
D2.2: Dynamic Multimodal Interface
Reconfiguration

David Milward (ed), Gabriel Amores, Nate Blaylock, Staffan Larsson,
Peter Ljunglöf, Pilar Manchón, Guillermo Pérez

Distribution: Public

TALK
Talk and Look: Tools for Ambient Linguistic Knowledge

IST-507802 Deliverable D2.2

8th August 2006

Project funded by the European Community
under the Sixth Framework Programme for
Research and Technological Development

The deliverable identification sheet is to be found on the reverse of this page.

Project ref. no. IST-507802
Project acronym TALK
Project full title Talk and Look: Tools for Ambient Linguistic Knowledge
Instrument STREP
Thematic Priority Information Society Technologies
Start date / duration 01 January 2004 / 36 Months

Security Public
Contractual date of delivery M30 = June 2006
Actual date of delivery 8th August 2006
Deliverable number D2.2
Deliverable title D2.2: Dynamic Multimodal Interface Reconfiguration
Type Report
Status & version Final 1.1
Number of pages 64 (excluding front matter)
Contributing WP 2
WP/Task responsible LING

Other contributors UGOT, USE, USAAR,
Author(s) David Milward (ed), Gabriel Amores, Nate Blaylock,

Staffan Larsson, Peter Ljunglöf, Pilar Manch ón, Guillermo
P érez

EC Project Officer Evangelia Markidou
Keywords ontology, reconfigurability

The partners in TALK are: Saarland University USAAR

University of Edinburgh HCRC UEDIN

University of Gothenburg UGOT

University of Cambridge UCAM

University of Seville USE

Deutches Forschungszentrum fur Künstliche Intelligenz DFKI

Linguamatics LING

BMW Forschung und Technik GmbH BMW

Robert Bosch GmbH BOSCH

For copies of reports, updates on project activities and other TALK-related information, contact:

The TALK Project Co-ordinator
Prof. Manfred Pinkal
Computerlinguistik
Fachrichtung 4.7 Allgemeine Linguistik
Postfach 15 11 50
66041 Saarbrücken, Germany
pinkal@coli.uni-sb.de
Phone +49 (681) 302-4343 - Fax +49 (681) 302-4351

Copies of reports and other material can also be accessed via the project’s administration homepage,
http://www.talk-project.org

c
�

2006, The Individual Authors

No part of this document may be reproduced or transmitted in any form, or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system, without
permission from the copyright owner.

Contents

Summary . 1

1 Introduction 2

2 Representing Application and Domain Specific Knowledge 5
2.1 Introduction . 5

2.2 Representing a Home Ontology in OWL . 6

2.2.1 Ontology Coverage . 6

2.2.2 Classes and Subclasses . 6

2.2.3 Properties . 8

2.3 Representing Domain Knowledge in the Linguamatics Interaction Manager 10

2.3.1 Representation of Home Devices . 10

2.3.2 Representation of the Home and the Location of Devices 11

2.3.3 Representation of Applications . 12

2.3.4 Representation of Menus . 12

2.4 Representing applications in GODIS . 13

2.4.1 Applications, resources and resource types in GoDiS 13

2.4.2 Specifying a GoDiS application as an OWL ontology 13

2.4.3 Menu-based dialogue plans . 19

2.4.4 Connecting UPnP devices to GoDiS . 19

2.5 Services in the Collaborative Problem Solving Framework 21

2.5.1 Overview of Collaborative Problem Solving Model 22

2.5.2 Domain Specialization of Objects . 27

3 Dialogue Management to Support Dynamic Reconfiguration 29
3.1 Introduction . 29

3.2 Towards Domain-Independent CPS-based Dialogue Management 29

3.2.1 The SAMMIE Dialogue Manager . 30

3.2.2 Abstracting Additional Domain Information . 32

3.2.3 Domain-specific Rules in the System . 33

3.2.4 Discussion . 33

3.3 Domain independent update rules in GODIS . 33

i

IST-507802 TALK D:D2.2 8th August 2006 Page ii/64

3.3.1 Resources and Resource Interface Variables in TrindiKit 35

3.3.2 Accessing resources from update rules . 35

3.3.3 Switching resources . 35

3.4 Mixing control between the Linguamatics Interaction Manager and external tasks 36

4 Dealing with Multiple Applications 38
4.1 Introduction . 38

4.1.1 Device and application (service) plug-and-play 38

4.1.2 Weak and strong plug-and-play . 39

4.1.3 Off-line and on-line plug-and-play . 40

4.1.4 Application switching strategies . 41

4.2 Application accommodation in GoDiS . 43

4.2.1 Dialogue management for application accommodation 43

4.2.2 Grammars and language models for application accommodation 45

4.2.3 Multi-device utterances . 45

4.3 Multiple Applications in MIMUS . 46

4.3.1 Taxonomy concepts applied to MIMUS . 46

4.3.2 Multimodal application switching . 47

4.3.3 Explicit direct switching . 48

4.3.4 Implicit direct switching . 49

4.4 Applications in the Linguamatics Interaction Manager . 50

4.5 Multiple Applications in the Linguamatics Interaction Manager 50

5 Reconfigurability in the Systems 52
5.1 Linguamatics Interaction Manager . 52

5.1.1 Dynamic Reconfiguration . 52

5.1.2 Current Limitations . 53

5.2 MIMUS . 53

5.2.1 Weak Plug & Play . 54

5.2.2 More complex reconfiguration cases . 55

5.2.3 Applying the Taxonomy to MIMUS . 57

5.3 Plug-and-play in GoDiS . 57

5.3.1 Off-line strong plug-and-play for implicit direct application switching 57

5.3.2 Adding applications to GoDiS . 58

5.3.3 Using OWL for application modification and device plug-and-play 60

5.4 SAMMIE . 60

6 Conclusion 62

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 1/64

Summary

Wider use of spoken and multi-modal dialogue systems has been hampered by the cost of reconfigurability
to new tasks and applications. Dynamic reconfiguration offers the potential for immediate redeployment,
and the possibility of more personalised and context dependent interaction with users. This deliverable
outlines the challenges for knowledge representation, and how the systems address various levels of re-
configurability up to and including dynamic reconfigurability.

Version: 1.1 (Final) Distribution: Public

Chapter 1

Introduction

In this report we discuss the steps that have been taken towards fully reconfigurable multi-modal dia-
logue, from greater use of declarative domain representations, up to fully dynamic reconfiguration where
a dialogue manager can be updated while on-line.

We focus on the home information and control scenario which provides a particularly interesting, but also
particularly challenging scenario for dialogue systems. Each home is different, with different numbers
of rooms, different numbers of floors, different kinds of devices, and different devices in each room.
Although it is possible to have separate dialogue systems for each device, this kind of approach loses
many of the benefits of spoken interaction. Ideally we want:

1. The ability to control and interrogate more than one device at a time e.g. turn off all the lights, have
I left anything on downstairs?

2. A uniform interaction with each device (users do not want to learn a new style of interaction for
each device).

3. Guided interaction which does not have to be learnt (this contrasts with having to teach the system
a particular exact command for every possible action on every device).

4. Access to multiple devices so that these can be programmed together; e.g. turn on the hall light
when the door is opened. Programming using dialogue will be discussed in detail in TALK Deliv-
erable D2.3.

5. Automatic integration of new devices in the home set–up.

6. Easy ways to configure the system for different homes, and to reconfigure as devices are moved
around the home.

7. Different levels of access and control for different users.

When we consider home information or services, the challenges are greater, but so are the potential ben-
efits. Each user in the same household may subscribe to their own particular set of services. Ideally we
want:

1. Information to be shared across services: we do not want to have to repeat a logon, billing informa-
tion, etc, for every service.

2

IST-507802 TALK D:D2.2 8th August 2006 Page 3/64

2. A uniform approach to interaction with each service, which does not have to be learnt.

3. Setting of defaults on services e.g. whenever I go to London try Stansted first. This is again
discussed in D2.3.

4. Proactivity: when the circumstances change or new events come into play, the user/s may want to
change the regular routines.

5. Easy integration of new services.

Considering spoken dialogue for home control and home services as a whole, the key requirements are:

1. The home is aware of itself, its devices, the services available, and the full set of users and their
access levels and preferences. That is, it can handle all relevant information.

2. The home can easily adapt to changes and additions (new services and/or devices).

3. The home interacts naturally at all levels.

Although a few words can be used to summarize the overall goal (self–awareness, adaptability and natural
interaction), there is a great deal of complexity implied in this list. This complexity grows as we consider
devices and services as interrelated entities that may need or should talk to each other and/or exchange
information. Another factor that adds complexity is the existence of several users in the same house. This
is challenging not just because of the existence of several user profiles, but because of the possibility of
two different users interacting with the home simultaneously through the same or different modalities in
different locations (eg.: two users in different rooms of the same house accessing the system, or one user
located in the house and another user accessing the house control remotely though the telephone, internet,
etc.). Although it is possible to use a new dialogue manager process for each user, with no explicit
synchronisation except through external events, it might also be convenient for the dialogue manager to
have some global knowledge of who is communicating with the system and what they are doing so that
users can be warned, if, for example, another user is currently in a dialogue with the same device.

Multimodal interfaces add yet more complexity, as well as a greater degree of flexibility to users. The
availability of more than one communication channel not only gives the possibility of splitting a single task
across different modalities, but allows for the possibility of different tasks to be undertaken simultaneously
in different modalities. Multimodality thus requires ability to deal with:

1. Input modality integration (fusion)

2. Choice of output modalities or combination (fission)

3. Multitasking

To sum up, in order to provide a multi-modal solution that copes with all the tasks and requirements that
we would ideally include for practical and appealing home control systems, several concepts must be
taken into account:

1. Smart house self-awareness: full information about devices, services, house configuration, device
distribution, etc. in standardized formats to ensure compatibility.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 4/64

2. Flexible and natural interaction in multimodal environments.

3. Adaptable and collaborative systems to ensure easy reconfiguration and integration of new devices
and services.

4. Simultaneous conversations with different users.

5. Multimodal Multitasking.

The complexity outlined above makes it difficult to use traditional dialogue systems with largely pre-
scripted interactions which would have to predict all the possible ways in which different devices interact
and how this might affect the interaction with the user through different modalities. A new approach
is therefore required. In this report we describe approaches which are rooted in the Information State
Update approach, but also include a knowledge-based (or ontology-based) approach to the incorporation
of domain specific knowledge, separating this from general multi-modal dialogue behaviour.

Chapter 2 is concerned with how knowledge about devices and services is represented in the systems,
for example using the OWL ontology representation language. Chapter 3 is concerned particularly with
dialogue management aspects, including distribution of control between a dialogue manager and external
tasks. Chapter 4 focusses on issues of dealing with multiple applications within a single system. Chapter
5 focusses on the practicalities of reconfiguring each of the system and categorises them according to the
degree to which you can plug-and-play devices and services at will.

Version: 1.1 (Final) Distribution: Public

Chapter 2

Representing Application and Domain
Specific Knowledge

2.1 Introduction

To fully abstract application and domain specific knowledge from generic dialogue behaviour, we need to
be able to specify knowledge required by the dialogue manager concerning:

1. Individual Devices

2. Individual Services

3. The general context (the home in this scenario)

4. Any required grouping or menu structure to access devices or services

5. Any communication required between the dialogue manager and the external devices

The use of a similar representation for the first four cases is desirable since there is considerable overlap
between the four knowledge areas. A device may be associated with device specific functions which may
be regarded as services, so Case 1 and 2 overlap. It may also be useful to group specific functions of
a device into menu structures, so Case 1 and Case 4 overlap. Furthermore, the context for a component
within a device may also resemble the context for a single device within the home, giving overlap between
Case 1 and Case 3.

In this chapter we therefore concentrate on the use of general description frameworks, in particular the use
of ontologies and the CPS model. This does not mean that the systems are incompatible with standards
which are specifically for devices e.g. UPNP (Universal Plug and Play), or for services e.g. OWL-S
(OWL-based Web service language), or user interfaces e.g. UIDL (User Interface Description Language).
In fact, it makes sense to map from each of these descriptions into a more general representation which
can include information about device and service functionality, but also lexical information which says
how to refer to the functions or components of the device. In the case of GoDiS there is an explicit
description of the interface to UPNP. Further information on mapping from UIDL descriptions is given in
TALK Deliverable D2.1 [MAB � 05].

5

IST-507802 TALK D:D2.2 8th August 2006 Page 6/64

2.2 Representing a Home Ontology in OWL

One of the main objectives of the work in Seville was to identify a broadly used standard for the specifi-
cation of ontological knowledge, that would:

� Enable partners to work in the same ontological framework

� Allow for external contributions and sharing of ontological knowledge.

� Bring the TALK project work closer to other international projects, and

� Take advantage of already developed work on this issue.

2.2.1 Ontology Coverage

An additional objective within this task was the design of a more exhaustive and complete version of the
home ontology, which should incorporate the “telephone operator” functionality defined in Siridus [Sir]
For this purpose, new devices and relations have been included and a new ontological structure has been
designed. Obviously, the ontology described below is just illustrative, and does not mean to be exhaustive,
neither in its class coverage nor in the individuals included in each class or subclass.

2.2.2 Classes and Subclasses

The basic element in OWL consists of the triplet Subject–Predicate–Object. Subjects and objects are
denoted by classes and subclasses, while Predicates are typically denoted by properties.

System is a special class, whose functionality will be described below.

Device: Describes device types, and contains the following subclasses:

1. Lamp and Dimmer (actually a subclass of Lamp)

(a) Lamp 1 through Lamp 6 as individuals

(b) DimmerLamp 1 and DimmerLamp 2 individuals

2. Blind (one individual, Blind 1)

3. Fan (one individual, Fan 1)

4. Heater (one individual, Heater 1)

5. Radio (one individual, Radio 1)

6. Sensor (one individual, Sensor 1)

7. TV (one individual, TV 1)

Area includes the following individuals:

� Upstairs
� Downstairs

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 7/64

� Indoors
� Outdoors

Room includes eight subclasses:

1. Bathroom (Bathroom 1 and Bathroom 2)

2. Bedroom (Bedroom 1 through Bedroom 4)

3. Garage (Garage 1)

4. Garden (Garden 1)

5. Hall (Hall 1)

6. Kitchen (Kitchen 1)

7. Patio (Patio 1)

8. Sittingroom (Sittingroom 1)

SpecificLocation contains 5 sample individuals:

� Ceiling
� LeftCorner
� Table
� Wall
� RightCorner

Color is a class available for both rooms and devices, whose individuals are:

� Black
� Blue
� Green
� Red
� White
� Yellow

Size has two individuals:

� Big
� Small

The actual functionality taken into account in this new version of the ontology includes the following
commands for the home devices:

� Switch on / off

� Open / Close

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 8/64

� Raise / Lower

As discussed previously, the telephone operator functionality and its corresponding directory of entries
have also been integrated in the new ontology. However, they deserve a special consideration within the
ontology with respect to the rest of the devices and/or functionalities. Ontologically, a class of name
Directory describes the directories available in the home (currently, it only contains one individual).

