
The TALK Grammar Library: an Integration
of GF with TrindiKit

Peter Ljunglöf (editor) Björn Bringert Robin Cooper
Ann-Charlotte Forslund David Hjelm Rebecca Jonsson

Staffan Larsson Aarne Ranta

Distribution: Public

TALK
Talk and Look: Tools for Ambient Linguistic Knowledge

IST-507802 Deliverable 1.1

01/07/05

Project funded by the European Community
under the Sixth Framework Programme for
Research and Technological Development

The deliverable identification sheet is to be found on the reverse of this page.

Project ref. no. IST-507802
Project acronym TALK
Project full title Talk and Look: Tools for Ambient Linguistic Knowledge
Instrument STREP
Thematic Priority Information Society Technologies
Start date / duration 01 January 2004 / 36 Months

Security Public
Contractual date of delivery Jun 05
Actual date of delivery 01/07/05
Deliverable number 1.1
Deliverable title The TALK Grammar Library: an Integration of GF with

TrindiKit
Type Report
Status & version Public Final
Number of pages 42 (excluding front matter)
Contributing WP 1
WP/Task responsible UGOT
Other contributors
Author(s) Peter Ljunglöf (editor), Björn Bringert, Robin Cooper, Ann-

Charlotte Forslund, David Hjelm, Rebecca Jonsson, Staffan
Larsson and Aarne Ranta

EC Project Officer Evangelia Markidou
Keywords grammar, multilingual, dialogue systems, Grammatical

Framework, TrindiKit, GoDiS

The partners in TALK are: Saarland University USAAR

University of Edinburgh HCRC UEDIN

University of Gothenburg UGOT

University of Cambridge UCAM

University of Seville USE

Deutches Forschungszentrum fur Künstliche Intelligenz DFKI

Linguamatics LING

BMW Forschung und Technik GmbH BMW

Robert Bosch GmbH BOSCH

For copies of reports, updates on project activities and other TALK-related information, contact:

TheTALK Project Co-ordinator
Prof. Manfred Pinkal
Computerlinguistik
Fachrichtung 4.7 Allgemeine Linguistik
Postfach 15 11 50
66041 Saarbrücken, Germany
pinkal@coli.uni-sb.de
Phone +49 (681) 302-4343 - Fax +49 (681) 302-4351

Copies of reports and other material can also be accessed viathe project’s administration homepage,
http://www.talk-project.org

c©2005, The Individual Authors

No part of this document may be reproduced or transmitted in any form, or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system, without
permission from the copyright owner.

Contents

1 Introduction 1

1.1 Why integrate GF and TrindiKit? 1

1.2 GoDiS .. . 2

1.2.1 Mismatch between recognition and interpretation 2

1.2.2 Mismatch between interpretation and generation 3

1.3 Solutions to the mismatch problems 4

1.4 Outline of this deliverable 4

2 Integration of GF and TrindiKit 6

2.1 Grammatical Framework in the dialogue domain 6

2.1.1 Abstract and concrete syntax 6

2.1.2 Multilinguality and resource grammars 6

2.1.3 Embedded grammars .. . 7

2.1.4 Connecting GF to TrindiKit/GoDiS 7

2.2 The Embedded GF Interpreter 7

2.2.1 Parsing .. 8

2.2.2 Linearization 9

2.2.3 Translation 9

2.2.4 Java API .10

2.2.5 Typed Abstract Syntax Trees 10

2.2.6 OAA Agent . 11

2.3 Representing TrindiKit/GoDiS dialogue moves in GF 11

2.3.1 Dialogue Moves in GoDiS 11

2.3.2 Categories in GF 14

2.3.3 Using dependent types 14

2.4 Extracting speech recognition grammars from application grammars 15

2.4.1 Speech Recognition Grammar Formats 16

2.4.2 Implementation 16

2.4.3 Evaluation .. . 16

2.4.4 Related work .. . 17

i

IST-507802 TALK D:1.1 01/07/05 Page ii/42

3 Resource grammars and grammar engineering 18
3.1 Library-based grammar engineering 18

3.2 GF support for modules and libraries 18

3.3 Grammar engineering 19

3.3.1 Resource grammar libraries 20

4 The unimodal GoDiS grammar library 21
4.1 The library file structure 21

4.2 The in-home abstract resource (API) 21

4.3 The core grammar for the GoDiS Dialogue Manager 22

4.3.1 The abstract syntax 22

4.3.2 The concrete English GoDiS core grammar 23

4.3.3 The concrete Swedish GoDiS core grammar 24

4.3.4 The concrete GoDiS dialogue move representation coregrammar 25

4.4 The specific domain grammars 25

4.4.1 DJ GoDiS . 25

4.4.2 AgendaTalk .. 28

4.4.3 GoDiS deLux .29

4.4.4 Video GoDiS .. 30

5 Conclusions 32
5.1 Contents of the associated software 32

5.1.1 Grammar statistics 33

5.2 Concluding remarks 33

A Downloading and installation instructions 34
A.1 Downloading instructions 34

A.1.1 Contents .. 34

A.2 Installation instructions 35

A.2.1 System requirements 35

A.2.2 Installation and usage 35

A.3 Testing the Unimodal GF Grammar Library 36

A.3.1 Testing the grammars within GF 36

A.3.2 Using the Embedded GF Interpreter 38

A.3.3 Producing speech recognition grammars 39

Version: Final (Public) Distribution: Public

Chapter 1

Introduction

1.1 Why integrate GF and TrindiKit?

The dialogue toolkit TrindiKit and the generic dialogue system GoDiS built within TrindiKit do not pro-
vide any specific support for grammars. In previous systems built with these tools we have used simple
phrase spotting to relate user and system utterances to dialogue moves. The correlations are expressed in
GoDiS lexicons. For speech recognition we have used Nuance’s grammar formalism. In what follows we
explain why this situation needs to be improved and how the Grammatical Framework (GF) provides us
with an engineering approach to grammar which is very well suited to the needs of maintaining a number
of small related grammars as are needed by our approach to dialogue system development.

Recognition, interpretation and generation

When designing a spoken dialogue system, there are several different options for how to handle speech
recognition, syntactic/semantic interpretation, and generation.

Speech recognitionThere are two main alternatives, either to use a statisticallanguage model (SLM), or
to use a grammar-based language model. The main problem withusing a SLM is that there must
be a corpus to extract the statistical data from, and it is often not feasible to create a corpus just for
a single dialogue system. The main problem with using a grammar-based model, however, is lack
of robustness.

Syntactic interpretation The simplest alternative is to use word or phrase spotting. This makes the
system robust, but gives rise to problems when trying to handle complex utterances.

Natural language generation Template-based generation is often simple, and shares the same difficul-
ties of handling complex utterances with word/phrase spotting. A more complex alternative is to
use a grammar for generation purposes.

These options for recognition, interpretation and generation can be combined in various ways. In most
commercial working dialogue systems the recognition is grammar-based since there is no corpus fitting the
intended domain, but there are no grammars involved for interpretation and generation. In these systems,
the dialogue designer has to manually ensure that the recognition, interpretation and generation modules
are all up-to-date and in sync with each other.

1

IST-507802 TALK D:1.1 01/07/05 Page 2/42

Separating specific knowledge from general knowledge

Many dialogue systems are built more or less from scratch anddo not fully separate application-specific
knowledge from general and reusable knowledge in the way that we have attempted to do – for example,
by separating dialogue strategies such as question accommodation from the particular implementation of
a system for a given domain.

1.2 GoDiS

GoDiS is a dialogue system built using TrindiKit and based onthe information state approach. It imple-
ments a theory of Issue-based Dialogue Management. Some of the goals of GoDiS are

• providing a domain-independent theory covering several dialogue genres

• modularity and reusability of system components

• enabling rapid prototyping of new applications

• focusing on dialogue management

These goals have been achieved on the level of dialogue management, but not for natural language pro-
cessing, i.e. speech recognition, syntactic/semantic interpretation and natural language generation.

Recognition, interpretation and generation in GoDiS

GoDiS started out as text-based system, using phrase spotting for syntactic interpretation, and tem-
plates for natural language generation. Subsequently a grammar-based speech recognition component
was added. The speech recognition grammar has to be written and maintained by hand.

1.2.1 Mismatch between recognition and interpretation

If the speech recognition grammar is out of sync with the phrase spotting interpretation module, cor-
rectly recognised speech can be misinterpreted. This in turn leads to strange and unexpected behaviour,
i.e. unexpected interactions with the dialogue manager.

Example from the Video GoDiS system

S> Välkommen till videon! För att få hjälp, säg hjälp.
Welcome to the video! For help, say help.

S> Låt oss se. Vad kan jag hjälpa dig med?
Let’s see. What can I do for you?

U> jag vill spela in ett program (0.6)
i want to record a/one program

S> Vill du lägga till en inspelning?
Do you want to add a recording?

U> ja (0.98)

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 3/42

yes
S> Låt oss se. Menar du från noll ett eller till noll ett?

Let’s see. Do you mean from zero one or to zero one?

The utterance “jag vill spela in ett program” is covered by the speech recognition grammar, but not by the
phrase spotting lexicon. However “spela in” (record) and “ett” (a/one) are recognized as phrases by the
interpretation module.

The correct interpretation should be:

“jag vill spela in ett program” ⇒ request(add_ rec_ job)

but the actual interpretation is:

“spela in” ⇒ request(add_ rec_ job)

“ett” ⇒ answer(time(1:00))

The system assumes that “ett” specifies either when the recording should stop or end — thus the follow-up
question, which seems to the user to come from nowhere.

1.2.2 Mismatch between interpretation and generation

If the interpretation and generation modules do not use the same language, then the system utterances can
lead the users to believe they can say things that the system does not understand.

