, the Web Ontology Language . 4
1.2 An overview of the Grammatical Framework . 5

1.2.1 Main features of GF . 5
1.3 The GF resource grammar library . 6

1.3.1 Implemented languages and linguistic coverage 7
1.3.2 A small example . 8
1.3.3 Inflection paradigms . 9
1.3.4 Syntax rules . 9
1.3.5 Syntactic structures on the sentence-level . 10
1.3.6 Sub-sentential syntactic structures . 11
1.3.7 Multimodality . 13

2 Generating Multilingual Grammars from OWL Ontologies in MIMUS 14
2.1 Introduction . 14
2.2 Automatic grammar generation . 15

2.2.1 Generating grammars from ontologies . 16
2.3 Solution overview . 16
2.4 Configuration files . 17
2.5 Overview of the algorithm . 17
2.6 Showcases . 19

2.6.1 Sample rules . 19
2.6.2 Capturing multimodality . 21
2.6.3 Capturing multilinguality . 22

2.7 Conclusions and future work . 24

3 Ontologies and Grammatical Framework 25
3.1 Relating existing ontologies with abstract GF grammars 25

3.1.1 Classes and individuals . 25
3.1.2 Properties . 27

i

IST-507802 TALK D:1.5 15/08/06 Page ii/55

3.1.3 General OWL axioms and restrictions . 29
3.1.4 Ontologies and concrete syntax . 29

3.2 Incorporating the Mimus in-home ontology . 30
3.2.1 The Mimus ontology as an abstract GF grammar 30
3.2.2 Mimus configuration files as GF concrete syntax 31
3.2.3 Discussion . 32

3.3 GF abstract syntax as OWL ontologies . 33
3.3.1 Context-free grammars as OWL ontologies . 33
3.3.2 GF abstract syntax in OWL . 33
3.3.3 Optimizing the grammar ontology . 34
3.3.4 The GF resource grammar as an OWL ontology 35
3.3.5 Ontology editing as a multilingual authoring system 36

3.4 Using ontologies to specify GoDiS dialogue domains . 36
3.4.1 The GF resource grammar . 36
3.4.2 Actions and predicates . 36
3.4.3 Sorts and indivuduals . 37

4 The Enhanced Multimodal Grammar Library 39
4.1 Separating system and user utterances . 39
4.2 The domain-independent grammars . 40
4.3 The domain-specific grammars for system utterances . 41
4.4 The domain-specific grammars for user utterances . 44
4.5 Integrating multimodality in the grammars . 46
4.6 Extending the GF grammar library . 47

5 Summary and Conclusions 49

Bibliography 51

A The enhanced multimodal grammar library 53
A.1 Downloading the grammar library . 53
A.2 Installation instructions . 53
A.3 Testing the grammars . 54

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 1/55

Summary
The ISU approach uses abstract representations for dialogue states and update rules which allow the
generic characterisation of flexible dialogue strategies. This enables the same code for dialogue man-
agement techniques to be used for different natural languages and for different domains.
In this deliverable we discuss how dialogue systems, and especially grammars for dialogue systems, can
be related to existing knowledge representation systems. We focus on one specific language for knowledge
representation, the Web Ontology Language (OWL), which is a W3C standard for ontology descriptions
for knowledge representation. Since it is a standard there is already much work done on relating OWL to
other ontology formalisms.
We show how to generate the domain-specific utterances for a device-oriented dialogue system from an
ontology describing the devices. An example system using this technique is Mimus, a dialogue system
with which one can control different devices in a home, such as lights, alarms and washing machines.
All information about devices is specified in an ontology, which can be updated on the fly with e.g. new
devices or new information about existing devices.
We also show that all domain-specific utterances in a domain for the GoDiS dialogue system can be
specified as a single ontology. By representing the utterances as abstract syntax trees in a Grammatical
Framework (GF) resource grammar, the representation of utterances is language-independent. The re-
source grammar we are using has a coverage comparable to the Core Language Engine, and exists for 11
different languages, including the TALK languages English, German, Spanish, and Swedish, but also the
non-Indoeuropean languages Finnish, Russian and Arabic. Since the grammar is multilingual, this means
that the only thing that has to be done to localize a dialogue application to a new language is to write a
lexicon for the domain-specific entities.
In this deliverable we also describe the final status of the full TALK Grammar Library, which is written in
GF. The structure is modified so that the domain-specific parts of a grammar can be described in an OWL
ontology, and to further simplify localization to new languages, domains and modalities.

Version: Final (Public) Distribution: Public

Chapter 1

Introduction

This deliverable concerns the development of technology for making use of ontological knowledge in
dialogue system grammars. We have focussed on one specific language for knowledge representation,
the Web Ontology Language (OWL), which is a W3C standard for ontology descriptions for knowledge
representation. We discuss how the abstract syntax of the Grammatical Framework (GF) can be used as
an ontology specification language.
The main concern of the deliverable is to exploit techniques for automatically generating multilingual
and multimodal grammars from an ontology. We present two similar ideas which are implemented in the
dialogue systems Mimus and GoDiS. In Mimus the dialogue system grammars are automatically generated
from an ontology of devices, by supplying a configuration file explaining the linguistic details. In GoDiS
the whole dialogue domain can be specified as an ontology, from which GF grammars are generated. The
rest of the dialogue application can also be generated from the ontology, which is discussed in TALK
deliverable D2.2 (Milward et al., 2006).
Finally we describe the final structure of the Enhanced Multimodal Grammar Library. In making the
grammar library we exploit the advantages of the ISU approach. The ISU approach utilizes structured
Information States to keep track of dialogue context information. These Information States can be read
and updated by several different modules which access precisely the information that they need. This
enables a modular architecture which allows generic solutions for dialogue technology. For example,

• different language modules can interact with essentially similar Information States, enabling rapid
porting of dialogue systems from one language to another and the creation of multilingual dialogue
systems;

• coding of dialogue behaviour is supported independently of language and domain, thus allowing
for the rapid porting of dialogue systems to different domains;

• the use of structured Information States allows straightforward implementation of flexible dialogue
systems which can access and modify information in the Information State in different sequences
and by varying means.

In this deliverable, as well as in the earlier TALK deliverables D1.1, D1.2a and D1.2b (Ljunglöf et al.,
2005; Bringert et al., 2005; Ljunglöf et al., 2006), we show that by using an abstract representation for
grammars, we can further enable rapid porting of dialogue systems between languages, domains and

2

IST-507802 TALK D:1.5 15/08/06 Page 3/55

modalities. The main tool in defining such grammars is the Grammatical Framework (GF), which is used
in collaboration by UGOT, UEDIN and UCAM for making ISU-based dialogue systems.

Comparison with the current state of the art

Milward and Beveridge (2003) notes that general use of ontologies within dialogue systems is relatively
rare, and discuss in what different ways ontological domain knowledge can be used by linguistic com-
ponents in a dialogue system. Although they discuss generation of simple recognition grammars using
synonyms from the ontology and extend this to recognition grammars for noun phrases, the approach does
not extend to the generation of language models for complex commands or questions.
Some recent work has focussed on incorporating ontological knowledge into the parsing process. Coppi
et al. (2005) use a two-level grammar which refers to concepts in the ontology, to build a parser translating
natural language input to formulae in description logics. Bernstein et al. (2006) use a similar approach,
with a static grammar for recognizing domain-independent linguistic structures and a dynamic grammar
which is automatically generated from an OWL ontology. However, these systems are simple question-
answering systems and not general dialogue systems.
In particular, there has been no previous work on incorporating ontological knowledge into recognition
and generation grammars for ISU-based dialogue systems. The main result of this deliverable is that we
present different solutions of how this integration of ontologies and grammars into ISU-based dialogue
systems can be made. The solutions are also practical since they are implemented in existing dialogue
systems.
One of the main advantages with integrating ontologies and ISU-based dialogue systems is that it becomes
simple and fast to implement new languages and/or develop new dialogue domains. In fact, a complete
dialogue application for the GoDiS dialogue system can be specified as a single OWL ontology. From this
ontology all necessary dialogue system files can be generated, which is shown in TALK deliverable D2.2
(Milward et al., 2006), as well as the necessary recognition and generation grammars, which is shown in
this deliverable.
This is similar to Denecke (2002) which describes a framework for rapid prototying of form-filling dia-
logue systems. Since we are using an ISU-based approach, we in addition get all the benefits described
above, such as language-independence and dialogue flexibility. Furthermore, by converting the ontologies
to Grammatical Framework grammars, we can create a multilingual dialogue system by only writing a
domain-dependent lexicon for each language.

Layout of the deliverable

We begin by giving a general description of OWL, the Web Ontology Language, followed by a summary
of the Grammatical Framework. We then describe the multilingual GF resource grammar, which has a
wide linguistic coverage of 11 languages, and some more in the making.
In chapter 2 we describe how multilingual grammars for the Mimus dialogue system are generated from
an OWL ontology describing the devices in the domain. The generation is controlled by a configuration
file where the linguistic details are given.
In chapter 3 we discuss how OWL is related to GF abstract syntax. We show how an OWL ontology
can be translated to a GF abstract grammar, and how multilingual presentations of the concepts in the
ontology can be implemented as concrete syntaxes. We also discuss how a GF grammar can be converted

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 4/55

to an OWL ontology, by which an ontology editor can be used as a multilingual authoring tool. The final
section describes how a GoDiS dialogue domain can be implemented as an OWL ontology, from which
all necessary GoDiS files and GF grammars can be generated.
Finally, chapter 4 consists of a description of the final structure of the Enhanced Multimodal Grammar
Library, which is implemented in GF as a front-end to the generic dialogue system GoDiS built within
TrindiKit. The library also includes three example dialogue domains – a calendar application called Agen-
daTalk, an MP3 player application called DJGoDiS, and a Tram information application called Tram-
GoDiS. The library is designed for making is easy to add new dialogue domains, source languages, and
input and output modalities.

1.1 OWL, the Web Ontology Language
OWL, the Web Ontology Language, is a W3C standard for describing ontologies.1 We are not using the
full flavour of OWL, only the main components are needed. The main reason why we have chosen OWL
instead of any other ontology description language is that it is a standard.
OWL has three main components – classes, individuals and properties:

Classes

Classes correspond to sets of individuals. The main relation between classes is entailment – that classes
can be subclasses of other classes. There are no constraints on the subclass relation, which means that a
class can e.g. be a subclass of several classes.
It is possible to form combined classes, most notably the intersection or the union of several classes.
Classes can also be declared to be equivalent, or disjoint.

Individuals

Individuals are class elements. Just as in set theory, an individual can be an element of several classes.
This is equivalent to the element being in the intersection class.

Properties

Properties correspond to relations between individuals. There are three kinds of properties – object,
datatype and annotation properties. An object property has a domain and a range, which are themselves
classes. The range of a datatype property is not a class, but instead a datatype, e.g. a number or a string.
Annotation properties correspond to extra-logical properties, e.g. comments or version information.
Instead of writing an instance of a property as P(a,b) we often say that “a has the property P(b)”. I.e. prop-
erties are seen as directed, from the domain to the range. Properties can also be declared to be functional,
transitive, symmetric, and more. A property can also be a subproperty of another.
There are more than classes, individuals and properties in OWL. It is e.g. possible to create restrictions
on classes and properties be logical formulae. There are three different levels of OWL – OWL Lite, OWL

1http://www.w3.org/2004/OWL/

Version: Final (Public) Distribution: Public

http://www.w3.org/2004/OWL/

IST-507802 TALK D:1.5 15/08/06 Page 5/55

DL2 and OWL Full – with different expressive power, and theorem proving complexity. The reader is
referred to the OWL Language Reference (Dean and Schreiber, 2004) and OWL Semantics and Abstract
Syntax (Patel-Schneider et al., 2004) for more information.
Our ontologies are very simple, and fit into OWL Lite, except for one thing: Some of our properties have
the class of classes as their range, meaning that in these cases ordinary classes act as individuals. This
is only allowed in OWL Full, which is no serious problem we do not do any formal reasoning on our
ontologies.

1.2 An overview of the Grammatical Framework
Grammatical Framework (GF) has been extensively described in TALK deliverables D1.1, D1.2a and
D1.2b (Ljunglöf et al., 2005; Bringert et al., 2005; Ljunglöf et al., 2006), so in this section we only give
a short overview of the main features of the formalism. In section 1.3 we describe the structure of the
multilingual resource grammar.

