
Thesis for the Degree of Licentiate of Philosophy

Pure Functional Parsing

an advanced tutorial

Peter Ljunglöf

Department of Computing Science
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, March 2002

A dissertation for the Licentiate Degree in Computing Science at
Göteborg University and Chalmers University of Technology

Technical Report no. 6L
School of Computer Science and Engineering

Department of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Göteborg, Sweden, 2002

Abstract

Parsing is the problem of deciding whether a sequence of tokens is recognized
by a given grammar, and in that case returning the grammatical structure of
the sequence.

This thesis investigates different aspects of the parsing problem from the view-
point of a functional programmer. It is conceptually divided into two parts,
discussing the parsing problem from different perspectives; first as a compre-
hensive survey of possible implementations of combinator parsers; and second
as pure functional implementations of standard context-free parsing algorithms.

The first part of the thesis is a survey of the possible implementations of com-
binator parsers that have previously been suggested in the litterature, relating
their dirrefent usages. A number of previously unknown parser implementations
are also given, especially efficient for small and medium-sized natural language
applications.

The second part of the thesis define elegant and declarative, pure functional ver-
sions of some standard parsing algorithms for context-free grammars. The goal
has been to implement the algorithms in a way that is close to their intuitive for-
mulations, not sacrificing computational efficiency. The implementations only
use simple data structures not relying on a global updateable state, thus opening
the way for nice functional implementations.

Finally the thesis implements parser combinators that can collect the grammat-
ical structure in the program, to be able to use any suitable parsing algorithm
and not just recursive descent. However, this requires an mildly impure exten-
sion of the host language Haskell.

Keywords: context-free grammars, parsing algorithms, parser combinators,
functional programming.

i

Acknowledgements

Although I’m the sole writer of the text in this thesis, it would never have been
written without the support of a huge number of people.

First of all I would like to thank everyone who has helped me directly with the
making of the thesis. My supervisor Aarne Ranta has always believed in me,
even though my attention is constantly diverted by other interesting subjects.
But I also owe many thanks to all people who have been the target of my stupid
questions, who have patiently explained the most basic concepts, who have
dissected my silly ideas, and who have gladly entered into discussions on any
concievable subject; especially Koen Claessen, Niklas Eén, Jörgen Gustavsson,
John Hughes, Patrik Jansson, Josef Svenningsson, Tuomo Takkula and Dag
Wedelin. I am also grateful to have Paul Callaghan as my opponent, with many
insightful comments on preliminary versions, and for the patience with all my
exceeded deadlines.

Secondly I would like to thank the people who have helped me through these
years more indirect; Robin Cooper and Jan Smith for making me interested in
doing research in the first place; the members of the Language Technology group
here at the department, and our collaborators at Linguistics and Philosophy,
for all the seminars; my office mate Karol Ostrovsky and the other fellow PhD
students for all the social events I almost certainly fail to attend; and the rest
of the people at this department, both researchers and administrative.

Thirdly I would like to thank the outside world; all my friends who still fail to
understand what I do for a living; and my beloved family Saga, Signe and Svea,
who always remind me that there really is a world outside of this department.
Without you I would have been a finished PhD several years ago. . . I love you
beyond infinity.

