The TALK Grammar Library: an Integration
of GF with TrindiKit

Peter Ljunglof (editor) Bjorn Bringert
Ann-Charlotte Forslund

David Hjelm

Robin Cooper
Staffan Larsson

Rebecca Jonsson
Aarne Ranta

Distribution: Public

TALK
Talk and Look: Tools for Ambient Linguistic Knowledge
IST-507802 Deliverable 1.1

01/07/05

;‘% Project funded by the European Community .E
s B under the Sixth Framework Programme for Inf ion Soci
s - Research and Technological Development njormation Society

Technologies

The deliverable identification sheet is to be found on thenss of this page.

Project ref. no.
Project acronym
Project full title
Instrument
Thematic Priority
Start date / duration

IST-507802

TALK

Talk and Look: Tools for Ambient Linguistic Knowledge
STREP

Information Society Technologies

01 January 2004 / 36 Months

Security

Contractual date of delivery
Actual date of delivery
Deliverable number
Deliverable title

Type

Status & version
Number of pages
Contributing WP
WP/Task responsible
Other contributors
Author(s)

EC Project Officer
Keywords

Public
Jun 05
01/07/05
1.1

The TALK Grammar Library: an Integration of GF with
TrindiKit

Report

Public Final

42 (excluding front matter)
1

UGOT

Peter Ljunglof (editor), Bjorn Bringert, Robin Cooper, Ann

Charlotte Forslund, David Hjelm, Rebecca Jonsson, Staffan

Larsson and Aarne Ranta
Evangelia Markidou

grammar, multilingual, dialogue systems, Grammatical
Framework, TrindiKit, GoDiS

The partners in TALK are: Saarland University

USAAR
University of Edinburgh HCRC UEDIN
University of Gothenburg uGoT
University of Cambridge UCAM
University of Seville USE
Deutches Forschungszentrum fur Kunstliche Intelligenz DFKI
Linguamatics LING
BMW Forschung und Technik GmbH BMW
Robert Bosch GmbH BOSCH

For copies of reports, updates on project activities androfLK-related information, contact:

TheTALK Project Co-ordinator
Prof. Manfred Pinkal
Computerlinguistik

Fachrichtung 4.7 Allgemeine Linguistik

Postfach 15 11 50
66041 Saarbriicken, Germany
pinkal@coli.uni-sb.de

Phone +49 (681) 302-4343 - Fax +49 (681) 302-4351

Copies of reports and other material can also be accessdtheviproject's administration homepage,
http://www.talk-project.org

(©2005, The Individual Authors
No part of this document may be reproduced or transmittechinfarm, or by any means, electronic

or mechanical, including photocopy, recording, or any tinfation storage and retrieval system, without
permission from the copyright owner.

Contents

1

Introduction 1
1.1 Whyintegrate GFand TrindiKit?, 1
1.2 GODIS e 2
1.2.1 Mismatch between recognition and interpretation 2
1.2.2 Mismatch between interpretation and generation 3
1.3 Solutions to the mismatch problems L 4
1.4 Outline of this deliverable 4
Integration of GF and TrindiKit 6
2.1 Grammatical Framework in the dialogue domain 6
2.1.1 Abstract and concrete syntax e 6
2.1.2 Multilinguality and resource grammars e o 6
2.1.3 Embedded grammars e e 7
2.1.4 Connecting GFto TrindiKit/GoDiS e 7
2.2 The Embedded GF Interpreter e 7
221 Parsing e 8
2.2.2 Linearization e 9
2.2.3 Translation e 9
224 Java APl . . . e 10
2.25 Typed Abstract Syntax Trees i i e 10
2.2.6 OAAAJGENt e 11
2.3 Representing TrindiKit/GoDiS dialogue movesinGF 11
2.3.1 Dialogue MovesinGoDIS e 11
2.3.2 CategoriesinGF e e 14
2.3.3 Usingdependenttypes e e 14
2.4 Extracting speech recognition grammars from appbcagirammars 15
2.4.1 Speech Recognition Grammar Formats 16
2.4.2 Implementation 16
2.4.3 Evaluation 16
244 Relatedwork e 17

IST-507802 TALK D:1.1 01/07/05 Page ii/42

3 Resource grammars and grammar engineering 18
3.1 Library-based grammar engineering e o 18
3.2 GF support for modules and libraries 18
3.3 Grammar engineering ot e e e e e e 19

3.3.1 Resource grammar libraries L Lo 20

4 The unimodal GoDiS grammar library 21
4.1 Thelibrary file structure e e e 21
4.2 Thein-home abstract resource (API) 21
4.3 The core grammar for the GoDiS Dialogue Manager 22

4.3.1 Theabstractsyntax e e 22
4.3.2 The concrete English GoDiScoregrammar cu.w...... 23
4.3.3 The concrete Swedish GoDiS coregrammar 24
4.3.4 The concrete GoDiS dialogue move representationgraremar 25
4.4 The specificdomaingrammars e e 25
441 DJIJGODIS e 52
442 AgendaTalk 28
4.4.3 GoDiSdelLux 29
444 Video GoDIS 30

5 Conclusions 32

5.1 Contents of the associated software 32
5.1.1 Grammarstatistics e 33
5.2 Concludingremarks e 33
A Downloading and installation instructions 34
A.1 Downloading instructions e 34
ALl Contents e e e 34
A.2 Installation instructions e 35
A.2.1 Systemrequirements e e e e 35
A.2.2 Installationandusage e 35
A.3 Testing the Unimodal GF Grammar Library 36
A.3.1 Testingthegrammarswithin GF c...... 36
A.3.2 Usingthe Embedded GF Interpreter 38
A.3.3 Producing speech recognition grammars 39

Version: Final (Public) Distribution: Public

Chapter 1

Introduction

1.1 Why integrate GF and TrindiKit?

The dialogue toolkit TrindiKit and the generic dialoguetgys GoDiS built within TrindiKit do not pro-
vide any specific support for grammars. In previous systemiswith these tools we have used simple
phrase spotting to relate user and system utterances tmd&moves. The correlations are expressed in
GoDiS lexicons. For speech recognition we have used Nusgcainmar formalism. In what follows we
explain why this situation needs to be improved and how trea@mnatical Framework (GF) provides us
with an engineering approach to grammar which is very weteduo the needs of maintaining a number
of small related grammars as are needed by our approachloguasystem development.

Recognition, interpretation and generation

When designing a spoken dialogue system, there are sevifeakdt options for how to handle speech
recognition, syntactic/semantic interpretation, andegation.

Speech recognition There are two main alternatives, either to use a statidiogiuage model (SLM), or
to use a grammar-based language model. The main problerugiith a SLM is that there must
be a corpus to extract the statistical data from, and it erofiot feasible to create a corpus just for
a single dialogue system. The main problem with using a grarbased model, however, is lack
of robustness.

Syntactic interpretation The simplest alternative is to use word or phrase spottingis Takes the
system robust, but gives rise to problems when trying to leacmimplex utterances.

Natural language generation Template-based generation is often simple, and sharesithe difficul-
ties of handling complex utterances with word/phrase smpttA more complex alternative is to
use a grammar for generation purposes.

These options for recognition, interpretation and geiratan be combined in various ways. In most
commercial working dialogue systems the recognition isgnar-based since there is no corpus fitting the
intended domain, but there are no grammars involved forpné¢ation and generation. In these systems,
the dialogue designer has to manually ensure that the rigmrgrinterpretation and generation modules
are all up-to-date and in sync with each other.

IST-507802 TALK D:1.1 01/07/05 Page 2/42

Separating specific knowledge from general knowledge

Many dialogue systems are built more or less from scratchdanabt fully separate application-specific
knowledge from general and reusable knowledge in the wayibdave attempted to do — for example,
by separating dialogue strategies such as question accdatio from the particular implementation of
a system for a given domain.

1.2 GoDiS

GoDiS is a dialogue system built using TrindiKit and basedhminformation state approach. It imple-
ments a theory of Issue-based Dialogue Management. Sorhe gbals of GoDiS are

e providing a domain-independent theory covering seveebdue genres
e modularity and reusability of system components
e enabling rapid prototyping of new applications

e focusing on dialogue management

These goals have been achieved on the level of dialogue margad, but not for natural language pro-
cessing, i.e. speech recognition, syntactic/semantcpnttation and natural language generation.

Recognition, interpretation and generation in GoDiS

GoDiS started out as text-based system, using phrasergpdtti syntactic interpretation, and tem-
plates for natural language generation. Subsequently ramas-based speech recognition component
was added. The speech recognition grammar has to be writtemaintained by hand.

1.2.1 Mismatch between recognition and interpretation

If the speech recognition grammar is out of sync with the slrspotting interpretation module, cor-
rectly recognised speech can be misinterpreted. This inléads to strange and unexpected behaviour,
i.e. unexpected interactions with the dialogue manager.

Example from the Video GoDiS system

S> Valkommen till videon! For att fa hjalp, sag hjalp.
Wel cone to the video! For help, say help.
S> Lat oss se. Vad kan jag hjalpa dig med?
Let’s see. What can | do for you?
U> jag vill spela in ett program (0.6)
i want to record a/one program
S> Vill du l&gga till en inspelning?
Do you want to add a recording?
U> ja (0.98)

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 3/42

yes
S> L&t oss se. Menar du fran noll ett eller till noll ett?
Let’s see. Do you nean from zero one or to zero one?

The utterance “jag vill spela in ett program” is covered by $ipeech recognition grammar, but not by the
phrase spotting lexicon. However “spela in” (record) antf’“@/one) are recognized as phrases by the
interpretation module.

The correct interpretation should be:
“jag vill spela in ett program” = request(add_ rec_ job)
but the actual interpretation is:

“spelain” = request(add_ rec_ job)
“ett” = answer(time(1:00))

The system assumes that “ett” specifies either when thediegpshould stop or end — thus the follow-up
guestion, which seems to the user to come from nowhere.