1.2.1 Main features of GF
The main idea with the Grammatical Framework is that it maintains a clean separation of abstract and
concrete syntax.

Abstract syntax

The abstract syntax is a context-free grammar3 without terminals, and where each rule has a unique name.
An abstract rule in GF is written as a typed function. For a person used to phrase structure grammars,
this syntax might look awkward, and another equivalent notation is the one used in Multiple Context-Free
Grammars (MCFG) (Seki et al., 1991):

f : A1 → ··· → An → A (GF notation)

A → f [A1, . . . ,An] (MCFG notation)

The categories and rules are specified in GF by cat and fun declarations:

cat A; A1; ...; An;
fun f : A1 -> ... -> An -> A;

The abstract grammar defines a language of trees over names called terms, where L(A) are all terms with
category A:

L(A) = { f (t1, . . . , tn) | f : A1 → ··· → An → A,

t1 ∈ L(A1), . . . , tn ∈ L(An)}

2The term DL stands for Description Logic (Baader et al., 2003)
3GF also supports non-context-free rules, by the use of dependent types and higher-order functions. Furthermore,

it is possible to define reduction rules via the def declaration. See Ranta (2004) for further details.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 6/55

Concrete syntax

One abstract grammar can have several corresponding concrete grammars, which makes GF a natural
multilingual grammar formalism. The concrete grammar specifies how the abstract grammar rules should
be linearized in a compositional manner. Each abstract category A has a corresponding linearization type
A◦, and each linearization rule f : A1 → ··· → An → A has a corresponding linearization function f ◦ over
linearization types:

f ◦ : A◦1 → ··· → A◦n → A◦

The linearization types and linearization functions are specified in GF by lincat and lin declarations:

lincat A = A◦;
lin f x1 xn = f ◦(x1, . . . ,xn);

The linearization of a tree f (t1, . . . , tn) ∈ L(A) is:

[[f (t1, . . . , tn)]] = f ◦([[t1]], . . . , [[tn]])

The expressive power of GF comes from the rich type system for specifying linearization types. It supports
discontinuous constituents, inflection tables and inflectional parameters, in addition to ordinary string
sequences.

Resource syntax and modules

A final feature of GF is the possibility of definining parameters and operations, which is done in a resource
module. The parameters can be used for inflection tables, and operations can be used as macros for
simplifying grammar writing.
GF has a rich module system which supports extension, importing and instantiation of other modules. A
concrete grammar can be used as a resource module in other grammars, which gives a notion of grammar
composition. This makes it possible to use a wide coverage grammar such as the GF resource grammar
described in section 1.3, when writing a specialized domain-specific grammar. The GF compiler takes
care of extracting only those parts of the resource grammar that are interesting for the domain, which will
give us efficient parsing of the specialized grammar.

1.3 The GF resource grammar library4

Even though it is easy to write simple GF grammars and make them run in a couple of languages, scaling
up to bigger language fragments can require considerable work. The main part of this work is linguistic:
the grammar writer has to know a lot about the morphology and the syntax of the target languages to get
the concrete syntax correct. The solution provided by GF to this problem is that of library-based soft-
ware engineering: the work can be divided between resource grammarians working on linguistic details,

4This section is a rewritten and compressed version of the user’s manual of the resource grammar library:
http://www.cs.chalmers.se/~aarne/GF/doc/resource.pdf

Version: Final (Public) Distribution: Public

 http://www.cs.chalmers.se/~aarne/GF/doc/resource.pdf

IST-507802 TALK D:1.5 15/08/06 Page 7/55

and application grammarians working on domain semantics and lexicon. GF’s module system helps to
maintain this division of labour.
The GF Resource Grammar Library has been developed during the last five years to serve as a standard
library of GF and provide the linguistic details for application grammars on different domains. The devel-
opment has been guided by two major applications using and testing the resource grammars:

• KeY,5 an authoring system for software specifications in the formal language OCL, as well as in
English and German

• WebALT,6 a system for generating mathematical exercises from MathML representations (currently
English, Finnish, French, Italian, Spanish, and Swedish)

In the TALK project, the resource grammar library has been used for parsing and generation in dialogue
systems, currently in English, Spanish, and Swedish Johansson (2006).
In this chapter, we give a brief introduction to the GF Resource Grammar Library, focusing on how it
is used when writing application grammars. We presuppose knowledge of GF and its module system,
knowledge that can be acquired e.g. from the GF tutorial.7 For the details of the GF Resource Grammar,
we refer to its own documentation:

• printable User’s Manual (from which this chapter is adapted):
http://www.cs.chalmers.se/~aarne/GF/doc/resource.pdf

• on-line documentation:
http://www.cs.chalmers.se/~aarne/GF/lib/resource-1.0/doc/

1.3.1 Implemented languages and linguistic coverage
The GF Resource Grammar Library contains grammar rules for 11 languages, plus some more under con-
struction. These languages are Arabic,8 Danish, English, Finnish, French, German, Italian, Norwegian,
Russian, Spanish, and Swedish. For each language, the library provides

• a complete set of inflectional paradigms

• a comprehensive set of syntax rules, with structures such as

– texts, punctuation

– declaratives, questions, imperatives, one-phrase utterances

– predication in different tenses and moods

– verb phrases constructed from verbs and adjectives with different subcategorization patterns

– noun phrases formed by determiners and from common nouns, proper names, adjectives,
numerals, and pronouns

5http://www.key-project.org/
6http://webalt.math.helsinki.fi/
7http://www.cs.chalmers.se/~aarne/GF/doc/tutorial/gf-tutorial2.html
8The Arabic grammar does not cover the full resource API yet.

Version: Final (Public) Distribution: Public

 http://www.cs.chalmers.se/~aarne/GF/doc/resource.pdf
 http://www.cs.chalmers.se/~aarne/GF/lib/resource-1.0/doc/
http://www.key-project.org/
http://webalt.math.helsinki.fi/
http://www.cs.chalmers.se/~aarne/GF/doc/tutorial/gf-tutorial2.html

IST-507802 TALK D:1.5 15/08/06 Page 8/55

– relative clauses and wh-questions

– coordination on different levels

As a benchmark for coverage, we have used the CLE (Core Language Engine) grammars as described in
Rayner et al. (2000).

1.3.2 A small example

To give an example of how the library is applied, consider music playing devices. In the application,
we may have a semantical category Kind, examples of Kinds being Song and Artist. In German, for
instance, Song is linearized into the noun “Lied”, but knowing this is not enough to make the application
work, because the noun must be produced in both singular and plural, and in four different cases. By using
the resource grammar library, it is enough to write,

lin Song = reg2N "Lied" "Lieder" neuter;

and the eight forms are correctly generated. The resource grammar library contains a complete set of
inflectional paradigms (such as reg2N here), enabling the definition of any lexical items.
The resource grammar library is not only about inflectional paradigms - it also has syntax rules. The music
player application might also want to modify songs with properties, such as “American”, “old”, “good”.
The German grammar for adjectival modifications is particularly complex, because adjectives have to
agree in gender, number, and case, and also depend on what determiner is used (“ein amerikanisches
Lied” vs. “das amerikanische Lied”). All this variation is taken care of by the resource grammar function
AdjCN,

fun AdjCN : AP -> CN -> CN;

The resource library API is devided into language-specific and language-independent parts. To put it
roughly,

• the lexicon API is language-specific

• the syntax API is language-independent

Thus, to render the above example in French instead of German, we need to pick a different linearization
of Song,

lin Song = regGenN "chanson" feminine;

But to linearize the rule that modifies a kind with a property, we can use the very same rule in German and
French. The resource function AdjCN has different implementations in the two languages (e.g. different
word orders), but the application programmer need not worry about the difference.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 9/55

1.3.3 Inflection paradigms
Inflection paradigms are defined separately for each language Lng in the module ParadigmsLng. For the
sake of convenience, every language implements these five paradigms:

oper regN : Str -> N; – regular nouns
regA : Str -> A; – regular adjectives
regV : Str -> V; – regular verbs
regPN : Str -> PN; – regular proper names
dirV : V -> V2; – direct transitive verbs

It is often possible to initialize a lexicon by just using these functions, and later revise it by using the more
involved paradigms. For instance, in German we cannot use regN "Lied" for Song, because the result
would be a Masculine noun with the plural form “Liede”. The individual Paradigms modules tell what
cases are covered by the regular heuristics.
As a limiting case, one could even initialize the lexicon for a new language by copying the English (or
some other already existing) lexicon. This would produce language with correct grammar but with content
words directly borrowed from English – maybe not so strange in certain technical domains.

1.3.4 Syntax rules
Syntax rules should be looked for in the abstract modules defining the API. There are around 10 such
modules, each defining constructors for a group of one or more related categories. For instance, the
module Noun defines how to construct common nouns, noun phrases, and determiners. Thus the proper
place to find out how nouns are modified with adjectives is Noun, because the result of the construction is
again a common noun.
Browsing the libraries is helped by the gfdoc-generated HTML pages. However, this is still not easy, and
the most efficient way is probably to use the parser. To find out which resource function implements a
particular structure, one can just parse a string that exemplifies this structure. For instance, to find out how
sentences are built using transitive verbs, write

> i english/LangEng.gf

> p -cat=Cl "she loves him"
PredVP (UsePron she_Pron) (ComplV2 love_V2 (UsePron he_Pron))

Parsing with the resource grammar has an acceptable speed, for English and the Scandinavian languages.
In the current implementation, parsing for other languages can be inefficient. However, examples parsed
in one language can always be linearized into other languages:

> i italian/LangIta.gf
> l PredVP (UsePron she_Pron) (ComplV2 love_V2 (UsePron he_Pron))
lo ama
> p -cat=Cl -lang=LangEng "she loves him" | l -lang=LangIta
lo ama

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 10/55

1.3.5 Syntactic structures on the sentence-level

Texts, phrases and utterances

The outermost linguistic structure is Text. A Text is composed from a sequence of Phrases (Phr) followed
by punctuation marks. Phrases are built from Utterances (Utt), which in turn are declarative sentences,
questions, or imperatives – but there are also “single-phrase utterances” consisting of noun phrases or
other subsentential phrases. The difference between Phrase and Utterance is mostly technical: a Phrase is
an Utterance with an optional leading conjunction (“but”) and an optional tailing vocative (e.g. “John”
or “please”).

Sentences and clauses

The richest of the categories below Utterance is S, Sentence. A Sentence is formed from a Clause (Cl), by
fixing its Tense, Anteriority, and Polarity. The difference between Sentence and Clause is thus also rather
technical. For example, each of the following strings has a distinct syntax tree in the category Sentence,

John walks
John doesn’t walk
John walked
John didn’t walk
John has walked
John hasn’t walked
John will walk
John won’t walk
. . .

whereas in the category Clause all of them are just different forms of the same syntax tree.
In figure 1.1 there are some examples of the results of replacing parts of the syntax tree for the sentence
“John walks”.

Questions

The categories Sentence (S) and Clause (Cl) have question counterparts in the categories QS and QCl. A
Question Sentence is formed from a Question Clause by fixing its Tense, Anteriority and Polarity, in the
same way as a Sentence is formed from a Clause.
Question clauses can be formed from clauses (yes/no-questions) or by using an interrogative (wh-questions).
The interrogatives are pronouns (IP, “who”, “which song”), adverbials (IAdv, “why”) and complements
(IComp, “where”).