The information stored in each entry in the directory is defined as a DirectoryEntry class, with six individ-
ual instantiations in our example (DirectoryEntry 1 to DirectoryEntry 6). Each Directory Entry requires
a set of objects, defined as independent classes:

� FirstName (several instances)

� LastName (several instances)

� HomeNumber (no instances)

� WorkNumber (no instances)

� Mobile (no instances)

� Email (20 individuals)

� Relationship to the user, with the following individuals:

– Boss

– Brother

– Cousin

– Father

– Friend

– Mother

– Neighbour

– Sister

– Uncle

2.2.3 Properties

Instances of objects are linked to other objects according to the OWL triplet by means of properties and
subproperties.

The property hasDeviceCommand is conceptualized as a System class performing a set of functions or
commands over the set of devices:

� hasDeviceCommand (System hasDeviceCommand Device)

– Domain: System

– Range: Device

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 9/64

This property contains a series of subproperties, each corresponding to one type of functionality over the
devices in the house:

� SwitchOn and SwitchOff, whose ranges are the classes Fan, Heater, Lamp and Radio

� Open, Close, Raise and Lower, whose range is the class Blind

Additional properties have been defined for the Device class, which are not related to the devices’ func-
tionality, such as:

� hasColor (Device hasColor Color)

– Domain: Device

– Range: Color

� hasSize (Device hasSize Size)

– Domain: Device

– Range: Size

� locatedIn a transitive function with four domains and ranges

– Domain: Device, SpecificLocation, Room, Area

– Range: SpecificLocation, Room, Area, Home (respectively)

The functionality considered for the telephone operator is described by the subproperties of the hasTele-
phoneCommand property. All of them take System as their Domain, and DirectoryEntry as their
Range.

� Call

� MakeConference

� Transfer

� CancelTransfer

� List (entries)

� Find (entries)

� Redial

Additional properties have also been defined for the DirectoryEntry class which are not related to its
functionality, such as:

� hasEmail (DirectoryEntry hasEmail Email)

– Domain: DirectoryEntry

– Range: Email

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 10/64

. . . and so on for each property: hasFName, hasHName, hasHNumber, hasLName, hasNNumber,
hasRelationship, hasSize, hasWNumber.

Once it was determined that OWL would be the standard chosen, Prot ég é 3.1 open source ontology editor
was chosen to help the development and reconfiguration of the ontology. Prot ég é is extensible and based
on Java, and allows users to construct domain ontologies in various formats such as OWL, RDF, XML
and HTML [Pro]. New devices will also be included.

2.3 Representing Domain Knowledge in the Linguamatics In-
teraction Manager

In this section we describe how domain knowledge is represented in the Linguamatics system. The Lin-
guamatics Interaction Manager is an ontology-based dialogue system [MB03], where domain knowledge
is described in terms of an ontology containing relationships between entities, and terminology (i.e. terms
for concepts and synonyms). As an example we will describe the ontology which has been used in the
demonstration version of the system. A similar, but slightly smaller ontology was used for the system
installed at the Advantica Test House which was connected to a set of real devices including lights and
blinds [CLAK05].

2.3.1 Representation of Home Devices

The Linguamatics ontology is similar to the Seville home ontology. The main differences are in the
representation of functions such as switch, and in the use of more intermediate and higher level classes,
often exploiting multiple inheritance.

device is parallel to Seville’s Device class, but includes an extra layer of structure:

� on-off device

� open-shut device

� sensor

on-off device contains the classes:

� cd

� light (7 individuals)

� television (3 individuals)

� radio

� washing machine

� cooker

� fridge

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 11/64

� freezer

open-shut device contains

� curtains (5 individuals)

� door

sensor contains

� smoke detector (2 individuals)

� carbon monoxide detector

These subclasses of device are used for functional properties. For example, all on-off devices can be
switched on or off. Descriptive properties are associated directly with individual devices. For example,
rather than a subclass of plasma tv we associate the properties lcd or plasma directly with individual tvs.

As well as the devices themselves, there are also classes for different states of devices. For example:

� channel (e.g. bbc1)

� onoff (on or off)

� temperature (0-40 degrees)

� brightness (0-100 percent)

� track (0-9)

� volume (0-100 percent)

� openstate (open or closed)

Devices are related to state classes using the has-state relationship. For example, on-off devices have the
state onoff, tv have the state channel etc. Devices also inherit from their parent classes. For example, a
tv has an onoff state inherited through being an on-off device.

2.3.2 Representation of the Home and the Location of Devices

The home has a top ontology concept of location. This has the children upstairs, downstairs and rooms.
rooms includes subclasses for:

� bathroom

� bedroom (2 individuals)

� hall

� kitchen

� landing

� lounge

The relationship in is similar to Seville’s locatedIn but has a single domain and range. The range is the
class location. The domain is item which includes location and device.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 12/64

2.3.3 Representation of Applications

The system includes an ontology of commands. This includes commands over devices e.g. switch or
close, and commands which can be thought of as full applications or services e.g. cinema booking or
restaurant booking. For example, switch takes three parameters, the device, the kind of state, and the
state value. For example, to switch the channel for a tv with the unique identifier, tv-1, to the channel
bbc1, requires the command:

switch(tv-1, channel, bbc1)

The second parameter specifies the class of state (in this case the state to change is in the class of channel).
This is needed since the value itself may not be enough to indicate which state it is in. For example, volume
and brightness both take a numeric value, so we need to distinguish between the following commands:

switch(tv-1, volume, 50) switch(tv-1, brightness, 50)

For cinema booking, the command requires the name of the film, the time, and the number of people. For
example:

cinema-booking(Two Towers, 17.00, 3)

Execution of commands is associated with effects (post conditions), and executing one command may
cause a chain of commands to occur. Although there is no explicit representation of pre-conditions, it is
possible to specify dependencies between parameters of a command (e.g. you can only switch a device to
a state which is available for that device).

2.3.4 Representation of Menus

Even if a dialogue system is able to deal with fully specified user commands (such as “switch the lounge tv
to bbc1”), it can be useful to provide a menu-based scaffold, so that new users of a system can step through
a series of options to get a better idea of the possibilities available. For example, in the Linguamatics
system the menu-based scaffold allows users to navigate step-by-step to a particular service or device
which they may not have known about a priori.

Ontological structure and menu structure are often similar. For example, a menu to access a particular
device may ressemble the is-a structure of an ontology. For example, from a device menu a user may
choose lights, heating, or sensors. From a lights menu the user may choose an individual light e.g. the
lounge light. However, there is not always a one-to-one correspondence between the most convenient
menu structure and the most natural ontology. For example the menu might only display the most com-
monly accessed devices, and put the rest in an other devices submenu, or not make these visible at all.
In the Linguamatics home-control system, the natural ontology for the devices and the menu structure do
diverge. For example,

1. device: the natural ontology clusters lights, washing machines etc. together as kinds of device
whereas the menu structure only includes large devices such as the washing-machines, fridge and
freezer under the devices node

2. lights: the natural ontology has all lights directly under a single node, light, whereas the menu
structure has the most important lights directly under lights, plus an extra hierarchy of more lights
for the less important lights.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 13/64

3. room: the menu structure includes room under home control so that the user can navigate to
particular devices by looking at the rooms in which the devices occur. The menu structure below
room is determined by the in relationship rather than the is-a relationship.

Although the two structures diverge, the menu structure is assumed to be close enough to the natural
ontology to be represented within the same is-a/in-a structure. The divergence is achieved partly by
allowing multiple inheritance, and partly by providing a mechanism to allow nodes to be public (the menu
structure) or private (the natural ontology).

The incorporation of menus into the ontology structure itself (as opposed to providing a separate tree
structure) imposes the condition on the menu structure that subsumption relationships must be preserved:
if two nodes N1 and N2 are in both the ontology structure and the menu structure and N1 is below N2 in
the menu structure, N1 must be below N2 in the natural ontology structure. Note that N1 may be directly
below N2 in one structure, and indirectly in another. This preservation of subsumption relationships
gives the advantage that traversing a menu is a process of moving towards a more specific situation (a
particular service, or a particular location in the house). This in turn means that answers which provide
extra information (as defined by ontological subsumption relations) result in users jumping immediately
to lower levels in the menu structure. It is an interesting question as to whether there may be cases where
a well designed menu structure would need to depart further from the ontological structure. In the TAHI
SA Project [CLAK05] this did not occur, even though the menu structure was designed by a separate team
from the dialogue system designers.

2.4 Representing applications in GODIS

2.4.1 Applications, resources and resource types in GoDiS

In GoDiS, an application is implemented as a set of resources (domain knowledge in the form of ontologies
and dialogue plans, device handlers, grammars etc.). Resources are regarded as objects of certain types
(for example, device player is an object of type upnp device).

The TrindiKit definitions of resource interfaces sees them as abstract datatypes, i.e. specified using rela-
tions, functions, and operations. Most resources (except upnp device) in GoDiS are static, which means
that there are no operations available for objects of these types. The basic GoDiS resource types are de-
scribed in [Lar02a]. An example can be found in Section 2.4.4, which describes the GoDiS UPnP resource
datatype.

2.4.2 Specifying a GoDiS application as an OWL ontology

In this section we show how to specify a complete GoDiS dialogue application as an ontology in OWL.
This description can than be automatically transformed into working GoDiS resources. Given such a
specification, GoDiS applications can be modified off-line using a standard OWL editor; new devices can
be added, and the ontology can be extended (see also Section 5.3.3).

OWL, the Web Ontology Language, is a W3C standard for describing ontologies [W3C]. We are not using
the full flavour of OWL, only the main components are needed. The main reason why we have chosen
OWL instead of any other ontology description language is that it is a standard.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 14/64

OWL ontologies

OWL has three main components – classes, individuals and properties:

Classes correspond to sets of individuals. The main relation between classes is entailment – that classes
can be subclasses of other classes. There is no constraints on the subclass relation, which means that a
class can e.g. be a subclass of several classes.

It is possible to form combined classes, most notably the intersection or the union of several classes.
Classes can also be declared to be equivalent, or disjoint.

Individuals are class elements. Just as in set theory, an individual can be an element of several classes.
This is equivalent to that the element is in the intersection class.

Properties correspond to relations between individuals. There are three kinds of properties – object,
datatype and annotation properties. An object property has a domain and a range, which are themselves
classes. The range of a datatype property is not a class, but instead a datatype, e.g. a number or a string.
Annotation properties correspond to extra-logical properties, e.g. comments or version information.

Instead of writing an instance of a property as P
�
a � b � we often say that “a has the property P

�
b � ”, or

shorter a :: P
�
b � . That is, properties are seen as directed, from the domain to the range. Properties can

also be declared to be functional, transitive, symmetric, et cetera. A property can also be a sub-property
of another.

There is more to OWL than this, for example it is possible to create restrictions on classes and properties
be logical formulae. There are three different levels of OWL – OWL Lite, OWL DL and OWL Full. Our
ontologies are very simple, and fit into OWL Lite, except for one detail: some of our properties have the
class of classes as their range, meaning that in these cases ordinary classes act as individuals. This is only
allowed in OWL Full, which is no serious problem since we are not interested in doing any reasoning on
our ontologies.

Specifying a GoDiS dialogue application using OWL

In the rest of this section we will use an example ontology involving trams, ferries and buses in the
Gothenburg area. This information is also used in the Gothenburg Tram Information System (GOTTIS).

The following domain-specific components have to be specified to adapt GoDiS to a new domain:

� The sorts, the sortal hierarchy, and the individuals of each sort.

� The actions (from which requests are formed), and the predicates (from which propositions and
questions are formed).

� The sortal restrictions on predicate parameters and valid parameters of predicates.

� The input and output lexicon, i.e. the domain-specific utterances.

� The dialogue plans for dealing with questions, requested actions, and the device interface(s) en-
abling interaction with external devices.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 15/64

In the following these components are further described, together with their translation into OWL.

Previously all these components had to be described as predicates in Prolog (which is the language
TrindiKit and GoDiS is programmed in). The problem with this approach is that many of the concepts
have to be specified in several places, e.g. in different predicates. This is very error prone, since Prolog
doesn’t warn if a predicate or an atom is misspelled.

The solution is to specify the whole domain as an ontology, and then automatically generate the Prolog
predicates. Since Prolog is an ontology specification language itself, this specification could already be
done within Prolog; however, we have chosen to use a standardised description language. Some advan-
tages with this is that it is possible to compare our solution with other ontology-based solutions, and that
there are nice ontology editors making the editing simpler.

The main idea regarding how to specify a domain in OWL is to represent GoDiS concepts as OWL classes
and/or properties:

GoDiS concept OWL toplevel classes OWL properties

sorts, individuals Sort
actions Action

predicates Predicate
sortal restrictions parameter

valid
domain-specific Syntax actionPhrase

utterances answerPhrase
questionPhrase

plans Plan construct
Construct precond

devices Device device
DeviceCommand command

The OWL classes and properties mentioned above are the main entities in a GoDiS domain description.
We will explain the entities in more detail below.

Sorts, individuals and the sortal hierarchy

A sort is an OWL subclass of the top-level class Sort. An individual is an OWL individual of a certain
sort. In GoDiS the sorts are declared with the predicate sort/1, and the individuals of a sort with the
predicate sem sort/2:

sort(’Location’). sem sort(gothenburg, ’Location’).
sort(’Stop’). sem sort(central station, ’TramStop’).
sort(’TramStop’). sem sort(chalmers, ’TramStop’).
sort(’BusStop’). sem sort(gibraltargatan, ’BusStop’).

The Prolog database of sorts and individuals can be extracted from the OWL classes and individuals. The
sortal hierarchy is an OWL subclass hierarchy. Consider the following example hierarchy from the Tram

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 16/64

domain:

�������
�������	 ������

� �������� ��� �	
 ���������������������� � �!"�#�$���%'&�(�������� �)�*�+��� �,�-! � �)���%'&.(�� �)�*�/ � & ���
This subclass hierarchy says that each TramStop is also a Stop, which is also a Location. In GoDiS this is
specified with the predicate isa/2, which can also be extracted from the ontology:

isa(’TramStop’, ’Stop’).
isa(’BusStop’, ’Stop’).
isa(’Stop’, ’Location’).
isa(’Street’, ’Location’).