Example from the Video GoDiS system

S> Du kan lägga till en inspelning,
ta bort en planerad inspelning, och
lista planerade inspelningar.
För att börja om, säg börja om.
För att sluta, säg sluta.
You can add a recording,
remove a planned recording, and
list planned recordings.
To start over, say start over.
To quit, say quit.

S> Huvudmenyn. Vad kan jag hjälpa dig med?
Main menu. What can I do for you?

U> lista inspelningar (0.75)
list recordings

S> Ockey. Gå till inspelningar.
Okay. Go to recordings.

S> Låt oss se. Vill du lägga till en inspelning,
radera dina inspelningar, eller
få information om dina inspelningar?
Let’s see. Do you want to add a recording,

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 4/42

erase your recordings, or
get information about your recordings?

The initial help message suggests that the user can say “lista inspelningar” (list recordings), but the help
message is not up-to-date, and neither is the speech recognition grammar. Instead the interpretation mod-
ule spots the phrase “inspelningar” (recordings), and the user is asked to choose between roughly the same
alternatives that was presented in the help message.

1.3 Solutions to the mismatch problems

Mismatch between the speech recognition, interpretation and generation modules can be described as
bugs in the system. Bugs can of course be fixed, but the problemis that it takes lots of time to keep
these modules in sync with each other. There is no guarantee that new bugs won’t be introduced, and no
guarantee that all bugs have shown up.

These solutions are not reusable, instead we want a general and principled solution — we want to enable
reuse and rapid prototyping of applications, including grammars.

Solution, part 1: a single grammar for speech recognition, interpretation and generation

If we use one single grammar for all natural language modules, there will be no mismatches between the
grammars, and only one grammar needs to be written and maintained for each application. The different
modules may require different kinds of grammars, in different grammar formats. So we need to be able to
generate all three grammars from a single grammar.

However, we may not want the exact same coverage for the speech recognition, interpretation and gener-
ation grammars — e.g. maybe we do not want to understand everything that can be generated.

Solution, part 2: use the Grammatical Framework

GF is a powerful tool for mutilingual grammar development, which can be used to generate grammars in
various other formats. Also, subgrammars can be extracted from larger grammars, meaning that speech
recognition, interpretation and generation subgrammars may have different coverage.

1.4 Outline of this deliverable

In this deliverable we describe how we have integrated Grammatical Framework with TrindiKit/GoDiS.

In chapter 2 we describe how to get GF grammars working together with TrindiKit. The main idea is
that GF works as a combined interpretation and generation module, translating user utterances to dialogue
moves, and the system’s dialogue moves to utterances. Furthermore, the grammar for speech recognition
is automatically generated from the GF grammar, meaning that all three modules are in perfect sync with
each other.

Chapter 3 is a general description of how the module system ofGF can be used for building libraries that
can be used and reused in several applications, much as common libraries for programming languages.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 5/42

In chapter 4 we describe a cluster of grammars which have beenused to build four example dialogue
systems in the in-home domain.

The final chapter is a short discussion, and in the appendix wegive instructions for downloading, installing
and using the unimodal GoDiS grammar library.

Version: Final (Public) Distribution: Public

Chapter 2

Integration of GF and TrindiKit

2.1 Grammatical Framework in the dialogue domain

Here we discuss the features of Grammatical Framework we make use of in building grammars for dia-
logue systems.

2.1.1 Abstract and concrete syntax

As explained in section 1.4, the dialogue moves for the dialogue manager are seen as yet another language,
which means that in our approach it is crucial that the grammar formalism has support for multilinguality.
The feature that makes GF so well suited for multilingual grammars is the clean separation between
abstract and concrete syntax. A multilingual grammar then consists of one abstract syntax and several
concrete syntaxes, one for each language (or modality representation).

GF is not the only grammar formalism with a clean separation of abstract and concrete syntax — other for-
malisms includegeneralized context-free grammar(Pollard, 1984),multiple context-free grammar(Seki
et al., 1991),linear context-free rewriting systems(Vijay-Shanker et al., 1987),higher-order grammar
(Pollard, 2004),lambda-grammars(Muskens, 2003) andabstract categorial grammar(de Groote, 2001).

However, most of these formalisms are purely theoretical with no working implementation, or just a
simple toy implementation. GF is a formalism with a very complete implementation, including tools
for grammar checking, parsing, generation and compilationto other grammar formats, including speech
recognition grammars.

2.1.2 Multilinguality and resource grammars

There have been some research conducted on multilingual grammars, which is shown by the existence
of the ESSLLI 2003 workshop of Multilingual Grammar Development. However, most of the research
has been on building large-coverage grammars for several languages in parallel, sharing some common
features such as syntactical structure or semantics. Theseparallel grammars are written in frameworks
not ideally suited for multilinguality, such as the ParGramproject1 (Butt et al., 2003) which is written in

1http://ling.uni-konstanz.de/pages/home/butt/pargram /

6

IST-507802 TALK D:1.1 01/07/05 Page 7/42

LFG, and the LinGO Grammar Matrix2 (Bender et al., 2002) which is written in HPSG.

GF has a rich module system that enables modularity and library-based grammar engineering. The key fea-
tures needed are information hiding, high-level module interfaces, and separate compilation. This makes
it possible to write resource grammars, which are broad-coverage grammars from which it is possible to
extract only the features that are needed for the intended domain.

As of our knowledge there are no research on domain-specific multilingual grammar development. To-
gether with its module system and the possibility to write resource grammars, GF is well suited for this
task as well as for building large-coverage grammars.

2.1.3 Embedded grammars

There are several ways one can embed GF grammars in applications.

Embedding the Full GF System

Some applications have been written which use the full GF system as a resource. This can be done
in two ways, either by communicating with the interactive GFprogram by using pipes (Khegai
et al., 2003; Hähnle et al., 2002), or by using the GF Haskell API (Hallgren and Ranta, 2000; Burke
and Johannisson, 2005).

GF Gramlets

The GF Gramletssystem (Forsberg et al., 2005) produces syntax editors in the form of Java ap-
plets for a given GF grammar. Gramlets implement syntax editing and linearization using XML
representations of GF grammars.

The Embedded GF Interpreter

This is an interpreter for compiled GF grammars, supportingparsing and linearization. It is written
in Java and its aim is to be small, fast and portable. It can also be run as an OAA agent enabling
other OAA agents to use it for parsing linearization and translation. This is the reason why we use
the Embedded GF Interpreter to integrate GF with TrindiKit.

2.1.4 Connecting GF to TrindiKit/GoDiS

The main idea is that the dialogue moves of TrindiKit/GoDiS is seen as yet another concrete language in
the multilingual GF grammar, just as English and Swedish are. All these languages share the same abstract
syntax. Thus interpretation can be done by translating (viathe Embedded GF Interpreter) from English or
Swedish to dialogue moves, which are then sent to the dialogue manager. Generation is done conversely,
by translating the dialogue moves produced by the dialogue manager into the preferred language.

2.2 The Embedded GF Interpreter

The GF system is primarily a command line application for working with GF grammars. It has a signif-
icant amount of functionality, such as parsing, linearization, computation, syntax editing, morphological

2http://www.delph-in.net/matrix/

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 8/42

analysis, compilation of source grammars to canonical GF grammars, conversion of grammars to various
formats, translation and morphology quizzes, etc. GF has been in development for a number of years and
has grown quite large. It is well-equipped for testing and working interactively with grammars. However,
GF is more complex than necessary to be used with embedded grammars. We have therefore developed
an interpreter for compiled GF grammars in the Java programming language, version 1.5 (Gosling et al.,
2005). The goal of the Embedded GF Interpreter is to make a small and fast implementation of the features
necessary for building applications to make use of embeddedgrammars. Thus, any functionality which is
only used during the application development has been delegated to the full GF system.

GF itself is still essential for developing embedded grammars, but it need not be included in the finished
system. GF is used to compile the source grammars to the various formats used for parsing, linearization
and speech recognition by the finished system. This situation can be compared to that for programming
languages such as Java, which can be compiled into byte-code. A compiler is used to convert the human-
readable and human-writable source code to a simpler form. Users of the program then only need a
runtime environment or virtual machine to run the compiled code.

The full GF system is a rather large executable program, requires a Haskell implementation for the given
platform and has a large memory footprint. The aim of the Embedded GF Interpreter is to be small,
fast and portable. The size of the compiled interpreter is around 300 kilobytes and it should run on any
platform which has a Java 1.5.0 Runtime Environment.

2.2.1 Parsing

The parser computes a set of abstract syntax trees for a givenstring input.

Compiling GF grammars to parsable format

The full GF system converts the GF grammars to a format which the Embedded GF Interpreter can use
for parsing. If the grammar contains finite type dependencies, it is transformed to an equivalent gram-
mar without dependent types. This grammar is then convertedto an equivalent Multiple Context-Free
Grammar (MCFG; Seki et al., 1991) as described by Ljunglöf (2004a, chapter 3). The MCFG is finally
converted to a context-free grammar (CFG), which is used by the Embedded GF Interpreter.

Lexical analysis

The first step in parsing input is to divide it into tokens. TheEmbedded GF Interpreter has a default lexer
which divides the input into simple words (non-empty sequences of letters and digits), quoted strings and
punctuation. The user can also write custom lexers which areloaded by the interpreter.

Chart parsing

The parser is a Kilbury bottom-up chart parser, similar to the chart parser described by Ljunglöf (2004b).
The algorithm has been modified to support empty rules and to be better suited to implementation in an
imperative language.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 9/42

Tree building

After a successful parse, we need to build abstract syntax trees for the input. The tree building algorithm
uses the chart produced by the chart parser.