Other sentence-level categories

Apart from sentences, clauses and questions, the resource grammar library contains several other sentence-
level categories:

• Relative clauses (RCl) and relative sentences (RS), “who loves John”

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 11/55

Original syntax tree for the sentence “John walks”:
UseCl TPres ASimul PPos (PredVP (UsePN john_N) (UseV walk_V))

Subtree Replacement Resulting sentence
TPres ⇒ TPast “John walked”
TPres ⇒ TFut “John will walk”
ASimul ⇒ AAnter “John has walked”

PPos ⇒ PNeg “John doesn’t walk”
john_PN ⇒ mary_PN “Mary walks”

UsePN john_PN ⇒ UsePron it_Pron “it walks”
walk_V ⇒ sleep_V “John sleeps”

UseV walk_V ⇒ ComplV2 love_V2 somebody_NP “John loves somebody”

Figure 1.1: Results of replacing parts of the syntax tree for the Sentence “John walks”

• Slash clauses (Slash), “(whom) she sees”

• Imperatives (Imp), “watch this”

• Embedded sentences (SC), “whether you go”

1.3.6 Sub-sentential syntactic structures
The linguistic phenomena mostly discussed in both traditional grammars and modern syntax belong to the
level of Clauses. At this level, the major categories are NP (noun phrase) and VP (verb phrase). A Clause
typically consists of just an NP and a VP. The internal structure of both NP and VP can be very complex,
and these categories are mutually recursive: not only can a VP contain an NP – [VP loves [NP somebody]] –
but also an NP can contain a VP – [NP every man [RS who [VP walks]]].
Most of the resource modules thus define functions that are used inside NPs and VPs. Here is a brief
overview:

The Noun module

How to construct NPs. The main three mechanisms for constructing NPs are

• from proper names: “John”

• from pronouns: “we”

• from common nouns by determiners: “this man”

The Noun module also defines the construction of common nouns. The most frequent ways are

• lexical noun items: “man”

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 12/55

• adjectival modification: “old man”

• relative clause modification: “man who sleeps”

• application of relational nouns: “successor of the number”

The Verb module

How to construct VPs. The main mechanism is verbs with their arguments, for instance,

• one-place verbs: “walks”

• two-place verbs: “loves Mary”

• three-place verbs: “gives her a kiss”

• sentence-complement verbs: “says that it is cold”

• VP-complement verbs: “wants to give her a kiss”

A special verb is the copula, “be” in English but not even realized by a verb in all languages. A copula
can take different kinds of complement:

• an adjectival phrase: “(John is) old”

• an adverb: “(John is) here”

• a noun phrase: “(John is) a man”

The Adjective module

How to construct APs. The main ways are

• positive forms of adjectives: “old”

• comparative forms with object of comparison: “older than John”

The Adverb module

How to construct Advs. The main ways are

• from adjectives: “slowly”

• as prepositional phrases: “in the car”

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 13/55

1.3.7 Multimodality
The resource grammar library can also handle multimodal input in the form of general “pointing gestures”.
The idea is to extend the grammars with the single category Point. The library doesn’t define the point
category further, but leaves it to the specific domain implementation. As an example, in the multimodal
MP3 player DJGoDiS, the user can click on artists, songs, and generic buttons displayed on the screen.
Another example, in a multimodal tram information system tram stops are the interesting points.
The linearization type of points is a single string, with the special label point to make it possible to extend
other linearization types:

lincat Point = {point : Str};

The linearization type of each grammatical category, such as NP, VP, S, QS and Utt, is then extended with
the point linearization type:

lincat NP = Lang.NP ** {point : Str};

Here Lang.NP is the unimodal linearization type for noun phrases, which depends on the language. Fi-
nally, each function from the unimodal grammar library is extended to handle pointing gestures:

lin AdvNP np adv = Lang.AdvNP np adv ** {point = np.point ++ adv.point};

The AdvNP function adds an adverbial phrase to a noun phrase. The reference Lang.AdvNP is to the
original unimodal function, and the result is extended with the multimodal input pointing gestures in
sequence.
Some specific multimodal demonstratives such as “this”, “that”, “here”, etc. are also defined, which takes
a pointing gesture as argument:

fun this_point_NP : Point -> NP;
lin this_point_NP p = Lang.this_NP ** p;

These are in contrast with the original unimodal demonstratives, which have no associated point attached:

lin this_NP = Lang.this_NP ** {point = []};

Version: Final (Public) Distribution: Public

Chapter 2

Generating Multilingual Grammars from
OWL Ontologies in MIMUS

2.1 Introduction
MIMUS is a user-centered multimodal and multilingual dialogue system for the smart house domain; an
intelligent, pro-active and voice-activated virtual butler who handles the full range of multimodal input
and presentation possibilities for a spoken and click-based interface (see figure 2.1). It has been developed
at the University of Seville as part of the TALK Project. As its immediate predecessor Delfos, it is based
on the ISU approach. The keywords that best define the system are:

• Agent-based

• Intelligent

• User-centered

• Industry-oriented

• Fully multimodal for both input and output

• Ontology-based

It is therefore a context-aware and non-menu based system that fully adapts to the user needs according
the user model configuration. The first version of the system is focused on the Smart Home scenario,
and specifically oriented towards wheel-chair bound users’ needs, although the general results can be
extrapolated to other user types.
MIMUS incorporates a series of research results obtained during the project, such as:

• Grammar generation from ontologies

• Integration of OWL Ontological knowledge with ISU approach

• Dynamic reconfiguration of the home ontology

14

IST-507802 TALK D:1.5 15/08/06 Page 15/55

Figure 2.1: MIMUS Screenshot

• Multimodal Turn Planning

• Modality specific resources (3D house and talking head)

• Multimodal I/O fussion/fission

• Multimodal and multilingual grammar libraries

• Multilinguality on the fly

• It is based on a corpus of multimodal WoZ experiments with potential users in the in-home domain

• Non-menu based, pro-active system

• Speech-activated dialogue manager

2.2 Automatic grammar generation
The problem of manually generating grammars for a Natural Language Understanding (NLU) system has
been widely discussed, and several authors have proposed different solutions. Two main approaches can
be highlighted: Grammatical Inference and Rule Based Grammar Generation.
The Grammatical Inference approach1 refers to the process of learning grammars and languages from
data and is considered nowadays as an independent research area within the Machine Learning techniques.

1http://eurise.univ-st-etienne.fr/gi/

Version: Final (Public) Distribution: Public

http://eurise.univ-st-etienne.fr/gi/

IST-507802 TALK D:1.5 15/08/06 Page 16/55

Examples of applications based on this approach are ABL (Zaanen, 2000) and EMILE (Williem Adriaans,
1992).
On the other hand, the Rule Based approach tries to generate the grammar rules from scratch (therefore
based on the expertise of a linguist), but trying to minimize the manual work. An example of this approach
is the Grammatical Framework (Ranta, 2004), whose proposal is to organize the multilingual grammar
construction in two building blocks: the category and function declarations (abstract syntax) and the
linearization rules (concrete syntax). The category and function declarations are done once and for all
(shared by all languages), but the linearization rules are defined on a per-language basis. Methods which
generate grammars from ontologies (including ours) are also examples of a Rule Based approach.

2.2.1 Generating grammars from ontologies

The separation of the Knowledge Manager (module in charge of the domain knowledge) and the NLU
module of a Dialogue Manager system has a number of advantages such as reducing the complexity of
linguistic components, reuse of existing domain knowledge, helping the dialogue manager on reference
resolution (i.e: anaphoric expressions, underspecification, presupposition, and quantification), or helping
the dialogue manager to keep dialogue coherence (Quesada and Amores, 2002; Milward and Beverige,
2003).
This Knowledge Manager module however has somewhat redundant information with the NLU module.
The key idea of our work is that this redundancy can be used to automatically generate grammar rules
from the relationships between the concepts described in the ontology. Thus, the fact that the concept
Lamp is linked to the concept Blue through the hasColor relationship somehow implies that phrases like
the blue lamp should be correct in this Domain and therefore accepted by the NLU grammar.
The generation of linguistic knowledge from ontologies has been previously proposed. In Russ et al.
(1999) the authors proposed a method for generating context-free grammar rules from JFACC ontologies.
Their approach was based on including annotations all along the ontology indicating how to generate each
rule. They implemented a program that was able to parse the ontology and produce the grammar rules.
A second precedent of linguistic generation from ontologies can be found in Estival et al. (2004), where
the author claimed that the concepts of an OWL ontology could be used to generate the lexicon of the
NLU module.
In our work, a new rule-based solution for generating grammars from ontologies will be described. Sec-
tion 2 motivates and gives an overview of the solution hereby proposed. Section 3 describes how the
configuration files have to be built. Section 4 shows an introduction to the algorithm used. Section 5
includes real showcases of the tool at work. Section 6 is a summary of the conclusions and future work.

2.3 Solution overview
The solution proposed here is close to that of Russ et al. (1999) in the sense that we also parse the ontology
for the rule generation. Nonetheless, it differs in two ways:
Firstly, the new approach argues that the ontology should remain as-is, without specific linguistic annota-
tion. Although it is obvious that the ontology itself is not descriptive enough to generate the grammar rules
without further information, it is preferable to place this additional information in a separate configuration
file that describes how the grammar rules should be generated. This approach is more convenient for a

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 17/55

dialogue system (where the linguistic information in the ontology will be useless and cumbersome) and
more suitable from a reusability point of view.
Secondly, OWL was chosen instead of JFACC mainly for two reasons:

1. The use of OWL is widely spread and seems to be the basis for the future semantic web. This
implies that large ontologies are likely to be available in the future, and this approach will help
create dialogue applications more easily by simply downloading specific domain ontologies.

2. OWL is based on RDF, and therefore uses Subject–Property–Object triplets. This static structure
of OWL is of great help because the algorithm can focus on handling properties, letting the linguist
define how to create rules that apply to all the elements in its Domain (or Range). Note therefore,
that this choice is not just a change in the ontology format: the whole parsing algorithm is based on
the RDF predefined structure.

As previously mentioned, this approach is completely focused on grammar rules generation: no automatic
lexicon hierarchy generation has been considered. To ensure coherence between the lexicon and the
grammar, a list of potential non-terminal types is extracted, that is, a list of all the entities within the
ontology. The linguist decides which entities shall remain in the final dialogue application, and organizes
them as Input-Forms (Amores and Quesada, 1997).
It is important to notice that this approach is meant only as a way to help the linguist, and will not provide a
ready-to-use grammar. By using this tool, the grammar will be easier to generate and more consistent with
the domain knowledge, but, in any case, the resultant grammar must be checked and completed manually
in a second step.
The current implementation of this tool provides grammar rules in a format we have developed (Amores
and Quesada, 1997), which basically consists of a left-hand symbol followed by an arrow and a list of
right-hand symbols. Obviously this notation is translatable to most standards, like BNF.

2.4 Configuration files
As outlined above, the linguist must define a configuration file that will be used in conjunction with the
ontology in order to generate the grammar rules. In this configuration file, the linguist has to identify the
properties that may appear in the grammar and the way in which their domain and range will be included
in the associated rules. In order to do it, an easy XML syntax has been defined (see DTD in figure 2.2).
Basically, the linguist can define the generation rules by means of nested forEach loops handling the
properties (and subproperties) of the ontology, and using variables to identify the elements from its domain
and range.
In order to better understand this structure as well as the objective of the tool, a selection of showcases
including the relevant parts of the ontology, the configuration file and the resulting grammar rules are
shown in the following sections.

2.5 Overview of the algorithm
In order to better illustrate how the algorithm works, this section will describe in more detail its functions.
The algorithm consists of three major steps:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 18/55

<!DOCTYPE rulesList [

<!ELEMENT rulesList (forEach+)>

<!ELEMENT forEach (forEach|rule+)>

<!ELEMENT rule (left,right)>

<!ELEMENT left (#PCDATA)>

<!ELEMENT right (#PCDATA)>

<!ATTLIST forEach property CDATA #IMPLIED>

<!ATTLIST forEach subPropertyOf CDATA #IMPLIED>

<!ATTLIST forEach domain CDATA #IMPLIED>

<!ATTLIST forEach range CDATA #IMPLIED>

<!ATTLIST rule lang (ES|EN|GR) #REQUIRED>
]>

Figure 2.2: DTD for the configuration file

Figure 2.3: FSM for the configuration file parser

1. Parse the OWL ontology. The goal of this parsing is to generate an internal representation of the
relevant ontological elements. This representation will in turn be used to make queries over the
ontology.

2. Parse the configuration file. The objective here is to generate the list of all applicable rules.

3. Generate the output of rules. In this step, the script goes through the previous list of applicable
rules, substituting the reference to classes and properties by the corresponding Input Form from the
ontology.

The first two steps described have been implemented by a finite state machine (FSM) illustrated in figure
2.3. For each state in the FSM, only one set of attributes can be parsed. These are mentioned in the
previous DTD structure:

Base :

• No attributes are expected in this state.