1.2.2 Mismatch between interpretation and generation

If the interpretation and generation modules do not useahwedanguage, then the system utterances can
lead the users to believe they can say things that the sysiesrebt understand.

Example from the Video GoDiS system

S> Du kan lagga till en inspelning,
ta bort en planerad inspelning, och
lista planerade inspelningar.
For att borja om, sag borja om.
For att sluta, sag sluta.
You can add a recording,
renove a pl anned recording, and
list planned recordings.
To start over, say start over.
To quit, say quit.
S> Huvudmenyn. Vad kan jag hjalpa dig med?
Mai n menu. What can | do for you?
U> lista inspelningar (0.75)
list recordings
S> Ockey. Ga till inspelningar.
Ckay. Go to recordings.
S> Lat oss se. Vill du lagga till en inspelning,
radera dina inspelningar, eller
fa information om dina inspelningar?
Let's see. Do you want to add a recording,

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 4/42

erase your recordings, or
get information about your recordings?

The initial help message suggests that the user can say itigpelningar” (list recordings), but the help
message is not up-to-date, and neither is the speech réocoggiammar. Instead the interpretation mod-
ule spots the phrase “inspelningar” (recordings), and #ee i$ asked to choose between roughly the same
alternatives that was presented in the help message.

1.3 Solutions to the mismatch problems

Mismatch between the speech recognition, interpretatith generation modules can be described as
bugs in the system. Bugs can of course be fixed, but the proisld@hat it takes lots of time to keep
these modules in sync with each other. There is no guarama¢&éw bugs won't be introduced, and no
guarantee that all bugs have shown up.

These solutions are not reusable, instead we want a gemerg@lrizncipled solution — we want to enable
reuse and rapid prototyping of applications, includingngnaars.

Solution, part 1: a single grammar for speech recognition,nterpretation and generation

If we use one single grammar for all natural language modtiese will be no mismatches between the
grammars, and only one grammar needs to be written and rimegdtéor each application. The different
modules may require different kinds of grammars, in difféigrammar formats. So we need to be able to
generate all three grammars from a single grammar.

However, we may not want the exact same coverage for thelspeeggnition, interpretation and gener-
ation grammars — e.g. maybe we do not want to understandtbiregythat can be generated.

Solution, part 2: use the Grammatical Framework

GF is a powerful tool for mutilingual grammar developmenhieh can be used to generate grammars in
various other formats. Also, subgrammars can be extracted farger grammars, meaning that speech
recognition, interpretation and generation subgrammag mave different coverage.

1.4 Outline of this deliverable

In this deliverable we describe how we have integrated Graneal Framework with TrindiKit/GoDiS.

In chapter 2 we describe how to get GF grammars working tegetlith TrindiKit. The main idea is
that GF works as a combined interpretation and generatiauhaptranslating user utterances to dialogue
moves, and the system’s dialogue moves to utterances.édfomtine, the grammar for speech recognition
is automatically generated from the GF grammar, meaninigalhthree modules are in perfect sync with
each other.

Chapter 3 is a general description of how the module syste@Fatan be used for building libraries that
can be used and reused in several applications, much as coliforasies for programming languages.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 5/42

In chapter 4 we describe a cluster of grammars which have bset to build four example dialogue

systems in the in-home domain.
The final chapter is a short discussion, and in the appendiiwegnstructions for downloading, installing

and using the unimodal GoDiS grammar library.

Version: Final (Public) Distribution: Public

Chapter 2

Integration of GF and TrindiKit

2.1 Grammatical Framework in the dialogue domain

Here we discuss the features of Grammatical Framework we msé of in building grammars for dia-
logue systems.

2.1.1 Abstract and concrete syntax

As explained in section 1.4, the dialogue moves for the dizdamanager are seen as yet another language,
which means that in our approach it is crucial that the granforaenalism has support for multilinguality.
The feature that makes GF so well suited for multilingualngregars is the clean separation between
abstract and concrete syntax. A multilingual grammar thamsists of one abstract syntax and several
concrete syntaxes, one for each language (or modalitygeptation).

GF is not the only grammar formalism with a clean separatf@betract and concrete syntax — other for-
malisms includegeneralized context-free grammg@ollard, 1984)multiple context-free grammdSeki

et al., 1991) linear context-free rewriting systenf¥ijay-Shanker et al., 1987higher-order grammar
(Pollard, 2004)lambda-grammargMuskens, 2003) andbstract categorial gramma(de Groote, 2001).
However, most of these formalisms are purely theoreticélh wb working implementation, or just a
simple toy implementation. GF is a formalism with a very cdete implementation, including tools
for grammar checking, parsing, generation and compilatoother grammar formats, including speech
recognition grammars.

2.1.2 Multilinguality and resource grammars

There have been some research conducted on multilinguadngaes, which is shown by the existence
of the ESSLLI 2003 workshop of Multilingual Grammar Devetognt. However, most of the research
has been on building large-coverage grammars for severgligges in parallel, sharing some common
features such as syntactical structure or semantics. Tgaadel grammars are written in frameworks
not ideally suited for multilinguality, such as the ParGraroject (Butt et al., 2003) which is written in

Lhttp:/lling.uni-konstanz.de/pages/home/butt/pargram /

IST-507802 TALK D:1.1 01/07/05 Page 7/42

LFG, and the LinGO Grammar MatAxBender et al., 2002) which is written in HPSG.

GF has a rich module system that enables modularity andyitir@sed grammar engineering. The key fea-
tures needed are information hiding, high-level modulerfiaces, and separate compilation. This makes
it possible to write resource grammars, which are broag@me grammars from which it is possible to
extract only the features that are needed for the intendethiio

As of our knowledge there are no research on domain-specifltlimgual grammar development. To-
gether with its module system and the possibility to writeorgce grammars, GF is well suited for this
task as well as for building large-coverage grammars.

2.1.3 Embedded grammars

There are several ways one can embed GF grammars in appieati

Embedding the Full GF System

Some applications have been written which use the full GEesyss a resource. This can be done
in two ways, either by communicating with the interactive @egram by using pipes (Khegai
et al., 2003; Hahnle et al., 2002), or by using the GF Hask@ll dlallgren and Ranta, 2000; Burke
and Johannisson, 2005).

GF Gramlets

The GF Gramletssystem (Forsberg et al., 2005) produces syntax editorseitiottm of Java ap-
plets for a given GF grammar. Gramlets implement syntaxregdénd linearization using XML
representations of GF grammars.

The Embedded GF Interpreter

This is an interpreter for compiled GF grammars, supponpiaging and linearization. It is written
in Java and its aim is to be small, fast and portable. It camladsrun as an OAA agent enabling
other OAA agents to use it for parsing linearization anddtation. This is the reason why we use
the Embedded GF Interpreter to integrate GF with TrindiKit.

2.1.4 Connecting GF to TrindiKit/GoDiS

The main idea is that the dialogue moves of TrindiKit/GoD8Séen as yet another concrete language in
the multilingual GF grammar, just as English and SwedishAlleghese languages share the same abstract
syntax. Thus interpretation can be done by translatingtéeEmbedded GF Interpreter) from English or
Swedish to dialogue moves, which are then sent to the dialaganager. Generation is done conversely,
by translating the dialogue moves produced by the dialogareager into the preferred language.

2.2 The Embedded GF Interpreter

The GF system is primarily a command line application for kirg with GF grammars. It has a signif-
icant amount of functionality, such as parsing, linear@gtcomputation, syntax editing, morphological

2http://www.delph-in.net/matrix/

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 8/42

analysis, compilation of source grammars to canonical Gihgnars, conversion of grammars to various
formats, translation and morphology quizzes, etc. GF has bedevelopment for a number of years and
has grown quite large. It is well-equipped for testing andkivay interactively with grammars. However,
GF is more complex than necessary to be used with embeddetrgns. We have therefore developed
an interpreter for compiled GF grammars in the Java progiliagitanguage, version 1.5 (Gosling et al.,
2005). The goal of the Embedded GF Interpreter is to make 8 anthfast implementation of the features
necessary for building applications to make use of embeddmumars. Thus, any functionality which is
only used during the application development has been ateddo the full GF system.

GF itself is still essential for developing embedded gramsmiaut it need not be included in the finished
system. GF is used to compile the source grammars to theugaitomats used for parsing, linearization
and speech recognition by the finished system. This situatm be compared to that for programming
languages such as Java, which can be compiled into byte-gocempiler is used to convert the human-
readable and human-writable source code to a simpler formmerdJof the program then only need a
runtime environment or virtual machine to run the compilede:

The full GF system is a rather large executable program,mesja Haskell implementation for the given
platform and has a large memory footprint. The aim of the Eddbd GF Interpreter is to be small,
fast and portable. The size of the compiled interpreterasirad 300 kilobytes and it should run on any
platform which has a Java 1.5.0 Runtime Environment.

2.2.1 Parsing

The parser computes a set of abstract syntax trees for a gffieg input.

Compiling GF grammars to parsable format

The full GF system converts the GF grammars to a format whiehBmbedded GF Interpreter can use
for parsing. If the grammar contains finite type dependendtas transformed to an equivalent gram-
mar without dependent types. This grammar is then convedeoh equivalent Multiple Context-Free
Grammar (MCFG; Seki et al., 1991) as described by Ljunglobéda, chapter 3). The MCFG is finally
converted to a context-free grammar (CFG), which is usedheyEmbedded GF Interpreter.

Lexical analysis

The first step in parsing input is to divide it into tokens. Hmbedded GF Interpreter has a default lexer
which divides the input into simple words (non-empty se@esrof letters and digits), quoted strings and
punctuation. The user can also write custom lexers whictoaded by the interpreter.

Chart parsing

The parser is a Kilbury bottom-up chart parser, similar ®c¢hart parser described by Ljunglof (2004b).
The algorithm has been modified to support empty rules ane tioelter suited to implementation in an
imperative language.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 9/42

Tree building

After a successful parse, we need to build abstract syngéas fior the input. The tree building algorithm
uses the chart produced by the chart parser.