In order to avoid non-termination with cyclic grammars, a set of used edges for a given input sub-sequence
is kept. No edge can be used more than once for a given sub-sequence, which means that not all possible
parse trees are generated. This may seem to be too harsh a restriction, but this decision was made based
on the belief that for most applications, cyclic uses of the same rules are not essential for the semantics.
Another possible solution to this problem would be to build graphs instead of trees. This might seem to be
an elegant solution, but traversing such graphs could lead to non-termination if special care is not taken.

Filtering of parse trees

When the MCFG is converted to a CFG, information about e.g. discontinuous constituents will be lost.
Thus, the grammar which is used for parsing is over-generating, and some resulting parse trees might be
incorrect. Therefore the trees have to be filtered through a GF type-checker, before they are returned by
the Embeded GF Interpreter.

2.2.2 Linearization

In GF, linearization refers to the inverse of parsing, i.e. the process of producing a string in the concrete
syntax from an abstract syntax term.

For linearization, the Embedded GF Interpreter uses a Canonical GF (GFC) grammar, which is produced
from a source grammar by the GF system. Canonical GF can be seen as a simple total functional language.

Unlexing

After linearization has produced a list of tokens, theunlexerjoins the list to create a single output string.
A naive unlexer would simply concatenate the tokens, addinga space character between the tokens. How-
ever, this does not produce acceptable strings in most languages. For example, in English there should not
be a space before most punctuation characters.

The Embedded GF Interpreter currently uses a fairly simple heuristic for unlexing. We define two subsets
of the set of all characters: those which should be preceded by a space (essentially all punctuation, closing
brackets and closing parentheses), and those which should not be followed by a space (opening brackets
and parentheses). These sets are used to determine whether to add a space between two tokens. The full
GF system offers some more freedom in the choice of lexing andunlexing algorithms.

2.2.3 Translation

Translation is done by parsing with the source language and linearizing to the destination language. Since
parsing may be ambiguous or fail, translation may produce zero or more results.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 10/42

2.2.4 Java API

The Java API allows the programmer to call the interpreter directly from a Java program. The Java API
supports all functionality, such as grammar loading, parsing, linearization and translation.

The methodcreateTranslatorin the TranslatorFactoryclass is used to create aTranslatorgiven CFGM
and GFCM grammars, and some meta-data. TheTranslator class has methods for parsing, lineariza-
tion and translation, which are described below. More documentation is available in the Embedded GF
Interpreter API reference (Bringert, 2005).

Methods in the Translator Class

The parsemethod takes a language name (the name of a concrete syntax) and an input string. It returns
the result of parsing the input string in the given language:

Set<Tree> parse(String lang, String text)

Thelinearizemethod takes a language name and an abstract syntax tree and returns the result of linearizing
the tree in the given language:

String linearize(String lang, Tree tree)

Thetranslatemethod takes input and output language names, and a string inthe input language, which it
translates to a set of strings in the output language:

Set<String> translate(String fromLang, String toLang,
String text)

There are also versions of the parsing and linearization methods which try to use all available concrete
syntaxes and return collections of pairs of language name and results:

Set<Pair<String,Tree> > parseWithAll(String text)

Set<Pair<String,String> > linearizeWithAll(Tree tree)

2.2.5 Typed Abstract Syntax Trees

The Java API uses generic untyped syntax terms, where there is a single class for functions which uses a
string for the function name and an array of child terms. Constructing and analyzing such terms can be
quite tedious in Java. An untyped abstract syntax term is constructed thus:

new Fun("GoTo", new Tree[]{ new Fun("Chalmers"),
new Fun("Valand")});

A tool, Grammar2API , has been written which creates Java classes for representing a given abstract syntax
using typed trees. An abstract class is created for each category, and a concrete class inheriting from that
class is created for each function in that category.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 11/42

There is a Visitor (Gamma et al., 1995) interface for each category, which has methods for each function
in the category. Code for converting between typed and untyped trees, as well as typed wrappers around
the untyped parsing and linearization methods are also generated. The abstract syntax tree above can be
built by simply using the constructors of the generated classes:

new GoTo(new Chalmers(), new Valand());

2.2.6 OAA Agent

To allow the GF interpreter to be used in multi-agent systemsand from programs written in languages
other than Java, an Open Agent Architecture (OAA; Martin et al., 1999) wrapper has been written.

OAA is a framework for multi-agent systems. Communication between the agents is done by sending
terms in the Interagent Communication Language (ICL), a subset of Prolog. There are OAA implementa-
tions for several programming languages, including Java.

The GF OAA agent hassolvables(methods) for parsing, linearization, translation, listing languages and
grammars. Since OAA uses a unification-based approach to method calls, the GF agent solvables can be
used quite flexibly. For example, if the language argument tothe parsing solvable is uninstantiated (i.e. it
is a variable), all available languages in the given grammarwill be tried. The fact that an OAA agent
can return multiple solutions to a request is used to return ambiguous parse results. When the language
argument is uninstantiated, the parser tries to parse with all available concrete syntaxes.

The solvables are documented in detail in the Embedded GF Interpreter documentation.

2.3 Representing TrindiKit/GoDiS dialogue moves in GF

In order to use GF to write grammars to be used with TrindiKit/GoDiS one must first look at the semantic
representations used by the system. One of the central ideasin GoDiS is that the user and the system share
a part of the information state which they manipulate to achieve results. This is done by means of dialogue
moves (Larsson, 2002).

All utterances are interpreted as a list of dialogue moves (DMs). Before the integration with GF this
interpretation was done by finding key words or key phrases which corresponded to certain dialogue
moves.

The approach to DMs in GoDiS is that the movea realized by an utterance is determined by the relation
between the utterance content and the activity in which the utterance occurs. In effect this means that an
utterance could realize different dialogue moves in different domains.

2.3.1 Dialogue Moves in GoDiS

greet and quit

To begin and end any dialogue session thegreet andquit commands are used respectively. These are
atomic DMs which correspond to greetings and closure phrases in natural language. The examples of
greetings below are from one GoDiS application handling a VCR and one dealing with an Agenda.

greet

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 12/42

’Welcome to the VCR manager!’
’Hi! This is AgendaTalk, your personal talking agenda.’

ask

One of the central premises of Issue-based Dialogue Management as implemented in GoDiS is that one
of the main purposes of dialogue is to raise and respond to questions. This is done by performingask and
answer moves. This section describes the former, and the latter is described in the following section.

ask(q) , whereq : Question

The contentq of the ask move is a question. Three types of questions are handled by GoDiS: y/n-
questions, wh-questions, and alternative questions.

Y/n questions are formed from propositions. A proposition in GoDiS is a basic formula of predicate
logic consisting of an n-ary predicate together with constants representing its arguments. As the domain
is greatly limited in most dialogue systems it is often not necessary to keep a very elaborated semantic
representation of utterances. The utterance “I want to go toChalmers” in a dialogue system handling the
Gothenburg Tram System would not, as one might expect, be represented aswant(user, go-to(user,
chalmers)) but instead GoDiS would use the knowledge of the domain and reduce the utterance to a
simpledest-tram-stop(chalmers) .

ask(dest-tram-stop(chalmers))
“Do you want to go to Chalmers?”

Wh-questions are lambda abstractions of propositions. Onecan see these as partially uninstantiated propo-
sitions, waiting for additional information from some dialogue participant.

ask(X^dest-tram-stop(X))
“Where do you want to go?”

Alternative questions are sets of y/n-questions.

ask({ dest-tram-stop(chalmers) , dest-tram-stop(lindholmen) })
“Do you want to go to Chalmers or do you want to go to Lindholmen?”

answer

Theanswer move is used to answer questions.

answer(a) , wherea : ShortAnswer ora : Proposition

A ShortAnswer is a semantically underspecified proposition(Larsson, 2002, p23).

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 13/42

request

An action-oriented dialogue is one that involves requesting (and possibly performing) non-linguistic ac-
tions. Requesting an action is done using therequest move, whose argument is an action.

request(α) , whereα : Action

confirm and report

After a dialogue participant (DP) has recieved a request andperformed the requested action, the DP gives
feedback on the successful execution of the action via theconfirm move.

confirm(α) , whereα : Action

For more complex cases, e.g. where an action goes wrong or if an action takes a long time, there is also
the possibility of using areport move to report on the current state of an action that is being carried out.

report(α, Status) , whereα : Action andStatus: Status

The Status can be a number of things, ranging fromdone (which would correspond to the confirm move
above) tofailed or even a detailed description of what has gone wrong.

Interactive Communication Management

Larsson (2002) uses Interactive Communication Management(ICM) as a general term for coordination
of the common ground. ICM dialogue moves are explicit signals enabling coordination of updates to the
common ground, such as keeping track of topics currently under discussion, subactivities, sequencing and
turn taking.

There are two types of ICM dialogue move patterns in GoDiS:

1. icm: level*polarity {: arguments}

This pattern is used for ICM dealing with feedback and grounding. There are fiveaction levels
– contact, perception, semantic understanding, pragmaticunderstanding, and acceptance/reaction.
These are abbreviatedcon , per , sem, und andacc respectively. There are threepolarities– positive,
negative and interrogative (checking), abbreviatedpos , neg andint , respectively. Some feedback
moves also requirearguments.

2. icm: type{: arguments}

This pattern is used for ICM other than feedback. The arguments are also here optional, and the
typecan e.g. bereraise for reraising issues oraccomodate for accomodation.

Below are a few examples of ICM moves.
icm:con*int “Are you there?”
icm:per*pos “Ok”
icm:per*pos: ’foo’ “I thought you said’foo’ ”
icm:acc*neg:X^tram_stop(X) “I cannot answer questions about stations.”
icm:loadplan “Let’s see. . . ”

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 14/42

Figure 2.1: The hierarchy of categories in GF GoDiS.