Property :

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 19/55

Figure 2.4: Ontology Structure

• propertyRef: Indicates the word that references the property in the rule description

• subPropertyOf: Indicates a superproperty. All the subproperties of this (including the indi-
cated one) will be treated by the algorithm.

Triplet :

• domainRef: Indicates the word that references the domain in the rule description.

• rangeRef: Indicates the word that references the range in the rule description.

Rule :

• lang: Indicates what language the rule is valid for.

2.6 Showcases

2.6.1 Sample rules
The example below illustrates a common case in which the grammar rules will be generated. Our examples
are taken from a smart-house domain in which the ontology describes both the hierarchy of devices in the
house as well as the actions (or commands) which can be performed over those devices, such as switch on
the lamp in the kitchen. Thus, consider an ontology where a set of properties are grouped as subproperties
of a general hasDeviceCommand property. These properties are graphically displayed in figure 2.4.
In this showcase we are going to analyze the portion describing the device-related commands, whose
XML equivalent is shown in figure 2.5. In this particular case, the linguist has detected that all properties
are actually actions, that is, they correspond to the commands to be performed by the system over all the
elements in the range, in this case, all devices within the ontology. This can be easily expressed by the
configuration file in figure 2.6. Now, once the application is run indicating the appropriate configuration
file, the following results are obtained:

Command → SwitchOff Fan
Command → SwitchOff Heater

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 20/55

<owl:ObjectProperty rdf:ID="SwitchOff">

<rdfs:subPropertyOf rdf:resource="#hasDeviceCommand"/>

<rdfs:domain rdf:resource="#System"/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Fan"/>

<owl:Class rdf:about="#Heater"/>

<owl:Class rdf:about="#Lamp"/>

<owl:Class rdf:about="#Radio"/>

<owl:Class rdf:about="#TV"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="SwitchOn">

<rdfs:subPropertyOf rdf:resource="#hasDeviceCommand"/>

<rdfs:domain rdf:resource="#System"/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Fan"/>

<owl:Class rdf:about="#Heater"/>

<owl:Class rdf:about="#Lamp"/>

<owl:Class rdf:about="#Radio"/>

<owl:Class rdf:about="#TV"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="Close">

<rdfs:subPropertyOf rdf:resource="#hasDeviceCommand"/>

<rdfs:domain rdf:resource="#System"/>

<rdfs:range rdf:resource="#Blind"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="Open">

<rdfs:subPropertyOf rdf:resource="#hasDeviceCommand"/>

<rdfs:domain rdf:resource="#System"/>

<rdfs:range rdf:resource="#Blind"/>
</owl:ObjectProperty>

Figure 2.5: Device-related commands in OWL XML syntax

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 21/55

<rulesList>

<forEach property="P" subPropertyOf="hasDeviceCommand">

<forEach domain="X" range="Y">

<rule lang="ES">

<left>Command</left>

<right>P Y</right>

</rule>

</forEach>

</forEach>
</rulesList>

Figure 2.6: Configuration file for device-related commands

Command → SwitchOff Lamp
Command → SwitchOff DimmerLamp
Command → SwitchOff Radio
Command → SwitchOff TV
Command → SwitchOn Fan
Command → SwitchOn Heater
Command → SwitchOn Lamp
Command → SwitchOn DimmerLamp
Command → SwitchOn Radio
Command → SwitchOn TV
Command → Close Blind
Command → Open Blind

It is important to note that even with this toy ontology, sixteen grammar rules have been generated using
just two nested forEach loops.

2.6.2 Capturing multimodality
Now let us assume the same scenario (i.e. the same ontology) but including multimodal entries; namely
voice and pen inputs. Following Oviatt’s results (Sharon Oviatt and Kuhn, 1997), it may be expected that
the mixed input modalities (voice: switch this on, pen: click on the lamp icon) may also include alternative
constituent orders, that is, different to the voice only input. The NLU module may therefore receive inputs
such as: lamp switch on (verb at the end).2

This new set of rules can be easily accounted for by adding just one rule to the configuration file, as shown
in figure 2.7. The new output will be the same as before but including these new rules:

Command → Fan SwitchOff
Command → Heater SwitchOff

2Note that linguistically speaking this order is also possible in English in topicalized or left-dislocated construc-
tions such as The lamp, switch it on.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 22/55

<rulesList>

<forEach property="P" subPropertyOf="hasDeviceCommand">

<forEach domain="X" range="Y">

<rule>

<left>Command</left>

<right>P Y</right>

</rule>

<rule>

<left>Command</left>

<right>Y P</right>

</rule>

</forEach>

</forEach>
</rulesList>

Figure 2.7: Multimodal configuration file

Command → Lamp SwitchOff
Command → DimmerLamp SwitchOff
Command → Radio SwitchOff
Command → TV SwitchOff
Command → Fan SwitchOn
Command → Heater SwitchOn
Command → Lamp SwitchOn
Command → DimmerLamp SwitchOn
Command → Radio SwitchOn
Command → TV SwitchOn
Command → Blind Close
Command → Blind Open

2.6.3 Capturing multilinguality
Due to the structural differences among the human languages, different rules must be generated for dif-
ferent languages. For example, to indicate the location of a given device, it would be the kitchen light
in English, whereas in Spanish the sentence order changes: la luz de la cocina (the light of the kitchen).
Once the target language has been chosen, specific language rules must be generated.
Consider then the fragment in figure 2.8 taken from the ontology previously shown, describing which
elements can be affected by the property locatedIn. The multilingual configuration file that would capture
the structural differences mentioned above is shown in figure 2.9. Now, if only English grammar rules are
to be generated, the application must be run with the option “-lang=EN”, obtaining the following result:

Lamp → Bedroom Lamp
Lamp → Kitchen Lamp

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 23/55

<owl:ObjectProperty rdf:ID="locatedIn">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Lamp"/>

<owl:Class rdf:about="#Radio"/>

<owl:Class rdf:about="#Heater"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Bedroom"/>

<owl:Class rdf:about="#Kitchen"/>

<owl:Class rdf:about="#Hall"/>

<owl:Class rdf:about="#LivingRoom"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>
</owl:ObjectProperty>

Figure 2.8: The locatedIn property in OWL XML syntax

<rulesList>

<forEach property="P" subPropertyOf="Location">

<forEach domain="X" range="Y">

<rule lang="ES">

<left>X</left>

<right>X P Y</right>

</rule>

<rule lang="EN">

<left>X</left>

<right>Y X</right>

</rule>

</forEach>

</forEach>
</rulesList>

Figure 2.9: Multilingual configuration file

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 24/55

Lamp → Hall Lamp
Lamp → LivingRoom Lamp
Radio → Bedroom Radio
Radio → Kitchen Radio
Radio → Hall Radio
Radio → LivingRoom Radio
Heater → Bedroom Heater
Heater → Kitchen Heater
Heater → Hall Heater
Heater → LivingRoom Heater

2.7 Conclusions and future work
In this work a new Rule-Based approach to automatic grammar generation has been described. The
proposed solution is based on OWL ontologies and provides linguists with an easy way to take advantage
of the information contained within these ontologies. This information extraction process will also be
easier for the linguist if the ontology has been designed keeping in mind that grammars will be generated
from it.
The solution proposed has achieved the expected goals: the linguist can generate a good number of rules
from a simple configuration files and, by having the rules directly generated from the ontologies, domain
knowledge and linguistic knowledge coherence and completeness is ensured. In addition a rapid prototyp-
ing of new grammars for the speech recognizer and the NLU module is obtained by the same mechanism.
Future research areas include the generation of unification-based grammar rules, dialogue rules and eval-
uating the usefulness of the tool with very large OWL ontologies.

Version: Final (Public) Distribution: Public

Chapter 3

Ontologies and Grammatical Framework

3.1 Relating existing ontologies with abstract GF grammars
In this section we view GF as a language for describing ontologies. The abstract syntax in GF is a
type-theoretical logical framework with dependent types and function definitions (Ranta, 2004). This
expressive power makes it possible to describe general ontologies.
Recall that the three main components of OWL are classes, individuals and properties. These have natural
counterparts in abstract GF syntax. General OWL restrictions are also possible to implement in GF.

3.1.1 Classes and individuals
Classes can be implemented as GF categories. The OWL classes A, B and C will then be written as:

cat A; B; C;

Individuals are functions without arguments, i.e. constants. The OWL individuals a, a’, b and c will be
written as:

fun a, a’ : A;
b : B;
c : C;

Subclasses

Since each individual has to have exactly one categoy, there is no direct notion of subclasses or subcate-
gories in GF. That B is a subclass of A is instead represented by a coercion function, saying that all B’s
also are A’s:

fun B_sub_A : B -> A;

That a class is a subclass of two other classes is then implemented as two coercion functions. If further-
more, both superclasses are subclasses of the same class, it can be neccesary to use function definitions

25

IST-507802 TALK D:1.5 15/08/06 Page 26/55

for enforcing equalities between instances. E.g. suppose that B is also a subclass of A’, and that both A and
A’ are subclasses of C. Then we must state that for each b:B, the result is the same regardless of whether
we go via A or A’:

fun B_to_C : C -> C;
def B_to_C (A_sub_C (B_sub_A x)) = (A’_sub_C (B_sub_A’ x));

B_to_C x = x;

Uninhabited superclasses

There is one common special case of subclasses, and that is when the superclass does not have any in-
stances of its own. This superclass can then be implemented in GF as a dependent category. Suppose that
both D, E and F are subclasses of the class Super, which itself does not have any instances. This can be
written as:

cat Super DEF;
DEF;

fun D, E, F : DEF;

This means that the subclass D corresponds to the GF (dependent) category Super D. An instance d of the
subclass D is now written:

fun d : Super D;

Instances of several classes

It is not possible to directly state that an individual is an instance of two classes, since a GF term can only
have one category. We solve this by introducing intersections of classes instead. That ab is an instance of
both A and B will then be written as:

cat AB;
fun AB_sub_A : AB -> A;

AB_sub_B : AB -> B;
ab : AB;

I.e. ab is an instance of the intersection of A and B, which is a subclass of both A and B.

Class equivalence

In OWL there are two notions of class equivalence – intensional and extensional. That two classes A and
B are extensional equivalent simply says that they are subclasses of each other:

fun A_sub_B : A -> B;
B_sub_A : B -> A;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 27/55

This equivalence can be further enforced by defining equivalence functions on A and B:1

fun equiv_A : A -> A;
def equiv (B_sub_A (A_sub_B x)) = x;

equiv x = x;

Intensional equality is not directly possible in GF, however, since operator definitions are not allowed in
abstract syntax.

3.1.2 Properties
Properties can be implemented as categories which depend on the domain and range classes. The OWL
property Prop with domain A and range B is thus written as:

cat Prop A B;

An individual a which has the property Prop(b) will be a GF constant:

fun a_Prop_b : Prop a b;

Functional properties

A special case is when a property Qrop is functional, i.e. that each element in the domain is connected to
one and only one element. This can be implemented in GF by using function definitions. The property
itself is represented by a function from A’s to B’s:

fun Qrop : A -> B;

Each instance of the property is then a row in the definition of Qrop:

def Qrop a = b;
Qrop a’ = b’;

Alternative view of properties

There is an alternative way of implementing general properties, which is inspired from the previous idea.
We can declare the category ListB, with its constructor functions BaseB and ConsB:

cat ListB;
fun BaseB : ListB;

ConsB : B -> ListB -> ListB;

Now the general property Prop can be implemented as a function from A to ListB:

1The definition of equiv_B is analoguous.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 28/55

fun Prop : A -> ListB;

The facts that hat a is not related to anything, and that a’ is related to both b and b’, are written as:

def Prop a = BaseB;
Prop a’ = ListB b (ListB b’ BaseB);

There is a syntactic sugar in GF for writing lists. The category ListB can be written [B], and the declarations
above are then written:

cat [B]{0};
fun Prop : A -> [B];

The {0} in the declaration of [B] says that BaseB takes no arguments, i.e. that [B] can be uninhabited.