In order to avoid non-termination with cyclic grammars, eafeised edges for a given input sub-sequence
is kept. No edge can be used more than once for a given sulersagjuvhich means that not all possible
parse trees are generated. This may seem to be too harshi@ioestbut this decision was made based
on the belief that for most applications, cyclic uses of thes rules are not essential for the semantics.
Another possible solution to this problem would be to buildphs instead of trees. This might seem to be
an elegant solution, but traversing such graphs could leadn-termination if special care is not taken.

Filtering of parse trees

When the MCFG is converted to a CFG, information about e geafitinuous constituents will be lost.
Thus, the grammar which is used for parsing is over-gemgradind some resulting parse trees might be
incorrect. Therefore the trees have to be filtered througltay@e-checker, before they are returned by
the Embeded GF Interpreter.

2.2.2 Linearization

In GF, linearizationrefers to the inverse of parsing, i.e. the process of proguaistring in the concrete
syntax from an abstract syntax term.

For linearization, the Embedded GF Interpreter uses a Geald@F (GFC) grammar, which is produced
from a source grammar by the GF system. Canonical GF can beseesimple total functional language.

Unlexing

After linearization has produced a list of tokens, th@exerjoins the list to create a single output string.
A naive unlexer would simply concatenate the tokens, addisygace character between the tokens. How-
ever, this does not produce acceptable strings in most éyggu For example, in English there should not
be a space before most punctuation characters.

The Embedded GF Interpreter currently uses a fairly simelgiktic for unlexing. We define two subsets
of the set of all characters: those which should be precegedspace (essentially all punctuation, closing
brackets and closing parentheses), and those which shoulterfollowed by a space (opening brackets
and parentheses). These sets are used to determine wietitel 4 space between two tokens. The full
GF system offers some more freedom in the choice of lexinguaieking algorithms.

2.2.3 Translation

Translation is done by parsing with the source languageinadrizing to the destination language. Since
parsing may be ambiguous or fail, translation may produce @aemore results.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 10/42

2.2.4 Java API

The Java API allows the programmer to call the interpretegatly from a Java program. The Java API
supports all functionality, such as grammar loading, pardinearization and translation.

The methoccreateTranslatorin the TranslatorFactoryclass is used to createTaanslator given CFGM
and GFCM grammars, and some meta-data. Tiamslator class has methods for parsing, lineariza-
tion and translation, which are described below. More daniation is available in the Embedded GF
Interpreter API reference (Bringert, 2005).

Methods in the Translator Class

The parsemethod takes a language name (the name of a concrete synthahanput string. It returns
the result of parsing the input string in the given language:

Set<Tree> parse(String lang, String text)

Thelinearizemethod takes a language hame and an abstract syntax trestamg the result of linearizing
the tree in the given language:

String linearize(String lang, Tree tree)

Thetranslatemethod takes input and output language names, and a strihg input language, which it
translates to a set of strings in the output language:

Set<String> translate(String fromLang, String toLang,
String text)

There are also versions of the parsing and linearizatiotoast which try to use all available concrete
syntaxes and return collections of pairs of language namdeesults:

Set<Pair<String,Tree> > parseWithAll(String text)

Set<Pair<String,String> > linearizeWithAll(Tree tree)

2.2.5 Typed Abstract Syntax Trees

The Java API uses generic untyped syntax terms, where tharsiingle class for functions which uses a
string for the function name and an array of child terms. @oeting and analyzing such terms can be
quite tedious in Java. An untyped abstract syntax term istoocted thus:

new Fun("GoTo", new Tree[[{ new Fun('Chalmers"),
new Fun("Valand")});

A tool, Grammar2API, has been written which creates Java classes for repregengjiven abstract syntax

using typed trees. An abstract class is created for eachagteand a concrete class inheriting from that
class is created for each function in that category.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 11/42

There is a Visitor (Gamma et al., 1995) interface for eackgaty, which has methods for each function
in the category. Code for converting between typed and @atypees, as well as typed wrappers around
the untyped parsing and linearization methods are alsorgterte The abstract syntax tree above can be
built by simply using the constructors of the generatedselas

new GoTo(new Chalmers(), new Valand());

2.2.6 OAA Agent

To allow the GF interpreter to be used in multi-agent systam from programs written in languages
other than Java, an Open Agent Architecture (OAA; Martinl ¢t1®99) wrapper has been written.

OAA is a framework for multi-agent systems. Communicati@tveen the agents is done by sending
terms in the Interagent Communication Language (ICL), asubf Prolog. There are OAA implementa-
tions for several programming languages, including Java.

The GF OAA agent hasolvables(methods) for parsing, linearization, translation, tigtianguages and
grammars. Since OAA uses a unification-based approach tooehetlls, the GF agent solvables can be
used quite flexibly. For example, if the language argumethégarsing solvable is uninstantiated (i.e. it
is a variable), all available languages in the given gramwilirbe tried. The fact that an OAA agent
can return multiple solutions to a request is used to retorhiguous parse results. When the language
argument is uninstantiated, the parser tries to parse Widlvalable concrete syntaxes.

The solvables are documented in detail in the Embedded @Fphatter documentation.

2.3 Representing TrindiKit/GoDiS dialogue moves in GF

In order to use GF to write grammars to be used with TrindBaDiS one must first look at the semantic
representations used by the system. One of the centralid€DiS is that the user and the system share
a part of the information state which they manipulate to@ahiesults. This is done by means of dialogue
moves (Larsson, 2002).

All utterances are interpreted as a list of dialogue movadgpD Before the integration with GF this
interpretation was done by finding key words or key phrase&hvborresponded to certain dialogue
moves.

The approach to DMs in GoDiS is that the movea realized by tmarice is determined by the relation
between the utterance content and the activity in which ttezance occurs. In effect this means that an
utterance could realize different dialogue moves in différdomains.

2.3.1 Dialogue Moves in GoDiS
greet and quit

To begin and end any dialogue sessiondleet andquit commands are used respectively. These are
atomic DMs which correspond to greetings and closure phraseatural language. The examples of
greetings below are from one GoDiS application handling &\&0d one dealing with an Agenda.

greet

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 12/42

'Welcome to the VCR manager!”
'Hil This is AgendaTalk, your personal talking agenda.’

ask

One of the central premises of Issue-based Dialogue Maregess implemented in GoDiS is that one
of the main purposes of dialogue is to raise and respond ttigns. This is done by performirsggk and
answer moves. This section describes the former, and the lattezssribed in the following section.

ask(), whereq : Question

The contentq of the ask move is a question. Three types of questions are handled RiS5g/n-
guestions, wh-questions, and alternative questions.

Y/n questions are formed from propositions. A propositianGoDiS is a basic formula of predicate
logic consisting of an n-ary predicate together with comstaiepresenting its arguments. As the domain
is greatly limited in most dialogue systems it is often notassary to keep a very elaborated semantic
representation of utterances. The utterance “l want to géhtimers” in a dialogue system handling the
Gothenburg Tram System would not, as one might expect, resepted awant(user, go-to(user,

chalmers)) but instead GoDiS would use the knowledge of the domain addcesthe utterance to a
simpledest-tram-stop(chalmers)

ask(dest-tram-stop(chalmers))
“Do you want to go to Chalmers?”

Wh-questions are lambda abstractions of propositions.ca@naee these as partially uninstantiated propo-
sitions, waiting for additional information from some digle participant.

ask(X"dest-tram-stop(X))
“Where do you want to go?”

Alternative questions are sets of y/n-questions.

ask({dest-tram-stop(chalmers) , dest-tram-stop(lindholmen) })
“Do you want to go to Chalmers or do you want to go to Lindholfien

answer

Theanswer move is used to answer questions.
answer(a), wherea : ShortAnswer oa : Proposition
A ShortAnswer is a semantically underspecified propositiarsson, 2002, p23).

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 13/42

request

An action-oriented dialogue is one that involves requegsfand possibly performing) non-linguistic ac-
tions. Requesting an action is done usingrdgeest move, whose argument is an action.

request(o), wherea : Action

confirm and report

After a dialogue participant (DP) has recieved a requesipanidrmed the requested action, the DP gives
feedback on the successful execution of the action viadahigm move.

confirm(o), wherea : Action

For more complex cases, e.g. where an action goes wrong oraiftion takes a long time, there is also
the possibility of using @port move to report on the current state of an action that is beangez out.

report(o, Statu$, wherea : Action andStatus. Status

The Status can be a number of things, ranging fdone (which would correspond to the confirm move
above) tdfailed or even a detailed description of what has gone wrong.

Interactive Communication Management

Larsson (2002) uses Interactive Communication Manageit&M) as a general term for coordination
of the common ground. ICM dialogue moves are explicit sigmalabling coordination of updates to the
common ground, such as keeping track of topics currentheudiscussion, subactivities, sequencing and
turn taking.

There are two types of ICM dialogue move patterns in GoDiS:

1. icm: | evel *pol ari ty{ argunent s}

This pattern is used for ICM dealing with feedback and granmd There are fiveaction levels

— contact, perception, semantic understanding, pragmaterstanding, and acceptance/reaction.
These are abbreviatedn, per , sem, und andacc respectively. There are thrpelarities— positive,
negative and interrogative (checking), abbrevigtesl, neg andint , respectively. Some feedback
moves also requirarguments

2. icm: type{ argument s}

This pattern is used for ICM other than feedback. The argusnare also here optional, and the
typecan e.g. beeraise for reraising issues arccomodate for accomodation.

Below are a few examples of ICM moves.

icm:con*int “Are you there?”

icm:per*pos “Ok”

icm:per*pos: ' f 00’ “I thought you saidfoo’”

icm:acc*neg: X tram_stop(X) “l cannot answer guestions about stations.”
icm:loadplan “Let's see...”

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 14/42

object

V

Figure 2.1: The hierarchy of categories in GF GoDiS.