2.3.2 Categories in GF

The dialogue moves themselves naturally become categorieswhen making an abstract GF grammar used
to translate between natural language and the semantic representations in GoDiS. There is also a need for
the arguments from the section above to be represented in this way.

Creating an abstract grammar in GF means making use of categories and functions. As there are no
different types of categories inherently in GF, the graph infigure 2.1 serves as a hierarchical tree of sorts.
An arrow from node A to node B in the graph means that there is a function creating an object of B from
an object of A.

For instance, an object of the category DMove (Dialogue Move) can be created by a function that takes
something of the category Request, which in turn has been made with a function that takes an Action. The
object in the graph is not a specific category but a name for those objects from the lexicon which are not
actions. In other words, these may be locations and furniture in an in-home domain, or artists and songs
in a music related domain.

Note that the hierarchy of GF categories is not fully consistent with the description of dialogue moves in
GoDiS in section 2.3.1. However, this is not a problem since the GoDiS dialogue moves are specified by
just another concrete language in the GF grammar. As long as there is a consistent translation from GF
abstract syntax to GoDiS dialogue moves, any hierarchy of GFcategories is sufficient.

2.3.3 Using dependent types

GF allows for the use of dependent types, a useful tool when itcomes to creating meaningful lists of
dialogue moves from utterances. With a set of activities, ortasks, as dependent types it is easy to dictate
a setting in which a certain answer move is accepted togetherwith a request or an answer. When creating
a speech recognition grammar from the GF grammar these restrictions are essential.

The example grammar in figure 2.2 is a somewhat simplified excerpt from the DJ GoDiS grammars. There
are two Actions,play andshift corresponding to two of the system’s dialogue plans. There are also two
Propositions,madonna andleft . The dependent type Tasks are used to make sure that actions and objects
within the same utterance belong to the same task. In this grammar the Tasks areplayTask which deals

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 15/42

playTask : Task;
speakerTask : Task;

play : Action playTask;
shift : Action speakerTask;

madonna : Proposition playTask;
left : Proposition speakerTask;

makeAnswer : (t : Task) -> Proposition t -> Answer t;
requestCompounded : (t : Task) -> Action t -> Answer t -> Compo undedRequest;

Figure 2.2: Dependent types in the GF grammar for DJ GoDiS (somewhat simplified).

play = {s = "play"};
shift = {s = "shift the balance"};
madonna = {s = "Madonna"};
left = {s = "to the left"};
makeAnswer _t prop = {s = prop.s};
requestCompounded _t act ans = {s = act.s ++ ans.s};

Figure 2.3: Examples of concrete linearizations for the grammar in figure 2.2.

with the scenario of playing music andspeakerTask , which captures the speaker control dialogue moves.

In order to make a compounded Request by pairing an Action andan Answer, their corresponding tasks
need to match. For example, assuming the concrete linearizations shown in figure 2.3, there are four
possible combinations of an Action and an Answer. However, two of them (“shift the balance Madonna”
and “play to the left”) are ungrammatical. The remaining twocorrect compounded Requests are

• “play Madonna”, with the abstract syntax term
requestCompounded playTask play (makeAnswer playTask mad onna)

• “shift the balance to the left”, with the abstract syntax term
requestCompounded speakerTask shift (makeAnswer speaker Task left)

2.4 Extracting speech recognition grammars from application
grammars

In order to improve recognition accuracy, speech recognition engines often use grammars to determine
which inputs are to be expected. Speech recognition grammars (SRGs) are often simple context-free
grammars. In this application, the grammar is simply used todetermine whether a given string belongs to
the language or not, the so-calledrecognition problem.

Writing a separate grammar for the speech recognizer, and keeping it in sync with the grammar used by
the parser requires some effort. To eliminate this problem,a compiler from the internal CFG (Ljunglöf,
2004a) format used by GF to some speech generation grammar formats has been implemented.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 16/42

2.4.1 Speech Recognition Grammar Formats

There are a number of existing formats for speech recognition grammars:

JSpeech Grammar Format (JSGF)
JSGF (Hunt, 2000) is a plain-text language for context-freegrammars used in the Java Speech API
(JSAPI; JavaSpeech, 1998a,b).

Nuance Grammar Specification Language (GSL)
GSL (2003) is a plain-text language for context-free grammars used by the Nuance (2003) speech
recognizer.

Speech Recognition Grammar Specification (SRGS)
SRGS (2004) is a W3C standard for speech recognition grammars. It has two equivalent syntactic
forms, Augmented Backus-Naur Form (ABNF) and XML.

2.4.2 Implementation

The internal context-free grammar for a given concrete syntax is first transformed to a generic simple
context-free format for the speech modality:

• Removal of explicit and implicit left recursion by Paull’s algorithm (Moore, 2000). The algorithm
does not preserve the structure of the grammar, but as speechrecognition grammars are not used to
produce parse trees, this is not a problem.

• Removal of productions which use categories in which there are no productions. This is done by
fix-point recursion as each step may create new empty categories.

The generic context-free speech grammar is then converted to either GSL or JSGF and printed. Punc-
tuation is removed before printing, as it is not part of the spoken language. All upper case characters
in tokens are converted to lower case, for the same reason. Ifthe source grammar contains punctuation
or upper case characters, the CFGM grammar, which is used forparsing (see section 2.2.1), will not be
able to parse all output from the speech recognizer. This problem could be solved by having GF remove
punctuation and capitalization before producing the CFGM grammar, instead of when creating the speech
recognition grammar.

Speech recognition grammar compilation has been added to the GF system. Thepg (“print_grammar”)
command has been given two additional values for the-printer flag: gsl andjsgf .

2.4.3 Evaluation

To evaluate the speech recognition grammar compiler we compiled the DJGoDiS GF grammar to a Nuance
grammar and ran batch tests on the resulting recognition package. To collect a test set we let students
figure out how they would address a speech-enabled MP3 playerby writing Nuance grammars that would
cover the domain and its functionality. Another group of students evaluated these grammars by recording
utterances they thought they would say to an MP3 player.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 17/42

Evaluation WER SER
Out-of-coverage evaluation77.23 95.01

In-grammar evaluation 6.30 8.31

Table 2.1:Word error rates (WER) and Sentence Error Rates (SER) for theNuance Grammar

The recording test set was made up partly of the students’ recordings. Additional recordings were carried
out by letting people at the department record randomly chosen utterances from the evaluation test set.
The final test set included 522 recorded utterances from 18 persons (9 female and 9 male voices). This
test set was used to compare recognition performance between the different models under consideration.

The test sets are just an approximation to the real task and conditions as the students only capture how
they think they would act in an MP3 task. Their actual interaction in a real dialogue situation may differ
considerably so ideally, we would want recordings from the dialogue system interactions. We plan to
make subsequent tests using the actual system.

In addition to the recorded evaluation test set a second set of recordings was created covering only in-
grammar utterances by randomly generating a test set of 300 utterances from the GF grammar. These
were recorded by 8 persons. This test set was used to evaluatein-grammar recognition performance.

As the reader may have noticed, the word error rates are very high, which is partly due to a totally inde-
pendent test set with a lot of out-of-vocabulary words indicating that domain language grammar writing is
very subjective. The students have captured a quite different language for the same domain and function-
ality. This shows the risk of a hand-tailored domain grammarand the difficulty of predicting what users
may say. It should be pointed out that the GF MP3 grammar used for this evaluation was in a preliminary
stage and was for example missing imperatives which seem to be a common form in the test corpus. A
closer look at the results gives a hint that in a lot of the cases the transcription reference and the recognition
hypothesis hold the same semantic content in the domain (e.g. “höj ljudet” vs “höja ljudet”).

However, the in-grammar evaluation seems promising and shows that the compiler works perfectly. The
compiled grammar seems to be in perfect sync with the GF grammar as it recognizes the recorded ut-
terances generated from the GF grammar. This would mean thatwe have managed to save the dialogue
system developer a lot of work by giving him automatically a speech recognition grammar in sync with
his GF grammar used for parsing.

2.4.4 Related work

Most work on compiling grammar formalisms to CFG has been made on unification-based formalisms,
such as context-free approximations of HPSG (Kiefer and Krieger, 2000) and compact translations of
restricted unification grammars (Moore, 1999). Dowding et al. (2001) discusses different algorithms for
generation of context-free speech recognition grammars. The Regulus system (Rayner et al., 2003) is an
open source implementation of these ideas.

GF is not unification-based, but instead based on linearization functions on abstract syntax terms. This
makes the underlying algorithms for compilation to CFG different from the unification-based algorithms
(Ljunglöf, 2004a, chapter 3).

Version: Final (Public) Distribution: Public

Chapter 3

Resource grammars and grammar
engineering

3.1 Library-based grammar engineering

In general-purpose software engineering, the idea of usinglibraries as the way of structuring and reusing
code is well-established (Parnas, 1972): the idea is to divide the code into reusable units each of which
formalizes a specific area of expertise. Prime examples of this are libraries for scientific computing, which
implement methods of numerical analysis. More mundane examples are sorting algorithms, graphical
user interface toolkits, and other general-purpose libraries that are used in almost any piece of software.
Libraries make advanced techniques available to all programmers, without everyone having to learn the
details of all techniques.

In the domain of Natural Language Processing, the idea ofgrammar librariesappears as useful and natural
instance of library based software engineering. To take an example from the TALK domain: a dialogue
system for communicating with MP3 software may want to say things about thecurrent song, thecurrent
artist, the current playlist, etc. To translate this information into different languages, many kinds of
linguistic data are needed: the translations of the wordscurrent, song, artist, etc; the inflection of these
words in different forms; and their proper syntactic combinations. It is natural to expect such data to be
found in a grammar library written by an expert of the language. Thus for instance the programmer that
wants to add the voice command “save the current playlist” inSpanish should only need to call functions
from such library, something like

generate(Spanish, Action(save, Modif(current,playlist)))

and be sure that the proper Spanish phrase will appear. In English, the corresponding code would be

generate(English, Action(save, Modif(current,playlist)))

3.2 GF support for modules and libraries

GF has a module system that enables modularity and library-based grammar engineering (Ranta, 2005).
The key features needed are information hiding, high-levelmodule interfaces, and separate compilation.