Actions

The actions in GoDiS are used when the user requests the system to perform something, e.g. to restart the
dialogue, or print the result on paper. These are also specified in GoDiS with the predicate sem sort/2:

sem sort(restart, action).
sem sort(help, action).

In OWL, each GoDiS action becomes an individual in the top-level class Action, which gives us the
following actions:

� restart (“start over please”)

� help (“please give me help”)

Predicates

The 1-place predicates in GoDiS are used for forming wh-questions, and for forming answers to questions.
Each GoDiS predicate becomes an OWL individual in the top-level class Predicate. In the example domain
there are the following predicates:

� departure (“from where do you want to go?” / “from the central station”)

� destination (“to where do you want to go?” / “to the central station”)

� shortest route (“what is the shortest route between the two given stops?” / “the shortest route is
. . . ”)

Sortal restrictions on predicates

Each GoDiS predicate has two domains:

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 17/64

Sortal restrictions are the sort(s) which the predicate can meaningfully be applied to, regardless
of the specific capabilities of the domain application. Sortal restrictions encodes what the system can
understand as being relevant in the domain, but possibly not accept and deal with. For example, the
destination and departure predicates can be applied to locations in general. In GoDiS the sortal restrictions
are declared by defining the Prolog predicate sort restr/1:

sort restr(destination(X)) :- sem sort(X, ’Location’).
sort restr(departure(X)) :- sem sort(X, ’Location’).

In the ontology we handle sortal restrictions by the OWL property parameter , which associates each
Predicate with a subclass of Sort:

destination :: parameter (Location)
departure :: parameter (Location)

Valid parameters are the sort(s) which are meaningful for the predicate in this particular domain, and
which the system can accept and deal with. For example, the current system can only answer questions
about the trams in Gothenburg, so only tram stops are valid whereas bus stops and other locations are
not (although they are sortally correct). In GoDiS the valid parameters are declared by the predicate
valid parameter/1:

valid parameter(destination(X)) :- sem sort(X, ’TramStop’).
valid parameter(departure(X)) :- sem sort(X, ’TramStop’).

In the ontology we declare validity by the OWL property valid , in the same manner as above:

destination :: valid(TramStop)
departure :: valid(TramStop)

Since each valid parameter is also a parameter, the valid is a sub-property of parameter .

Domain-specific utterances

To the actions and predicates of a domain we associate utterances that the user and system can perform.
In GoDiS these were originally defined in a Prolog predicate as a phrase spotting lexicon. However, in
TALK deliverables D1.1 and D1.2 [LBC � 05, LAC � 06] we have shown how to implement the utterances
as multilingual and multimodal grammars in Grammatical Framework (GF) [Ran04].

In the ontology we associate each utterance with a syntax tree from the GF resource grammar. The
multilingual grammar rules are subclasses of the Syntax class, and the syntax trees can then be specified
as individuals. Exactly how this is done is further described in TALK deliverable D1.5 [Pro06a].

For the purposes of this deliverable, it suffices to know that each utterance is associated with an individual
in a subclass of Syntax. The domain-specific utterances all arise from the actions and predicates in the
domain:

� For each Action there is an associated property actionPhrase which associates a verb phrase (VP)
with the action.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 18/64

� Each Predicate has two associated properties – a wh-question and an answer. Thus we have the
two properties questionPhrase and answerPhrase, which associate a wh-question (WhQ) and an
answer (Clause) to each predicate, .

In the GF resource grammar these categories (VP, WhQ and Clause) are very general, i.e. they can be
realised in several different linguistic forms. This gives the freedom to e.g. either form a request from the
user (“start over please”), or some kind of feedback from the system (“do you want to start over?”, “I’m
starting over”).

Dialogue plans

The dialogue plans tells GoDiS how to solve the specific goals (actions or questions) that the user requests
or asks for. For example, to be able to present the shortest route between two locations we first have to
calculate the route. And to be able to calculate the route, we have to know the departure and destination
locations.

Plans are defined in GoDiS by the predicate plan/2, where the first argument is the name of the plan, and
the second is a list of plan constructs:

plan(find route, [findout(Xˆdestination(X)),
findout(Xˆdeparture(X)),
dev query(tram db, Xˆshortest route(X)),
dev do(tram gui, draw route)

]).

In the ontology we use the OWL classes Plan and Construct. To each Plan is associated a number of
Constructs, by the property construct:

find route :: construct(do draw route)
find route :: construct(query shortest route)
find route :: construct(findout destination)
find route :: construct(findout departure)

However, since OWL properties are relations, there is no order between the constructs in a plan. An
ordering is enforced by the property precond from Constructs to Constructs:

query shortest route :: precond(findout departure)
query shortest route :: precond(findout destination)
do draw route :: precond(query shortest route)

Note that there is no enforced order between departure and destination. This could potentially be used by
the dialogue system to decide freely which question is the most natural to ask first1.

1GoDiS currently requires plans to be completely ordered, but allows flexibility regarding the order in the plan
constructs are actually executed. Exploring the possible advantages of partially ordered plans is a topic for future
research.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 19/64

Each plan construct in GoDiS is a subclass of Construct:

� ��� (��� & ��� ���	 ��

� � ���-� & �
� ����� & � �
	
� ��� � �
�����

To each of these subclasses there are some associated properties which determine the meaning of the
construct. The Findout construct has a question to be answered, which is specified with the OWL property
predicate:

findout departure :: predicate(departure)
findout destination :: predicate(destination)

Devices

Some plan constructs, e.g. the instances of DevQuery and DevDo, interact with a Device:

do draw route :: device(tram gui)
query shortest route :: device(tram solver)

Furthermore, each DevQuery construct asks its device a specific question, which can be specified by a
Predicate:

query shortest route :: predicate(shortest route)

Finally, each DevDo construct has an associated DeviceCommand, which tells the device what to do:

do draw route :: command(draw route)

2.4.3 Menu-based dialogue plans

UGOT have developed techniques for building GoDiS applications by converting existing menu-based
systems into dialogue systems [LCE01]. As part of TALK, we are extending this work to multimodal
menu-based dialogue; this work is described in [MAB � 05] and further in [Pro06b].

2.4.4 Connecting UPnP devices to GoDiS

In this section we describe briefly how GoDiS can interact with devices using a protocol based on UPnP
(Universal Plug and Play) 2.

2This section is a modified version of material from [Lar02a], and is included here since it is relevant to the
objectives of this deliverable.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 20/64

We will mainly be dealing with devices that can be modelled as resources, i.e. that are passive (or reactive)
in the sense that they cannot send out information unless queried by some other module. Of course, many
devices are not passive in this sense but rather active (or pro-active), e.g. burglar alarms or robots3 .

To be able to hook up passive UPnP devices to GoDiS, we need the following:

1. device handler resources which communicate directly with the device itself; the device handlers
can be said to represent the device in GoDiS;

2. a resource type for UPnP devices, specifying how devices may be accessed as objects of this type;

3. plan constructs for interacting with devices, and update rules for executing these plan constructs;

4. a Resource Interface Variable (RIV) to the TIS whose values are of the UPnP resource type; this
variable hooks up devices to the TIS;

5. dialogue plans for interacting with devices.

In this section, we briefly describe the UPnP device handlers and the UPnP resource interface (including
the resource type definition and the UPnP plan constructs) used by GoDiS. The devices RIV is described
in Section 5.3. Dialogue plans for interacting with various UPnP devices are described in [Pro06b].

UPnP device handlers The device handler mediates communication between GoDiS and the device
itself, and can be said to represent the device for GoDiS. We assume that each specific device has a unique
ID, and is accessed via a separate device handler process. A device handler is built for a certain device
type (e.g. the Panasonic NV-SD200 VCR), and each device of that type needs to be connected to a process
running the device handler, in order to be accessed by GoDiS.

For UPnP devices, the device handler contains a specification partly derivable from the UPnP specifica-
tions, but made readable for GoDiS (i.e. converted from XML to Prolog).

The device handler does the following:

� specifies a set of actions and associated arguments

� specifies a set of variables, their range of allowed values, and (optionally) their default value

� routines for setting and reading variables (dev set and dev get), for performing queries (dev query),
and for executing actions (dev do)

� accesses the devicesimulation

3To handle active devices, we would need to build a TrindiKit module which could write information to a
designated part of the information state based on signals from the device; this information could then trigger various
processes in other modules. Still, even for an active device the solution we present here would be very useful;
minimally, we would only need to add a module which sets a flag in the information state whenever the device
indicates that something needs to be taken care of, triggering other modules to query the device about exactly what
has happened.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 21/64

The UPnP resource interface In order to hook up a device to GoDiS one needs to define an abstract
datatype for devices and declare a set of conditions and operations on that datatype. For GoDiS, we
implement a generic resource interface in the form of an abstract datatype for UPnP devices.

In UPnP, a device is defined in terms of

� a set of variables

� a set of actions with optional arguments

In addition to getting the value of a variable, setting a variable to a new value, and issuing a command, we
also add the option of defining queries to the device. These queries allow more complex conditions to be
checked, e.g. whether two variables have the same value.

Based on this we define the datatype upnp dev as in (1); here, Var is a device variable; Val is the value of
a device variable, Query is a question, Answer is a proposition, αdev is a device action, and PropSet is a
set of propositions.

(1) TYPE: upnp dev

REL:
� dev get(Var� Val)

dev query(Query, Answer)

OPR:
� dev set(Var, Val)

dev do(αdev , PropSet)

Device actions may have one or more parameters; for example, in the VCR control domain there is an
action AddProgram which takes parameters specifying date, program number, start time, and end time.
The PropSet argument of dev do is a set of propositions, some of which may serve as arguments to
αdev. In the resource interface definition, this set is searched by the device interface for arguments. This
means that PropSet is not the exact set of arguments needed for αdev; rather, it is a repository of potential
arguments.

The relation between UPnP actions, device actions, and device operations is exemplified below:

� dev do(my vcr, AddProgram) is a UPnP action, which may appear in a plan

� AddProgram is a device action

� dev do(AddProgram, � channel to store(1), start time to store(13:45), �������) is a device update op-
eration

In addition to the datatype definition, one can define objects to be of that datatype. For each device that
the system should recognise, the device ID should be declared to be of type upnp dev.

2.5 Services in the Collaborative Problem Solving Framework

Our theory of dialogue as collaborative problem solving [BA05, Bla05] describes a general model of
agent-agent collaborative problem solving (CPS) and then extends this to model human-agent and human-
human dialogue as well. In addition to supporting more flexible dialogue (as described in Deliverable 2.1)

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 22/64

and a wide range of dialogue behavior (as described in Deliverable 3.1), it also makes strides towards
the development of truly domain-independent dialogue management. It does this through the use of an
upper-level ontology of problem solving objects as well as the definition of an abstract level of additional
information, both of which are then specialized and instantiated to the particular domains of interest.

In this section, we will first give an overview of the CPS model. We then discuss in more detail domain
specialization of PS objects and how they are used to represent services in the dialogue system. Below in
Section 3.2, we describe the dialogue manager itself.

As will become apparent in the text below, as opposed to typical representations of services, the CPS
framework models more of what would be considered a hierarchical plan library. This, of course, is
advantageous because it gives the dialogue system richer knowledge which allows collaboration at various
levels of abstraction in the hierarchy (as described e.g., in [Car90]).

2.5.1 Overview of Collaborative Problem Solving Model

Our CPS model has been described in detail in the papers and deliverables mentioned above, and we will
not attempt to give a full description here. Instead, we give an overview of the model from the standpoint
of service representation and refer the reader to the other sources for more details.

We see problem solving (PS) as the process by which a (single) agent chooses and pursues objectives (i.e.,
goals). Specifically, we model it as consisting of the following three general phases:

� Determining Objectives: In this phase, an agent manages objectives, deciding to which it is com-
mitted, which will drive its current behavior, etc.

� Determining and Instantiating Recipes for Objectives: In this phase, an agent determines and in-
stantiates a recipe to use to work towards an objective. An agent may either choose a recipe from
its recipe library, or it may choose to create a new recipe via planning.

� Executing Recipes and Monitoring Success: In this phase, an agent executes a recipe and monitors
the execution to check for success.

There are several things to note about this general description. First, we do not impose any strict ordering
on the phases above. For example, an agent may begin executing a partially-instantiated recipe and do
more instantiation later as necessary. An agent may also adopt and pursue an objective in order to help it
in deciding what recipe to use for another objective.

It is also important to note that our purpose here is not to specify a specific problem-solving strategy or
prescriptive model of how an agent should perform problem solving. Instead, we want to provide a general
descriptive model that enables agents with different PS strategies to still communicate.

Collaborative problem solving (CPS) follows a similar process to single-agent problem solving. Here two
agents jointly choose and pursue objectives in the same stages (listed above) as single agents.

There are several things to note here. First, the level of collaboration in the problem solving may vary
greatly. In some cases, for example, the collaboration may be primarily in the planning phase, but one
agent will actually execute the plan alone. In other cases, the collaboration may be active in all stages,
including the planning and execution of a joint plan, where both agents execute actions in a coordinated
fashion. Again, we want a model that will cover the range of possible levels of collaboration.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 23/64

Examples of Problem-Solving Behavior In order to better illustrate the problem solving behavior
we want to cover in our model, we give several simple examples.

� Prototypical: Agent Q decides to go to the park (objective). It decides to take the 10:00 bus (recipe).
It goes to the bus stop, gets on the bus and then gets off at the park (execution). It notices that it has
accomplished its objective, and stops pursuing it (monitoring).

� Interleaved Planning and Execution: Agent Q decides to to go to the park. It decides to take a
bus (partial recipe) and starts walking to the bus stop (partial execution) as it decides which bus it
should take (continues to instantiate recipe)....

� Replanning: Agent Q decides to go to the park. It decides to walk (objective) and goes outside of
the house (begins execution). It notices that it is raining and that doesn’t want to walk to the park
(monitoring). It decides instead to take the 10:00 bus (replanning)....

� Abandoning Objective: Agent Q decides to go to the park by taking the 10:00 bus. As it walks out-
side, it notices that it is snowing and decides it doesn’t want to go to the park (abandons objective).
It decides to watch TV instead (new objective)....

Problem-Solving Objects The CPS model operates on problem-solving (PS) objects. We define
an upper-level ontology of such objects, and define the CPS model around them (which helps keep it
domain-independent). The ontology can then be extended to concrete domains through inheritance and
instantiation of the types defined here, as we will explain below.