iii

Contents

1 Introduction 1

1.1 About the thesis . 1

1.2 Prerequisites . 3

1.3 Contributions of the thesis . 5

1.4 How to read the thesis . 8

2 Grammars and Parsers 11

2.1 Context-free grammars . 11

2.2 Sets and finite maps in Haskell 12

2.3 Context-free grammars in Haskell 15

2.4 Parser combinators . 17

2.5 Context-free combinators . 18

2.6 Parsers and context-free grammars 20

2.7 Monadic combinators . 23

2.8 Deriving parser combinators . 24

2.9 Error reporting combinators . 26

2.10 Discussion . 27

3 Existing Parser Combinators 31

3.1 Backtracking Parser Combinators 31

3.2 The standard parser . 31

3.3 Continuation based combinator parsers 32

3.4 The stack continuation transformer 36

3.5 Breadth-first searching parsers 37

v

3.6 Discussion . 40

4 Left-factorizing Parser Combinators 43

4.1 Left-factorization . 43

4.2 Trie structures . 44

4.3 Memory efficient tries . 47

4.4 Parsing to parsers . 54

4.5 Discussion . 58

5 Chart Parsing 61

5.1 Edges and the chart . 61

5.2 Kilbury bottom-up chart parsing 62

5.3 Kilbury parsing in Haskell . 63

5.4 Building the parse trees . 66

5.5 Adding empty productions . 67

5.6 Improving efficiency . 69

5.7 Discussion . 70

6 Generalized LR Parsing 73

6.1 The LR table . 73

6.2 LR parsing without parse results 76

6.3 Adding parse results . 82

6.4 Initializing and running the parsing 87

6.5 Creating the LR parsing table . 88

6.6 Discussion . 91

7 CYK Parsing 93

7.1 CYK parsing . 93

7.2 A Haskell implementation of CYK parsing 96

7.3 Calculating the parse trees . 99

7.4 Discussion . 100

8 Grammar-collecting Parser Combinators 103

8.1 Observable sharing . 105

8.2 A grammar-collecting combinator parser 106

vi

8.3 Discussion . 112

9 Final Discussion 115

9.1 A summary of the thesis . 115

9.2 Different representations of grammars 118

9.3 Summary of test results . 119

9.4 Future work . 124

A Sets and Finite Maps 127

A.1 Sets as ordered lists . 127

A.2 Finite maps as ordered association lists 129

B Test Results 131

B.1 Combinator parsers . 132

B.2 Parsing algorithms . 138

vii

Chapter 1

Introduction

Parsing is one of the fundamental areas of computation. It is necessary both
for programming languages and natural languages. Therefore it is an area for
which much research has been conducted, and efficient parsing algorithms for
various kinds of languages has been developed.

It is well known that parsing can be performed in time linear in the size of the
input for certain sub-classes of context-free grammars. For general context-free
grammars it is possible to parse in cubic time.

Unfortunately, for us functional programmers, there has not been much research
conducted from a functional viewpoint. Almost all algorithms are described in
an imperative manner, and it is not always easy to transform an imperative
algorithm into a functional style, especially when using a pure language such as
Haskell.

Most parsing research for functional languages has been on parser combinators,
which is a nice and clean way of writing context-free grammars (and grammars in
more general grammatical formalisms), automatically yielding a parser for that
grammar. Unfortunately, combinator parsers can only implement one specific
parsing algorithm called recursive descent. And this particular algorithm is not
especially well suited for general context-free grammars. On some sub-classes
of grammars it can be quite efficient though.

1.1 About the thesis

This thesis is all about parsing in pure functional programming languages. One
can say that the thesis is divided into two different parts, which are tied together
in chapter 8.

The thesis is laid out as an advanced tutorial on the concept of parsing for
functional programmers. This means that there are some exercises for the reader

2 1. INTRODUCTION

throughout the thesis.

Part I: Parser combinators The first part – chapters 3 and 4 (and the
second half of chapter 2) – deals with combinator parsers. One can say that
it is a survey of different possible implementations of the type of combinator
parsers. Chapter 2 defines the basic parser combinators and discusses some re-
lations between the context-free combinators and the monadic ones. In chapter
3 we give the standard types of depth-first searching parsers, with and with-
out continuation transformers. We also introduce the breadth-first searching
stream processor parsers, which come with or without continuation transform-
ers. Chapter 4 introduces the data structure of tries, or letter trees, which
becomes a left-factorizing kind of parser. The chapter explores different types
of tries for more efficient sharing of sub-tries, thus turning the regular parts of
the letter trees into finite automata. The chapter ends by describing a trie that
instead of returning a normal parse result returns a special-purpose standard
parser.