18

IST-507802 TALK D:1.1 01/07/05 Page 19/42

Optimizations that reduce the run-time penalty of using libraries and other abstractions are also essential.

Modules can be extended, imported and instantiated by othermodules. This can be done on several
modules at the same time, thus forming a module hierarchy. Furthermore, operations in resource modules
can act as translation functions from concrete syntax into abstract syntax. This means that grammars can
be composed by letting the concrete syntax of one grammar serve as the abstract syntax of another. The
compilation process then dismisses the intermediate syntaxes, similar to compilation of the composition
of finite state transducers (Karttunen et al., 1996; Mohri, 1997).

Translators from GF code into more well-known formats (suchas Java) make it possible to use GF gram-
mars in other programs without even knowing the GF formalism. The Embedded GF Interpreter described
in section 2.2 is an example of this.

3.3 Grammar engineering

Grammar engineering is the process of designing and implementing grammars on a computer. The field is
dominated by projects in which small groups (down to the sizeof one individual) of linguists produce big
grammars, with the ambition of covering all or most of a natural language and parsing a corpus of texts.
The grammars often reflect advanced linguistic theories, and are inaccessible not only to non-linguists but
also to linguists in another “school”. Their goal is clearlynot to serve as libraries that formalize known
facts of language, but to push further the limits of grammatical research.Our comment: Once a grammar
is finished, it should be possible to build up an interface through which the grammar can be accessed
without thorough understanding of it.

Because existing grammar implementations are hard to reuse, new ones are usually built from scratch:
even the basic, uncontroversial facts of languages are defined again and again. Part of the motivation has
to do with research ambitions: a new grammar can be meant to “change our view” of the grammar of
a language completely and cannot therefore take anything for granted.Our comment: With a modern
programming language with features such as higher-order functions and parameterized modules, it is
usually possible to reuse an old implementation, hide its details behind a new interface, and thereby
change completely the view of what is implemented.

There are also practical reasons for starting grammars fromscratch: NLP is notoriously a field with
restrictive licenses, unavailable resources, and exotic (proprietary, experimental, platform-dependent, etc)
code formats losing all processing tools in less than a decade.

In general, one can say that thecultureof developing software as reusable, modular, publicly accessible
libraries is not as wide-spread in grammar writing as e.g. scientific computing. In a representative posi-
tion paper on grammar engineering (Copestake and Flickinger, 2000), the whole idea of modularity and
information hiding is declared inadequate in the domain of grammars: “information hiding is the very an-
tithesis of productivity in grammar writing. . . for instance, a feature used in morphology may surprisingly
turn out to be useful in semantics”. Blocking the view of other modules prevents the working grammarian
from finding generalizations. As a more general argument, Copestake and Flickinger (2000) points out
that grammar engineering is still in the state of research rather than engineering, and that normal software
engineering ideas do not apply.Our comment: We admit that research remains to be done about the facts
of natural languages, but grammar writing which is part of software production could get far with existing
knowledge if it was properly transmitted from linguists to programmers.

An exception to the big research-oriented grammar idea is the CLE (Core Language Engine) project

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 20/42

(Alshawi, 1992). CLE grammars are meant to be used as libraries in other (Prolog) programs that need
natural language parsing, generation, or semantics. The idea of specializing a big grammar to a small
situation is stated explicitly in Rayner et al. (2000). The major problem with CLE is that it is no longer
continued, and that its results are mostly unavailable because of licenses and bit rot. Also the level of
modularity and abstraction, partly because of the limitations of the Prolog programming language, is not
what more recent library-based software engineering expects. But in many ways, we see CLE as the most
important point of comparison to our work.

3.3.1 Resource grammar libraries

Resource grammar libraries encapsulate linguistic knowledge that can be used in other programs. In other
research projects we have started writing such grammars forten languages: Danish, English, Finnish,
French, German, Italian, Norwegian, Russian, Spanish, andSwedish. Each resource grammar provides
the following:

Morphology. A program that is able to generate and analyze all inflectional word forms is more or less
standard knowledge for many languages, and an obvious part of the resource grammar.

Syntax. Phrase categories and combination rules of phrases should give a full account of word order and
agreement. A sizable fragment of syntax for both written andspoken language was identified in the
CLE project. It is well understood how to define a corresponding fragment for several languages.
To meet the needs of applied grammar engineering, we need notbe able to cover all linguistic
phenomena, as we would in a grammar whose purpose is to parse running text.

Lexicon. Inflectional and subcategorization data of the most frequent, say, 3,000 words of each language
is useful. In addition, a lexicon extension tool is needed tomake it easy to add domain-specific
vocabulary, which could never be completely included in a prebuilt lexicon.

Common APIs. Corresponding structures in different languages should beaccessible via similar library
calls, even though the structures have different implementations and are not always translation
equivalents. For instance, the rule of modifying a noun withan adjective (e.g.current playlist) exists
in all languages that we are considering. Moreover, relatedlanguages (e.g. Danish, Norwegian, and
Swedish) can share more interface elements than unrelated ones.

Transfer lexica. Given a word in e.g. Swedish, it is useful to know what its possible equivalents are in
Russian. Such correspondences are collected in a Swedish-Russian transfer lexicon. The lexicon
can be used as a starting point of software localization, although in general the choice of the right
equivalent must be made manually by an expert of the application domain.

As of the moment, these resource grammars are not used in the unimodal grammar library presented in
chapter 4. However, in the future we aim to incorporate them to be able to make use of their linguistic
coverage.

Version: Final (Public) Distribution: Public

Chapter 4

The unimodal GoDiS grammar library

4.1 The library file structure

The resource library of the unimodal GoDiS grammar library consists of a number of different modules
presented in section 4.2. Thecore library (section 4.3) contains the resource grammar used asa base for
specific application grammars. It is divided into three parts, one for the user specifics, one for the system
and one shared. Then there is thedomain library which contains the specific application grammars, see
section 4.4.

4.2 The in-home abstract resource (API)

Theobjectsdiscussed in section 2.3.2 are gathered in the in-home abstract resource by means of small,
grouped grammars handling a few (one to three) different categories each. In the Media module, for
instance, there are grammars dealing with song titles, artists and the different radio and TV stations avail-
able.
Module Content
Locations A collection of locations, i.e. countries, cities, buildings etc.
Numbers Numbers, ordered and regular.
Media Artists, Songs, Radio and TV stations etc.
Home Furniture, rooms etc
Time Dates, Days and Time.
Events different events such as wedding, meeting etc.

These are small grammars that are mobile, making it easy to reuse code. The idea is that you create a data
base grammar for each of your domain specific grammars and make use of the Modules you need. Figure
4.1 shows how grammars from the Media module are used to create a database ofobjectsto be used with
our DJ GoDiS grammars (described in section 4.4.1).

21

IST-507802 TALK D:1.1 01/07/05 Page 22/42

Figure 4.1: The grammars from the Media module: Dotted boxesare concrete linearization
modules and solid ovals are abstract syntax modules

4.3 The core grammar for the GoDiS Dialogue Manager

4.3.1 The abstract syntax

The core grammars contain domain independent categories and functions to manipulate them. They are
divided into three parts, one for the User specific parts and one for the System as well as a collection of
shared grammars where the details they have in common are handled.

Shared contains the following categories:

Category Usage
S Top Category
DMove The Dialogue Move
Action Task The basic Action with its dependent type
SingleAction An Action that does not have a type
Task The dependent type
Greet Greet move
Quit Quit move
Answer Task The Answer move with its dependent type
NegAnswer Task A negative Answer with its dependent type
Ask Task The Ask move with its dependent type
SingleAsk An Ask that does not have a type
Request The Request Move
ICM A collection term for ICM
Per_ICM An ICM
Acc_ICM — ” —
Per_ICM_Followed An ICM that can be followed by something
Acc_ICM_Followed — ” —

User contains the following categories:

Category Usage
CompoundedRequest A Request which also has an Answer attached
CompoundedAsk An Ask which also has an Answer attached
AnswerList Task A collection of answers with its dependent type

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 23/42

System contains the following categories:

Category Usage
DMoves A collection of DMoves
Proposition The Propositions
Other_ICM An ICM
Sem_ICM — ” —
Und_ICM — ” —
Other_ICM_Followed An ICM that can be followed by something
Sem_ICM_Followed — ” —
Und_ICM_Followed — ” —
Confirm The Confirm move
Report The Report move
SystemAsk Asks specific for the system
Issue A collection term for the Issues
PropIssue An issue made from a Proposition
AskIssue An issue made from an Ask
ListIssue — ” —
IssueList Related to the lists of Issues
ListItem — ” —

The Categories are molded into DMoves by chains of functions. For example a Proposition is made into
an Answer which in turn is transformed into a DMove by the use of the two functions below. Task is a
category which is inherited from the Proposition by the Answer, but it is not needed in the DMove itself.

makeAnswer : (t : Task) -> Proposition t -> Answer t;
makeAnswerMove : (t : Task) -> Answer t -> DMove;

4.3.2 The concrete English GoDiS core grammar

The linearization to English is fairly straight forward. There are the concrete grammars for English and a
small resource grammar containing operations one might want to reuse.

The following are the functions dealing with making a DMove out of a SingleAction.