Cardinality restrictions on properties

OWL cardinality restrictions can be implemented in the same way. That each A is related to at least three
B’s can be declared as:

cat [B]{3};
fun Prop : A -> [B];

Maximality restrictions can also be implemented, albeit cumbersome. That each A is related to at least
one and at most three B’s can e.g. be declared as:

cat B123;
fun B1 : B -> B123;

B2 : B -> B -> B123;
B3 : B -> B -> B -> B123;

fun Prop : A -> B123;

Subproperties

In OWL, a property can be declared to be a subproperty of another. Following the idea from subclasses,
we can either use a coercion function, or dependent categories.
A very common case is when the superproperty does not have any direct instances, in which case we can
declare it as depending on the subproperties. Suppose both Qrop and Trop are subproperties, with domain
A and range B, of Prop which doesn’t have any direct instances, we write this as:

cat Prop QT A B;
QT;

fun Qrop, Trop : QT;

To say that a is related by Qrop to b and by Trop to c, we write:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 29/55

fun a_Qrop_b : Prop Qrop a b;
a_Trop_c : Prop Trop a c;

When the superproperty can be inhabited, we need a coercion function. Supposing that Qrop is a subprop-
erty of Prop, we declare a coercion function from Qrop x y to Prop x y:

fun Qrop_sub_Prop : (x:A) -> (y:B) -> Qrop x y -> Prop x y;

The most general case is when the subproperty’s domain and range are subclasses of the superproperty’s
domain and range. In this case we get the following:

fun Qrop_sub_Prop : (x:A) -> (y:B) -> Qrop x y
-> Prop (A_sub_A’ x) (B_sub_B’ y);

Here A_sub_A’ and B_sub_B’ are the coercion functions between the domains and ranges. There are
even more possibilities for implementing subproperties, e.g. if the superproperty’s domain or range is
uninhabited, in which case this could be implemented as dependent categories.

Datatype properties

GF has primitive notions of strings, integers and real numbers, with the categories String, Int and Real.
This means that datatype properties which ranges over strings, integers or reals are straightforward to
handle.

3.1.3 General OWL axioms and restrictions
More general axioms and restrictions on an ontology can be difficult to implement in GF. One example is
negated propositions, e.g. stating that two classes are disjoint. GF has no primitive notion of negation, but
uses the type-theoretical definition that negation means implication of absurdity (Nordström et al., 1990).
To handle general OWL restrictions we can always resort to the standard solution in type-theory, to declare
a category of logical propositions, in parallel with the category of proofs of propositions:

cat Prop;
Proof Prop;

We refer to e.g. Nordström et al. (1990) or Ranta (1994) for more discussion about these topics.

3.1.4 Ontologies and concrete syntax
Annotation properties in OWL are for non-ontological information about classes and/or individuals. There
are some predefined annotation properties, e.g. rdfs:comment, rdfs:seeAlso and rdfs:label. For our pur-
poses the most interesting is rdfs:label:

rdfs:label is an instance of rdf:Property that may be used to provide a human-readable version
of a resource’s name. (. . .) Multilingual labels are supported using the language tagging
facility of RDF literals. (Brickley and Guha, 2004, section 3.6)

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 30/55

This is a description of a very simple version of the concrete syntax of a GF grammar, where the language
tag says which concrete syntax the label is for. This means that all label annotations for a certain language
in an ontology can be straightforwardly instantiated as a GF concrete syntax.
GF concrete syntax is much more expressive than that, since it supports function arguments and complex
datatypes.

3.2 Incorporating the Mimus in-home ontology
In this section we show as an example how the Mimus ontology described in chapter 2 can be implemented
as the abstract syntax of a GF grammar. The XML configuration files that are used to generate context-free
recognition grammars then have their natural interpretations as concrete syntaxes of the GF grammar.

3.2.1 The Mimus ontology as an abstract GF grammar
When doing the conversion from the Mimus ontology, we chose to implement all subclasses and subprop-
erties with coercion functions as explained before. An alternative which we didn’t pursue would be to use
dependent categories for implementing the device classes and the command properties.

The dialogue system

There is a class System in the ontology, which (commonly) has one element – the representation of the
particular domain.

cat System;
fun mimus : System;

Devices

There are six devices which are all subclasses of the Device class.

cat Device;
Blind; Fan; Heater; Lamp; Radio; TV;

Some of the commands can operate on a number of devices. In the ontology this is done by making the
domain the union of these classes, as is shown in the XML code in figure 2.5 on page 20. In GF the union
has to be given a name, and it must be stated that each class is a subclass of the union.

cat FanHeaterLampRadioTV;
fun Fan_sub_FHLRT : Fan -> FanHeaterLampRadioTV;

TV_sub_FHLRT : TV -> FanHeaterLampRadioTV;

Each device is also a subclass of the Device class. We optimize this a bit by stating that the union is a
subclass, instead of having to state that each device is a subclass.

fun Blind_sub_Device : Blind -> Device;
FHLRT_sub_Device : FanHeaterLampRadioTV -> Device;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 31/55

Command properties

The command properties Open and Close have a System as domain and operates on a Blind.

cat Open System Blind;
Close System Blind;

The command properties SwitchOn and SwitchOff also have a System as domain, but can operate on any
Fan, Heater, Lamp, Radio or TV.

cat SwitchOn System FanHeaterLampRadioTV;
SwitchOff System FanHeaterLampRadioTV;

Now each of these four properties is a subproperty of HasDeviceCommand, which operates on Devices in
general.

cat HasDeviceCommand System Device;

We have to state that any Open (and Close) command is a HasDeviceCommand, and that each Blind also
is a Device, by applying the coercion Blind_sub_Device.

fun Open_sub_Cmd : (sys:System) -> (dev:Device)
-> Open sys dev
-> HasDeviceCommand sys (Blind_sub_Device dev);

Close_sub_Cmd : ...

The same goes for SwitchOn and SwitchOff, where we have to say that any of their devices also is a
Device.

fun SwitchOn_sub_Cmd : (sys:System) -> (dev:FanHeaterLampRadioTV)
-> SwitchOn sys dev
-> HasDeviceCommand sys (FHLRT_sub_Device dev);

SwitchOff_sub_Cmd : ...

3.2.2 Mimus configuration files as GF concrete syntax
Each language in the configuration file becomes a specific concrete syntax in the GF grammar.

Linearization of commands

Recalling the configuration file for extracting commands to a recognition grammar, as shown in figure 2.6
on page 21, we can implement this as one single GF function taking a System, a Device and a command,
returning a Command.

fun command : (sys:System) -> (dev:Device)
-> HasDeviceCommand sys dev -> Command;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 32/55

Since each command property is a subproperty of HasDeviceCommand, they will match this rule. The
main part of the configuration file comes in the linearization of this function. The configuration stated that
the command was the command name followed by the device, which is specified in GF as:

pattern command sys dev cmd = cmd ++ dev;

Linearization of subclass and subproperty coercions

Each function that is defined in the abstract syntax needs a concrete instantiation too. The ones missing
for us now are the subclass and subproperty coercion functions, which in GF simply become identity
functions.

pattern Fan_sub_FHLRT x = x;

FHLRT_sub_Device x = x;

Subproperty linearizations have some dummy arguments for the domain and the range, which can be
ignored.

pattern Open_sub_Cmd _ _ x = x;

SwitchOff_sub_Cmd _ _ x = x;

3.2.3 Discussion
In this section we have shown that an ontology can be converted to a GF grammar, for which we then can
write multilingual recognition grammars. The ideas are similar to the XML configuration files presented
in section 2.4.

Advantages with using GF

The main advantage with converting the ontology to GF is that we can make use of the rich type system
in the concrete syntax, for capturing e.g. inflectional patterns or discontinuous constituents.
One example is descriptive properties, such as hasColor and hasSize, linking colors and sizes to devices.
The idea is to make it possible to say e.g. “the blue lamp” or “the small TV”.
In an English grammar we can still use a simple context-free grammar of the form:

Lamp → Size Lamp
TV → Size TV
Lamp → Color Lamp
TV → Color TV

However, in a language such as German where the adjective agrees with the gender of the noun, this is
not correct. This problem can be solved by using more complex linearization types in GF. It is enough to
state that adjectives are tables that depend on a gender, and nouns have an inherent gender.
We can even go one step further and make use of the resource grammar described in section 1.3, which
gives us a multilingual grammar automatically.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 33/55

Disdvantages with using GF

The main disadvantage with converting the Mimus ontology to GF is the same as for any OWL ontology
– subclass coercions become quite cumbersome, and general restrictions can be very complicated in GF.
But since the conversion from the Mimus ontology to a recognition grammar does not make crucial use of
restrictions this is not a big problem.

3.3 GF abstract syntax as OWL ontologies

3.3.1 Context-free grammars as OWL ontologies
A context-free grammar can be seen as an ontology. This is known previously, especially in computer
science texts for compiler construction and parsing, see e.g. Appel (1998):

• Each category A is a class in the ontology – i.e. the class of syntax trees with mother node A

• Each rule A → X1 · · ·Xn is a subclass of A – i.e. the class of syntax trees constructed from that rule

Note that the individuals of a class A are syntax trees, but not necessarily all trees. We have to construct
each tree in the ontology as an individual.

Subtrees as properties

Given a rule/subclass A → X1 · · ·Xn (call it R), we define n daughter properties arg-1, . . . , arg-n:

• A daughter category B = Xi of R yields a property arg-i from R to B

• A terminal token t = Xi of R yields a datatype property arg-i R to a string

Since the right-hand side of a rule is ordered, the daughter properties need to be ordered too. Therefore
we name the properties arg1, . . . ,argn.
If we want to formally implement a context-free grammar as an OWL ontology, the daughter properties
have to be unique for each rule/subclass R. Therefore the formal name of property arg-i should be arg-
i–A-X1-. . . -Xn or something similar. This means that the ontology will have an very large number of
properties (and long property names).

3.3.2 GF abstract syntax in OWL
The abstract syntax of a GF grammar is a context-free grammar, but without terminal symbols and where
each rule has a unique name. This simplifies the implementation as an OWL ontology:

• Each category A corresponds to a class A

• Each rule f : A1 → ··· → An → A corresponds to a subclass f of A

• Each daughter category Ai of f corresponds to a property P[Ai] from f to Ai

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 34/55

The resulting ontology is simpler than the ontology for the context-free grammar in the following senses:

• All datatype properties have disappeared, since there are no terminal symbols

• The names of the rule classes are shorter, since the GF rules have unique names

• The order between the daughters A1, . . . ,An is not of real importance in GF – it is the concrete
syntax that is ordered, not the abstract. Therefore we do not have to supply the exact index of the
argument, it is enough with the name of category; e.g. given the rule f : Det → Noun → NP, the
property P[Noun] from f to Noun can be called simply noun, instead of arg-2

• A consequence of this is that there will be a great deal less properties in the ontology, since many
rules can share the same property.

One problem is when a GF rule has more than one argument with the same category, e.g. a flat sentence
generating rule:

fun s1 : NP -> Verb -> NP -> S;

In this case it is difficult to specify which argument NP’s belong to the subject and object. This can be
solved in two ways: either by introducing a new name for one of the property names, or by adding a new
coercion category to the grammar:

cat ObjectNP;
fun objectNP : NP -> ObjectNP;

If we have this, we can change the type of s1 and use the conversion we have already described:

s1 : NP -> Verb -> ObjectNP -> S;

3.3.3 Optimizing the grammar ontology
In this section we present two possible optimizations for the translation of a GF grammar to an OWL
ontology, which decreases the size of the ontology.

One-argument rules

Suppose that there is a rule intrans in the grammar taking only one argument:

fun intrans : Verb -> VP;

If there are no more rules with type Verb -> VP, then the rule name intrans can be inferred from the
context. This means that it is not necessary to create the class intrans (being a subclass of VP) together
with the property verb to the daughter class Verb, but we can instead state that Verb is a subclass of VP
directly.
Note that this can be applied to the problem of multiple arguments with the same category described
above. Since the coercion rule objectNP is a unique single-argument rule, we can simply state that NP is
a subclass of ObjectNP.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 35/55

Optional arguments

A context-free rule with optional arguments can be converted to one single OWL rule class, where the
optional arguments become optional properties.
GF does not support optional arguments, which means that this must be implemented by several GF
functions. Suppose that we have the following context-free rule with two optional arguments:

NP → Det (AP) Noun (PP)

This has to be simulated by four GF rules:

fun np0 : Det -> AP -> Noun -> PP -> NP;
np1 : Det -> Noun -> PP -> NP;
np2 : Det -> AP -> Noun -> NP;
np3 : Det -> Noun -> NP;

And if we used our translation above, we would get four subclasses of the NP class. But these can be
merged into one single subclass where the daughter properties ap and pp are optional, whereas det and
noun are obligatory.
One problem remains, and that is the name of the merged class. It must be possible to recreate the original
GF name by knowing the name of the class and which arguments that are instantiated. One solution is to
enforce that the name of each GF rule has the same prefix, followed by a uniquifying suffix (in this case a
number). No other rules in the grammar are allowed to start with the same prefix. The name of the merged
class will be the common prefix, and then it is possible to infer which of the GF rules to use.