The ontology defines six abstract PS objects, from which all other PS objects descend:

Objective A goal, subgoal or action. For example, in a rescue domain, objectives could include rescuing
a person, evacuating a city, and so forth. We consider objectives to be actions rather than states,
allowing us to unify the concepts of action and goal. This will also ultimately be the mechanism
we use to describe services.

Recipe An agent’s beliefs of how to attain an objective. Although we do not adhere to any specialized
definition of recipe, one example is Carberry’s domain plan library [Car90] which has action de-
composition information about objectives. An agent’s recipe library can be expanded or modified
through (collaborative or single-agent) planning.

Constraint A restriction on an object. Constraints are used to restrict possible solutions in the problem-
solving process as well as possible referents in object identification.

Resource All other objects in the domain. These include include real-world objects (airplanes, ambu-
lances, etc.) as well as concepts (song titles, artist names, etc.)

Evaluation An agent’s assessment of an object’s value within a certain problem-solving context. Agents
will often evaluate several competing possible solutions before choosing one.

Situation The state of the world (or a possible world). In all but the simplest domains, an agent may only
have partial knowledge about a given situation.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 24/64

Types in the model are defines as typed feature structures (similar to [PS94]), which allows us to track
more information than a simple is-a ontology would allow.

For example, we include a RECIPE slot in the objective type, since part of the problem-solving process is
the decision of which recipe to use to try to accomplish a chosen objective.4 Likewise, the recipe type
has a slot OBJECTIVES which records the set of objectives (i.e., subgoals or actions) which are part of
that recipe. Domain-specific types can also add additional slots. In the MP3 domain, the type play-song
inherits from objective and adds an additional HAS-SONG attribute which records the song to be played.

A possible approach, similar to that taken in most dialogue systems, is to have each of the slots described
above directly take the value which was decided upon by the agents. Thus, when the agents decided on a
recipe, it could be stored as the value of the RECIPE slot, and so forth. As will be discussed in Deliverable
3.1, however, this kind of representation is only able to represent the decisions made, but not the decision-
making process itself. In true collaborative dialogue, such decision making can actually be the topic of
multiple turns, including, for example, the proposal of possible values, evaluation of those values, and the
final choosing of one.

In order to represent this decision-making information, we introduce two levels of indirection between
each slot and its actual value, using objects we call slots and fillers. A full description of these is outside
the scope of this deliverable. We refer readers to Deliverable 3.1 or [BA05] for details. Here we will just
note that slots represent what possible values have been discussed and fillers wrap values (i.e., PS objects)
and allow a space for recording context-specific evaluations which have been made about those objects in
the decision-making process.

For the sake of completeness, we include in Figure 2.1 the formal feature structure type definitions for the
upper-level PS object ontology, although space precludes an in-depth discussion of them (again, readers
are referred to [BA05]). Type name and parent class are shown above the feature structure in the form
type � parent.

Domain Specialization The CPS model can be specialized to a domain by creating new types that
inherit from the abstract PS objects and/or creating instantiations of them. This is described in more detail
in Section 2.5.2 below.

The Collaborative Problem-Solving State The CPS state is part of the agents’ common ground
[Cla96], and models the agents’ current problem-solving context. It is represented as an instance of type
c-situation called the actual-situation. As the name implies, the actual-situation is a model of the agents’
beliefs about the current situation and the actual problem-solving context.

The OBJECTIVES attribute contains all of the top-level objectives associated with the agents’ problem
solving process. These objectives form the roots of individual problem-solving contexts associated with
reasoning with, and/or trying to accomplish those objectives, and can include all types of other PS objects.

Collaborative Problem-Solving Acts Agents change their CPS state through the execution of CPS
acts. There are two broad categories of CPS acts: those used in reasoning and those used for commitment.
We describe several families of CPS act types within those categories:

Reasoning Act Families

4We give formal definitions of the types later.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 25/64�
ID id �
(a) object� ε

�
IDENTIFIED set(filler(ps-object))�

(b) slot � object��� CONSTRAINTS constraints-slot

IDENTIFIED set(filler(σ))

ADOPTED filler(σ)

���	
(c) single-slot(σ) � slot

EVALUATIONS evaluations-slot

VALUE σ �
(d) filler(σ) � object

IDENTIFIED set(filler(ps-object))

ADOPTED set(filler(ps-object))�
(e) multiple-slot � slot

IDENTIFIED set(filler(constraint))

ADOPTED set(filler(constraint))�
(f) constraints-slot � multiple-slot��� CONSTRAINTS constraints-slot

IDENTIFIED set(filler(evaluation))

ADOPTED set(filler(evaluation))

� �	
(g) evaluations-slot � multiple-slot

��������
CONSTRAINTS constraints-slot

IDENTIFIED set(filler(objective))

ADOPTED set(filler(objective))

SELECTED set(filler(objective))

RELEASED set(filler(objective))

� ������	
(h) objectives-slot � multiple-slot�

CONSTRAINTS constraints-slot�
(i) ps-object � object

�
RECIPE single-slot(recipe) �

(j) objective � ps-object

ACTIONS objectives-slot

ACTION-CONSTRAINTS constraints-slot�
(k) recipe � ps-object

�
ACTUAL-OBJECT id �
(l) resource � ps-object�

EXPRESSION boolean-expression �
(m) constraint � ps-object

�
ASSESSMENT unstructured �

(n) evaluation � ps-object

Figure 2.1: PS Object Definitions (1)

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 26/64��������
PENDING-PS-OBJECTS set(ps-object)

PS-OBJECTS set(ps-object)

PS-HISTORY list(interaction-act)

FOCUS stack(object)

OBJECTIVES objectives-slot

� ������	
(a) c-situation � ps-object

Figure 2.2: PS Object Definitions (2)

� c-focus: Used to focus problem solving on a particular object.

� c-defocus: Removes the focus on a particular object.

� c-identify: Used to identify a ps-object as a possible option in a certain context.

Commitment Act Families

� c-adopt: Commits the agents to an object in a certain context.

� c-abandon: Removes an existing commitment to an object.

� c-select: Moves an objective into active execution.

� c-defer: Removes an objective from active execution (but does not remove a commitment to it).

� c-release: Removes the agents’ commitment to an objective which they believe has been fulfilled.

Interaction Acts An agent cannot single-handedly execute CPS acts to make changes to the CPS
state. Doing so requires the cooperation and coordination of both agents. In the model, CPS acts are
generated by sets of interaction acts (IntActs) — actions that single agents execute in order to negotiate
and coordinate changes to the CPS state. An IntAct is a single-agent action which takes a CPS act as an
argument.

The IntActs are begin, continue, complete and reject. An agent beginning a new CPS act proposal performs
a begin. For successful generation of the CPS act, the proposal is possibly passed back and forth between
the agents, being revised with continues, until both agents finally agree on it, which is signified by an agent
not adding any new information to the proposal but simply accepting it with a complete. This generates
the proposed CPS act resulting in a change to the CPS state. At any point in this exchange, either agent
can perform a reject, which causes the proposed CPS act — and thus the proposed change to the CPS state
— to fail.

Grounding Acts The model as it stands thus far makes the simplifying assumption that utterances are
always correctly heard by the hearer and that he also correctly interprets them (i.e., properly recovers the
intended (instantiated) interaction acts). In human communication, mishearing and misunderstanding can

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 27/64

be the rule, rather than the exception. Because of this, both speaker and hearer need to collaboratively
determine the meaning of an utterance through a process termed grounding [Cla96].

We add grounding to our model by utilizing the Grounding Acts (GAs) proposed as part of Conversation
Acts theory [TH92]5 and used in Traum’s computational model of grounding [Tra94]. In our model, we
expand the definition of GAs to allow them to take individual IntActs as arguments. As the grounding acts
themselves are not our focus here, we discuss them only briefly. The Grounding Acts are as follows:

Initiate The initial contribution of an IntAct.

Continue Used when the initiating agent has a turn of several utterances. An utterance which further
expands the meaning of the IntAct.

Acknowledge Signals understanding of the IntAct (although not necessarily agreement, as this is mod-
eled at the IntAct level).

Repair Changes some part of the IntAct.

ReqRepair A request that the other agent repair the IntAct.

ReqAck An explicit request for an acknowledgement by the other agent.

Cancel Declares the attempted IntAct as ’dead’ and ungrounded.

In the model, an IntAct is not successfully executed until it has been successfully grounded. This is
typically after an acknowledge, although see [Tra94] for details.

2.5.2 Domain Specialization of Objects

Now that we have given an overview of the model, we describe in more depth how PS objects are special-
ized to a given domain.

In the typed feature structure framework, inheritance is basically the process of adding new attributes
to a previously existing type, and/or specializing the types of preexisting attributes. In our CPS model,
inheritance is only used for objectives, and resources. The other abstract PS objects are specialized through
instantiation.

All PS object types (including new types created by inheritance) can be further specialized by instantiation,
i.e., by assigning values to some set of their attributes. This can be done both at design time as we discuss
here and it happens at runtime as part of the problem-solving process itself (see discussion in Deliverable
2.1).

We now describe specialization for components of service descriptions: resources and objectives.

Resources Although modeling resources is not part of modeling services per se, services typically
work on certain resources, so we include their definition here.

New types of resources can be created by inheriting from the resource type. Figure 2.3 shows a partial
definition of a song object from our MP3 domain. Here the individual traits are simply added as slots
which take type sslot as values.

5Interestingly enough, our interaction acts and CPS acts could be seen as roughly corresponding to the Core
Speech Acts and Argumentation Acts levels in Conversation Acts theory.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 28/64

song � resource����� HAS-ALBUM sslot(album)

HAS-ARTIST sslot(artist)

HAS-LENGTH sslot(time)

. . .

� ���	
Figure 2.3: Definition of song

play-song � objective�
HAS-SONG sslot(song) �

Figure 2.4: Definition of play-song

Objectives As discussed above, objectives are considered both goals and actions in the CPS model,
and as such, they are what we use to model services.

Here, new types of objectives are created in a similar way to creating new resources. A new objective
inherits from the objective type and adds certain new slots. In the case of objectives, these new slots can
be seen as recording the parameters of the action. For example, in Figure 2.4, we show the definition of
the play-song objective in our MP3 domain. This objective adds a new HAS-SONG slot, which is used to
record problem-solving about the particular song that is to be played.

Version: 1.1 (Final) Distribution: Public

Chapter 3

Dialogue Management to Support Dynamic
Reconfiguration

3.1 Introduction

This chapter considers some of the implications of reconfigurability on dialogue management. The first
section concentrates on the CPS system where work has been undertaken to achieve greater reconfigura-
bility. The second section describes the GoDiS approach which combines domain independent update
rules with domain-specific resources. Although the GoDiS system and the Linguamatics system were
designed from the start to be domain independent, there is a danger of pushing application specific knowl-
edge into ever more expressive specification languages. In the extreme, the dialogue system becomes
an operating system, and the application specifications become programs. The final section considers a
different approach of allowing more flexible control between dialogue and task managers so that general
action management is taken back outside the dialogue managers responsibility.

3.2 Towards Domain-Independent CPS-based Dialogue Man-
agement

In this section, we describe our work towards creating a domain-independent dialogue manager based
on our model of collaborative problems solving (described in Section 2.5). We believe that domain-
independent dialogue management is important for two interrelated problems for dialogue systems: porta-
bility and dynamic reconfiguration. Portability is helped here because, if a truly domain-independent dia-
logue manager can be produced, it would mean that the dialogue manager itself (in ISU, the update rules)
would not need to be changed to support new domains. Similarly, for dynamic reconfiguration, a new
device or service could be added to the system without the need to modify the dialogue manager.

It is our hope that the CPS model of dialogue sufficiently abstracts dialogue in such a way that the same
set of CPS-based update rules could be used for different domains. As the title of this section suggests,
we do not yet claim to have a domain-independent CPS-based dialogue manager, although we think we
have made considerable progress towards this end.

In the rest of this section, we will first describe our dialogue manager, and how we attempt to make it

29

IST-507802 TALK D:D2.2 8th August 2006 Page 30/64

domain independent using abstraction in the PS object hierarchy. In the process of building this dialogue
manager, we also discovered some types of domain-specific knowledge outside the CPS model proper,
which are also necessary for the dialogue manager. This is described as well, and then we describe parts
of the dialogue manager which are still domain specific. Finally, we discuss future directions for this
work.

3.2.1 The SAMMIE Dialogue Manager

As outlined in Deliverable 5.2, we have built a dialogue manager for the SAMMIE dialogue system which
supports a subset of the CPS model discussed above. The ideal situation for exploring domain indepen-
dence would be to show the same dialogue manager working in many different domains. Unfortunately,
as the SAMMIE system only supports the MP3 domain thus far, this has not been a feasible option. In-
stead, we base our claims of domain independence on the weaker evidence of update rules only accessing
information through general mechanisms at the upper-ontology level of the CPS model. This is necessary,
but not sufficient proof of domain independence. While it is able to show that individual rule are, in some
sense, domain independent, it cannot show that the set of rules is sufficient for all domains. We are con-
vinced that our current set of rules is not sufficient for all domains — however, it is our hope that moving
to new domains would be more a process of rule augmentation than rule modification.

As described in Deliverable 2.1 [MAB � 05], dialogue management in the SAMMIE system can be grouped
into three separate processes:

Integrating Utterance Information Here the system integrates grounding acts — by both user and sys-
tem — as they are executed.

Agent-based Control Once executed grounding acts have been integrated into the dialogue model, the
system must decide what to do and what to say next.

Package and Output Communicative Intentions During the first two phases, communicative intentions
(i.e., instantiated grounding acts) are generated, which the system wants to execute. This last phase
packages these and sends them to the generation subsystem for realization. When realization is
successful, the information state is updated using the rules from the first phase.

In the dialogue manager, the first and last phases are handled entirely by rules that refer to only the upper-
level of the CPS ontology (e.g., objectives, resources, and so forth). For example, one particular rule fires
when an act in the c-identify family has been generated (by the generation of a complete act that wraps
it). The rule takes the PS object parameter of the c-identify and inserts it into the IDENTIFIED set found
within the context variable of the c-identify, regardless if it is a play-song objective, a song itself, or
some other PS object from a completely different domain.

Rules in these phases handle the integration semantics of the CPS acts themselves and are described in
more detail in Deliverable 3.1. These are the core of the CPS model, and they would only change if the
CPS model itself changed. We do not believe these would need to change to support new domains or
services.