Part II: Parsing algorithms The second part – chapters 5, 6 and 7 (and
the first half of chapter 2) – deals with general context-free parsing algorithms.
To be able to implement a parsing algorithm which is not recursive descent,
one needs to have the grammar as a specific object which can be passed around
and examined by the parsing algorithm. Chapter 2 defines what a context-
free grammar is, together with a suitable Haskell implementation. Chapter 5
implements an efficient functional version of bottom-up chart parsing, which
builds a directed graph where the edges are labelled with syntactic categories.
Chapter 6 implements an approximation of the general Tomita LR parsing al-
gorithm, where the grammar is pre-compiled into an LR table to speed up the
parsing. The approximation stems from the fact that we have simplified the
original complicated data structures. Chapter 7 describes an implementation of
CYK parsing, where we see a context-free grammar as a multiplicative operator
and then implement parsing as calculating the transitive closure of a matrix
consisting of syntactic categories.

Tying the parts together Finally, in chapter 8 we use an extension of
Haskell to implement parser combinators that can collect the grammatical struc-
ture in the program. Then we can use any good old parsing algorithm to parse
the grammar, and transform the parse trees into the expected parse results.

The resulting combinator parser is compared with the alternative approach of
using a parser generator such as Happy, describing advantages as well as disad-
vantages.

Final discussion The last chapter, chapter 9, is a final summary of the con-
tents of the thesis, together with a short discussion on some implications. We

1.2. PREREQUISITES 3

compare the two approaches in the thesis – combinator parsers and parsing al-
gorithms – and relate them to their main competitor, parser generators. The
chapter also consits of a summary of test results. The different combinator
parsers and parsing algorithms have been tested on different kinds of data to
see which parser is suitable for which kind of input.

There are also two appendices. Appendix A consists of an example implemen-
tation of sets and finite maps, which are abstract data types that we use heavily
throughout the thesis. Appendix B consists of all the test results that are sum-
marized in the final discussion.

1.2 Prerequisites

To have benefit of the thesis the reader is supposed to know some things be-
forehand.

Functional programming The reader is supposed to be a skilled functional
programmer.

Laziness Since laziness is used in many places, the reader should at least have
some familiarity with the concept of lazy functional programming.

Types and type classes We will use the Haskell type system, together with
some extensions. This means that the reader should know something about the
standard Hindley-Milner type system, and it will help much to know the ideas
of the type classes used in Haskell for overloading functions.

Standard Haskell functions We use some standard Haskell functions with-
out mentioning, such as foldr , map, function composition (·), et cetera.

List comprehensions and pattern guards We will use list comprehension
syntax which is a standard part of Haskell. Also, guards in pattern matching is
a handy syntactic sugar.

1.2.1 Notational conventions

We use the pure functional language Haskell throughout the thesis. For people
not so familiar with its syntax, we here give some small hints. For more extensive
information we refer to the Haskell 98 Language Report [35] or to the Gentle
Introduction [15].

4 1. INTRODUCTION

Types and type constructors start with capital letters while constants and vari-
ables start with lower-case letters. Functions written with non-alphanumeric
symbols are automatically infix operators. An ordinary function can be con-
verted to an operator by surrounding it with backticks (e.g. 3 ‘elem ‘ [1 . . 5] ≡
elem 3 [1 . . 5]), and operators surrounded by parentheses become standard
functions (e.g. (+) 3 4 ≡ 3 + 4). The operator precedence and associativity
can be declared by infix, infixr and infixl, where the precedence is a number
between 0 and 9 (higher binds harder).

Haskell makes heavy use of layout – instead of surrounding a block in braces,
one usually just use indentation instead. Local declarations can be made with
standard let declarations or, more commonly, via a where declaration in the
end of the definition.

Types can be declared in three ways; type τ = α declares a type synonym, and
data τ = α declares a new algebraic datatype. If the data type has one single
constructor with only one argument, newtype can be used instead of data to
make it possible for the compiler to generate more efficient code.