2.3.2 Categories in GF

The dialogue moves themselves naturally become categehies making an abstract GF grammar used
to translate between natural language and the semantiseqations in GoDiS. There is also a need for
the arguments from the section above to be representedsingy.

Creating an abstract grammar in GF means making use of categmnd functions. As there are no
different types of categories inherently in GF, the grapfigare 2.1 serves as a hierarchical tree of sorts.
An arrow from node A to node B in the graph means that there imetion creating an object of B from
an object of A.

For instance, an object of the category DMove (Dialogue Nlaam be created by a function that takes
something of the category Request, which in turn has beem mél a function that takes an Action. The
objectin the graph is not a specific category but a name for thosetsbieom the lexicon which are not
actions. In other words, these may be locations and fueituan in-home domain, or artists and songs
in a music related domain.

Note that the hierarchy of GF categories is not fully comsistvith the description of dialogue moves in
GoDiS in section 2.3.1. However, this is not a problem sitee@oDiS dialogue moves are specified by
just another concrete language in the GF grammar. As lonfgesie ts a consistent translation from GF
abstract syntax to GoDiS dialogue moves, any hierarchy of&i€gories is sufficient.

2.3.3 Using dependent types

GF allows for the use of dependent types, a useful tool whenriies to creating meaningful lists of
dialogue moves from utterances. With a set of activitiesasks, as dependent types it is easy to dictate
a setting in which a certain answer move is accepted togetitiela request or an answer. When creating
a speech recognition grammar from the GF grammar theséctiests are essential.

The example grammar in figure 2.2 is a somewhat simplifiedrpké®m the DJ GoDiS grammars. There
are two Actionsplay andshift corresponding to two of the system'’s dialogue plans. Theralso two
Propositionsmadonna andleft . The dependent type Tasks are used to make sure that aatibobjects
within the same utterance belong to the same task. In thiamgea the Tasks anglayTask which deals

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 15/42

playTask . Task;

speakerTask . Task;

play . Action playTask;

shift . Action speakerTask;

madonna . Proposition playTask;

left . Proposition speakerTask;

makeAnswer . (t : Task) -> Proposition t -> Answer t;

requestCompounded : (t : Task) -> Action t -> Answer t -> Compo undedRequest;

Figure 2.2: Dependent types in the GF grammar for DJ GoDii¢sdhat simplified).

play = {s = "play’};

shift = {s = "shift the balance"};

madonna = {s = "Madonna'},

left = {s = "to the left"};

makeAnswer _t prop = {s = prop.s};
requestCompounded _t act ans = {s = act.s ++ ans.s};

Figure 2.3: Examples of concrete linearizations for thergrer in figure 2.2.

with the scenario of playing music anpeakerTask , which captures the speaker control dialogue moves.
In order to make a compounded Request by pairing an Actioraan@inswer, their corresponding tasks
need to match. For example, assuming the concrete lindarigashown in figure 2.3, there are four
possible combinations of an Action and an Answer. Howevas,df them (“shift the balance Madonna”
and “play to the left”) are ungrammatical. The remaining tweorect compounded Requests are

e “play Madonna”, with the abstract syntax term
requestCompounded playTask play (makeAnswer playTask mad onna)

e “shift the balance to the left”, with the abstract syntaxier
requestCompounded speakerTask shift (makeAnswer speaker Task left)

2.4 Extracting speech recognition grammars from applicatbn
grammars

In order to improve recognition accuracy, speech recagmiéingines often use grammars to determine
which inputs are to be expected. Speech recognition gramf$RGs) are often simple context-free
grammars. In this application, the grammar is simply usetetermine whether a given string belongs to
the language or not, the so-callegtognition problem

Writing a separate grammar for the speech recognizer, agging it in sync with the grammar used by
the parser requires some effort. To eliminate this problemompiler from the internal CFG (Ljunglof,
2004a) format used by GF to some speech generation grammaatiohas been implemented.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 16/42

2.4.1 Speech Recognition Grammar Formats

There are a number of existing formats for speech recogniffiammars:

JSpeech Grammar Format (JSGF)
JSGF (Hunt, 2000) is a plain-text language for context-fp@@nmars used in the Java Speech API
(JSAPI; JavaSpeech, 1998a,b).

Nuance Grammar Specification Language (GSL)
GSL (2003) is a plain-text language for context-free gramsm@ed by the Nuance (2003) speech
recognizer.

Speech Recognition Grammar Specification (SRGS)
SRGS (2004) is a W3C standard for speech recognition gramritdras two equivalent syntactic
forms, Augmented Backus-Naur Form (ABNF) and XML.

2.4.2 Implementation

The internal context-free grammar for a given concrete sy first transformed to a generic simple
context-free format for the speech modality:

e Removal of explicit and implicit left recursion by Paull'garithm (Moore, 2000). The algorithm
does not preserve the structure of the grammar, but as spsamimition grammars are not used to
produce parse trees, this is not a problem.

e Removal of productions which use categories in which thegena productions. This is done by
fix-point recursion as each step may create new empty catsgor

The generic context-free speech grammar is then convestedthter GSL or JSGF and printed. Punc-
tuation is removed before printing, as it is not part of thekgm language. All upper case characters
in tokens are converted to lower case, for the same reasdhe Bource grammar contains punctuation
or upper case characters, the CFGM grammar, which is usquafeing (see section 2.2.1), will not be
able to parse all output from the speech recognizer. Thisl@nmo could be solved by having GF remove
punctuation and capitalization before producing the CFG@argnar, instead of when creating the speech
recognition grammar.

Speech recognition grammar compilation has been addec tGEhsystem. Theg (“print_grammar”)
command has been given two additional values forgheter flag: gsl andjsgf .

2.4.3 Evaluation

To evaluate the speech recognition grammar compiler we dedine DJGoDiS GF grammar to a Nuance
grammar and ran batch tests on the resulting recognitiokagec To collect a test set we let students
figure out how they would address a speech-enabled MP3 digyeriting Nuance grammars that would
cover the domain and its functionality. Another group ofdstnts evaluated these grammars by recording
utterances they thought they would say to an MP3 player.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 17/42

Evaluation WER | SER
Out-of-coverage evaluation77.23| 95.01
In-grammar evaluation | 6.30 | 8.31

Table 2.1:Word error rates (WER) and Sentence Error Rates (SER) foNtrence Grammar

The recording test set was made up partly of the studentstdetys. Additional recordings were carried
out by letting people at the department record randomly eémasgterances from the evaluation test set.
The final test set included 522 recorded utterances from dsops (9 female and 9 male voices). This
test set was used to compare recognition performance betivealifferent models under consideration.

The test sets are just an approximation to the real task amditmmns as the students only capture how
they think they would act in an MP3 task. Their actual intéacin a real dialogue situation may differ
considerably so ideally, we would want recordings from tieogjue system interactions. We plan to
make subsequent tests using the actual system.

In addition to the recorded evaluation test set a secondfgetcordings was created covering only in-
grammar utterances by randomly generating a test set of @8fances from the GF grammar. These
were recorded by 8 persons. This test set was used to evalugri@mmar recognition performance.

As the reader may have noticed, the word error rates are vghy Which is partly due to a totally inde-
pendent test set with a lot of out-of-vocabulary words iatlitg that domain language grammar writing is
very subjective. The students have captured a quite difféaaguage for the same domain and function-
ality. This shows the risk of a hand-tailored domain gramarat the difficulty of predicting what users
may say. It should be pointed out that the GF MP3 grammar usatiis evaluation was in a preliminary
stage and was for example missing imperatives which seera todommon form in the test corpus. A
closer look at the results gives a hint that in a lot of the s#éise transcription reference and the recognition
hypothesis hold the same semantic content in the domain“f@pljudet” vs “hoja ljudet”).

However, the in-grammar evaluation seems promising angisitisat the compiler works perfectly. The
compiled grammar seems to be in perfect sync with the GF gema® it recognizes the recorded ut-
terances generated from the GF grammar. This would meanvihative managed to save the dialogue
system developer a lot of work by giving him automaticallypgech recognition grammar in sync with
his GF grammar used for parsing.

2.4.4 Related work

Most work on compiling grammar formalisms to CFG has beenarmadunification-based formalisms,
such as context-free approximations of HPSG (Kiefer anadé@i, 2000) and compact translations of
restricted unification grammars (Moore, 1999). Dowdingle(2001) discusses different algorithms for
generation of context-free speech recognition grammahne. Regulus system (Rayner et al., 2003) is an
open source implementation of these ideas.

GF is not unification-based, but instead based on line@izdtinctions on abstract syntax terms. This
makes the underlying algorithms for compilation to CFGatiéint from the unification-based algorithms
(Ljunglof, 2004a, chapter 3).

Version: Final (Public) Distribution: Public

Chapter 3

Resource grammars and grammar
engineering

3.1 Library-based grammar engineering

In general-purpose software engineering, the idea of Udirgyies as the way of structuring and reusing
code is well-established (Parnas, 1972): the idea is talelithe code into reusable units each of which
formalizes a specific area of expertise. Prime examplesath libraries for scientific computing, which
implement methods of numerical analysis. More mundane phearare sorting algorithms, graphical
user interface toolkits, and other general-purpose libsathat are used in almost any piece of software.
Libraries make advanced techniques available to all progrers, without everyone having to learn the
details of all techniques.

In the domain of Natural Language Processing, the idggashmar librariesappears as useful and natural
instance of library based software engineering. To takexamele from the TALK domain: a dialogue
system for communicating with MP3 software may want to saygthabout theurrent songthecurrent
artist, the current playlist etc. To translate this information into different langaagmany kinds of
linguistic data are needed: the translations of the wotateent, song, artistetc; the inflection of these
words in different forms; and their proper syntactic conaltions. It is natural to expect such data to be
found in a grammar library written by an expert of the languaghus for instance the programmer that
wants to add the voice command “save the current playlisBpanish should only need to call functions
from such library, something like

generate(Spanish, Action(save, Modif(current,playlist)
and be sure that the proper Spanish phrase will appear. lisEntihe corresponding code would be

generate(English, Action(save, Modif(current,playlist)

3.2 GF support for modules and libraries

GF has a module system that enables modularity and librasgd grammar engineering (Ranta, 2005).
The key features needed are information hiding, high-levetlule interfaces, and separate compilation.