The middle level (agent-based control) is, however, where reconfigurability can become an issue. It is here
where the dialogue manager makes decisions about what to do and say next. In our dialogue manager, we
were able to formulate many of these rules such that they only access information at the upper ontology
level, and do not directly access domain-specific information. As an example, we illustrate a few of these
here.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 31/64

System Identifies a Resource by Request The following rule is used identify a resource in response
to a request by the user:

� if

– c-identify-resource is being negotiated, and

– the ACTUAL-OBJECT slot of the resource is blank (i.e., this is a request that the system iden-
tify the resource), and

– the system can uniquely identify such a resource given the constraints used to describe it

� then

– add the found resource to the ACTUAL-OBJECT slot

– create a new continue of the c-identify-resource

– add this to the queue of responses to be initialized

As can be seen, this rule relies only on the (abstract) information of from the CPS model — namely, that
all resources which have been definitely referred to should have a pointer in the ACTUAL-OBJECT slot
to the value in the system’s knowledge base (see discussion in Deliverable 3.1). When this is not the
case, and this resource is part of a pending c-identify-resource, then this means the user has made
a request that the system identify such a resource (given constraints the user may have provided). In the
MP3 domain, this rule is used to provide user-requested sets of information from the database (e.g., in
response to “Which Beatles albums do you have?”). No domain-specific knowledge is encoded in this
rule.

System Prepares an Objective to be Executed The following rule is used when the system marks
a top-level objective to be executed next. Note that the current version of the system does not support
hierarchical plans, thus the assumption is that this is an atomic action. Also, the system currently assumes
that atomic action execution is instantaneous — thus nothing will stay in a SELECTED set once execution
has begun.

� if

– An objective is in the SELECTED set in the OBJECTIVES slot in the CPS state

� then

– Put the objective on a system-internal stack to signal that execution should begin.

This is an example of a simple rule which prepares an objective for execution. Similar to the rule just
described, no domain-specific information is necessary here — all objectives are handled the same, no
matter from which domain.

Although we were able to formulate many rules with information available in the CPS model, we encoun-
tered some which needed additional information from the domain — including the case where the atomic
action execution should actually take place. We now turn our attention to these cases.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 32/64

3.2.2 Abstracting Additional Domain Information

In the rules discussed above, simple knowledge implicit in the use of abstract PS objects was sufficient
for encoding rules. However, there were a few cases which required more information. In this section,
we discuss those cases for which we were able to find a solution in order to keep the rules domain-
independent. In the next section, we discuss rules which needed to remain domain-specific, and the
reasons for that.

Just because domain information is needed for rules does not mean that we cannot write domain-independent
rules to handle them. What is required, however, is the specification of an abstraction for this information,
which every new domain is then required to provide.

In the MP3 domain, we have identified two general types of this kind of knowledge. We do not consider
these to be a closed list:

Execution Knowledge One of the example rules above showed how the decision to begin execution
of an atomic action is made. However, the actual execution requires knowledge about the domain which
is not present in the CPS model.

In the current system, a domain encodes this information in what we call a grounded-recipe, which we
have provisionally added as a subtype of recipe. A grounded-recipe contains a reference to the objective
it fulfils as well as a pointer to a Java class which implements the abstract (Java) class GroundedRecipe.
This abstract class provides an abstract method to be overridden in which Java code corresponding to the
execution of the objective can be written.

� if

– an objective has been chosen for execution

� then

– look up a matching grounded-recipe for the objective

– execute the execute method of the Java class pointed to in the grounded-recipe (passing in
the objective itself as a parameter).

This abstraction supports a rule which looks up a corresponding grounded-recipe, and then calls the ap-
propriate Java method in the class associated with it, keeping the execution rules domain-independent.

Evaluation of PS Objects A more general issues which surfaced was the need to make evaluations
of various PS objects in order to decide the system’s acceptance/rejection of them within a certain context.
Although we believe there is a need to specify some sort of general classification for these, only one such
evaluation came up in the MP3 domain.

In deciding whether or not to accept the identification of a fully-specified objective, the system needed a
way of checking the preconditions of the objective in order to detect potential errors. For example, the
SAMMIE system supports the deletion of a song from a playlist. Now, grounding-level rules (not detailed
here) take care of definite reference errors (e.g., mention of a playlist that does not exist). However, if
reference to both objects (the song to be deleted and the playlist) is properly resolved, it is still possible
that the user asked to delete a song from a playlist when the song is not actually on the playlist. Thus,

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 33/64

we needed a way of checking this precondition (i.e., does the song exist on the playlist). Similarly, we
needed a way of checking to see if the user request playback of an empty playlist (i.e., a playlist that does
not contain any songs).

As a simple solution, the dialogue manager uses an abstract interface to allow rules to check conditions of
any objective:1

� if

– a c-identify-objective is pending for a fully-specified objective, and

– CheckPreconditions fails for the objective

� then

– add a reject of the c-identify-resource to the output queue.

3.2.3 Domain-specific Rules in the System

Despite our best efforts, a few domain-specific update rules are still present in the dialogue manager. We
describe two of these here which are used to cover holes which the CPS model does not yet (adequately)
address. We hope to expand the model in the future so that these rules can also be generalized.

In the MP3 domain, we support the creation of (regular) playlists as well as so-called auto-playlists
(playlists created randomly given constraints). Both of these services correspond to atomic actions in
our domain and would be theoretically handled by some of the rules for execution described above. How-
ever, these are both actions which actually return a value (i.e., the newly-created playlist). This kind of
return value is not supported by the representation currently used in the CPS model. For this reason, we
support the execution of both of these actions with special rules.

3.2.4 Discussion

In this section, we have presented our CPS-based dialogue manager, and shown how, for the most part,
we have been able to keep individual rules domain-independent. Although much work needs to be done
to achieve true domain-independence, we believe our work has shown that the CPS model may be viable
for creating such a domain-independent dialogue manager.

3.3 Domain independent update rules in GODIS

GoDiS is modular in the sense that the Dialogue Move Engine itself is domain-independent, and all
domain-dependent and application-specific knowledge is located in the resources (typically grammar, lan-
guage model, domain knowledge and device interface). See Figure 3.1 for an example.

1This is currently implemented just as a single Java method with an if-else statement. For better reconfigura-
bility, this could be sent to an external agent which could register this service for objectives in different domains.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 34/64

Figure 3.1: Example of domain-independent modules (above the dotted line) and domain-
specific resources (below the line) in the DJ-GoDiS application

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 35/64

3.3.1 Resources and Resource Interface Variables in TrindiKit

In any TrindiKit system, resources are connected to the Total Information State (TIS) via Resource In-
terface Variables (RIVs). There is one RIV for each resource (e.g. domain knowledge, database, gram-
mar), and the values of RIVs are names of particular application-specific resources (e.g. domain player,
domain lights, device player, grammar player english).

gf_grammar = gfgrammar_player_english
domain = domain_player
devices = [player = device_player, dbase = device_dbase]

Each RIV is declared to be of a certain type (e.g. domain, upnp device, nuance grammar) and the re-
sources are regarded as objects of these types (for example, device player is an object of type upnp device).
The definition of a resource type declares the methods (functions, relations, operations) available for ob-
jects of that type (see also Section 2.4.1).

gf_grammar : gfgrammarType
domain : domainType
devices : record([L1:T1, ..., Lm:Tn]) where Tn=upnp_deviceType

3.3.2 Accessing resources from update rules

Update rules communicate with resources by looking up the value of RIVs; this is done by prefixing the
name of an RIV with the TrindiKit evaluation operator (“$”). For example, to check whether an answer A
is relevant to a question Q (which depends on the current domain), the following condition is included in
a rule:

$domain :: relevant_answer(A, Q)

If the domain variable has the value domain player, this condition will is equivalent to the following:

domain_player :: relevant_answer(A, Q)

In this way, it is possible to make TrindiKit update rules application independent, as long as each applica-
tion resource defines the appropriate methods, as declared by the corresponding datatype definition.

3.3.3 Switching resources

To switch to a new application, one simply has update rules change the values of the RIVs to point to the
resources for the desired application. Since the update rules access the resources via these variables, the
rules themselves do not need to be changed. This greatly simplifies the implementation of plug-and-play
facilities in GoDiS, as explained in Section 5.3. The GoDiS DME is described in detail in [Lar02a].

In some cases it is impractical to have modules inspecting the TIS to access resources (typically, for
modules which are separate OAA agents). Instead, the module itself loads the resource directly instead of
accessing it via the TIS and the RIVs. In this case, it is possible to set up triggers that fire whenever the
value of a certain RIV changes, and that broadcasts an OAA solvable that tells the module to load the new
resource.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 36/64

3.4 Mixing control between the Linguamatics Interaction Man-
ager and external tasks

So far, when we have considered reconfiguring for a new task we have still taken a relatively static view of
the relationship between the dialogue manager and any external processes or tasks. Although new devices
or services are plugged in, the dialogue manager is still very much in control of the interaction with the
user.

However, a dynamically reconfigurable system can interact in a much more flexible way. For example,
a task may want to interact with a user, and can send the dialogue manager a goal to be satisfied plus an
ontology fragment. In the extreme, the task can control each step of the dialogue, asking the dialogue
manager to do a single step at a time.

In the Linguamatics system, the recommended interaction between task and dialogue management is to
allow the dialogue manager to do what it is best at i.e. to communicate with the user. Thus, if a task
needs five pieces of information in no particular order, it should pass on this request as a whole to the
dialogue manager, rather than requesting the first piece of information, then the second etc. This allows
the dialogue manager to reorder questions, or respond to the user answering more than one request at a
time (see the discussion on coherence in D2.1).

To experiment with joint control between an external application and the dialogue manager, we integrated
the Linguamatics Interaction Manager with two prototype applications developed by the University of
Loughborough. The first is based on the FoodWare recipe system. The application monitors food coming
in and out of the house using RFID tags, and proposes a selection of recipes to a user based on their food
preferences. To achieve this, the application passes the dialogue manager a task to find out which recipe
the user would prefer, along with a mini-ontology consisting of possible recipes and their properties. The
second application uses RFID tags to monitor people’s movement around a house. The application resets
the dialogue manager’s default context according to where the person is in the house (assuming the user
is not already in the middle of a dialogue). This is equivalent to traversing the menu tree to get to that
location. For example, if the user moves into the kitchen they can then say “turn on the light” rather than
“turn on the kitchen light” since it is assumed that they are in the context of the kitchen. Integration of
both applications went smoothly suggesting that joint control models are worth exploring. Given the suc-
cess of this prototype, we are investigating further separation of task and dialogue management. Consider,
for example, testing of preconditions. The Linguamatics system has a notion of valid options (e.g. the
film Two Towers at 5pm vs. the film Oliver Twist at 4pm). If a user asks for “Two Towers at 4pm” the
response is to ask “did you mean Two Towers at 5pm or Oliver Twist at 4pm”. However, evaluation of
preconditions could be arbitrarily complicated, especially if combined with warnings for unlikely com-
binations of parameters. Using the separation of task management and dialogue management there are
now two potential ways of dealing with this, without having to evaluate preconditions within the dialogue
manager:

1. The dialogue manager communicates its results back to the task manager after every user utterance.
This gives the task manager a chance to check if any preconditions are failing. The dialogue man-
ager can still be given multiple items of information to request at once, so the interaction with the
user should be unaffected.

2. The dialogue manager controls the gathering of multiple pieces of information, but opens up a
second communication with the task manager to ask for current results to be checked after receiving

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 37/64

each new constraint.

The general approach is therefore to treat the dialogue manager solely as a communication agent. Infor-
mation about the tasks and services used by the dialogue manager does not include workflow or process
elements, thereby avoiding the need for the dialogue manager to act as a proxy operating system.

Version: 1.1 (Final) Distribution: Public

Chapter 4

Dealing with Multiple Applications

4.1 Introduction

In the introduction we discussed how the user gets benefit from having commands across multiple devices.
The same can be true of different services. The aim here is to see what can be done when two individual
services are plugged separately into the system. This can be contrasted with cases where a system designer
specifically codes for the interaction between two services (effectively defining a third service).

This section introduces some basic distinctions regarding various aspects of plug-and-play. We sketch a
framework for classifying implementations of plug-and-play behaviour in dialogue systems along several
conceptually independent dimensions.

4.1.1 Device and application (service) plug-and-play

In this section, we introduce some basic terminology, and distinguish between different kinds of reconfig-
urability concerning devices and applications.

Devices and device modification

By device, we mean something close to the everyday meaning of “device” but perhaps slightly more
general. Examples of devices are: a lamp, an MP3 player, an agenda, a toaster, a clock but also e.g. a
music database.

A very basic type of reconfiguration is adding new functionalities to a device, or altering ontological or
lexical knowledge to an existing device. We refer this as device modification and regard it as a different
kind of reconfigurability than what is typically meant by “plug-and-play”.

Device plug-and-play

Devices can often be grouped (more or less naturally) into device clusters, e.g. the set of lamps in a home,
the set of simple electrical appliances in a home (including lamps), or an mp3 player plus a song database.

By an application (or service), we mean a dialogue interface for communicating with a device or a de-
vice cluster. Within an application, all devices are on an equal footing in the sense that all devices are

38

IST-507802 TALK D:D2.2 8th August 2006 Page 39/64

equally accessible to the user. An application is typically designed to cater for a cluster of related devices,
independently of any other applications that might run at the same time.

Typically, the choice of which devices to group together in a cluster is decided by the application designer
or possibly the user. The motivation for clustering certain devices together is in a sense arbitrary but can
be motivated by aspects both of implementation and of usability. For example, it seems not very useful to
cluster a kitchen lamp and a music database into a single application.

The consequences of device clustering on a dialogue interface depend on the kind of plug-and-play that
the interface implements. It should be noted that for some types of plug-and-play, the concept of an
application as a device cluster is not very useful; in this case one may regard the interface as a single-
application interface.

By device plug-and-play, we simply mean the ability to connect new devices to an application. An ap-
plication is dynamic (with respect to plug-and-play) to the extent that new devices can be added (and
subtracted).

Application plug-and-play and application modification

On the next level we have the possibility of running several applications simultaneously, and consequently
a concept of application plug-and-play, i.e. the ability to connect new applications to a dialogue interface.
The devices available in an application A may not be directly available in a different application B run-
ning simultaneously, and controlling them typically requires switching to application A. We distinguish
between the set of connected applications - all applications that are available through an interface - and
the active application (or applications) whose devices are currently available directly.

Application plug-and-play typically (but perhaps not necessarily; this depends on the level of reconfig-
urability of the dialogue system in question) requires that the applications are based on the same dialogue
system configuration; by this we mean a set of modules (or agents) such as a dialogue manager, speech
recogniser, interpretation engine, etc., as well as algorithms to coordinate these modules. A dialogue
system is dynamic (with respect to plug-and-play) to the extent that new applications can be added (and
subtracted).