Abstract grammar

play : SingleAction;

makeRequest : SingleAction -> Request;
makeRequestMove : Request -> DMove;

Concrete grammar

top_command = {s = variants { ["play"] ; ["start the music"]

; ["start playing"] }};

makeRequest req = {s = req.s};

makeRequestMove req = {s = variants { (choosePre ! Req) ; [] }

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 24/42

++ req.s ++
variants { (choosePre ! Req) ; [] }};

Resource module

oper choosePre : Form => Str = table {

Ques => ["can i"];

Req => variants{ ["i want to"] ; ["i would like to"] }};

oper choosePost : Form => Str = table {

Ques => [];
Req => ["please"]};

This particular grammar fragment is equivalent to the regular expression

(i want to | i would like to)?
(play | start the music| start playing) (please)?

4.3.3 The concrete Swedish GoDiS core grammar

The Swedish linearization follow the same rules as the English one. There are concrete files for lineariza-
tion to Swedish for each of the abstract ones and a resource file for frequently used operations.

Abstract grammar

play : SingleAction;

makeRequest : SingleAction -> Request;
makeRequestMove : Request -> DMove;

Concrete grammar

top_command = {s = variants { ["spela"] ; ["starta musiken"]

; ["börja spela"] }};

makeRequest req = {s = req.s};

makeRequestMove req = {s = variants { (chooesPre ! Req) ; [] }

++ req.s ++
variants { (choosePost ! Req) ; [] }};

Resource module

oper choosePre : Form => Str = table {

Ques => ["kan jag"];

Req => variants{ ["jag vill"] ; ["jag skulle vilja"] }};

oper choosePost : Form => Str = table {

Ques => [];
Req => ["tack"] };

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 25/42

This fragment is equivalent to the regular expression

(jag vill | jag skulle vilja)?
(spela| starta musiken| börja spela) (tack)?

4.3.4 The concrete GoDiS dialogue move representation coregrammar

For the linearization to Dialogue Moves fewer variants are needed.

Abstract grammar

play : SingleAction;

makeRequest : SingleAction -> Request;
makeRequestMove : Request -> DMove;

Concrete grammar

play = {s = ["start"]};

makeRequest req = {s = ["request"] ++ ["("] ++ req.s ++ [")"] } ;
makeRequestMove req = {s = req.s};

No resource module
Subsequently the concrete grammar for the semantics used inGoDiS, for the same abstract grammar as
for English and Swedish above, produces just one linearization:

request(start)

4.4 The specific domain grammars

The abstract domain files contain no categories, as the core grammars work as an API. These grammars
are also divided into Shared, User and System grammars wherethe User and System make use of their
Shared elements. Figure 4.2 shows the module dependencies of one of the DJ GoDiS grammars, namely
the system specific concrete grammar for English.

As visible in the figure the Domain grammars inherit the Core grammars and also the DB (database)
grammar which is a collection of the in-home resource modules needed for the particular application (as
described in section 4.2).

4.4.1 DJ GoDiS

The DJ GoDiS grammar needs a lexicon consisting of music and playback related terminology. Most
importantly the basic functions of an audio player as well asa large collection of possible artists, songs,
radio stations etc.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 26/42

Figure 4.2: The module dependencies of one the DJ GoDiS grammars: Dotted boxes are concrete
linearization modules, solid ovals are abstract syntax modules and dotted ovals are resource
modules.

Use of resources

From the GoDiS resource library this application makes use of the Media modules, giving it access to a
fair number of artists, songs, radio stations and albums. Inorder to handle the use of a playlist it also uses
the Numbers module.

Dialogue plans

The DJ GoDiS dialogue system is used for managing our Player agent. Therefore there are plans dealing
with most of the solvables provided by the agent. The most important functionality is listed below.

• Add an item to the playlist

• Deleting items from the playlist

• Playing

• Pausing

• Stopping

• Resuming

• Moving between the items in the playlist (Next, Previous)

• Shuffling the list

• Moving within the items in the playlist (Fast Forward, Rewind)

• Changing the volume

• Changing the balance between the speakers

• Asking about items, artists and songs

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 27/42

Special feedback

In order to make the conversations more natural, feedback from the system does not conform to a preset
mold. For each plan there is a specific confirmation linearization as the following examples show.
Plan Confirmation
Adding to a playlist "the playlist is increased"
Raising the volume "turning up the volume"
Resuming the playback "resuming the music"
Shuffling the playlist "the playlist has been shuffled"
Rewinding "rewinding"

Tasks

In order to make correct Dialogue Move combinations there are several tasks.
Task Usage
playTask Playing a specific item in the playlist
addTask Adding an item to the playlist
removeTask Removing an item from the playlist
speakerTask Changing the balance between the speakers
artistQuestion Asking about an artist
songQuestion Asking about a song

Application specific solutions

For this system the user needs to be able to give an AnswerListfor the addTask and the playTask containing
a song and an artist. In the User specific grammars:

answerSongArtistPlay : Song -> Artist -> AnswerList playTa sk;
answerSongArtistAdd : Song -> Artist -> AnswerList addTask ;

Example dialogue

U> I would like to add the song crazy with madonna please
[request(add), answer(item(’crazy’)),

answer(group(’madonna’))]
S> [icm:per*pos:’crazy’, icm:und*neg, ask(X^item(X))]

I thought you said ’crazy’.
I am sorry I do not understand what you mean.
What song do you want to add to the playlist?

U> like a prayer
[answer(item(’like a prayer’))]

S> [icm:sem*pos, icm:und*int:groupToAdd(’madonna’)]
Ok. Madonna, is that correct?

U> yes
[answer(yes)]

S> [confirm(add)]

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 28/42

The playlist has been increased.
U> play

[request(start)]
S> [confirm(start)]

Starting the player.

4.4.2 AgendaTalk

The AgendaTalk grammars have been created to be used with theAgendaTalk application. The GF gram-
mars written for the system demand that the system is rewritten slightly, so they have not yet been fully
incorporated.

The Agenda application is a speech enabled scheduling management system. The GoDiS application,
AgendaTalk, works as a voice interface to a web-based calendar in the in-home environment or on a
handheld computer that could be used in the in-car environment.

The information sent to the calendar database will be type ofevent, location, start time and end time. In
case end time is not given the calendar will add this automatically.

The system is supposed to work in three languages: Swedish, English and Spanish. At the moment only
English and Swedish are covered by the GF grammars.

Use of resources

The AgendaTalk grammars use the Date, Time, Location and Event modules.

Dialogue plans

The GoDiS application, AgendaTalk, is the spoken interfaceto the calendar and will support the following
capabilities corresponding to the calendar device:

• Add/Edit/Delete events

• Repeating events

• Ask for repeating events

• Add restricted types of events such as meetings, appointment, presentations etc.

• Change and delete events talked about during the dialogue but yet not added to the calendar

• Ask for the location, date or time of a certain event

• Ask if booked a certain time or date

• Ask for all bookings during a whole day

• Ask for all bookings of a certain type e.g. all meetings during during a time period e.g. next week

The minimum of parameters of an event is: type of event, starttime, start date, end time and end date.
However the user may also add other information about the event such as e.g. location of the event.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 29/42

Special feedback

Apart from the specific confirms which work the same way as for the DJGoDiS application, AgendaTalk
gives complex feedback on notes given to the Agenda. These consist of non-atomic propositions.

note(event(meeting),
start_time(16:15),
start_date(2005.05.10),
end_time(17:15),
end_date(2005.05.10))

"meeting at four fifteen on the tenth of may,
ending at five fifteen on sunday"

Tasks

There are tasks for adding, removing and changing entries tothe Agenda as well as two different ones for
entry lookup.

Application specific solutions

This domain specific grammar contains complex propositions.

Example dialogue

S> [ask(set([action(add_details), action(change_detai ls),
action(clear_agenda)]))]

Do you want to add some more information,
change some of the information or delete it all?

U> add some information
[request(add_details)]

S> [icm:und*pos, icm:loadplan, ask(X^location(X))]
Okay. Lets see. Where would the meeting take place?

U> at plaza
[answer(location(plaza))]

4.4.3 GoDiS deLux

The GoDiS deLux application grammar is written to use with a dialogue system that controls lamps in an
intelligent home.

Use of resources

The grammar uses the Home module, which contains lamps and locations within a home such as rooms
and floors.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 30/42

Dialogue plans

• Turning on/off a light

• Adding/removing a light

• Asking about the status of lights

• Asking about available lights

Tasks

There are Tasks for each of the different plans.

Application specific solutions

Theobjectsused in this system are not named entities but rather simple nouns.

Example dialogue

U> I would like to turn on the table lamp please
[request(TurnOn), answer(lamp(tablelight))]]

S> [report(turnOn,noSuchLamp)]
There is no such lamp.

U> what lamps do I have
[ask(X^lamp(X))]

S> [answer(lamp(ceilinglamp)), answer(lamp(floorlamp))]
Ceiling lamp and floor lamp.

4.4.4 Video GoDiS

The Video GoDiS grammar was written to be used with the Video GoDiS dialogue system. The system
was created to handle the programming of a VCR.

Use of resources

This grammar use the Media and Time modules.

Dialogue plans

• Adding a recording

• Clearing all recordings

• Asking about current recordings

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 31/42

Tasks

There are Tasks for adding recordings and asking about them.

Application specific solutions

This grammar uses complex Propositions. Therecording is a proposition made out of the propositions
date, start_time, stop_time and channel.

Example dialogue

U> I would like to add a recording today at ten
[request(add_recording), answer(date(today)),

answer(start_time(10:00))]
S> [icm:sem*pos, icm:loadplan, ask(X^channel(X))]

OK. Lets see. What channel do you want to record from?
U> BBC Prime until eleven

[answer(channel(bbc_prime)), answer(stop_time(11:00))]
S> [icm:sem*pos, confirm(add_recording)]

Ok. I have added a recording.
U> what recordings do I have now

[ask(X^recording(X))]
S> [answer(recording([date(today), start_time(10:00),

stop_time(11:00), channel(bbc_prime)]))]
There is a recording programmed for today
between 10 and 11 from BBC Prime.