In this thesis constants and variables are written in italics (function), types and
type constructors in a sans-serif font (Type), and reserved words are written in
a bold font (class).

1.2.2 Extensions to Haskell

Existential quantification in types Existential quantification in data types
is an extension to standard Haskell, but which is recognized by all existing
Haskell compilers and interpreters. The meaning of the data type declaration
data T = C (∀α. τ) is that the C constructor can take an object of type τ
for any possible type α. The construction ∀x . τ which is used in this thesis is
written “forall x . τ” in the Haskell extensions.

The extension is simple and well-behaved, and is described in e.g. [9, 25, 33].
The explanation for the name “existential” quantification is that in the type of
the constructor C the argument α is existentially quantified over. Or in other
words, (∀α.τ)→ T ≡ ∃α.(τ → T).

Multi-parameter type classes with functional dependencies Multi-
parameter type classes are a natural generalization of the Haskell class system.
Unfortunately it is not very useful as it stands, since many of the interesting
instance declarations will overlap, which is not allowed in Haskell. Functional
dependencies, introduced by Jones [18], is a way to overcome this limitation.
This means that we can say that one of the parameters depends entirely on one
of the other parameters.

class Parser m s | m → s where . . .

1.3. CONTRIBUTIONS OF THE THESIS 5

The above definition says that both the parser type m and the type of input
symbols s are parameters in this class definition, but the symbol type must
depend on the parser type. This means that the parser must refer to the type of
symbols somewhere in its type, but it is not interesting to know exactly where.

1.3 Contributions of the thesis

This thesis looks at some issues in the area of parsing for functional program-
ming languages. To our knowledge it is the first extensive study relating different
types of combinator parsers. It also defines elegant and purely functional ver-
sions of some standard parsing algorithms. Finally it relates the two concepts
by defining a combinator parser that can collect the grammatical structure and
then call any suitable parsing algorithm.

The chapters describe real implementations of parsers, not only abstract algo-
rithms. The implementations are collected in a library of combinator parsers
and parsing algorithms, which can be found in the Chalmers Multi Library on
the World Wide Web:

http://www.cs.chalmers.se/Cs/Research/Functional/MultiLib

1.3.1 Part I: Parser combinators

There has until now not been any work that tries to relate the different com-
binator parsers suggested previously. In this part we do exactly this – relate
different kinds of parsers to each other, and define general parser transformers
that apply to several parsers. We also define some new kinds of parsers – the
trie based combinator parsers.

Chapter 2: Grammars and parsers We define a class hierarchy for work-
ing with the two different kinds of combinator parsers that exist – context-free
and monadic parsers. The monadic combinators are more expressive than the
context-free, but some parsers are impossible to make monadic. We also show
some trivial results relating the context-free combinators with context-free gram-
mars.

Chapter 3: Existing parser combinators We define the standard depth-
first searching parsers, which are descended from Wadler’s original parser type
[44]. On these we can apply either the continuation transformer or the stack
continuation transformer. The latter is derived from Swierstra’s efficient error-
correcting parser [39, 40].

Another class of parsers is the breadth-first searching stream processor parser,
originally coming from the graphics library Fudgets [3]. That the stream pro-

6 1. INTRODUCTION

cessor also is a parser has been noticed by Claessen [5]. The continuation trans-
formers can also be applied to the stream parser.

Chapter 4: Left-factorizing parser combinators From the data structure
of tries, or letter trees, we define several different parsers. These parsers are all
left-factorizing, which means that it is not necessary to do the left-factorization
by hand. We examine the memory behaviour and extend the original parser
getting a parser with better memory behaviour.

Finally it is possible to combine the left-factorization of the trie structure with
the efficiency of the standard depth-first parsers. This was originally done by
Swierstra in his efficient parser [39, 41], but now we have split that complicated
parser type into a couple of less complicated parser transformers.