By analogy with “device modification” we can also talk about application modification, by which we
mean “soft” modifications of functionalities, ontological and lexical knowledge (e.g. changes regarding
the location and descriptors of devices in an application). Modification of devices in an application entails
application modification, since the ontological knowledge related to an application includes the ontologi-
cal knowledge of the devices included in the device cluster for the application.

4.1.2 Weak and strong plug-and-play

By weak (or token-level) plug-and-play we mean adding a new device or application of a known type, i.e.
of the same type as an already connected device or application. In this case it is possible to re-use e.g.
ontological knowledge which is already available

In the case of strong (or type-level) plug-and-play, a device or application of a new type is added. This
requires making new ontological, lexical and other knowledge available to the interface.1

1“Soft plug-and-play” can now be analysed as one of device modification, application modification, or weak
device plug-and-play.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 40/64

4.1.3 Off-line and on-line plug-and-play

In this section, we describe three basic ways in which an interface can be set up to allow for plug-and-play
behaviour.

Pre-programmed applications/devices

On this approach (which is arguably not plug-and-play in any strict sense), applications are pre-programmed
by hand to know about a fixed (static) set of possible simultaneous applications. To add a new application
to a cluster, all applications in the cluster need to be modified by hand.

To add a new device to an application, the application is modified by hand to deal with a new device.

Off-Line plug and play

To plug in a new application in the case of off-line application plug-and-play, the following steps are
required:

� the dialogue system is halted

� the application cluster is extended by adding one or several new applications to a list of applications
to be run simultaneously

� all applications (more or less automatically) exchange the appropriate information; the information
to be exchanged depends on the chosen application switching behaviour (e.g. indirect switching)

� the dialogue system is restarted

In this case, we have a “semi-dynamic” application cluster.

For on-line device plug-and-play, the following steps are required:

� the dialogue system is halted

� the application is extended by adding one or more new devices to a list (or similar) of devices to be
handled by the application

� the dialogue system is restarted

On-line plug and play

For on-line application plug-and-play, applications can exchange the appropriate information for enabling
application switching on-line, i.e. without requiring stopping and restarting the system. In this case, we
have a fully dynamic application cluster.

Similarly, for on-line device plug-and-play, devices can be added to an application while the application
is running. The appropriate information will be broadcast from the device (or some information storage
related to the device).

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 41/64

4.1.4 Application switching strategies

Strategies for handling multiple applications can be classified according to how the user is able to switch
to a different application. We assume that there is a cluster of connected applications and that one of these
is the active device2. The defining feature of the active application is that all its’ devices are maximally
available and can be manipulated with as little effort as the dialogue system allows. Manipulation of
devices connected to non-active applications may require more effort (typically, switching to the new
application).

Note that there is no need for general “device switching” strategies apart from those implemented in the
application (e.g. in the form of a menu system to access different devices).

We distinguish three strategies for application switching: (explicit) indirect switching, explicit direct
switching, and implicit direct switching.

(Explicit) indirect switching

In this case, the user can switch first to a “meta-application” (e.g. by saying “Change domain”) and then to
a parallel application (“the radio please”). This option requires only that each application offers the pos-
sibility of switching to the meta-application. Applications do not need to know about other applications,
apart from the meta-application. The dialogue manager must enable switching to the meta-application and
from the meta-application to any other application.

Example:

U: Turn on the kitchen lights.
S: OK.
S: Switch application
U: OK. Switching to meta application.
S: Which application do you want?
U: mp3 player
S: mp3 player here

Depending on the choice of plug-and-play option from the three described above, the following application
capabilities are required:

� Pre-programmed applications: Meta-application is pre-programmed to know about all connected
applications

� Off-Line plug and play: New applications can be added to meta-application off-line

� On-line plug and play: New applications can be added to meta-application on-line.

Explicit direct switching

The user can explicitly switch directly to another application by issuing a request including the name of
the application (e.g. “Go to the mp3 player”). The dialogue manager must allow switching to any other

2In some cases it may be useful to have several devices active at the same time.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 42/64

connected application. Each application grammar must contain the names of all other applications, e.g. as
complements of “Switch to..”. No other grammar modifications are needed.

Example:

U: Turn on the kitchen lights.
S: OK.
U: Switch to the mp3 player
S: OK. Mp3 player here.
U: Add a song to the playlist

Depending on the choice of plug-and-play option from the three described above, the following application
capabilities are required:

� Pre-programmed applications: Each application grammar contains names of other applications

� Off-Line plug and play: Applications can be updated off-line to learn about new applications, by
adding new application names to grammars

� On-line plug and play: Applications can be updated on-line to learn about new applications, by
adding new application names to grammars

Implicit direct switching

The user can switch to another application by addressing it directly (e.g. “Add a song to the playlist”).
In this case, the dialogue manager must allow addressing non-active application, and each application
grammar must contain subsets of all other application grammars (e.g. user commands and questions).

Example:

U: Turn on the kitchen lights.
S: OK.
U: Add a song to the playlist

Depending on the choice of plug-and-play option from the three described above, the following application
capabilities are required:

� Pre-programmed applications: Each application grammar contains subsets of other application
grammars

� Off-Line plug and play: All applications can be updated off-line to learn about new applications,
by adding a subset of a new application grammar to all application grammars that will be connected
simultaneously

� On-line plug and play: All applications can be updated on-line to learn about new applications,
by adding subset of a new application grammar to all connected application grammars

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 43/64

4.2 Application accommodation in GoDiS

This section describes the application selection strategy implemented in GoDiS. The plug-and-play strate-
gies and solutions are described in Section 5.3.

The application switching strategy we will focus on here is the most powerful one, implicit direct appli-
cation switching according to the taxonomy in Section 4.1 This strategy, which we will also refer to as
application accommodation, requires figuring out which device the user is addressing in the absence of
explicit mention of a specific device.

Other useful strategies described below include addressing several applications in one utterance (as in
”Turn on the kitchen lamp and play the radio”)

4.2.1 Dialogue management for application accommodation

The basic strategy for dealing with the dialogue management aspect of application switching in GoDiS is
to update the resource interface variables (RIVs; see [SIR02]) so that the active application is always the
one that is accessed when update rules consult the resources.

By analogy with GoDiS’ capabilities for question accommodation [Lar02b], we can think of implicit
indirect application switching as a kind of “application accommodation”. This means that rather than
having to explicitly request a different application than the currently active one, the system will figure
out which application the user is addressing and adapt so that this application becomes active. This will
enable the system to load the appropriate plan from the domain knowledge resource for the application,
and to integrate the request or question that triggered the application accommodation.

The grammar for any application will include parts of the grammars of the other connected applications.
The parser will provide output indicating, for each interpreted dialogue move, which application grammar
was used to parse that move.

In GoDiS, it is possible for the user to take initiative at any time and introduce a new task (action or issue).
We want to allow for this behaviour also for tasks belonging to separate applications, i.e., we want to allow
for multiple simultaneous tasks across applications. In analogy with the GoDiS strategy for keeping track
of simultaneous tasks by storing them on a stack and dealing with the topmost one first, we will keep track
of a stack of activated applications, where the topmost application is the currently active one, i.e. the one
whose devices are maximally available.

Extending the Information State for application accommodation

We first add a GoDiS datatype application to be able to represent applications in the TIS.

Second, we include a TIS variable all devices whose value is a record of all connected devices for each
connected application.

Third, we add add TIS variable active apps of type stack(application) to keep track of the activated
applications. The topmost application is the currently active one.

We also add a TIS variable app per move whose value is a so-called association set which allows look-
ing up the application for any dialogue move parsed from the latest user utterance and (as stored in the
latest move variable).

For example, if the currently active application controls lights (GoDiS-deLux), and the user says “Add a
song to the playlist”, this can be parsed by the part of the global grammar that is derived from the mp3

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 44/64

player application (DJ-GoDiS). The GF parser output will thus indicate that this move belongs to this
application (called player below). The parser module will update the TIS to include the following:

latest_moves = { request(playlist_add) }
app_per_move = { < request(playlist_add), player > }

IS update strategies for application switching

This section describes the information state updates associated with application switching in GoDiS. For
the simple case, we provide a walk-through of the implementation; for the more complex cases we give a
brief description and refer the interested reader to the code and associated documentation.

Switching to a non-activated application To make sure the application which is addressed by a
move is also the active one, the GoDiS DME tries the following rule before integrating each move:

rule(switchApplicationImplicit,
[fst($/private/nim, Move), 1

not empty($app_per_move), 2
AddressedApp = $$assoc($app_per_move, Move), 3
not in($active_apps, AddressedApp)], 4

[domain := $$dash2underscore(domain-AddressedApp), 5
Language = $language, 6
gf_grammar := 7

$$dash2underscore(gfgrammar-AddressedApp-Language),
asr_grammar := 8

$$dash2underscore(asrgrammar-AddressedApp-Language),
devices := $all_devices/AddressedApp, 9
push(active_apps, AddressedApp)]). 10

The first condition (line 1) picks out the first move in the queue of non-integrated moves. Line 2 checks
that the app per move variable is not empty (in case the interpreter’s application indexing function is
not in use), and line 3 picks out the application addressed by the current move to be integrated. Line 4
makes sure that the rule triggers only if the addressed application is not among the currently activated
ones. The operations in lines 5-9 set the Resource Interface Variables to the appropriate values so that the
addressed application becomes active3. Line 9 picks out the sub-record of all devices containing the
devices associated with the addressed application. Finally, line 10 pushes the addressed application onto
the stack of activated applications.

User-initiated switching to an activated application If the user addresses an application which
is among the currently activated ones, but not currently active (i.e. not on top of the stack of activated
applications) we have a case of application reraising, initiated by the user. In this case, the addressed
application is raised to the top of the stack. It is also necessary to raise all actions and issues associated
with this application to the top of the issues and action stacks, so that the system will address these tasks
when the currently requested task is finished, and as long as the addressed application remains active.

3The function dash2underscore takes a term and replaces all dashes (“-”) with underscore symbols (“ ”). This
technicality provides a way of easily putting together terms that can be used as Prolog file and module names.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 45/64

System-initiated switching to an activated application When a task within an application has
been finished, the system will check whether there are other applications on the stack whose associated
tasks that are not yet finished. If so, the application stack will be popped, removing the previously active
application. The result is that a new application becomes topmost on the stack – this will now become
the active application and the resource variables will be updated accordingly. The system will also issue
a comment (a dialogue move of the form icm:reraise:application(...))that a previously addressed
application is now the active one (e.g. “Returning to the mp3 player”).

4.2.2 Grammars and language models for application accommodation

As explained in Section 4.1.4, implicit direct application switching requires that all applications can be
updated off-line to learn about new applications, by adding a subset of new application grammar to all
application grammars that will be connected simultaneously. We solve this by dividing each application
grammar a global and a local part. The local part is only available when the application is active, whereas
the global part is available in all connected applications. Section 5.3.2 explains how this is accomplished
in GoDiS using GF4

In addition, it is necessary that the interpretation, generation and ASR modules are able to (1) load several
alternative application grammars (or language models in the case of ASR) on start-up, and (2) alternate
between these based on the currently active application. In an OAA-based system, this means that the
GF and ASR modules need to offer solvables for setting the currently active grammar or language model.
Given this, TrindiKit4 offers the possibility of setting up triggers that fire when the relevant Resource
Interface Variables are modified, and that send out OAA solvables to the GF and ASR modules. These
triggers are implemented as follows:

condition(val(asr_grammar,G)) => [oaaSolve(setASRGrammar(G))]
condition(val(gf_grammar,G)) => [oaaSolve(setGFGrammar(G))]

The Resource Interface Variables asr grammar and gf grammar are set by the update rules for application
switching (see e.g. Section 4.2.1. The first trigger rule says that if the value of asr grammar is modified
and the result is that the condition holds that the new value is G, an OAA solvable is sent to via OAA
facilitator to set the ASR grammar to G. This solvable will be handled by the ASR module agent.

4.2.3 Multi-device utterances

Multi-device utterances are utterances addressing several applications, i.e. utterances interpreted as ad-
dressing more than one application. The grammatically simplest case of this is sentence conjunction (e.g.
“Stop the music and turn off the lights”). In case several connected applications share some vocabulary
for requests (or questions), NP conjunctions may also occur (e.g. “Turn off the music and the lights”).

Handling such utterances requires the ASR and interpretation grammars to understand utterances in non-
active connected devices; but as we have seen above, this is also required to allow for implicit direct

4The principle for which parts of an application grammar to include in the global grammar is chosen individually
for each application. Essentially, it is a trade-off between device accessibility and ASR quality; if a large part of
an application grammar is included in the global grammar, it will make the application easier to access from other
applications, but it will also increase the size of the global grammar (including the ASR grammar) and thus the
quality of the ASR output.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 46/64

Figure 4.1: MIMUS Applications

application switching, so multi-device utterances pose no additional problems; the dialogue management
and grammar solutions already proposed also covers multi-device utterances.

4.3 Multiple Applications in MIMUS

4.3.1 Taxonomy concepts applied to MIMUS

Application vs Devices

MIMUS allows for the ASR grammar and the GUI to be modified at runtime, defining different contexts
under which the user can control a set of elements. These contexts are the MIMUS equivalent for the
previously defined “applications”. As shown in figure 4.1, both the ASR grammar and GUI updates are
controlled by the Dialogue Rules from the Dialogue Manager.

The set of elements controlled within a particular context is what the proposed taxonomy identifies as
“device”. The MIMUS knowledge resources are defined as OWL ontologies, and “Device” is a particular
Class of the Home Ontology. Clustering is achieved by means of SubClasses (i.e., Lamp is SubClassOf
Device).

In MIMUS, application switching occurs in the same manner as any other multimodal event, that is, by
speech, click or speech and click, as described in Deliverable 1.6. The user can switch between contexts
(or rather applications) by voice and/or graphically.

MIMUS can work with both explicit and implicit direct switching. Indirect switching has been discarded
because of the additional unnecessary step involved. In the following sections there are descriptions with
examples of how application switching is achieved in MIMUS.

Tokens vs Types, Online vs Offline

The concepts of “token” and “type” could be assimilated, respectively, to the “Individual” and “Class” or
“Property” concepts from the ontology. MIMUS has full “token-level (weak) plug and play” and partial

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 47/64

Figure 4.2: MIMUS Screenshot

“type-level (strong) plug-and-play”.

The proposed terms “online” and “offline” are suitable for MIMUS, where offline and (partially) online
reconfigurability is possible.

The way these concepts and classification is applied to MIMUS is described in section 5.2.