Version: Final (Public) Distribution: Public

Chapter 5

Conclusions

5.1 Contents of the associated software

The software package for this deliverable consists of a library of grammar and dialogue system devel-
opment tools and a collection of grammars. These together constitute what is loosely calledThe TALK
Grammar Libraryin the Technical Annex. It consists of:

• Grammatical Framework, version 2.2, consisting of among others:

– Speech Recognition Grammar Compiler (see section 2.4)

• Embedded GF Interpreter (see section 2.2)

• TrindiKit, version 4 (alpha release)

• GoDiS core dialogue system, which is used by the following dialogue applications:

– DJ GoDiS, a dialogue system for controlling an MP3 player

– GoDiS deLux, a dialogue system for controlling lights

• Unimodal GoDiS Grammar Library, consisting of:

– resource modules for Locations, Numbers, Media, Home, Timeand Events (see section 4.2)

– the Core grammar for the GoDiS dialogue manager (see section4.3)

– the application grammars:1

∗ DJ GoDiS (see section 4.4.1)

∗ AgendaTalk (see section 4.4.2)

∗ GoDiS deLux (see section 4.4.3)

∗ Video GoDiS (see section 4.4.4)

1Currently we only have working dialogue systems for the DJ GoDiS and GoDiS deLux applications.

32

IST-507802 TALK D:1.1 01/07/05 Page 33/42

5.1.1 Grammar statistics

The Unimodal GoDiS Grammar Library consists of 146 grammar files, summing up to around 3500 lines
of GF code. Since one of our aims was to be as modular as possible, we ended up in a large number of quite
small grammar files. The applications only consist of 16 grammar files each, the rest of the grammars are
either shared among all applications, or are considered resources that can be used in future applications.

5.2 Concluding remarks

Working with a set of GF grammars to cover the natural language to semantics translation has made it
easier to keep the interpretation modules up to date in all languages at the same time. If the coverage in
one language changes the other language has to follow or it will not correspond to the abstract grammar
that link them.

GF also makes it easy to create a corpus over what can be generated and recognized by the system. This
makes it easy to spot any flaws or shortcomings right away and fix them.

The fact that we are now using a grammar, interpreting an entire utterance, makes it virtually impossible
for the system to make interpretations mistakes on its own accord. Previously it has been very easy for the
sentence “jag vill spela in ett program” (I want to record a/one movie) to be interpreted as a request for a
recording (“spela in”) and a time to start (“ett”), while it is supposed to be simply a request for recording,
as discussed in section 1.2.1.

Currently the development of the GoDiS dialogue plans and domain knowledge in TrindiKit and the
development of the application grammars is still conductedseparately and thus we have not achieved
the same kind of integration as has been achieved for the various grammars involved in dialogue systems.
Future research can involve using GF to write the actual GoDiS dialogue plans and the domain knowledge.
This way one can make sure that all moves that can be performedby the system can be realized as natural
language and that there are natural language expressions for all move sequences that the system should be
able to understand.

With the framework we have created it should be straightforward to make new application grammars.
All the new grammarian has to do is figure out what dialogue plans the system has, what objects the
conversation participants can discuss and what relationships exist between them (i.e. what answers go
with which questions and requests).

Version: Final (Public) Distribution: Public

Appendix A

Downloading and installation instructions

A.1 Downloading instructions

The TALK Unimodal Grammar Library can be downloaded fromhttp://www.ling.gu.se/projekt/
talk/software .

A.1.1 Contents

The distribution contains a bundle consisting of the following directories:

GF_GoDiS The GF grammars. See chapter 4 for a more thorough description. The directory also con-
tains scripts for compiling the application grammars into the GFCM and CFGM formats for use
with the Embedded GF interpreter and GSL grammars for use with Nuance ASR.

trindikit4 Alpha version of TrindiKit4. TrindiKit4 is a new version of TrindiKit where system com-
ponents can be distributed across several OAA agents. Together with a new concurrent control
mechanism this architecture replaces the previous implementation of asynchronicity in TrindiKit.
No documentation is given in this release. Used by GoDiS, DJ GoDIS and GoDiS deLux.

godis The GoDiS core dialogue system, consisting of the dialogue move engine (update and select mod-
ules), a control algorithm and GoDiS-specific resource interface definitions and datatype defini-
tions. Used by the DJ GoDIS and GoDiS deLux applications.

djgodis The DJ GoDIS application, a dialogue system for controllinga mp3 player. See section 4.4.1 for
a short description of the system’s functionality.

delux The GoDiS delux application, which is a dialogue system for controlling lights. See section 4.4.3
for a short description of the system’s functionality.

jars This directory contains compiled Java code needed to run theapplications. The filetkit_oaa.jar
consists of base classes for creating OAA agents. The filetkit_inout_text.jar contains InOut-
TextScore, a simple OAA agent and Trindikit4 module for textinput/output. The filetkit_nuance.jar
contains NuanceWrapper, which is a OAA wrapper agent for Nuance ASR and TTS. The file

34

IST-507802 TALK D:1.1 01/07/05 Page 35/42

gfc2java.jar contains the GFAgent, which is used by the applications for translating between
natural language and GoDiS dialogue moves.

The AgendaTalk and Video GoDiS applications for which thereare grammars in the GF_GoDiS directory
are not included in the distribution.

In addition the distribution contains:

Grammatical Framework v2.2 which is needed to compile the grammars to Nuance GSL format and
the formats used by the Embedded GF Interpreter. It can also be downloaded fromhttp://www.
cs.chalmers.se/~aarne/GF .

A.2 Installation instructions

A.2.1 System requirements

The system has been tested on Linux and Windows. Any platformshould work that is supported by
SICStus, Java and OAA. To run the system with speech, Windowsand a SoundBlaster compatible sound
card is required.

SICStus Prolog is needed to run TrindiKit systems. SICStus prolog can be downloaded for evaluation at
http://www.sics.se/sicstus .

Java 1.5 or later is needed to run the OAA agents written in Java. It canbe downloaded fromhttp:
//java.sun.com/ .

OAA 2.3.0 or later is needed. OAA can be downloaded fromhttp://www.ai.sri.com/oaa .

Nuance ASR and Nuance Vocalizer is needed to run the system in speech mode.

A.2.2 Installation and usage

The following binary executables must be in the user’s PATH variable: sicstus , java and gf . On
Windows these should besicstus.exe , java.exe andgf.exe .

Set the environment variable OAA_HOME to the full path of thedirectory containing the OAA distribu-
tion (e.g./home/david/oaa2.3.0).

If using Nuance, create a file callednuance-license.txt containing the Nuance license code and put it
in each application directory (djgodis anddelux).

Enter either of the directoriesdelux or djgodis . The scriptrun.bat (run.sh for Linux/Unix) launches
the OAA Startit agent which is used for running the system. Select a configuration from the Projects menu
of the Startit agent to run the system in text-mode or speech mode. Click on the blue start button. Start
speaking, or type into the text field that appears.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 36/42

A.3 Testing the Unimodal GF Grammar Library

The grammars can be tested separately by loading them into GF. The relevant concrete syntaxes are:
Application Grammar Concrete syntax
DJ GoDiS user usr_domain_player_english.gf

usr_domain_player_svenska.gf
usr_domain_player_sem.gf

system sys_domain_player_english.gf
sys_domain_player_svenska.gf
sys_domain_player_sem.gf

GoDiS deLux user usr_domain_lamps_english.gf
usr_domain_lamps_svenska.gf
usr_domain_lamps_sem.gf

system sys_domain_lamps_english.gf
sys_domain_lamps_svenska.gf
sys_domain_lamps_sem.gf

Video GoDiS user usr_domain_video_english.gf
usr_domain_video_svenska.gf
usr_domain_video_sem.gf

system sys_domain_video_english.gf
sys_domain_video_svenska.gf
sys_domain_video_sem.gf

AgendaTalk user usr_domain_agenda_english.gf
usr_domain_agenda_svenska.gf
usr_domain_agenda_sem.gf

system sys_domain_agenda_english.gf
sys_domain_agenda_svenska.gf
sys_domain_agenda_sem.gf

A.3.1 Testing the grammars within GF

The following is an example of the capabilities of the GF program. For more information about how to
use GF, see the documentation onhttp://www.cs.chalmers.se/~aarne/GF . This example assumes
we are testing the DJ GoDiS user grammar, which of course can be replaced by any of the other grammars
in the library.

1. Start GF in the directory where the grammars are located:

$ cd GF_GoDiS/Domain/DJGoDiS/User/
$ gf

2. Load the source module(s) into GF:

> i -conversion=finite usr_domain_player_english.gf
> i -conversion=finite usr_domain_player_svenska.gf
> i -conversion=finite usr_domain_player_sem.gf

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 37/42

The option-conversion=finite compiles away finite dependent types, which are used as de-
scribed in section 2.3.3. Without this option the parser returns too many parse trees, which have to
be filtered by the GF commandpt -transform=solve .

3. Select the English concrete grammar:

> sf -lang=usr_domain_player_english

4. Parse an English utterance:

> p -cfg "shift the balance to the left"
requestCompounded speakerTask shift (makeAnswer speaker Task left)

The option-cfg selects an improved context-free parsing algorithm. The default parsing algorithm
is overgenerating on grammars with dependent types, such asthis one, and the resulting parse trees
have to be filtered bypt -transform=solve .