1.3.2 Part II: Parsing algorithms

The second part of the thesis shows how to implement some of the main general
context-free parsing algorithms in a pure functional style. This means that it is
not necessary to pass around a global mutable parsing state, such as a chart (in
chart parsing), a graph-structured stack (in LR parsing) or a parse matrix (in
CYK parsing). Instead we show how to implement these data structures in a
more incremental way than traditionally, thus yielding pure, simple and elegant
functional implementations.

Chapter 2: Grammars and parsers We define the basic notions for context-
free grammars and show how to implement these notions in a functional lan-
guage.

Chapter 5: Chart parsing Chart parsing is really a family of parsing algo-
rithms, all based on the data structure of charts, which is a set of known facts
called edges. The parsing process uses inference rules to add new edges to the
chart, and the parsing is complete when no further edges can be added.

We implement an efficient functional version of bottom-up Kilbury chart parsing
[20, 46]. The novel thing is that it doesn’t have to rely on a global state for the
implementation of the chart. This makes the code clean, elegant and declarative,
while still being as efficient as the standard imperative implementations. The
worst-case complexity is cubic in the length of the input, which is as good as
one can get in a practical implementation.

Chapter 6: Generalized LR parsing LR parsing is a way of pre-compiling
the grammar into parse tables, which then can be used while parsing. Originally
LR parsing was only used for deterministic grammars, but Lang and Tomita

1.3. CONTRIBUTIONS OF THE THESIS 7

showed how to use the tables to efficiently parse general context-free grammars
[24, 42]. This is often called generalized LR parsing.

We describe several different versions of generalized LR parsing. The most
interesting is the Tomita-like parser, where the originally complicated graph-
structured stack has been simplified to a tree structure, so that we do not
have to implement it using a mutable global state. The graph structure of the
stack will still be stored in Haskell memory, because equivalent sub-trees will
be shared.

A major drawback is that the algorithm will not be polynomial in time, which
the original Tomita algorithm is. The reason is that it is impossible from inside
Haskell to know that two sub-trees are shared or not, and then the algorithm
will do double work while traversing the stack.

Chapter 7: CYK parsing The parsing strategy of Cocke, Younger and
Kasami [19, 47] is often described as matrix multiplication, but the actual im-
plementations seldom bears any resemblance with the higher-level descriptions.
When using a high-level language such as Haskell, we can retain the idiom. In
fact this leads to an elegant and purely functional version of CYK parsing, which
is as efficient as the standard imperative versions. The worst-case complexity is
cubic in the length of the input, which is as good as one can hope to get.

1.3.3 Tying the parts together

There are some advantages with parser combinators (in part I) which is lacking
when we implement a grammar as a Haskell object (in part II). One important
feature is that we can define new combinators that makes it easier to implement
grammars. Examples include variants of the foldr and foldl functions, combined
with intersperse. Another feature is that we can define semantic actions for the
productions directly, instead of going via an intermediate result type. A third
feature is that the Haskell type checker can catch errors in the grammar, which
can be very difficult to find with an untyped grammar. A final feature is that
many parser types are monadic, which makes it possible to parse non context-
free languages.

The main disadvantage with parser combinators is that they all implement
the same parsing algorithm – recursive-descent parsing, which is not the most
efficient parsing algorithm. This algorithm is also not capable of parsing all
possible grammars – left-recursive grammars will lead to non-termination, which
is a seriuos problem since left-recursion is very common in both formal and
natural languages.

One partial solution to this problem is to use a parser generator, such as Happy
[28]. With a parser generator we can write a context-free grammar together with
Haskell code that produces semantic actions of the productions. The grammar

8 1. INTRODUCTION

(or rather, the semantic actions) is also type-checked, which the grammar-as-
Haskell-object approach is not. The grammar is converted by Happy to an
efficient parser implemented in Haskell.

Unfortunately there are two problems with parser generators. First, we still lack
the first feature of parser combinators mentioned above – we cannot define our
own new combinators to simplify grammar writing. Second, we need to learn a
new language – the Happy language, which is an extension of Haskell (although
a small one).