4.3.2 Multimodal application switching

MIMUS offers manyfold applications within the home scenario. As shown in figure 4.2, a set of icon–
labelled buttons at the bottom of the screen grant graphical access to these applications to the user. These
include the telephone, MP3 player and TV applications, among others.

The user can switch from one application to another by voice (Show the TV interface), graphically (Click-
ing on the TV Icon) or mixing modalities.

The use of different modalities can be done under MIMUS in three different ways:

Alternate inputs where the Dialogue Manager will ask for the piece of information missing:

U: (VOICE) Show me this.
S: Which interface do you want to load?.
U:(CLICK) TV Icon

Simultaneous combined inputs where the Dialogue Manager will fuse both inputs without asking for
further information:

U: (VOICE) Show me this.
U: (CLICK) TV Icon

Simultaneous not related inputs where the Dialogue Manager will handle two independent tasks in par-
allel:

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 48/64

U: (VOICE) Show me TV interface.
U: (CLICK) Switch on (clicked on
the submenu of a particular lamp icon)

4.3.3 Explicit direct switching

This is the case where the user explicitly asks for a particular interface. All of the utterances from the
previous sections are examples of explicit direct switching. For instance:

U: Show me the MP3 interface.
S: OK.

This utterance from the user is parsed by the NLU module providing the following DTAC5:������������
�

DMOVE specifyCommand

TYPE CommandShow

ARGS � INTERFACESPECIFIER �
INTERFACESPECIFIER

���
� DMOVE specifyParameter

TYPE InterfaceSpecifier

CONT MP3

����
�

�������������
�

Delfos receives this DTAC and triggers the corresponding rule:

(RuleID: SHOW;
PriorityLevel: 15; TriggeringCondition:

(DMOVE:specifyCommand,TYPE:CommandShow);

DeclareExpectations: {
InterfaceSpecifier <= (DMOVE:specifyParameter,TYPE:InterfaceSpecifier);
}

ActionsExpectations: {
[InterfaceSpecifier] => {
NLG(WhichDevice,@is-SHOW); /*Which interface do you want to load?*/

}
}

PostActions: {
ExecuteAction(ShowGUI,@is-SHOW.InterfaceSpecifier.CONT);
SetGrammar(@is-SHOW.InterfaceSpecifier.CONT);
ActivateRule(FUNCTION);
}

)

5For a detailed explanation on the DTAC protocol please refer to the SIRIDUS project, Deliverable 3.2.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 49/64

It is within the PostActions of this rule where the application is switched, loading the accurate GUI
(ShowGUI) and setting the Grammar (SetGrammar).

4.3.4 Implicit direct switching

The user can just say Play a song while being in another context (let’s say the TV one). This utterance
will trigger the PLAY dialogue rule:

(RuleID: PLAY;
PriorityLevel: 15;
TriggeringCondition:

(DMOVE:specifyCommand,TYPE:CommandPlay);
PreActions: {

ExecuteAction(ShowGUI,"MP3");
SetGrammar(".MP3");
}

DeclareExpectations: {
SongSpecifier <= (DMOVE:specifyParameter,TYPE:SongSpecifier);
}

ActionsExpectations: {
[SongSpecifier] => {
NLG(WhichSong,@is-PLAY); /*Which song do you want to play?*/

}
}

PostActions: {
ExecuteAction(Play,@is-PLAY.SongSpecifier.CONT);
}

)

When this rule is triggered, the PreActions determine that the new MP3 application (grammar and GUI)
has to be activated.

When a strategy allowing implicit direct switching is active, the main issue is to tune the different gram-
mars allowing a partial set of utterances from different domains (i.e., letting the user say Play a song
within the TV application). This tuning has to be done on a case by case basis, ensuring a trade–off
between expressivity (the more utterances are available for the user in any context, the better) and ASR
accuracy (the more restricted the grammar, the better WER from the ASR).

In the USE scenario for the MP3 application, we have chosen to keep the grammar as–is, only taking
off from the lexicon the elements (songs, authors, etc.) from the MP3 database. In this case, when the
user is within the TV application, he could say Play a song or Load a new list, and the system will
understand the sentence, change the application, load the appropriate database lexicon, and engage in a
specific subdialogue to accomplish the task.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 50/64

In this scenario, USE currently has a lexicon composed by 1000 words. Consider a relatively small MP3
database with 1000 elements. Following the strategy previously described, we would have a 50% lexicon
reduction, which will surely increase the ASR accuracy.

The cases studied within the home scenario let us believe that the approach of keeping a common set of
grammar rules and reducing the lexicon size per application is suitable for any context employing implicit
direct switching. Nevertheless, further investigations for different scenarios are needed for being able to
generalize such a statement.

However, this is rather risky strategy when dealing with naı̈ve users. Consider the case when the user
says Play Thriller by Michael Jackson within the TV application. In this case, the ASR won’t understand
correctly because Thriller and Michael Jackson are not elements of the active ASR grammar. In this case,
the expected behavior of the Dialogue Manager is to engage in a clarification subdialogue for the piece
of information missing. But the issue is that the ASR could give anything to fill the part of the sentence
he could not understand, producing eventually ‘valid’ (from a grammar point of view) but incorrect ut-
terances that the Dialogue Manager will work with. Our assumption is that this part of the sentence will
have in most of the cases very low scores, allowing the Dialogue Manager to deduce that a clarification
subdialogue is necessary.

To sum up, again, there is a trade-off between completeness and robustness that only usability experiments
and system tuning will help balance in the near future.

4.4 Applications in the Linguamatics Interaction Manager

Although the menu structure may have arbitrary groupings of devices or services, much of the clustering
of devices and services is also done bottom-up. For example, if a new television is added to the system
it appears under the “television” grouping. If the users says which room it is to be located in, it also will
automatically appear under that room’s grouping.

4.5 Multiple Applications in the Linguamatics Interaction Man-
ager

The approach to applications in the Linguamatics system is rather different from GoDis and Mimus. Once
an application has been plugged into the system it does not exist separately, except as a node in the
hierarchy. For example, “cinema booking” might be added under “entertainment” which might itself by
under “leisure”. However, once added to the system, “cinema booking” is no more (or less) an application
than “entertainment” as a whole or “leisure”. Similarly, home control is not pre-defined as an application,
but clustering of devices happens automatically according to the properties of the devices. For example, if
a new television is added to the system it appears under the “television” grouping. If the users says which
room it is to be located in, it also will automatically appear under that room’s grouping. Although, as
mentioned in 2.3.4, it is possible to impose more top-down clustering via a menu structure, the aim isfor
this to be open to users of the system as much as to system designers.

Instead of a notion of “application”, the closest notion in the Linguamatics system is that of “context”. As
a user traverses down “is-a” or “in-a” links the context changes and becomes more specific. For example,
at the level of kitchen a mention of light will be assumed to be a mention of kitchen-light rather than lights

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 51/64

in general. Similarly, if the user switches to a particular device such as the radio, an utterance of “turn
the volume down” refers to the radio in the kitchen, not any other device. Although application switching
is not a real notion in the Linguamatics system, there is a corresponding notion of context switching.
Ideally the notion of context should affect the interpretation of a user’s utterance (for example, by helping
to pick the most plausible speech recognition hypothesis), but not fully determine it. Currently in the
Linguamatics system, the context is a hard constraint, and utterances are always interpreted as narrower
than the existing context. This means that the conversation can only get narrower and narrower until some
action is taken, or the user explicitly goes back up the is-a or in-a links using fixed remarks such as “back
up to . . . ” or “back up to the top”.

It is possible to perform commands over multiple devices or services, provided the user is in a context
which includes both. For example, if in the rooms context it is possible to turn on the kitchen light and
the lounge television. In principle, this should mean that at the top node you could say anything. However
there are currently restrictions on the speech recognition grammars so that at the top node the whole
grammar below is not accessible, but only the main nodes in the is-a hierarchy. Thus you can immediately
skip to a lower node e.g. “cinema-booking”, but cannot actually book the film. Ideally the whole grammar
would be accessible, and the position in the context would act as a preference on hypotheses.

Version: 1.1 (Final) Distribution: Public

Chapter 5

Reconfigurability in the Systems

In this chapter we describe how reconfigurability is achieved in each of the systems, including the extent
to which this can be done on-line for different components of the system.

5.1 Linguamatics Interaction Manager

Reconfiguring the Linguamatics Interaction Manager is primarily achieved by changing the ontology.
This can be done both off-line or on-line by sending messages to the interaction manager. There are also
off-line compile-time configuration files which specify how communication is achieved between different
modules such as the recognizer, synthesizer and graphical output module, provide global defaults for the
grammar (including escape words such as “Help”), and a configuration file for output (including XML
tags if appropriate).

5.1.1 Dynamic Reconfiguration

Devices and services can be added or deleted from the ontology at run-time. When a new device is added,
the information about the device e.g. the kind of device, its location etc. is sent in messages to the
interaction manager, which then updates the main ontology.

Currently, the representation language used is a proprietary one which specifies nodes and their parents
(rather than nodes and their children). Updating of the ontology with new nodes is therefore a monotonic
operation, and can be achieved by just adding extra fragments of the ontology. An alternative representa-
tion which would be equally convenient would be OWL-RDF, which splits up information about the node
and its relationships with other nodes.

For example, to add a new plasma television to the system results in the addition of the following infor-
mation to the ontology:

tv-1 is-a tv
tv-1 has-property plasma

The device is located by asking the user for the room containing the new tv. This adds the information:

tv-1 in bedroom-1

52

IST-507802 TALK D:D2.2 8th August 2006 Page 53/64

This would be classified as weak on-line plug-and-play according to 4, since this assumes that tv is a
known concept.

To achieve strong on-line plug-and-play, information about the type of the device has to be sent along with
information about the device itself. For example, if tv were not a known type, the following information
would be sent:

tv is-a onoff-device tv is-synonym-of tv television is-synonym-of tv telly is-synonym-of
tv tv has-state channel tv has-state soundonoff tv has-state volume

This description still assumes knowledge about onoff-device, channel etc. To be completely confident
that a new device can be safely added, all concepts referred to should include information about synonyms
and their path (according to is-a) to the root node.

5.1.2 Current Limitations

Currently, images for devices are held in a configuration file rather than in the ontology. This means that
the graphical interface supports strong off-line plug-and-play, but only weak on-line plug-and-play.

A more major limitation concerns generation which is template-based. Although new templates can be
sent to the interaction manager on-line, this approach is not well-suited to providing dynamically con-
structed answers which refer to multiple devices or services.

Finally, language modelling in the system is only partially reconfigurable. The basic grammars are created
from the ontology and are reconfigurable on-line. However we also use a class-based statistical language
model for home control, which is only partially reconfigurable. If new devices are added to the ontology
on or off-line, the system will then populate the classes appropriately in the language model. However, if a
device has new commands, with different numbers of parameters from an exising command, the language
model will not be automatically adapted. In future, we intend to adopt the approach which has been
successfully explored in TALK Deliverable D1.3 [WJR � 06] of generating SLMs from grammars.

5.2 MIMUS

MIMUS approach to reconfigurability is based on the idea of a central Ontology (eventually composed
of several subontologies) managed by a Knowledge Manager (KM) agent. The configuration changes are
centralized through this Ontology.

In MIMUS there are three agents making use of this Ontology: the Home Setup (HS), the Dialogue
Manager (DM) and the Device Manager (DevM). The HS loads the elements to be presented once at
the begging of the execution (offline plug and play). The DM loads the grammar and lexicon also at
the beginning of the execution (offline plug and play), but also queries the Ontology for every reference
resolution call, allowing certain degree of online plug and play. The DevM receives at execution time
petitions from the DM to update the device’s state (e.g., from “on” to “off”). This agent sends the physical
command to the real devices, updates the graphical layout of the house through the Home Setup and also
the ontology which is dynamically reconfigured by the KM. A schema of the inter-agents communication
is shown in figure 5.1.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 54/64

Figure 5.1: MIMUS Reconfigurability

5.2.1 Weak Plug & Play

This type of reconfigurability in MIMUS corresponds to changes where no additional devices, services or
functionalities are included. It may consist of:

� Changes in the current house set up such as moving a device to a different room

� Changing the device descriptors, i.e., the characteristic/s that may help distinguish each of them
from other devices of the same type.

� Adding new devices, as long as they conform to the already existing device list. That is, the new
device belongs to an already defined type and their descriptors already exist.

� Changes in the configuration of certain services.

All these types of reconfiguration can be done at run time and imply changes in the ontology where all this
information is contained. The ontology could either be accessed through a graphical interface (Prot ég é),
or directly through an editor.

Since the devices and services here considered already exist and only new individuals are added to the
ontology, there is no need to modify the grammars, lexicons or dialogue manager. The modifications
therefore only affect the ontology and the Graphical Interface Manager (GIM), that is, the agent responsi-
ble for the graphical lay–out 1.

Ontology Grammars Lexicons Dialogue GIM
Manager

YES YES

1The Graphical Interface Manager in MIMUS is actually the Home Setup agent. However we leave the term
GIM for generalization purposes.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 55/64

Graphical Interface Update

In order to enable the system to update the graphical interface, the ontology has been extended to include
graphical information. To be more precise, each device type has (in addition to all the information already
included) an associated icon, which would in turn be the one to appear on the screen if a new such device
were added.

This is necessary but not sufficient to update the graphical interface correctly. For the GIM to be able to
include the new device icon in the appropriate location on the screen, the ontology also contains informa-
tion about the graphical coordinates that correspond to each room or location in the house. In other words,
each room in the house would have an associated set of coordinates that would delimit the area of the
screen corresponding to its graphical representation. The following triplets illustrate these new relations.

Device
hasIcon

// Icon

Room
hasCoord

// Coordinates

In consequence, should a new device of type Device, located in room Room be added to the ontology, a
new icon of type Icon will appear within the coordinates of the room Room on the screen.

5.2.2 More complex reconfiguration cases

There are other possibilities to reconfigure the system that would imply more complex strategies and
modifications at different levels:

1. Adding an existing functionality to an existing device

2. Adding a new functionality to an existing device

3. Adding a new device with new functionality

Adding an existing functionality to an existing device

In the first case, we are considering the possibility of extending the functionality of an existing device.
However, the functionality considered in this case is already defined in the ontology as belonging to
a different device. As an example of the case hereby described, let us consider two devices and two
scenarios:

Scenario 1:
Device 1 VCR Programmable
Device 2 DVD Player Not Programmable

In this scenario, the VCR has a complex functionality that implies complex interaction with the user,
specific vocabulary, grammar rules, dialogue rules and graphical displays. The DVD player, however,
cannot be programmed.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 56/64

Scenario 2:
Device 1 VCR Programmable
Device 2 DVD Recorder Programmable

In this scenario, the user has switched the old DVD player for a brand new DVD Recorder. New devices
do not contain in themselves the necessary information to be automatically integrated in a Smart Home
system; therefore at this point it would have to be the system that adapts to the new situation. The goal
now is to manage the new DVD recorder.