3.3.4 The GF resource grammar as an OWL ontology
The translation described in this section can be used on the multilingual GF resource grammar. But since
the resource grammar has a very limited lexicon, we divide the ontology into two parts to facilitate the
writing of the domain-specific lexicon:

• All grammatical categories (such as noun phrases, verb phrases, sentences and questions) are sub-
classes of the class Phrase

– the grammar rules occur as subclasses of the grammatical categories

• All lexical categories (such as verbs, nouns, determiners and prepositions) are subclasses of the
class Lexicon

– the lexical entries occur as instances of the lexical categories

With this structure it is possible to automatically create the abstract syntax of a lexical GF grammar, which
is imported by the domain grammar.
In theory it would also be possible to instantiate the lexicon for different concrete languages, by using the
built-in annotation property rdfs:label. But this turns out to be very difficult for most languages, since
the inflectional patterns are often irregular. It is possible to solve by more complicated properties and
morphological class hierarchies for each language, but we do not pursue this issue further and instead
resort to writing the concrete lexicon instances as GF grammars directly.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 36/55

3.3.5 Ontology editing as a multilingual authoring system
Dymetman et al. (2000) noted that an ontology for abstract syntax can be used for multilingual document
authoring. This suggests that our OWL interpretation of the resource grammar, any OWL ontology editor
such as Protegé2 can be used as a multilingual authoring system for generating grammatically correct
sentences:

• OWL is used to create abstract syntax trees, . . .

• . . . which are then automatically translated to GF format, . . .

• . . . and linearized in all languages implemented in the resource grammar.

This idea is used in section 3.4.1 for specifying multilingual user and system utterances in a dialogue
domain.
Note that the GF system itself comes with tools supporting multilingual document authoring (Khegai et al.,
2003), which can be used as an alternative to an OWL editor.

3.4 Using ontologies to specify GoDiS dialogue domains
A whole dialogue domain for a GoDiS dialogue system can be specified as an OWL ontology. From such
an ontology grammars for system utterances and user utterances are automatically generated, as well as
GoDiS specification files.
The specification of the dialogue specific information, such as dialogue plans and sortal restrictions, and
the generation of the GoDiS specification files, is presented in TALK deliverable D2.2 (Milward et al.,
2006). In this section we only describe the parts that are used to specify the domain-specific utterances.

3.4.1 The GF resource grammar
The main idea is that the domain-specific utterances for the given dialogue domain are specified as syntax
trees in the resource grammar ontology described in section 3.3.
The resource grammar is grouped by the top-level class Syntax, of which the grammar classes Phrase
and Lexicon are subclasses. The grammatical categories are subclasses of Phrase, and the syntax trees
are instances of these classes.

3.4.2 Actions and predicates
The actions in GoDiS are used when the user requests the system to perform something, e.g. to restart the
dialogue, or give the user some help. In OWL, each GoDiS action becomes an instance of the toplevel
class Action. In the example domain there are the following actions:

• restart (“start over please”)

2http://protege.stanford.edu/

Version: Final (Public) Distribution: Public

http://protege.stanford.edu/

IST-507802 TALK D:1.5 15/08/06 Page 37/55

• help (“please give me help”)

The 1-place predicates in GoDiS are used for forming wh-questions, and for forming answers to questions.
Each GoDiS predicate becomes an OWL individual in the toplevel class Predicate. In the example domain
there are the following predicates:

• departure (“from where do you want to go?” / “from the central station”)

• destination (“to where do you want to go?” / “to the central station”)

• shortest_route (“what is the shortest route between the two given stops?” / “the shortest route is
. . . ”)

To the actions and predicates of a domain we associate utterances that the user and system can perform.
In GoDiS these were originally defined in a Prolog predicate as a phrase spotting lexicon. However, in
TALK deliverables D1.1 and D1.2 (Ljunglöf et al., 2005, 2006) we have shown how to implement the
utterances in terms of multilingual and multimodal grammars in GF.
In the ontology we associate each utterance with a syntax tree from the GF resource grammar:

• For each Action there is an associated property actionPhrase which associates a verb phrase (VP)
with the action.

• Each Predicate has two associated properties – a wh-question and an answer. Thus we have the
two properties questionPhrase and answerPhrase, which associate a wh-question (WhQ) and an
answer (Clause) to each predicate.

In the GF resource grammar these categories (VP, WhQ and Clause) are very general, i.e. they can be
realized in several different linguistic forms. This gives the freedom to e.g. either form a request from the
user (“start over please”), or some kind of feedback from the system (“do you want to start over?”, “I’m
starting over”).

3.4.3 Sorts and indivuduals

The sortal hierarchy is an OWL subclass hierarchy under the top-level class Sort. Consider the following
example hierarchy from the Tram domain:

Sort


Location


Street

Stop
{

TramStop
BusStop

Line
{

TramLine
BusLine

Route

This subclass hierarchy says that each TramStop is also a Stop, which is also a Location.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 38/55

Connecting the sorts to the grammar

The individuals of each sort can be used either directly as short answers, or as arguments to predicates.
Subsorts have to be of the same grammatical category as their mother sorts, which means that it is the
direct subclasses of Sort that decides the associated grammatical category.
Thus, each direct subclass of Sort has a property mapping the instances to a syntax tree of the associated
grammatical category. For the example hierarchy from the Tram domain, we get the following properties:

• locationPhrase, mapping each Location to a ProperName

• linePhrase, mapping each Line to a ProperName

• routePhrase, mapping each Route to a Sentence

A common case is when a sort is a database of entities, such as Location and Line above. In these cases
the concrete syntax often consists of strings with very regular (or non-existent) morphology, and then the
annotation property rdfs:label can be an alternative instead of syntax trees. The only thing to think about
is that the sort in question has to be made a subclass of the class for the grammatical category in the
grammar. Thus, Location and Line should be subclasses of ProperName.

Version: Final (Public) Distribution: Public

Chapter 4

The Enhanced Multimodal Grammar
Library

The GF grammar library consists of a domain-independent group of grammars and three domain-specific
grammar groups. The domain-independent grammar group is called Common. Each domain-specific
grammar group corresponds to a GoDiS application. The three domains are Agenda, MP3 and Tram
which in turn correspond to the three GoDiS applications AgendaTalk, DJGoDiS and TramGoDiS. The
grammar library is divided into a system grammar and a user grammar which share common modules.
The overall structure of the grammars for a specific domain is shown in figure 4.1. The domain-specific
grammars separates the system and user utterances while sharing a common domain-independent grammar
module with other domains. Every domain-specific grammar can have its own resources. The resource
in the Agenda domain is called Bookings, the MP3 domain uses a resource called Music and the Tram
domain has two resources, Stops and Lines.
To describe the grammars in the library, examples will be taken from the MP3 module. Both to illustrate
the general theory, but also to give a more in-depth description of a domain-specific grammar module.

4.1 Separating system and user utterances

Throughout the GF grammar library the grammar modules are split into a system and a user part with
shared additional resources.
From the perspective of a GoDiS dialogue system the system grammars are used for parsing the semantic
representation in Prolog syntax of the dialogue moves into an abstract syntax that can be used for lin-
earization into the natural language used by the user. The user grammars are correspondingly used for
translating natural language utterances into a semantic representation in Prolog syntax, via the abstract
syntax.
The separation into system and user grammars gives more efficient grammars, constructed for their specific
needs. It is not necessary to have user linearizations for some system specific questions. The user will
never ask the system “Do I want to add a song?”. However, the system has to be able to talk about
everything within the system. If the confidence score on the received user input is low the system will try
to ground a request before acting upon it, “Add a song, is that correct?”

39

IST-507802 TALK D:1.5 15/08/06 Page 40/55

Resource

Sem Eng Swe

Domain System

Sem
Incomplete

Eng Swe

Domain User

Sem Eng Swe

Godis System

Sem
Incomplete

Eng Swe

Godis User

Sem Eng Swe

Domain Lexicon

Eng Swe

Figure 4.1: The structure of the grammars for a domain application

Another difference is that we want the user grammar to recognize all possible ways different users will
pose questions, give answers or request actions. For the system we only need one way of phrasing an
utterance.
Since the system has to be able to talk about everything, including user utterances, the system grammar
includes a minimal recognition grammar for user utterances. Therefore, the user grammar can be seen
both as a specialization and an extension of the system grammar – it specializes the grammar to only
those utterances that the user will say, but it extends the number of alternative ways the utterances can be
phrased. Another consequence is that a small and unefficient user grammar can be constructed straight
from the system grammar.

4.2 The domain-independent grammars
All domain-independent grammars are inside the Common group of grammars. The common system
grammar is called GodisSystem and specifies the two common features for all GoDiS applications. The
first feature is utterances used for various dialogue moves such as reraising issues, greetings, feedback and
grounding. The other feature is to define the internal structure of the dialogue moves from the categories
Question, Action, Proposition and ShortAnswer. This can be seen as the common grammar specifying the
upper level of the grammar structure, letting the domain-dependent grammars implementing the low-level
details.

System utterances

The multilingual system grammar GodisSystemI1 is implemented by using syntax trees from the GF
resource grammar. This guarantees that all system utterances will be grammatically correct and can be

1The trailing I in the grammar name says that the grammar is incomplete, or multilingual, and can be instantiated
by several different languages.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 41/55

implemented in any language provided by the resource grammar. From this multilingual grammar, the
concrete languages GodisSystemEng and GodisSystemSwe are automatically derived by instantiating
with a suitable lexicon. The system grammar GodisSystemSem gives GoDiS semantics for each of the
dialogue moves in the grammar.

User utterances

The user grammar is correspondingly called GodisUser and defines the relationship between the user-
specific dialogue moves requesting, answering, asking and giving a short answer.

Resources

There are two common resources, one for the semantic implementations and one for implementing the
natural language grammars. The semantic resource Prolog converts the abstract syntax trees into the
Prolog annotation used by GoDiS to represent the semantics of the dialogue system. The natural language
resource GodisLang is an interface between the GF resource grammar and the dialogue system grammars.
It gives language-dependent linearizations for greetings and other general utterances. It also provides
macros for transforming common phrases in a dialogue system into the syntax trees given by the GF
resource grammar.

4.3 The domain-specific grammars for system utterances
The domain-specific grammars are just like the domain-independent grammars separated into a system
grammar and a user grammar. In this section we describe the structure of the system grammar.

Abstract syntax

The system grammar has to include the following entities, where the examples are from the MP3 domain:

• Each sort is defined as a GF category, together with its instances:

cat Artist; Song;
fun abba, clash : Artist;

happy_new_year, london_calling : Song;

Commonly this information is defined in a separate grammar, such as the Music resource grammar
for the MP3 domain.

• Each sort can also be used as a short answer:

fun artist : Artist -> ShortAns;
song : Song -> ShortAns;

• Each action is a constant of the category Action:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 42/55

fun playlist_add : Action;

• Each predicate can be used in two different ways, either as a wh-question, or applied to an argument
as a proposition:

fun song_to_play_Q : Question;
song_to_play_P : Song -> Proposition;

This is all that has to be defined for a domain – the common GoDiS grammar knows how to use short
answers, actions, questions and propositions to build all possible dialgoue moves.

Natural language syntax

The system utterances for natural languages are language independent. This is obtained by using an
incomplete GF grammar with syntax trees from the GF resource grammar. Since many grammatical con-
structions occur repeatedly we use macros defined in GodisLang as an interface to the resource grammar.
The categories for short answers, actions, questions and propositions have their linearization inherited
from categories in the resource grammar:

• Each sort has its own linearization category, often being a noun phrase (NP):

lincat Artist = NP;
lin abba = plur_NP ["Abba"];

The macro plur_NP is defined in GodisLang for creating a plural noun phrase from a string.