18

IST-507802 TALK D:1.1 01/07/05 Page 19/42

Optimizations that reduce the run-time penalty of usingplites and other abstractions are also essential.

Modules can be extended, imported and instantiated by otleelules. This can be done on several
modules at the same time, thus forming a module hierarchyh&umore, operations in resource modules
can act as translation functions from concrete syntax ibgtract syntax. This means that grammars can
be composed by letting the concrete syntax of one grammee serthe abstract syntax of another. The
compilation process then dismisses the intermediate sgstaimilar to compilation of the composition
of finite state transducers (Karttunen et al., 1996; Mol897).

Translators from GF code into more well-known formats (sasldava) make it possible to use GF gram-
mars in other programs without even knowing the GF formalishe Embedded GF Interpreter described
in section 2.2 is an example of this.

3.3 Grammar engineering

Grammar engineering is the process of designing and impléngegrammars on a computer. The field is
dominated by projects in which small groups (down to the efzene individual) of linguists produce big
grammars, with the ambition of covering all or most of a natlenguage and parsing a corpus of texts.
The grammars often reflect advanced linguistic theoried aa@ inaccessible not only to non-linguists but
also to linguists in another “school”. Their goal is cleanigt to serve as libraries that formalize known
facts of language, but to push further the limits of gramo@dtiesearchOur comment. Once a grammar

is finished, it should be possible to build up an interfac@uhh which the grammar can be accessed
without thorough understanding of it.

Because existing grammar implementations are hard to reese ones are usually built from scratch:
even the basic, uncontroversial facts of languages areedefigain and again. Part of the motivation has
to do with research ambitions: a new grammar can be meanthente our view” of the grammar of
a language completely and cannot therefore take anythingrémted. Our comment: With a modern
programming language with features such as higher-ordestitns and parameterized modules, it is
usually possible to reuse an old implementation, hide itaildebehind a new interface, and thereby
change completely the view of what is implemented.

There are also practical reasons for starting grammars fecnatch: NLP is notoriously a field with
restrictive licenses, unavailable resources, and exptap(ietary, experimental, platform-dependent, etc)
code formats losing all processing tools in less than a decad

In general, one can say that thelture of developing software as reusable, modular, publicly ssibée
libraries is not as wide-spread in grammar writing as e.gnéific computing. In a representative posi-
tion paper on grammar engineering (Copestake and Flickiz®0), the whole idea of modularity and
information hiding is declared inadequate in the domainrafrgnars: “information hiding is the very an-
tithesis of productivity in grammar writing. . . for instamca feature used in morphology may surprisingly
turn out to be useful in semantics”. Blocking the view of athmdules prevents the working grammarian
from finding generalizations. As a more general argumenpe€take and Flickinger (2000) points out
that grammar engineering is still in the state of researtiferahan engineering, and that normal software
engineering ideas do not appfyur comment. We admit that research remains to be done about the facts
of natural languages, but grammar writing which is part dfvgare production could get far with existing
knowledge if it was properly transmitted from linguists t@grammers.

An exception to the big research-oriented grammar ideadsGhE (Core Language Engine) project

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 20/42

(Alshawi, 1992). CLE grammars are meant to be used as ldsrami other (Prolog) programs that need
natural language parsing, generation, or semantics. T ofl specializing a big grammar to a small
situation is stated explicitly in Rayner et al. (2000). Thajon problem with CLE is that it is no longer
continued, and that its results are mostly unavailable umxaf licenses and bit rot. Also the level of
modularity and abstraction, partly because of the linotaiof the Prolog programming language, is not
what more recent library-based software engineering @gpBait in many ways, we see CLE as the most
important point of comparison to our work.

3.3.1 Resource grammar libraries

Resource grammar libraries encapsulate linguistic krdgdehat can be used in other programs. In other
research projects we have started writing such grammartefolanguages: Danish, English, Finnish,
French, German, Italian, Norwegian, Russian, Spanish,Samellish. Each resource grammar provides
the following:

Morphology. A program that is able to generate and analyze all inflectisoad forms is more or less
standard knowledge for many languages, and an obvious e cesource grammar.

Syntax. Phrase categories and combination rules of phrases shiweld éull account of word order and
agreement. A sizable fragment of syntax for both written spuken language was identified in the
CLE project. It is well understood how to define a correspogdiragment for several languages.
To meet the needs of applied grammar engineering, we neellenable to cover all linguistic
phenomena, as we would in a grammar whose purpose is to pamsiag text.

Lexicon. Inflectional and subcategorization data of the most frefjieay, 3,000 words of each language
is useful. In addition, a lexicon extension tool is neededhtke it easy to add domain-specific
vocabulary, which could never be completely included inebpiit lexicon.

Common APIs. Corresponding structures in different languages shoulacbessible via similar library
calls, even though the structures have different impleat&mts and are not always translation
equivalents. Forinstance, the rule of modifying a noun waittadjective (e.gurrent playlis) exists
in all languages that we are considering. Moreover, relaeguages (e.g. Danish, Norwegian, and
Swedish) can share more interface elements than unrelagsd o

Transfer lexica. Given a word in e.g. Swedish, it is useful to know what its guesequivalents are in
Russian. Such correspondences are collected in a SwedigiaR transfer lexicon. The lexicon
can be used as a starting point of software localizatiohpatjh in general the choice of the right
equivalent must be made manually by an expert of the apjgicaomain.

As of the moment, these resource grammars are not used imitm@dal grammar library presented in

chapter 4. However, in the future we aim to incorporate therbet able to make use of their linguistic
coverage.

Version: Final (Public) Distribution: Public

Chapter 4

The unimodal GoDIS grammar library

4.1 The library file structure

Theresourcelibrary of the unimodal GoDiS grammar library consists ofuarber of different modules
presented in section 4.2. There library (section 4.3) contains the resource grammar usedbase for
specific application grammars. It is divided into three paohe for the user specifics, one for the system
and one shared. Then there is th@main library which contains the specific application grammaes s
section 4.4.

4.2 The in-home abstract resource (API)

The objectsdiscussed in section 2.3.2 are gathered in the in-homeaabstésource by means of small,
grouped grammars handling a few (one to three) differerggmates each. In the Media module, for
instance, there are grammars dealing with song titlestaiind the different radio and TV stations avail-
able.

Module Content

Locations A collection of locations, i.e. countries, atiduildings etc.

Numbers Numbers, ordered and regular.

Media Artists, Songs, Radio and TV stations etc.

Home Furniture, rooms etc
Time Dates, Days and Time.
Events different events such as wedding, meeting etc.

These are small grammars that are mobile, making it easyisereode. The idea is that you create a data
base grammar for each of your domain specific grammars and osakof the Modules you need. Figure
4.1 shows how grammars from the Media module are used tcecaadditabase afbjectsto be used with
our DJ GoDiS grammars (described in section 4.4.1).

21

IST-507802 TALK D:1.1 01/07/05 Page 22/42

. ,/A/ \ _____________

'l !
! EnglishAlbumsEng | 1| EnglishArtistsEng : : EnglishRadioStationsEng : @ : EnglishSongsEng :
L - T S
| A r —

| |
\ numbersEng | | orderNumEng |

e — - — = ——p - L___,.___J

\
7
b
EnglishSongs

Figure 4.1: The grammars from the Media module: Dotted b@tesconcrete linearization
modules and solid ovals are abstract syntax modules

4.3 The core grammar for the GoDiS Dialogue Manager

4.3.1 The abstract syntax

The core grammars contain domain independent categoriefiantions to manipulate them. They are
divided into three parts, one for the User specific parts arafor the System as well as a collection of
shared grammars where the details they have in common agéedan

Shared contains the following categories:

Category Usage

S Top Category

DMove The Dialogue Move

Action Task The basic Action with its dependent type
SingleAction An Action that does not have a type

Task The dependent type

Greet Greet move

Quit Quit move

Answer Task The Answer move with its dependent type
NegAnswer Task A negative Answer with its dependent type
Ask Task The Ask move with its dependent type
SingleAsk An Ask that does not have a type

Request The Request Move

ICM A collection term for ICM

Per_ICM An ICM

Acc_ICM —"—

Per_ICM_Followed An ICM that can be followed by something
Acc_ICM_Followed —"—

User contains the following categories:

Category Usage

CompoundedRequest A Request which also has an Answeredtach
CompoundedAsk An Ask which also has an Answer attached
AnswerList Task A collection of answers with its dependgmpiet

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 23/42

System contains the following categories:

Category Usage

DMoves A collection of DMoves
Proposition The Propositions
Other_ICM An ICM

Sem_ICM —"—

Und_ICM —"—

Other_ICM_Followed An ICM that can be followed by something
Sem_ICM_Followed —"—
Und_ICM_Followed ——"—

Confirm The Confirm move

Report The Report move

SystemAsk Asks specific for the system

Issue A collection term for the Issues
Proplssue An issue made from a Proposition
Asklssue An issue made from an Ask
Listlssue —"—

IssuelList Related to the lists of Issues
Listltem — " —

The Categories are molded into DMoves by chains of functiées example a Proposition is made into
an Answer which in turn is transformed into a DMove by the ukthe two functions below. Task is a
category which is inherited from the Proposition by the Aagvbut it is not needed in the DMove itself.

makeAnswer : (t : Task) -> Proposition t -> Answer t;
makeAnswerMove : (t : Task) -> Answer t -> DMove;

4.3.2 The concrete English GoDiS core grammar

The linearization to English is fairly straight forward. e are the concrete grammars for English and a
small resource grammar containing operations one might teaeuse.