Since the functionality to be associated to the DVD recorder is analogous or rather almost identical to that
of the VCR, it seems natural to make use of the existing knowledge to associate the VCR functionality to
the DVD recorder with the appropriate changes.

To do this easily, the ontology, lexicons, grammars and dialogue manager configuration must necessarily
be organized appropriately. That is, the grammar rules that determine what can reasonably be said must
necessarily allow for commands such as Record this movie on DVD, or Record this movie and disambiguate
with what device the movie should be recorded if more than one were available (like in scenario 2). In
scenario 1, the system would reply to the user with something like This device cannot record movies,
whereas in scenario 2, the system would already know that the new device has been enabled with this
functionality. More generically, the system would be capable of understanding a range of commands,
even if they do not apply to the current set up. In the following tables, the modules needing changes are
marked.

Ontology Grammars Lexicons Dialogue GIM
Manager

YES YES YES

Adding a new functionality to an existing device

In this case, the degree of complexity to reconfigure the system may vary depending on the complexity of
the functionality to be added. However, it is quite clear that all elements would have to be modified:

Ontology Grammars Lexicons Dialogue GIM
Manager

YES YES YES YES YES

Adding a new device with new functionality

As in the former case, as long as the devices themselves do not include the necessary information to
interact with them at this level in a standard format, the system will have to be reconfigured mostly
manually and all elements involved would have to be modified.

Ontology Grammars Lexicons Dialogue GIM
Manager

YES YES YES YES YES

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 57/64

5.2.3 Applying the Taxonomy to MIMUS

Offline weak plug–and–play

This class of soft plug–and–play is fully available in MIMUS. Any new individual (token) can be added
to the ontology, and the whole system will be automatically updated when rebooting MIMUS.

Offline strong plug–and–play

This kind of plug–and–play is only partially available. We can include new properties (for instance,
hasHeight to identify the height of the Devices), and the grammar will be automatically updated, so that
constructions from the user such as What is the Height of the Kitchen Lamp? will be understood. We can
also include new Classes (for instance, Fan as subClassOf Device).

But in the general case, new types (Classes or Properties) would imply modifications on the dialogue rules
and the Home Setup, which are not automatically updated when these modifications occur.

Online weak plug–and–play

This type of plug–and–play is again only partially available. Some individuals can be changed; the DM
does not need to be aware of this change to process it correctly. For instance, say we have a blue lamp in
the kitchen and the user asks about its color. As expected, the system would respond blue. If the ontology
is now changed and the color is switched to red, the DM would answer appropriately red to the same
question.

However, in order to obtain full online token–level plug–and–play, the Home Setup (HS) should refresh
automatically changing the color of the lamp, which is not implemented yet.

Online strong plug–and–play

This kind of plug–and–play is not available in MIMUS.

5.3 Plug-and-play in GoDiS

This section presents the strategies and solutions implemented in GoDiS to enable plugging in new devices
and applications.

5.3.1 Off-line strong plug-and-play for implicit direct application switch-
ing

In the terminology introduced in Section 4.1.1, the application plug-and-play strategy we have chosen to
implement in GoDiS is off-line strong plug-and-play for implicit direct application switching.1

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 58/64

5.3.2 Adding applications to GoDiS

As we saw in Section 4.1.1, plugging in new application in the case of off-line application plug-and-play
requires halting the system, and before restarting it taking the following steps:

� extending the application cluster is by adding one or several new applications to a list of applications
to be run simultaneously

� getting all applications to (more or less automatically) exchange the appropriate information

These two steps are described in the following two sections.

Modifying the application cluster specification

In GoDiS, applications are connected by including the associated resources in the list of resources to be
loaded on start-up (as specified by the predicate selected resources in the application-cluster specifi-
cation file (see the TrindiKit manual [SIR02]). This file also includes TIS updates to be carried out on
start-up (specified by the predicate reset operations); these should now include adding a field for the
new application to the record of connected applications and their respective devices (all devices; see
Section 4.2.1).

Combining application grammars in GF

The application plug-and-play strategy chosen for GoDiS requires that applications exchange information
enabling them to hear and understand when user wants to switch application. In terms of the grammar
and ASR components, all applications can be updated offline to learn about a new application by adding a
subset of the new application grammar to all application grammars that will be connected simultaneously.
We do this by automatically extending GF grammars and compiling out new ASR language models. Once
grammars and models for a certain combination of applications have been compiled, they can be re-used.
Since we’re doing off-line plug-and-play, it is not crucial that grammar combination and compilation is
extremely fast (as it would be in the case of on-line plug-and-play).

The main idea is to split the grammars for user utterances into one ”global” and one ”local” grammar.2

The global grammars contain utterances that every application should recognise, and the local grammars
only those utterances that the active application should recognise.

Suppose we have the domains MP3 and Lights. Following the notation in the GF grammar library de-
scribed in TALK deliverable D1.5 , the grammars for user utterances will be called MP3User.gf and
deLuxUser.gf. The grammar library contains much more than these two grammars – there are grammars
for system utterances, common grammars for all domains, and perhaps grammars describing the different
entities in a domain – but the procedure in this section only have effect on these user utterance grammars.

The grammars MP3User.gf and deLuxUser.gf contains grammar rules for recognising user utterances.
The first thing to do is to decide which of these should be global to any application and which should be
local. The rules for global utterances are moved to the files MP3Global.gf and deLuxGlobal.gf, while
the local rules remain in MP3User.gf and deLuxUser.gf.

2Note that the grammars for system utterances do not have to be shared, so this applies only to user utterance
grammars

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 59/64

Figure 5.2: GF grammar structure for plug-and-play

The next thing is to create the new grammar Global.gf, which simply is the union of all global grammars.
The file contains only one header line which imports the other grammars and does not add any new
definitions:

abstract Global = MP3Global, deLuxGlobal ** {}

Now one single thing has to be added to the local grammars MP3User.gf and deLuxUser.gf. The gram-
mars have to state that the Global grammar should be imported:

abstract MP3User = ..., Global ** {
...

}

(The first ”...” are the grammars that the grammar already has imported, such as the common GoDiS
grammar and other sub-grammars, the second ”...” are the rules for local user utterances).

The final structure of the grammars is shown in Figure 5.2.

Now suppose that the Agenda domain is added, together with the grammars AgendaSystem.gf, AgendaGlobal.gf
and AgendaUser.gf. There is only one grammar file that has to be changed, and that is the grammar
Global.gf which now reads:

abstract Global = MP3Global, deLuxGlobal, AgendaGlobal ** {}

Then we can recompile each of the user grammars into grammars for speech recognition and parsing, and
calculate statistical language models.

The structure after adding the Agenda domain is shown in 5.3. Note that the only node that has changed
is Global, since the incoming arrows are changed. All other nodes are the same as before.

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 60/64

Figure 5.3: GF grammar structure for plug-and-play with additional application

5.3.3 Using OWL for application modification and device plug-and-play

Section 2.4.2 shows how to specify a complete GoDiS dialogue application as an ontology in OWL.
This description can than be automatically transformed into working GoDiS resources. Given such a
specification, GoDiS applications can be easily reconfigured off-line using a standard OWL editor.

One way in which an application can be modified is by plugging in a new device. Currently, there are no
special facilities enabling plug-and-play of devices (within a given application) in GoDiS; essentially, the
application needs to be reconfigured (e.g. using an OWL editor) off-line. However, GoDiS’ modularity
minimises the effort required for plugging in a new device.

To add a new device of a new type to a GoDiS application off-line, one needs to add the associated domain
knowledge to the application domain knowledge resource, and the GF grammar needs to be extended
accordingly. All device resources are straightforwardly connected to the TIS by including them in the list
of selected resources.

5.4 SAMMIE

In the SAMMIE dialogue system, our only focus was on reconfigurability at the dialogue manager level —
no effort has been made to explicitly support reconfigurability in other system components (e.g., language
resources). In this section, therefore, we only comment on reconfigurability from the viewpoint of the
dialogue manager.

The dialogue manager described in Section 3.2 does not yet support true dynamic reconfiguration, but
rather offline reconfiguration. In order to reconfigure the dialogue manager, the following information
must be changed offline in the system:

Ontology New types in the CPS model (e.g., for objectives and resources) must be added to the ontology.

Grounded Recipes New Java classes representing grounded-recipes need to be added to the recipe pack-

Version: 1.1 (Final) Distribution: Public

IST-507802 TALK D:D2.2 8th August 2006 Page 61/64

age (detection can happen online).

The only bottleneck here to supporting dynamic reconfiguration is actually the ontology component, which
does not allow changes at runtime. The Grounded Recipes are actually detected using Java reflection
classes, and therefore could be added dynamically.

Although we have not described it here, our system relies upon an external database for knowledge of
domain resources, and a new database interface would need to be added as well for reconfiguration.
Although this is not a topic of our current research, we believe it would be possible to create a domain-
independent component which could serve as an interface to any SQL database and return results as CPS
resources. DFKI has created the MP3Shield component (see Deliverable 5.2) which does just that for the
MP3 domain.

Version: 1.1 (Final) Distribution: Public

Chapter 6

Conclusion

In the Introduction to this report we outlined a series of challenges for multi-modal home information and
control. Although no single system we have described meets all these challenges, we have shown how the
information update approach embodied in different systems can meet the challenges, including the ability
for easy reconfigurability, simultaneous conversations, and multi-modal multitasking.

In 2 we showed how ontological representations such as OWL are suitable for expressing a wide range
of domain knowledge. In 3 we showed how domain-specific dialogue rules can be kept abstracted from
generic dialogue management or separated into separate task processes. In 4 we discussed various kinds
of plug-and-play and how multiple applications can be accessed simultaneously, or merged into a single
structure. Finally in 5 we showed how it is possible to perform plug-and-play dynamically for devices and
services.

Coping with the complexity of the home control domain has required the use of clean representations
of dialogue context as provided by the information state update approach, and of domain knowledge as
provided by ontologies. In showing the ability to plug-and-play new devices and services, we have shown
the principles of how dialogue systems can become much more easily deployable and scalable in future.

62

Bibliography

[BA05] Nate Blaylock and James Allen. A collaborative problem-solving model of dialogue. In
Laila Dybkjær and Wolfgang Minker, editors, Proceedings of the 6th SIGdial Workshop on
Discourse and Dialogue, pages 200–211, Lisbon, September 2–3 2005.

[Bla05] Nathan J. Blaylock. Towards Tractable Agent-based Dialogue. PhD thesis, University
of Rochester, Dept. of Computer Science, August 2005. Also available as University of
Rochester Department of Computer Science Technical Report 880.

[Car90] Sandra Carberry. Plan Recognition in Natural Language Dialogue. ACL-MIT Press Series
on Natural Language Processing. MIT Press, 1990.

[Cla96] Herbert H. Clark. Using Language. Cambridge University Press, 1996.

[CLAK05] K. Clarke, M.R. Lewin, D. Atkins, and R.S. Kalawsky. Testing a framework for multimodal
control in the home environment. In Proc. Perspectives in Pervasive Computing, pages 87–
95, IEE, London, 2005. DTI.

[LAC � 06] Peter Ljunglöf, Gabriel Amores, Robin Cooper, David Hjelm, Oliver Lemon, Pilar Manch ón,
Guillermo P érez, and Aarne Ranta. Multimodal grammar library. Deliverable 1.2b, TALK
Project, February 2006.

[Lar02a] Staffan Larsson. Issue-based Dialogue Management. PhD thesis, Göteborg University, 2002.

[Lar02b] Staffan Larsson. Issue-based Dialogue Management. PhD thesis, Göteborg University, 2002.

[LBC � 05] Peter Ljunglöf, Björn Bringert, Robin Cooper, Ann-Charlotte Forslund, David Hjelm, Re-
becca Jonsson, Staffan Larsson, and Aarne Ranta. The talk grammar library: an integration
of gf with trindikit. Deliverable 1.21, TALK Project, July 2005.

[LCE01] Staffan Larsson, Robin Cooper, and Stina Ericsson. menu2dialog. In Proc. of the 2nd IJCAI
Workshop on Knowledge and Reasoning in Practical Dialogue Systems, pages 41–45, Seattle,
USA, 2001.

[MAB � 05] David Milward, Gabriel Amores, Tilman Becker, Nate Blaylock, Malte Gabsdil, Staffan Lars-
son, Oliver Lemon, Pilar Manch ón, Guillermo P érez, and Jan Schehl. Integration of ontolog-
ical knowledge with the ISU approach. Deliverable 2.1, TALK Project, September 2005.

[MB03] D. Milward and M. Beveridge. Ontology-based dialogue systems. In Workshop on Knowl-
edge and Reasoning in Practical Dialogue Systems. IJCAI, 2003.

63

IST-507802 TALK D:D2.2 8th August 2006 Page 64/64

[Pro] Prot ég é. Prot ég é web site.

[Pro06a] TALK Project. Enhanced multimodal grammar library, July 2006. forthcoming.

[Pro06b] TALK Project. A unified approach to multimodality and multilinguality in the in-home do-
main, December 2006. forthcoming.

[PS94] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. Studies in Contem-
porary Linguistics. University of Chicago Press, Chicago, 1994.

[Ran04] Aarne Ranta. Grammatical framework: A type-theoretical grammar formalism. The Journal
of Functional Programming, vol. 14:2:pp. 145–189, 2004.

[Sir] Siridus. Siridus project web site.

[SIR02] SIRIDUS. Implemented siridus system architecture (enhanced). Project deliverable 6.4,
SIRIDUS, 2002.

[TH92] David R. Traum and Elizabeth A. Hinkelman. Conversation acts in task-oriented spoken
dialogue. Computational Intelligence, 8(3):575–599, 1992. Also available as University of
Rochester Department of Computer Science Technical Report 425.

[Tra94] David R. Traum. A computational theory of grounding in natural language conversation.
Technical Report 545, University of Rochester, Dept. of Comptuer Science, December 1994.
PhD Thesis.

[W3C] W3C. Owl web ontology language overview.

[WJR � 06] Karl Weilhammer, Rebecca Jonson, Aarne Ranta, Matt Stuttle, and Steve Young. Slm gener-
ation in the grammatical framework. Deliverable 1.3, TALK Project, February 2006.

Version: 1.1 (Final) Distribution: Public