• Short answers are linearized as noun phrases (NP):

lincat ShortAns = NP;
lin artist x = x;

• Actions are linearized as verb phrases (VP), together with extra information about the ClauseForm:

lincat Action = ClauseForm ** VP;
lin playlist_add = hasDone **

ComplV3 add_to_V3 (indef_N_sg song_N) (the_N_sg playlist_N);

Actions are used in different contexts by the common GoDiS grammar, such as requests (“Add a
song to the playlist please”), questions (“Do you want to add a song to the playlist?”) or confirma-
tions (“I have added a song to the playlist”). The information needed for all this is built into the GF
resource grammar.

• Questions are linearized as question clauses (QCl), plus ClauseForm information:

lincat Question = ClauseForm ** QCl;
lin song_to_play_Q = isDoing ** which_N_do_you_want_to_V2 song_N play_V2;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 43/55

Questions are also used in different contexts, such as questions (“Which song do you want to
play?”) or accomodation (“Returning to the issue about which song you want to play”).

• Propositions are linearized as clauses (Cl), plus ClauseForm information:

lincat Proposition = ClauseForm ** Cl;
lin song_to_play_P x = isDoing ** you_want_to_VP (ComplV2 play_V2 x);

Propositions can be used in contexts such as answers and feedback (“You want to listen to London
calling”) or y/n-questions (“Do you want to listen to London calling?”).

The linearization categories for short answers, actions, questions and propositions are declared in the
common GodisSystemI grammar. The ClauseForm information tells in which form (e.g. present or past
tense) the phrase should be linearized, in system reports. I.e. some actions should be reported in present
tense (“I am playing the song”), whereas other should be in past tense (“I have added the song to the
playlist”).

GoDiS semantics

The system grammar for GoDiS semantics is relatively straightforward to implement by using the macros
defined in the Prolog resource module:

• Short answers are one-place Prolog functors:

lin artist = pp1 "artist";
song = pp1 "song";

• Actions are Prolog atoms:

lin playlist_add = pp0 "playlist_add";

• Predicates are either one-place predicates, or wh-questions of the form X^p(X):

lin song_to_play_P = pp1 "song_to_play";
song_to_play_Q = pWhQ "song_to_play";

Obviously, there will be duplicated information in the semantics file – the GF functions commonly have
the same name as the corresponding GoDiS terms. This suggests that the semantics grammar is fairly
simple to automatically generate.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 44/55

4.4 The domain-specific grammars for user utterances
There are primarily four kinds of domain-specific dialogue moves the user can perform:

Dialogue move English utterance GoDiS semantics
Giving a short answer “The Clash” answer(artist(clash))
Requesting an action “Add a song” request(playlist_add)

Asking a question “Which is the current song?” ask(X^current_song(X))
Answering a question “It is London calling I want to play”

answer(song_to_play(london_calling))

The common grammar for user utterances, GodisUser, defines the four categories ShortAns, Action,
Question and Answer. Note that these categories are distinct from the corresponding categories in the
system grammars. A typical utterance by the user often also gives extra information in addition to the
main dialogue move. This extra information has in GoDiS the form of answers or short answers:

English utterance GoDiS semantics
“ London calling by the Clash” answer(song(london_calling))

+ answer(artist(clash))
“Add London calling by the Clash” request(playlist_add)

+ answer(song_to_add(london_calling))
+ answer(artist_to_add(clash))

“What songs have the Clash made?” ask(X^available_song_Q(X))
+ answer(artist(clash))

The linearization types for the dialogue move categories in the user grammar are simple strings, not
complex phrases from the resource grammar. The main reason for this is that the user utterances will
only be used in one way, since the system replies are already defined in the system grammar. Another
reason is that some user utterances that we want to capture can be grammatically incorrect and therefore
not covered by the resource grammar. A third reason is that it should be simple to add a new synonym for
the same semantics. These new synonyms can e.g. be taken from a corpus of user utterances, and then it
is easiest to just add a string instead of a syntax tree.

Abstract syntax

The abstract syntax consists of one rule for all synonymic utterances. Two utterances are synonyms if they
are interpreted in the same way by GoDiS, i.e. they have the same translation into a list of GoDiS dialogue
moves. This means that any sort, action or predicate that the user would want to talk about will have a
user-specific variant:

• Giving a short answer:

fun artist : Artist -> ShortAns;

• Requesting an action:

fun playlist_add : Action;

• Asking a question:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 45/55

fun current_song : Question;

• Answering a question:

fun song_to_play : Answer;

Note that these functions look very similar, some of them even identical, to the corresponding rules in the
system grammar. There are two important differences, however.
The first difference is that not all rules from the system grammar will be in the user grammar. This is true
for most predicates, which will either have the question form or the answer form in the user grammar, not
both forms. E.g. since it is the user who asks which song is the current one, it is very unlikely that the user
gives an answer to that question.
The second difference is that the user can give extra information in the form of additional answer moves.
This means that the user grammar will contain rules taking additional arguments:

• Combined answers, e.g. “London calling by the Clash”:

fun song_artist : Song -> Artist -> ShortAns;

• Combined actions, e.g. “Add London calling by the Clash”:

fun playlist_add__song_artist : Song -> Artist -> Action;

• Combined questions, e.g. “What songs have the Clash made?”:

fun available_song__artist : Artist -> Question;

Natural language syntax

The linearization types for user utterances are simple strings, which means that it is possible to just list all
synonym strings for an utterance:

lin current_song = {s = variants{
["what is the name of the current song"];
["what is the name of this song"];
["which is the current song"];
["which song is this"]}};

The first two strings can also be optimized to:

["what is the name of"] ++
variants{["the current"];["this"]} ++ ["song"]

A good habit is to always include the system utterances whenever possible. This is done by opening the
system grammar as a resource module and use the constants as macro definitions:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 46/55

lin playlist_add = variants{
reqVP playlist_add;
req1x "add" (variants{[];["a song"] ++

variants{[];["to the playlist"]}})};

The term playlist_add following reqVP is the requested action from the system grammar, which is
different from the rule that we are currently defining. The operation reqVP transforms a verb phrase from
the resource grammar into a string, optionally adding “I want to. . . ” and “. . . please”. The operation req1x
does the same on a verb phrase specified as two strings.
An alternative to using strings to specify utterances is to use syntax trees from the GF resource grammar:

lin playlist_add__song x = variants{
reqVP (ComplV2 add_V2 x);
reqVP (ComplV3 add_to_V3 x (the_N_sg playlist_N))};

An advantage with using only syntax trees is that they can be reused for different languages.

GoDiS semantics

We define the semantics for user utterances in terms of the semantics for system utterances. This means
that we open the semantics system grammar as a resource module and give the semantics as syntax trees.

lin current_song = pm1 (ask current_song_Q);
playlist_add = pm1 (request playlist_add);
artist x = pm1 (shortAns (artist x));

The operation pm1 constructs a single-element list from one argument. There are also the operations
pm2, pm3, etc. for constructing multiple-argument lists. The functions ask and request are defined in
the common system grammar, and current_song_Q and playlist_add are defined in the MP3 system
grammar.
Combined moves taking extra arguments are handled in the same way, only returning longer lists of
dialogue moves:

lin song_artist x y = pm2 (shortAns (song x))
(shortAns (artist y));

playlist_add__song_artist x y = pm3 (request playlist_add)
(answer (song_to_add_P x))
(answer (artist_to_add_P y));

available_song__artist x = pm2 (ask available_song_Q)
(shortAns (artist x));

4.5 Integrating multimodality in the grammars
The grammar library supports both flavours of multimodality, parallel and integrated as introduced in
TALK deliverable D1.2a (Bringert et al., 2005). Parallel multimodality, such as graphical output, is han-
dled as just another concrete syntax.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 47/55

Integrated multimodality, such as spoken user input integrated with clicks on a screen, is handled by
adding a row to the linearization record for the input clicks. This is already incorporated in the GF
resource grammar, as explained in section 1.3.7.
Both these techniques are thoroughly discussed in TALK deliverable D1.2b (Ljunglöf et al., 2006), and
will not be discussed further in this chapter.

4.6 Extending the GF grammar library
It is possible to extend the existing GF library with new languages or domains. By a new language we
mean any one of the languages covered by the GF resource grammar. This is because the system grammars
are specified using the resource grammar.

Adding a new language to the GF grammar library

We assume that the language to be added is Finnish. If the language is not already present in the grammar
library, we have to add the following grammars to the Common directory:

• Concrete syntax for the resource grammar, GodisLangFin.gf

• Concrete syntax for the system grammar, GodisSystemFin.gf

• Concrete syntax for the user grammar, GodisUserFin.gf

The last two grammars are very straightforward to create, and require no knowledge about the language.
The resource grammar however, requires enough knowledge about Finnish to translate phrases like “I
thought you said” or the different possible variants of “I want to”.
We now assume that the language already is in the library, but not in the domain in question, which we
assume to be the MP3 domain. The following grammars have to be added to the MP3 directory:

• A new lexicon syntax, MP3LexiconFin.gf

• A new syntax for the database resources, MusicFin.gf

• A new syntax for system utterances, MP3SystemFin.gf

• A new syntax for user utterances, MP3UserFin.gf

For the system utterances all you have to do is to add a grammar MP3SystemFin with the following
content:

concrete MP3SystemFin of MP3System =
GodisSystemFin, MusicFin **
MP3SystemI with (Grammar=GrammarFin),

(GodisLang=GodisLangFin),
(MP3Lexicon=MP3LexiconFin);

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.5 15/08/06 Page 48/55

This will give us a complete Finnish system grammar, provided there is a Finnish version of the common
grammars GodisLang and GodisSystem, and the domain grammars Music and MP3Lexicon.
The most difficult part is to write the user grammar MP3UserFin. The simplest alternative is to only use
syntax trees from the system grammar, but to get robust recognition we have to add the utterances and
idioms which are common for Finnish MP3 dialogues.

Adding a new domain to the GF Grammar library

Adding a new domain consists in creating the GoDiS dialogue application and writing the GF grammars.
We assume that the GoDiS application already exists and the problem only is to write the grammars.
Assuming the example domain is a computerized psychotherapist which we can call Psycho, the following
have to be created:

• A directory Psycho

• GF grammars for domain-specific lexicon entries:

– Abstract syntax, PsychoLexicon.gf

– One concrete syntax for each language: PsychoLexiconEng.gf, PsychoLexiconSwe.gf,
. . .

• GF grammars for system utterances:

– Abstract syntax, PsychoSystem.gf

– (Semantics, PsychoSystemSem.gf)

– Language-independent syntax, PsychoSystemI.gf

– (One concrete syntax for each language: PsychoSystemEng.gf, PsychoSystemSwe.gf, . . .)

• GF grammars for user utterances:

– Abstract syntax, PsychoUser.gf

– (Semantics, PsychoUserSem.gf)

– One concrete syntax for each language: PsychoUserEng.gf, PsychoUserSwe.gf, . . .

The files in parenthesis are very straightforward to write – they can in fact be created automatically from
the abstract syntax. The sizes of the files depend largely on the size of the domain – roughly the sizes of
the grammars are proportional to the number of actions, predicates, sorts and individuals there are in the
domain.

Version: Final (Public) Distribution: Public

Chapter 5

Summary and Conclusions

The ISU approach uses abstract representations for dialogue states and update rules which allow the
generic characterisation of flexible dialogue strategies. This enables the same code for dialogue man-
agement techniques to be used for different natural languages and for different domains.
In this deliverable we have discussed how dialogue systems, and especially grammars for dialogue sys-
tems, can be related to existing knowledge representation systems. We have focussed on one specific
language for knowledge representation, the Web Ontology Language (OWL), which is a W3C standard
for ontology descriptions for knowledge representation. Since it is a standard there is already much work
done on relating OWL to other ontology formalisms.
We have shown how to generate the domain-specific utterances for a device-oriented dialogue system from
an ontology describing the devices. An example system using this technique is Mimus, a dialogue system
with which one can control different devices in a home, such as lights, alarms and washing machines.
All information about devices is specified in an ontology, which can be updated on the fly with e.g. new
devices or new information about existing devices.
We have also shown that all domain-specific utterances in a domain for the GoDiS dialogue system can
be specified as a single ontology. By representing the utterances as abstract syntax trees in a Grammatical
Framework (GF) resource grammar, the representation of utterances is language-independent. The re-
source grammar we are using has a coverage comparable to the Core Language Engine, and exists for 11
different languages, including the TALK languages English, German, Spanish, and Swedish, but also the
non-Indoeuropean languages Finnish, Russian and Arabic. Since the grammar is multilingual, this means
that the only thing that has to be done to localize a dialogue application to a new language is to write a
lexicon for the domain-specific entities.
In this deliverable we have also described the final status of the full TALK Grammar Library, which
is written in GF. The structure has been modified so that the domain-specific parts of a grammar can
be described in an OWL ontology, and to further simplify localization to new languages, domains and
modalities.