The following are the functions dealing with making a DMove of a SingleAction.
Abstract grammar
play : SingleAction;

makeRequest : SingleAction -> Request;
makeRequestMove : Request -> DMove;

Concrete grammar

top_command = {s = variants { ['play"] ; ['start the music"]

; ['start playing] }};
makeRequest req = {s = req.s};
makeRequestMove req = {s = variants { (choosePre ! Req) ; [] }

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 24/42

++ req.s ++
variants { (choosePre ! Req) ; [I

Resource module

oper choosePre : Form => Str = table {

Ques => ["can i

Req => variants{ ['i want to"] ; ['i would like to"] }};
oper choosePost : Form => Str = table {

Ques => [J;

Req => ['please"]};

This particular grammar fragment is equivalent to the regakpression

(iwant to| i would like t9?
(play | start the musig start playing (pleasg?

4.3.3 The concrete Swedish GoDiS core grammar

The Swedish linearization follow the same rules as the Bhgine. There are concrete files for lineariza-
tion to Swedish for each of the abstract ones and a resouvedeffifrequently used operations.

Abstract grammar

play : SingleAction;
makeRequest : SingleAction -> Request;
makeRequestMove : Request -> DMove;

Concrete grammar

top_command = {s = variants { ['spela"] ; ['starta musiken"]
; ['odrja spela’] }};
makeRequest req = {s = req.s};
makeRequestMove req = {s = variants { (chooesPre ! Req) ; [] }
++ req.s ++
variants { (choosePost ! Req) ; [I}

Resource module

oper choosePre : Form => Str = table {

Ques => ["kan jag'];

Req => variants{ ['jag vill'l ; [jag skulle vilia"] }};
oper choosePost : Form => Str = table {

Ques => [|

Req => ['tack"] };

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 25/42

This fragment is equivalent to the regular expression

(jag vill | jag skulle viljg?
(spela| starta musikerpbérja spelg (tack)?

4.3.4 The concrete GoDiS dialogue move representation coggammar

For the linearization to Dialogue Moves fewer variants areded.

Abstract grammar

play : SingleAction;
makeRequest : SingleAction -> Request;
makeRequestMove : Request -> DMove;

Concrete grammar

play = {s = ['start"]};
makeRequest req = {s = ['request] ++ ['("] ++ req.s ++ [)] } ;
makeRequestMove req = {s = req.s};

No resource module

Subsequently the concrete grammar for the semantics ugednS, for the same abstract grammar as
for English and Swedish above, produces just one line@wizat

request(start)

4.4 The specific domain grammars

The abstract domain files contain no categories, as the canengars work as an APIl. These grammars
are also divided into Shared, User and System grammars wetdser and System make use of their
Shared elements. Figure 4.2 shows the module dependefficies of the DJ GoDiS grammars, namely
the system specific concrete grammar for English.

As visible in the figure the Domain grammars inherit the Car@ngnars and also the DB (database)
grammar which is a collection of the in-home resource madokeded for the particular application (as
described in section 4.2).

441 DJGoDiS

The DJ GoDiS grammar needs a lexicon consisting of music aback related terminology. Most
importantly the basic functions of an audio player as wekhdarge collection of possible artists, songs,
radio stations etc.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 26/42

Figure 4.2: The module dependencies of one the DJ GoDiS gaasaiDotted boxes are concrete
linearization modules, solid ovals are abstract syntax utesdand dotted ovals are resource
modules.

Use of resources

From the GoDiS resource library this application makes dgbeoMedia modules, giving it access to a
fair number of artists, songs, radio stations and albumerder to handle the use of a playlist it also uses
the Numbers module.

Dialogue plans

The DJ GoDiS dialogue system is used for managing our PlayataTherefore there are plans dealing
with most of the solvables provided by the agent. The mosbitapt functionality is listed below.

Add an item to the playlist

e Deleting items from the playlist

e Playing

e Pausing

e Stopping

e Resuming

e Moving between the items in the playlist (Next, Previous)
e Shuffling the list

e Moving within the items in the playlist (Fast Forward, Redjin
e Changing the volume

e Changing the balance between the speakers

e Asking about items, artists and songs

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 27/42

Special feedback

In order to make the conversations more natural, feedback the system does not conform to a preset
mold. For each plan there is a specific confirmation linetidmaas the following examples show.

Plan Confirmation

Adding to a playlist "the playlist is increased"

Raising the volume "turning up the volume"

Resuming the playback "resuming the music"

Shuffling the playlist “the playlist has been shuffled"

Rewinding "rewinding"

Tasks

In order to make correct Dialogue Move combinations theeesareral tasks.

Task Usage
playTask Playing a specific item in the playlist
addTask Adding an item to the playlist

removeTask Removing an item from the playlist
speakerTask Changing the balance between the speakers
artistQuestion Asking about an artist

songQuestion Asking about a song

Application specific solutions

For this system the user needs to be able to give an Answéok ibte addTask and the playTask containing
a song and an artist. In the User specific grammars:

answerSongArtistPlay : Song -> Artist -> AnswerList playTa sk;
answerSongArtistAdd : Song -> Artist -> AnswerList addTask

Example dialogue

U>1 would like to add the song crazy with madonna pl ease
[request(add), answer(item('crazy’)),
answer(group('madonna’))]
S> [icm:per*pos:’crazy’, icm:und*neg, ask(X"item(X))]
| thought you said ’'crazy’.
| amsorry |I do not understand what you nean.
What song do you want to add to the playlist?
U>1ike a prayer
[answer(item(like a prayer))]
S> [icm:sem*pos, icm:und*int:groupToAdd('madonna’)]
Ck. Madonna, is that correct?
U> yes
[answer(yes)]
S> [confirm(add)]

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 28/42

The playlist has been increased.
U> pl ay

[request(start)]
S> [confirm(start)]

Starting the player.

4.4.2 AgendaTalk

The AgendaTalk grammars have been created to be used wiftgtdralaTalk application. The GF gram-
mars written for the system demand that the system is renritlightly, so they have not yet been fully
incorporated.

The Agenda application is a speech enabled scheduling rearead system. The GoDiS application,
AgendaTalk, works as a voice interface to a web-based catendthe in-home environment or on a
handheld computer that could be used in the in-car envirohme

The information sent to the calendar database will be typsvenft, location, start time and end time. In
case end time is not given the calendar will add this autarakfi

The system is supposed to work in three languages: Swediglisi and Spanish. At the moment only
English and Swedish are covered by the GF grammars.
Use of resources

The AgendaTalk grammars use the Date, Time, Location andtEwvedules.

Dialogue plans

The GoDiS application, AgendaTalk, is the spoken interfadbe calendar and will support the following
capabilities corresponding to the calendar device:

e Add/Edit/Delete events

e Repeating events

e Ask for repeating events

e Add restricted types of events such as meetings, appoibtmpersentations etc.

e Change and delete events talked about during the dialogugboot added to the calendar
e Ask for the location, date or time of a certain event

e Ask if booked a certain time or date

e Ask for all bookings during a whole day

e Ask for all bookings of a certain type e.g. all meetings dgrituring a time period e.g. next week

The minimum of parameters of an event is: type of event, $itad, start date, end time and end date.
However the user may also add other information about theteteh as e.g. location of the event.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 29/42

Special feedback

Apart from the specific confirms which work the same way astier@JGoDiS application, AgendaTalk
gives complex feedback on notes given to the Agenda. Thesast@f non-atomic propositions.

note(event(meeting),
start_time(16:15),
start_date(2005.05.10),
end_time(17:15),
end_date(2005.05.10))

"meeting at four fifteen on the tenth of may,
ending at five fifteen on sunday"

Tasks

There are tasks for adding, removing and changing entriggetégenda as well as two different ones for
entry lookup.

Application specific solutions

This domain specific grammar contains complex propositions

Example dialogue

S> [ask(set([action(add_details), action(change_detai Is),
action(clear_agenda)]))]
Do you want to add some nore information,
change some of the infornation or delete it all?
U> add sone i nformation
[request(add_details)]
S> [icm:und*pos, icm:loadplan, ask(Xlocation(X))]
Ckay. Lets see. Were would the neeting take place?
U> at pl aza
[answer(location(plaza))]

4.4.3 GoDIS delLux

The GoDiS deLux application grammar is written to use withadadjue system that controls lamps in an
intelligent home.

Use of resources

The grammar uses the Home module, which contains lamps aatidns within a home such as rooms
and floors.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 30/42

Dialogue plans
e Turning on/off a light
e Adding/removing a light
e Asking about the status of lights

e Asking about available lights

Tasks

There are Tasks for each of the different plans.

Application specific solutions

Theobjectsused in this system are not named entities but rather singpies

Example dialogue

U>I would Iike to turn on the table |anp pl ease
[request(TurnOn), answer(lamp(tablelight))]]

S> [report(turnOn,noSuchLamp)]
There is no such | anp.

U> what | anps do | have
[ask(X*amp(X))]

S> [answer(lamp(ceilinglamp)), answer(lamp(floorlamp))
Ceiling lanp and fl oor | anp.

4.4.4 Video GoDiS

The Video GoDiS grammar was written to be used with the Vide®iS dialogue system. The system
was created to handle the programming of a VCR.

Use of resources

This grammar use the Media and Time modules.

Dialogue plans
e Adding a recording
e Clearing all recordings

e Asking about current recordings

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 31/42

Tasks

There are Tasks for adding recordings and asking about them.

Application specific solutions

This grammar uses complex Propositions. Téeordingis a proposition made out of the propositions
date, start_time, stop_time and channel.

Example dialogue

U>1 would like to add a recordi ng today at ten
[request(add_recording), answer(date(today)),
answer(start_time(10:00))]

S> [icm:sem*pos, icm:loadplan, ask(X"channel(X))]

K. Lets see. Wat channel do you want to record fronf

U> BBC Prinme until el even
[answer(channel(bbc_prime)), answer(stop_time(11:00))]

S> [icm:sem*pos, confirm(add_recording)]

Ck. | have added a recording.