Chapter 8: Grammar-collecting parser combinators Until now there
has not been any way of transforming a grammar defined by a combinator
parser to a context-free grammar. In standard Haskell this is not possible, since
we cannot stop ourselves from falling into an infinite loop while examining the
grammar structure.1

In this chapter we show one possible way of accomplishing this, by using the
mildly impure extension of “observable sharing”, developed by Claessen and
Sands [6]. We define a combinator parser that collects the structure of the
grammar. This means that we can use any good parsing algorithm, not just
recursive descent, in a combinator parser; as well as checking properties of the
grammar, such as if it is LL or LR. The parser is not monadic, which means
that the fourth feature of combinator parsers do not apply.

With this extension we can say that we have extended the idea of parser com-
binators to a more general idea of “grammar combinators”.

But there are disadvantages too, of which the most important is that we must
be very careful when defining new combinators. We have to make sure that the
resulting grammar is finite, and that we do not lose vital sharing information;
otherwise the collection procedure might never terminate.

1.4 How to read the thesis

Before reading the other chapters, it is necessary to read chapter 2, which defines
the notions, types and type classes that are used throughout the thesis.

The rest of the chapters are pretty much independent of each other, with some
exceptions. Both chapter 4 and in some extent chapter 8 depend on the contents
of chapter 3; and to benefit from chapter 9 it is good to have at least skimmed
through the previous chapters.

1At least it is not possible while staying inside Haskell – one can always parse the grammar
file with a parser for Haskell, and extract the grammar. But then we have to limit the language
of the grammar to a subset of Haskell, and lose the first of the features of parser combinators.

1.4. HOW TO READ THE THESIS 9

91 2 5

3
4

8

6

7

10 1. INTRODUCTION

Chapter 2

Grammars and Parsers

This chapter is an introduction to context-free grammars and parser com-

binators. We also show some correspondences between the two concepts.

We describe two kinds of combinator parsers – context-free and monadic,

the latter being more general than the former.

2.1 Context-free grammars

The standard way to define a context-free grammar is as a tuple G = 〈N, Σ, P, S〉,
where N and Σ are disjoint sets of nonterminal and terminal symbols respec-
tively, P is a set of productions and S ∈ N is the start symbol. The nonterminals
are also called categories and the set V = N ∪ Σ are the symbols of the gram-
mar. Each production in P is a pair 〈A, α〉, where A ∈ N is a nonterminal and
α ∈ V ∗ is a sequence of symbols. The sets N , Σ and P are all finite.

We use capital letters A, B, C for nonterminals, lower-case letters s, t, u for ter-
minal symbols, and lower-case a, b, c for general symbols (elements in V). Greek
letters α, β, γ will be used for sequences of symbols, and we write ε for the empty
sequence. We usually write A→ α if 〈A, α〉 ∈ P ; a production A → ε is called
an empty production, and A→ b is called a unit production.

The relation ⇒ is defined by αBγ ⇒ αβγ iff B → β. We will not make use
of this relation directly, but instead the transitive closure⇒+ and the reflexive
and transitive closure ⇒∗ (defined as usual by α ⇒+ β iff α ⇒ · · · ⇒ β; and
α⇒∗ β iff α = β or α⇒+ β).

A phrase is a sequence of terminals β ∈ Σ∗ such that A⇒+ β for some A ∈ N ;
sometimes we will call this an A phrase. A sentence is a phrase recognized by
the start symbol, i.e. an S phrase. The language accepted by a grammar is
the set of sentences of that grammar. A grammar is left-recursive if A⇒+ Aα
for some A ∈ N , and furthermore hidden left-recursive if A ⇒+ BAα, where

12 2. GRAMMARS AND PARSERS

B ⇒+ ε. The set of empty categories is { A ∈ N | A⇒∗ ε }, the left corners of
a sequence of symbols α are { b ∈ V |α⇒∗ bβ }, and the follow set of a symbol
b is { c ∈ V | α⇒∗ βbcγ }.1

The grammar is assumed to be cycle-free (which means that there is no A such
that A⇒+ A), which is a standard assumption since cycles are not productive
and lead to infinitely many ways to recognize a sentence. We will also assume
that the terminal symbols only appear in unit productions. This will constitute
no severe drawback, since any grammar can be easily transformed into this form
by adding a new category and a unit production for each terminal, changing the
rest of the productions slightly.