49

IST-507802 TALK D:1.5 15/08/06 Page 50/55

Version: Final (Public) Distribution: Public

Bibliography

Amores, G. and Quesada, J. F. (1997). Episteme. Proceedings of Procesamiento del Lenguaje Natural,
(21):1–16.

Appel, A. W. (1998). Modern Compiler Implementation in Java. Cambridge University Press.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P., editors (2003). The De-
scription Logic Handbook. Cambridge University Press.

Bernstein, A., Kaufmann, E., Kaiser, C., and Kiefer, C. (2006). Ginseng: A guided input natural language
search engine for querying ontologies. In Jena User Conference, Bristol, UK.

Brickley, D. and Guha, R. V., editors (2004). RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, http://www.w3.org/TR/rdf-schema/.

Bringert, B., Cooper, R., Ljunglöf, P., and Ranta, A. (2005). Development of multimodal and multilingual
grammars: viability and motivation. Deliverable D1.2a, TALK Project.

Coppi, S., Noia, T. D., Sciascio, E. D., Donini, F., and Pinto, A. (2005). Ontology-based natural language
parser for e-marketplaces. In 18th Intl. Conf. on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, volume 3533, pages 279–289. Springer-Verlag.

Dean, M. and Schreiber, G., editors (2004). OWL Web Ontology Language Reference. W3C Recommen-
dation, http://www.w3.org/TR/owl-ref/.

Denecke, M. (2002). Rapid prototyping for spoken dialogue systems. In 19th International Conference
on Computational Linguistics, Taipei, Taiwan.

Dymetman, M., Lux, V., and Ranta, A. (2000). XML and multilingual document authoring: Convergent
trends. In COLING, pages 243–249, Saarbrücken, Germany.

Estival, D., Nowak, C., and Zschorn, A. (2004). Towards ontology-based natural language processing. In
RDF/RDFS and OWL in Language Technology: 4th Workshop on NLP and XML. ACL.

Johansson, M. (2006). Globalization and localization of a dialogue system using a resource grammar.
Master’s Thesis, Computational Linguistics, Gothenburg University.

Khegai, J., Nordström, B., and Ranta, A. (2003). Multilingual syntax editing in GF. In Gelbukh, A.,
editor, CICLing–2003: Intelligent Text Processing and Computational Linguistics, LNCS 2588, pages
453–464. Springer.

51

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-ref/

IST-507802 TALK D:1.5 15/08/06 Page 52/55

Ljunglöf, P., Amores, G., Cooper, R., Hjelm, D., Manchón, P., Pérez, G., and Ranta, A. (2006). Multi-
modal grammar library. Deliverable D1.2b, TALK Project.

Ljunglöf, P., Bringert, B., Cooper, R., Forslund, A.-C., Hjelm, D., Jonsson, R., Larsson, S., and Ranta,
A. (2005). The TALK grammar library: an integration of GF with TrindiKit. Deliverable D1.1, TALK
Project.

Milward, D., Amores, G., Blaylock, N., Larsson, S., Ljunglöf, P., Manchón, P., and Pérez, G. (2006).
Dynamic multimodal interface reconfiguration. Deliverable D2.2, TALK Project.

Milward, D. and Beveridge, M. (2003). Ontology-based dialogue systems. In IJCAI-03 Workshop on
Knowledge and Reasoning in Practical Dialogue Systems, Acapulco, Mexico.

Milward, D. and Beverige, M. (2003). Ontology–based dialogue systems. In IJCAI 2003 Workshop on
Knowledge and Reasoning in Practical Dialogue Systems.

Nordström, B., Petersson, K., and Smith, J. (1990). Programming in Martin-Löf’s Type Theory. Oxford
University Press.

Patel-Schneider, P. F., Hayes, P., and Horrocks, I., editors (2004). OWL Web Ontology Language Semantics
and Abstract Syntax. W3C Recommendation, http://www.w3.org/TR/owl-semantics/.

Quesada, J. F. and Amores, G. (2002). Knowledge–based reference resolution for dialogue management
in a home domain environment. In Johan Bos, M. E. and Matheson, C., editors, Proceedings of the
sixth workshop on the semantics and pragmatics of dialogue (Edilog), pages 145–189.

Ranta, A. (1994). Type-Theoretical Grammar. Oxford University Press.

Ranta, A. (2004). Grammatical Framework, a type-theoretical grammar formalism. Journal of Functional
Programming, 14(2):145–189.

Rayner, M., Carter, D., Bouillon, P., Digalakis, V., and Wirén, M. (2000). The Spoken Language Transla-
tor. Cambridge University Press.

Russ, T., Valente, A., MacGregor, R., and Swartout, W. (1999). Practical experiences in trading off
ontology usability and reusability. In Proceedings of the Knowledge Acquisition Workshop (KAW99),
Banff, Alberta.

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars. Theoretical
Computer Science, 88:191–229.

Sharon Oviatt, S. L., D. A. and Kuhn, K. (1997). Integration and synchronization of input modes during
multimodal human-computer interaction. In Proceedings of Conference on Human Factors in Comput-
ing Systems: CHI ’97.

Williem Adriaans, P. (1992). Language Learning from a Categorial Perspective. PhD thesis, Amsterdam
University.

Zaanen, M. V. (2000). Abl: Alignment-based learning. In Proceedings of the 18th International Confer-
ence on Computational Linguistics (COLING), Saarbrücken.

Version: Final (Public) Distribution: Public

http://www.w3.org/TR/owl-semantics/

Appendix A

The enhanced multimodal grammar
library

A.1 Downloading the grammar library
The TALK Enhanced Multimodal Grammar Library can be downloaded from

http://www.ling.gu.se/projekt/talk/software/

The distribution consists of a collection of GF grammar modules, distributed in the following directories:

• Common grammars for GoDiS-based dialogue systems

• The application domains MP3 (for the DJGoDiS application), Agenda (for the AgendaTalk appli-
cation), and Tram (for the TramGoDiS application)

The directories and grammar modules are described in more detail in chapter 4.

OWL ontology for a GoDiS dialogue domain

Apart from the GF grammars, the library also consists of an example OWL ontology for the TramGoDiS
application. This ontology is located in the directory OWL, and can be opened by any OWL compliant
ontology editor, such as Protegé.1

The structure of the ontology is described in more detail in section 3.4.

A.2 Installation instructions
First download and install Grammatical Framework. Source code, binaries and installation instructions
can be found on the GF homepage:

1http://protege.stanford.edu/

53

http://www.ling.gu.se/projekt/talk/software/
http://protege.stanford.edu/

IST-507802 TALK D:1.5 15/08/06 Page 54/55

http://www.cs.chalmers.se/~aarne/GF/

Set the search path to the GF library, and start GF from inside the directory of the grammar files:

• In csh, tcsh:

> setenv GF_LIB_PATH (path-to-GF)/lib
> (path-to-GF)/bin/gf
Welcome to Grammatical Framework, Version 2.4
...

• In bash:

$ export GF_LIB_PATH=(path-to-GF)/lib
$ (path-to-GF)/bin/gf
Welcome to Grammatical Framework, Version 2.4
...

If GF will be used on a regular basis, the gf binary should be added to the global search path and the
environment variable GF_LIB_PATH should be set globally.

A.3 Testing the grammars
The grammars can be tested separately by loading them into GF. The relevant concrete syntax modules
are:

DomSrcLng.gf, where Dom ∈ {MP3, Agenda, Tram}, Src ∈ {System, User},
and Lng ∈ {Eng, Swe, Sem}.

The following is an example of the capabilities of the GF program. For more information about how to
use GF, see the GF documentation. This example assumes we are testing the DJGoDiS grammar for user
utterances, which of course can be replaced by any of the other grammars in the library.

1. Start GF in the directory where the grammars are located:

$ cd (path-to-grammar-library)/MP3/
$ gf

2. Load the source module(s) into GF:

> i MP3UserSem.gf
> i MP3UserEng.gf
> i MP3UserSwe.gf

3. Select the English concrete grammar:

Version: Final (Public) Distribution: Public

http://www.cs.chalmers.se/~aarne/GF/

IST-507802 TALK D:1.5 15/08/06 Page 55/55

> sf -lang=MP3UserEng

4. Parse an English utterance:

> p "play like a prayer by madonna"
request_S (play_item__song_artist like_a_prayer madonna)

5. Translate (i.e. parsing followed by linearization) from English to Swedish:

> p "play like a prayer by madonna" | l -all -lang=MP3UserSwe
spela like a prayer med madonna / ...

The option -all shows all possible variants of linearizing a syntax term.

6. Translate from English to GoDiS dialogue moves:

> p "play like a virgin by madonna" | l -lang=MP3UserSem
[request(play), answer(song(like_a_virgin)), answer(artist(madonna))]

In this case we don’t need the option -all, since there is only one possible variant for the semantics.

7. Generate 5 random Swedish utterances:

> gr -number=5 | l -lang=MP3UserSwe
in the city med eagle eye cherry
rant radio
va
jag vill ändra balansen mitten tack
jag vill spela nummer tre tack

8. Quit GF:

> q

Version: Final (Public) Distribution: Public

	Summary
	1 Introduction
	1.1 OWL, the Web Ontology Language
	1.2 An overview of the Grammatical Framework
	1.2.1 Main features of GF

	1.3 The GF resource grammar library
	1.3.1 Implemented languages and linguistic coverage
	1.3.2 A small example
	1.3.3 Inflection paradigms
	1.3.4 Syntax rules
	1.3.5 Syntactic structures on the sentence-level
	1.3.6 Sub-sentential syntactic structures
	1.3.7 Multimodality

	2 Generating Multilingual Grammars from OWL Ontologies in MIMUS
	2.1 Introduction
	2.2 Automatic grammar generation
	2.2.1 Generating grammars from ontologies

	2.3 Solution overview
	2.4 Configuration files
	2.5 Overview of the algorithm
	2.6 Showcases
	2.6.1 Sample rules
	2.6.2 Capturing multimodality
	2.6.3 Capturing multilinguality

	2.7 Conclusions and future work

	3 Ontologies and Grammatical Framework
	3.1 Relating existing ontologies with abstract GF grammars
	3.1.1 Classes and individuals
	3.1.2 Properties
	3.1.3 General OWL axioms and restrictions
	3.1.4 Ontologies and concrete syntax

	3.2 Incorporating the Mimus in-home ontology
	3.2.1 The Mimus ontology as an abstract GF grammar
	3.2.2 Mimus configuration files as GF concrete syntax
	3.2.3 Discussion

	3.3 GF abstract syntax as OWL ontologies
	3.3.1 Context-free grammars as OWL ontologies
	3.3.2 GF abstract syntax in OWL
	3.3.3 Optimizing the grammar ontology
	3.3.4 The GF resource grammar as an OWL ontology
	3.3.5 Ontology editing as a multilingual authoring system

	3.4 Using ontologies to specify GoDiS dialogue domains
	3.4.1 The GF resource grammar
	3.4.2 Actions and predicates
	3.4.3 Sorts and indivuduals

	4 The Enhanced Multimodal Grammar Library
	4.1 Separating system and user utterances
	4.2 The domain-independent grammars
	4.3 The domain-specific grammars for system utterances
	4.4 The domain-specific grammars for user utterances
	4.5 Integrating multimodality in the grammars
	4.6 Extending the GF grammar library

	5 Summary and Conclusions
	Bibliography
	A The enhanced multimodal grammar library
	A.1 Downloading the grammar library
	A.2 Installation instructions
	A.3 Testing the grammars