U> what recordings do | have now
[ask(X"recording(X))]

S> [answer(recording([date(today), start_time(10:00),

stop_time(11:00), channel(bbc_prime)]))]
There is a recording programed for today
between 10 and 11 from BBC Pri ne.

Version: Final (Public) Distribution: Public

Chapter 5

Conclusions

5.1 Contents of the associated software
The software package for this deliverable consists of atipof grammar and dialogue system devel-

opment tools and a collection of grammars. These togethastitote what is loosely calleihe TALK
Grammar Libraryin the Technical Annex. It consists of:

e Grammatical Framework, version 2.2, consisting of amohgiat

— Speech Recognition Grammar Compiler (see section 2.4)

Embedded GF Interpreter (see section 2.2)

TrindiKit, version 4 (alpha release)

GoDiS core dialogue system, which is used by the followiradadjue applications:

— DJ GoDiS, a dialogue system for controlling an MP3 player

— GoDiS delLux, a dialogue system for controlling lights

Unimodal GoDiS Grammar Library, consisting of:

— resource modules for Locations, Numbers, Media, Home, HntkEvents (see section 4.2)
— the Core grammar for the GoDiS dialogue manager (see set®yn
— the application grammars:

x DJ GoDiS (see section 4.4.1)

x AgendaTalk (see section 4.4.2)
x GoDiS deLux (see section 4.4.3)
x Video GoDiS (see section 4.4.4)

LCurrently we only have working dialogue systems for the DID&oand GoDiS deLux applications.

32

IST-507802 TALK D:1.1 01/07/05 Page 33/42

5.1.1 Grammar statistics

The Unimodal GoDiS Grammar Library consists of 146 gramnies fsumming up to around 3500 lines
of GF code. Since one of our aims was to be as modular as pmssibended up in a large number of quite
small grammar files. The applications only consist of 16 gremnfiles each, the rest of the grammars are
either shared among all applications, or are consideremliress that can be used in future applications.

5.2 Concluding remarks

Working with a set of GF grammars to cover the natural languagsemantics translation has made it
easier to keep the interpretation modules up to date inrdjuages at the same time. If the coverage in
one language changes the other language has to follow oll naticorrespond to the abstract grammar
that link them.

GF also makes it easy to create a corpus over what can be geharad recognized by the system. This
makes it easy to spot any flaws or shortcomings right away artddm.

The fact that we are now using a grammar, interpreting ameeatterance, makes it virtually impossible
for the system to make interpretations mistakes on its owardc Previously it has been very easy for the
sentence “jag vill spela in ett program” (I want to recordreganovie) to be interpreted as a request for a
recording (“spela in”) and a time to start (“ett”), while & supposed to be simply a request for recording,
as discussed in section 1.2.1.

Currently the development of the GoDiS dialogue plans anuaioe knowledge in TrindiKit and the
development of the application grammars is still conduceparately and thus we have not achieved
the same kind of integration as has been achieved for theusagrammars involved in dialogue systems.
Future research can involve using GF to write the actual Gailogue plans and the domain knowledge.
This way one can make sure that all moves that can be perfdosntek system can be realized as natural
language and that there are natural language expressioai$ftove sequences that the system should be
able to understand.

With the framework we have created it should be straightfwdimto make new application grammars.
All the new grammarian has to do is figure out what dialoguagplhe system has, what objects the
conversation participants can discuss and what relatipagxist between them (i.e. what answers go
with which questions and requests).

Version: Final (Public) Distribution: Public

Appendix A

Downloading and installation instructions

A.1 Downloading instructions

The TALK Unimodal Grammar Library can be downloaded fratip://www.ling.gu.se/projekt/
talk/software

A.1.1 Contents

The distribution contains a bundle consisting of the follogvdirectories:

GF_GoDiS The GF grammars. See chapter 4 for a more thorough desaripfioe directory also con-
tains scripts for compiling the application grammars irite GFCM and CFGM formats for use
with the Embedded GF interpreter and GSL grammars for useMitince ASR.

trindikit4 Alpha version of TrindiKit4. TrindiKit4 is a new version ofrindiKit where system com-
ponents can be distributed across several OAA agents. Heamgetith a new concurrent control
mechanism this architecture replaces the previous impi&tien of asynchronicity in TrindiKit.
No documentation is given in this release. Used by GoDiS, BDIS and GoDiS deLux.

godis The GoDiS core dialogue system, consisting of the dialogaeenengine (update and select mod-
ules), a control algorithm and GoDiS-specific resourcerfate definitions and datatype defini-
tions. Used by the DJ GoDIS and GoDiS deLux applications.

djgodis The DJ GoDIS application, a dialogue system for controlbngp3 player. See section 4.4.1 for
a short description of the system’s functionality.

delux The GoDiS delux application, which is a dialogue system fatmwlling lights. See section 4.4.3
for a short description of the system’s functionality.

jars This directory contains compiled Java code needed to ruappbications. The filekit_oaa.jar
consists of base classes for creating OAA agents. Thkifilmout_text.jar contains InOut-
TextScore, a simple OAA agent and Trindikit4 module for feput/output. The filgkit_nuance.jar
contains NuanceWrapper, which is a OAA wrapper agent forndeaASR and TTS. The file

34

IST-507802 TALK D:1.1 01/07/05 Page 35/42

gfc2java.jar contains the GFAgent, which is used by the applications rimmdlating between
natural language and GoDiS dialogue moves.

The AgendaTalk and Video GoDiS applications for which tremeegrammars in the GF_GoDiS directory
are not included in the distribution.

In addition the distribution contains:

Grammatical Framework v2.2 which is needed to compile the grammars to Nuance GSL format a
the formats used by the Embedded GF Interpreter. It can a@stownloaded fronmttp://www.
cs.chalmers.se/~aarne/GF

A.2 Installation instructions

A.2.1 System requirements

The system has been tested on Linux and Windows. Any plat&irould work that is supported by
SICStus, Java and OAA. To run the system with speech, Windmdsa SoundBlaster compatible sound
card is required.

SICStus Prolog is needed to run TrindiKit systems. SICStus prolog can benttmeded for evaluation at
http://www.sics.se/sicstus

Java 1.5 or later is needed to run the OAA agents written in Java. Itlmanlownloaded fronhttp:
lljava.sun.com/

OAA 2.3.0 or later is needed. OAA can be downloaded frigtip://www.ai.sri.com/oaa

Nuance ASR and Nuance Vocalizer is needed to run the system in speech.mod

A.2.2 Installation and usage

The following binary executables must be in the user's PAHHAable: sicstus , java andgf. On
Windows these should Isicstus.exe , java.exe andgf.exe .

Set the environment variable OAA_HOME to the full path of tiectory containing the OAA distribu-
tion (e.g./home/david/oaa2.3.0).

If using Nuance, create a file call@dance-license.txt containing the Nuance license code and put it
in each application directoryjgodis anddelux).

Enter either of the directoriegelux or djgodis . The scriptrun.bat (run.sh for Linux/Unix) launches
the OAA Startit agent which is used for running the systente@e configuration from the Projects menu
of the Startit agent to run the system in text-mode or speeanthemClick on the blue start button. Start
speaking, or type into the text field that appears.

Version: Final (Public) Distribution: Public

IST-507802 TALK

D:1.1 01/07/05 Page 36/42

A.3 Testing the Unimodal GF Grammar Library

The grammars can be tested separately by loading them intd@Relevant concrete syntaxes are:

Application Grammar

Concrete syntax

DJ GoDiS user

system

usr_domain_player_english.gf
usr_domain_player_svenska.gf
usr_domain_player_sem.gf
sys_domain_player_english.gf
sys_domain_player_svenska.gf
sys_domain_player_sem.gf

GoDiS deLux user

system

Video GoDiS user

system

usr_domain_lamps_english.gf
usr_domain_lamps_svenska.gf
usr_domain_lamps_sem.gf
sys_domain_lamps_english.gf
sys_domain_lamps_svenska.gf
sys_domain_lamps_sem.gf
usr_domain_video_english.gf
usr_domain_video_svenska.gf
usr_domain_video_sem.gf
sys_domain_video_english.gf
sys_domain_video_svenska.gf
sys_domain_video_sem.gf

AgendaTalk user

system

usr_domain_agenda_english.gf
usr_domain_agenda_svenska.gf
usr_domain_agenda_sem.gf
sys_domain_agenda_english.gf
sys_domain_agenda_svenska.gf
sys_domain_agenda_sem.gf

A.3.1 Testing the grammars within GF

The following is an example of the capabilities of the GF pamg. For more information about how to

use GF, see the documentation hip://www.cs.chalmers.se/~aarne/GF

. This example assumes

we are testing the DJ GoDiS user grammar, which of course eaepbaced by any of the other grammars

in the library.

1. Start GF in the directory where the grammars are located:

$ cd GF_GoDiS/Domain/DJGoDiS/User/

$ of

2. Load the source module(s) into GF:

> | -conversion=finite usr_domain_player_english.gf
> | -conversion=finite usr_domain_player_svenska.gf

> | -conversion=finite usr_domain_player_sem.gf

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 37/42

The option-conversion=finite compiles away finite dependent types, which are used as de-
scribed in section 2.3.3. Without this option the parsaunrmet too many parse trees, which have to
be filtered by the GF commarm -transform=solve

3. Select the English concrete grammar:
> sf -lang=usr_domain_player_english
4. Parse an English utterance:

> p -cfg "shift the balance to the left"
requestCompounded speakerTask shift (makeAnswer speaker Task left)

The optioncfg selects an improved context-free parsing algorithm. Tli@ulieparsing algorithm
is overgenerating on grammars with dependent types, sutiisame, and the resulting parse trees
have to be filtered byt -transform=solve

5. Translate (i.e. parsing followed by linearization) fré&mnglish to Swedish:

> p -cfg "shift the balance to the left" | | -all -lang=usr_doma in_player_svenska
jag vill &ndra balansen vénster tack / jag vill &ndra balanse n till vénster tack

/ jag vill skifta vanster tack / jag vill skifta till véanster t ack / jag skulle
vilia andra balansen vénster tack / jag skulle vilja &ndra ba lansen till vénster
tack / jag skulle vilja skifta vanster tack / jag skulle vilja skifta till vanster
tack / jag vill &ndra balansen vanster / jag vill &ndra balans en till véanster /

jag vill skifta vénster / jag vill skifta till vanster / jag sk ulle vilia andra
balansen vanster / jag skulle vilja &ndra balansen till vans ter / jag skulle vilja
skifta vanster / jag skulle vilja skifta till vanster / &ndra balansen vénster tack
/ andra balansen till vanster tack / skifta vanster tack / ski fta till vanster tack
/ &ndra balansen vénster / &ndra balansen till véanster / skif ta vanster / skifta

till vénster

The option-all shows all possible variants of linearizing a syntax term.