5. Translate (i.e. parsing followed by linearization) fromEnglish to Swedish:

> p -cfg "shift the balance to the left" | l -all -lang=usr_doma in_player_svenska

jag vill ändra balansen vänster tack / jag vill ändra balanse n till vänster tack

/ jag vill skifta vänster tack / jag vill skifta till vänster t ack / jag skulle

vilja ändra balansen vänster tack / jag skulle vilja ändra ba lansen till vänster

tack / jag skulle vilja skifta vänster tack / jag skulle vilja skifta till vänster

tack / jag vill ändra balansen vänster / jag vill ändra balans en till vänster /

jag vill skifta vänster / jag vill skifta till vänster / jag sk ulle vilja ändra

balansen vänster / jag skulle vilja ändra balansen till väns ter / jag skulle vilja

skifta vänster / jag skulle vilja skifta till vänster / ändra balansen vänster tack

/ ändra balansen till vänster tack / skifta vänster tack / ski fta till vänster tack

/ ändra balansen vänster / ändra balansen till vänster / skif ta vänster / skifta
till vänster

The option-all shows all possible variants of linearizing a syntax term.

6. Translate from English to GoDiS dialogue moves:

> p -cfg "shift the balance to the left" | l -lang=usr_domain_ player_sem
[request(set_balance),answer(-1.0)]

7. Generate 5 random Swedish utterances:

> gr -number=5 | l -lang=usr_domain_player_svenska
in the city med eagle eye cherry
rant radio
va
jag vill ändra balansen mitten tack
jag vill spela nummer tre tack

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 38/42

8. Quitting GF:

> q

A.3.2 Using the Embedded GF Interpreter

Producing the grammars

The GF interpreter needs two representations of the grammarto do linearization and parsing. These two
representations can be generated from a GF source grammar byusing the GF system. This example
assumes that we use the GoDiS deLux system grammars.

1. Start GF:

$ cd GF_GoDiS/Domain/deLux/System/
$ gf

2. Load all the source modules into GF:

> i sys_domain_lamps_english.gf
> i sys_domain_lamps_svenska.gf
> i sys_domain_lamps_sem.gf

3. Create a GFCM file (for linearization):

> pm -utf8 -utf8id -printer=header | wf sys_lamps.gfcm

The commandpm prints multiple grammars in the format specified by the-printer flag, andwf
writes to the specified file.

4. Create a CFGM file (for parsing):

> pm -utf8 -utf8id -printer=cfgm | wf sys_lamps.cfgm

5. Create a properties file (heresys_lamps.properties) so that the interpreter can find these files.
The file should have these contents:

name: sys_lamps
gfcm: sys_lamps.gfcm
cfgm: sys_lamps.cfgm

Running the GF agent

If the grammar properties file issys_lamps.properties and the facilitator is running on $FAC_HOST,
port $FAC_PORT, the GF agent is started with:

$ java -cp $CLASSPATH:gfc2java.jar:. se.chalmers.cs.gf. oaa.GFAgent \
sys_lamps.properties -oaa_connect "tcp(’${FAC_HOST}’, ${FAC_PORT})"

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 39/42

A.3.3 Producing speech recognition grammars

The GF system is used to produce speech recognition grammarsfrom GF grammars. This example as-
sumes that we want to produce a Nuance GSL grammar from the English Video GoDiS user grammar.

1. Start GF:

$ cd GF_GoDiS/Domain/VideoGoDiS/User/
$ gf

2. Load the source module into GF:

> i usr_domain_video_english.gf

3. Create a GSL grammar (here in the fileusr_video_english.grammar):

> pg -printer=gsl | wf usr_video_english.grammar

The commandpg prints a single grammar in the format specified by the flag-printer . To create
a JSGF grammar, usepg -printer=jsgf instead.

Version: Final (Public) Distribution: Public

Bibliography

Alshawi, H. (1992).The Core Language Engine. MIT Press, Cambridge, Ma.

Bender, E., Flickinger, D., and Oepen, S. (2002). The grammar matrix: an open-source starter-kit for
the rapid development of cross-linguistically consistentbroad-coverage precision grammars. InWork-
shop on Grammar Engineering and Evaluation at 19th International Conference on Computational
Linguistics, pages 8–14, Taipei, Taiwan.

Bringert, B. (2005). Embedded GF Interpreter Java API.http://www.cs.chalmers.se/~bringert/
gf/gf-java.html .

Burke, D. A. and Johannisson, K. (2005). Translating formalsoftware specifications to natural language
— a grammar-based approach. To be published in proceedings of LACL’05.

Butt, M., Frost, M., King, T. H., and Kuhn, J. (2003). The feature space in parallel grammar writing. In
Bender, E., Flickinger, D., Fouvry, F., and Siegel, M., editors, Workshop on Ideas and Strategies for
Multilingual Grammar Development, pages 9–16, Vienna, Austria.

Copestake, A. and Flickinger, D. (2000). An open-source grammar development environment and broad-
coverage english grammar using hpsg.Proceedings of the Second conference on Language Resources
and Evaluation (LREC-2000).

de Groote, P. (2001). Towards abstract categorial grammars. In 39th Meeting of the Association for
Computational Linguistics, Toulouse, France.

Dowding, J., Hockey, B. A., Gawron, J. M., and Culy, C. (2001). Practical issues in compiling typed uni-
fication grammars for speech recognition. InMeeting of the Association for Computational Linguistics,
pages 164–171.

Forsberg, M., Johannisson, K., Khegai, J., and Ranta, A. (2005). GF Gramlets. http://www.cs.
chalmers.se/~krijo/gramlets.html .

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005).The Java Language Specification. Sun Microsys-
tems, Inc., third edition. Proposed third edition:http://java.sun.com/docs/books/jls/java_
language-3_0-mr-spec.zip .

40

IST-507802 TALK D:1.1 01/07/05 Page 41/42

GSL (2003).Nuance Speech Recognition System 8.5: Grammar Developer’sGuide. Nuance Communi-
cations, Inc., Menlo Park, CA, USA.

Hähnle, R., Johannisson, K., and Ranta, A. (2002). An authoring tool for informal and formal require-
ments specifications. In Kutsche, R.-D. and Weber, H., editors, Fundamental Approaches to Software
Engineering, number 2306 in LNCS.

Hallgren, T. and Ranta, A. (2000). An extensible proof text editor. In Parigot, M. and Voronkov, A.,
editors,LPAR-2000, volume 1955 ofLNCS/LNAI, pages 70–84. Springer.

Hunt, A. (2000). JSpeech Grammar Format. W3C Note.

JavaSpeech (1998a).Java Speech API Programmer’s Guide. Sun Microsystems, Inc.

JavaSpeech (1998b).Java Speech API Specification. Sun Microsystems, Inc.

Karttunen, L., Chanod, J.-P., Grefenstette, G., and Schiller, A. (1996). Regular expressions for language
engineering.Natural Language Engineering, 2(4):305–328.

Khegai, J., Nordström, B., and Ranta, A. (2003). Multilingual syntax editing in GF. InCICLing, pages
453–464.

Kiefer, B. and Krieger, H.-U. (2000). A context-free approximation of Head-Driven Phrase Structure
Grammar. In6th International Workshop on Parsing Technologies, IWPT2000, pages 135–146.

Larsson, S. (2002).Issue-based Dialogue Management. PhD thesis, Göteborg University, Göteborg,
Sweden.

Ljunglöf, P. (2004a).Expressivity and Complexity of the Grammatical Framework. PhD thesis, Göteborg
University, Gothenburg, Sweden.

Ljunglöf, P. (2004b). Functional chart parsing of context-free grammars.The Journal of Functional
Programming, 14(6):669–680.

Martin, D. L., Cheyer, A. J., and Moran, D. B. (1999). The OpenAgent Architecture: A framework for
building distributed software systems.Applied Artificial Intelligence, 13(1–2):91–128.

Mohri, M. (1997). Finite-state transducers in language andspeech processing.Computational Linguistics,
23(2):269–312.

Moore, R. C. (1999). Using natural-language knowledge sources in speech recognition. In Ponting, K.,
editor,Computational Modeling of Speech Pattern Processing, pages 304–327. Springer Verlag.

Moore, R. C. (2000). Removing left recursion from context-free grammars. InProceedings of the first
meeting of the North American chapter of the Association forComputational Linguistics, pages 249–
255. Morgan Kaufmann Publishers Inc.

Muskens, R. (2003). Language, lambdas, and logic. In Kruijff, G.-J. and Oehrle, R., editors,Reosurce
Sensitivity in Binding and Anaphora, pages 23–54. Kluwer.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.1 01/07/05 Page 42/42

Nuance (2003).Nuance Speech Recognition System 8.5: Introduction to the Nuance System. Nuance
Communications, Inc., Menlo Park, CA, USA.

Parnas, D. (1972). On the criteria to be used in decomposing systems into modules.Communications of
the ACM, 15:1053–1058.

Pollard, C. (1984).Generalised Phrase Structure Grammars, Head Grammars and Natural Language.
PhD thesis, Stanford University.

Pollard, C. (2004). Type-logical HPSG. InFormal Grammar Workshop, Nancy, France.

Ranta, A. (2005). Modular Grammar Engineering in GF.Research in Language and Computation. To
appear.

Rayner, M., Carter, D., Bouillon, P., Digalakis, V., and Wirén, M. (2000).The Spoken Language Transla-
tor. Cambridge University Press, Cambridge.

Rayner, M., Hockey, B. A., and Dowding, J. (2003). An open-source environment for compiling typed
unification grammars into speech recognisers. InEACL, pages 223–226.

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). Onmultiple context-free grammars.Theoretical
Computer Science, 88:191–229.

SRGS (2004). Speech recognition grammar specification version 1.0. W3C Recommendation.

Vijay-Shanker, K., Weir, D., and Joshi, A. (1987). Characterizing structural descriptions produced by
various grammatical formalisms. In25th Meeting of the Association for Computational Linguistics.

Version: Final (Public) Distribution: Public