6. Translate from English to GoDiS dialogue moves:

> p -cfg "shift the balance to the left" | | -lang=usr_domain_ player_sem
[request(set_balance),answer(-1.0)]

7. Generate 5 random Swedish utterances:

> gr -number=5 | | -lang=usr_domain_player_svenska
in the city med eagle eye cherry

rant radio

va

jag vill &ndra balansen mitten tack
jag vill spela nummer tre tack

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 38/42

8. Quitting GF:

> q

A.3.2 Using the Embedded GF Interpreter

Producing the grammars

The GF interpreter needs two representations of the grartovdhr linearization and parsing. These two
representations can be generated from a GF source grammasiryy the GF system. This example
assumes that we use the GoDiS deLux system grammars.

1. Start GF:

$ cd GF_GoDiS/Domain/deLux/System/
$ of

2. Load all the source modules into GF:
> | sys_domain_lamps_english.gf
> i sys_domain_lamps_svenska.gf
> | sys_domain_lamps_sem.gf

3. Create a GFCM file (for linearization):

> pm -utf8 -utf8id -printer=header | wf sys_lamps.gfcm

The commangm prints multiple grammars in the format specified by tpenter flag, andwf
writes to the specified file.

4. Create a CFGM file (for parsing):
> pm -utf8 -utf8id -printer=cfgm | wf sys_lamps.cfgm

5. Create a properties file (hesgs_lamps.properties) so that the interpreter can find these files.
The file should have these contents:

name: sys_lamps

gfcm: sys_lamps.gfcm
cfgm: sys_lamps.cfgm

Running the GF agent

If the grammar properties file Bys_lamps.properties and the facilitator is running on $FAC_HOST,
port $FAC_PORT, the GF agent is started with:

$ java -cp $CLASSPATH:gfc2java.jar:. se.chalmers.cs.gf. oaa.GFAgent \
sys_lamps.properties -oaa_connect "tcp(${FAC_HOSTY}, ${FAC_PORT})"

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 39/42

A.3.3 Producing speech recognition grammars

The GF system is used to produce speech recognition granfroarsGF grammars. This example as-
sumes that we want to produce a Nuance GSL grammar from thesEMdeo GoDiS user grammar.

1. Start GF:

$ cd GF_GoDiS/Domain/VideoGoDiS/User/
$ of

2. Load the source module into GF:
> | usr_domain_video_english.gf

3. Create a GSL grammar (here in the fite_video_english.grammar):
> pg -printer=gsl | wf usr_video_english.grammar

The commangbg prints a single grammar in the format specified by the figigter . To create
a JSGF grammar, ugg -printer=jsgf instead.

Version: Final (Public) Distribution: Public

Bibliography

Alshawi, H. (1992).The Core Language EngindIT Press, Cambridge, Ma.

Bender, E., Flickinger, D., and Oepen, S. (2002). The grammetrix: an open-source starter-kit for
the rapid development of cross-linguistically consistemiad-coverage precision grammars.Work-
shop on Grammar Engineering and Evaluation at 19th Inteovel Conference on Computational
Linguistics pages 8-14, Taipei, Taiwan.

Bringert, B. (2005). Embedded GF Interpreter Java Aft://www.cs.chalmers.se/~bringert/
gf/gf-java.html

Burke, D. A. and Johannisson, K. (2005). Translating foreadtware specifications to natural language
— a grammar-based approach. To be published in proceedihgsG'05.

Butt, M., Frost, M., King, T. H., and Kuhn, J. (2003). The @&t space in parallel grammar writing. In
Bender, E., Flickinger, D., Fouvry, F., and Siegel, M., edif Workshop on Ideas and Strategies for
Multilingual Grammar Developmenpages 9-16, Vienna, Austria.

Copestake, A. and Flickinger, D. (2000). An open-sourcengnar development environment and broad-
coverage english grammar using hp&yoceedings of the Second conference on Language Resources
and Evaluation (LREC-2000)

de Groote, P. (2001). Towards abstract categorial grammbr39th Meeting of the Association for
Computational LinguistigsToulouse, France.

Dowding, J., Hockey, B. A., Gawron, J. M., and Culy, C. (200R)actical issues in compiling typed uni-
fication grammars for speech recognition Meeting of the Association for Computational Linguistics
pages 164-171.

Forsberg, M., Johannisson, K., Khegai, J., and Ranta, A05R0 GF Gramlets. http://www.cs.
chalmers.se/~krijo/gramlets.html|

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (19®€®sign patterns: elements of reusable
object-oriented softwareAddison-Wesley Longman Publishing Co., Inc.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2008 Java Language SpecificatioBun Microsys-
tems, Inc., third edition. Proposed third editiohitp://java.sun.com/docs/books/jls/java_
language-3_0-mr-spec.zip

40

IST-507802 TALK D:1.1 01/07/05 Page 41/42

GSL (2003).Nuance Speech Recognition System 8.5: Grammar Develdpeite Nuance Communi-
cations, Inc., Menlo Park, CA, USA.

Hahnle, R., Johannisson, K., and Ranta, A. (2002). An airtpdool for informal and formal require-
ments specifications. In Kutsche, R.-D. and Weber, H., ssjifEundamental Approaches to Software
Engineering number 2306 in LNCS.

Hallgren, T. and Ranta, A. (2000). An extensible proof teditar. In Parigot, M. and Voronkov, A.,
editors,LPAR-2000volume 1955 o NCS/LNA) pages 70-84. Springer.

Hunt, A. (2000). JSpeech Grammar Format. W3C Note.
JavaSpeech (1998a)ava Speech API Programmer’s Guidgun Microsystems, Inc.
JavaSpeech (1998h)ava Speech API SpecificatioBun Microsystems, Inc.

Karttunen, L., Chanod, J.-P., Grefenstette, G., and ®&chil. (1996). Regular expressions for language
engineering Natural Language Engineerin@(4):305-328.

Khegai, J., Nordstrom, B., and Ranta, A. (2003). Multiliagsyntax editing in GF. IrCICLing, pages
453-464.

Kiefer, B. and Krieger, H.-U. (2000). A context-free appiroation of Head-Driven Phrase Structure
Grammar. In6th International Workshop on Parsing Technologies, IWBOZ pages 135-146.

Larsson, S. (2002).Issue-based Dialogue ManagemerPhD thesis, Géteborg University, Goéteborg,
Sweden.

Ljunglof, P. (2004a) Expressivity and Complexity of the Grammatical Framew®HkD thesis, Goteborg
University, Gothenburg, Sweden.

Ljungléf, P. (2004b). Functional chart parsing of contéee grammars. The Journal of Functional
Programming 14(6):669-680.

Martin, D. L., Cheyer, A. J., and Moran, D. B. (1999). The Opagent Architecture: A framework for
building distributed software system&pplied Artificial Intelligence 13(1-2):91-128.

Mohri, M. (1997). Finite-state transducers in languagespeakch processing.omputational Linguistics
23(2):269-312.

Moore, R. C. (1999). Using natural-language knowledge casim speech recognition. In Ponting, K.,
editor, Computational Modeling of Speech Pattern Processpages 304-327. Springer Verlag.

Moore, R. C. (2000). Removing left recursion from conteneief grammars. IProceedings of the first
meeting of the North American chapter of the AssociatiorCfomputational Linguistigspages 249—
255. Morgan Kaufmann Publishers Inc.

Muskens, R. (2003). Language, lambdas, and logic. In Krugf-J. and Oehrle, R., editorReosurce
Sensitivity in Binding and Anapharaages 23-54. Kluwer.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 42/42

Nuance (2003).Nuance Speech Recognition System 8.5: Introduction to tleamdé SystemNuance
Communications, Inc., Menlo Park, CA, USA.

Parnas, D. (1972). On the criteria to be used in decomposstgras into modulesCommunications of
the ACM 15:1053-1058.

Pollard, C. (1984).Generalised Phrase Structure Grammars, Head Grammars atdril Language
PhD thesis, Stanford University.

Pollard, C. (2004). Type-logical HPSG. Formal Grammar WorkshgpNancy, France.

Ranta, A. (2005). Modular Grammar Engineering in GResearch in Language and Computatiofo
appear.

Rayner, M., Carter, D., Bouillon, P., Digalakis, V., and @fir M. (2000).The Spoken Language Transla-
tor. Cambridge University Press, Cambridge.

Rayner, M., Hockey, B. A., and Dowding, J. (2003). An openfse environment for compiling typed
unification grammars into speech recognisersEACL, pages 223-226.

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). @ultiple context-free grammar$heoretical
Computer Scienge38:191-229.

SRGS (2004). Speech recognition grammar specificationoveis0. W3C Recommendation.

Vijay-Shanker, K., Weir, D., and Joshi, A. (1987). Chardgziag structural descriptions produced by
various grammatical formalisms. Bbth Meeting of the Association for Computational Lingasst

Version: Final (Public) Distribution: Public