One particular subclass of context-free grammars, which will be used in chap-
ter 7, is Chomsky normal form. A grammar is in Chomsky normal form when
all productions are either on the form A→ t or on the form A→ BC, where t is
a terminal and A, B and C are nonterminals. It is always possible to transform
a context-free grammar into Chomsky normal form, and still accept the same
language.2 If the original grammar has n productions, the transformed version
can have in the worst case O(n2) productions [13].

Another possible language-preserving transformation is to remove left-recursion.
Left-recursive grammars lead to non-termination of some parsing algorithms,
most notably recursive descent parsing which is the parsing algorithm imple-
mented by parser combinators. We do not describe how the transformations are
done here, but refer to any standard textbook about formal languages, such as
[1, 13].

2.2 Sets and finite maps in Haskell

Thoroughout the thesis we will make use of sets and finite maps. These types
occur in both combinator parsers and parsing algorithms, even in the definition
of a grammar. In our Haskell implementations we leave sets and finite maps
as abstract data types, and give example implementations in appendix A. The
example implementation of sets are as ordered lists, and the finite maps are
given as ordered association lists.

1The set of left corners can also be called the first set, with the difference that the first
set is usually only defined for terminal symbols. In the same way we deviate slightly from the
traditional definition of the follow set – our definition can have any kind of symbol in the set.

2With the exception of grammars that accept ε, which grammars in Chomsky normal form
cannot accept. But this is not a real limitation.

2.2. SETS AND FINITE MAPS IN HASKELL 13

2.2.1 Sets

The type of sets is abstract; and sets can be compared for equality.

data Set α = . . .
instance Ord α⇒ Eq (Set α) where

(==) = . . .

Most implementations of sets are only possible if the element type have an
ordering, so we use the context Ord α on each of the set operations. Observe
that most of these operations can be defined in terms of other operations, but
we leave these definitions as exercises for the reader.

There is an empty set and we can create the singleton set from a single element.

emptySet :: Ord α⇒ Set α
unitSet :: Ord α⇒ α→ Set α

We have a test for emptiness and for membership in a set.

isEmptySet :: Ord α⇒ Set α→ Bool
elemSet :: Ord α⇒ α→ Set α→ Bool

We can join two sets into one, and form the union of a list of sets.

(<++>) :: Ord α⇒ Set α→ Set α→ Set α
union :: Ord α⇒ [Set α]→ Set α

We can create a set from a list of elements, and extract the list of elements from
a set.

makeSet :: Ord α⇒ [α]→ Set α
elems :: Ord α⇒ Set α→ [α]

We will assume that elems returns an ordered list. In some cases we want to
create a set from a list which we know is ordered and without duplicates; many
implementations can do this in a faster way, and therefore we add an extra
function to create a set from an already ordered list.

ordSet :: Ord α⇒ [α]→ Set α

Finally we often want to build a set from an initial set and a function that
yields new elements from already added elements. The limit function builds the
minimal fix-point set.

limit :: Ord α⇒ (α→ Set α)→ Set α→ Set α

14 2. GRAMMARS AND PARSERS

If we assume that we have an operation (<−−>) for set difference, it is possible
to define the limit function in the following way.

limit more start = limit ′ start start
where limit ′ old new

| isEmpty new ′ = old
| otherwise = limit ′ (new ′ <++> old) (new ′ <−−> old)

where new ′ = union (map more new)

Observe that the limit function does not necessarily terminate – it depends on
the given function more. But if there exists a finite fix-point set, limit will find
the minimal one.

2.2.2 Finite maps

The type of finite maps from keys s to values α is also abstract. For the same
reason as above we assume an ordering on the type of keys.

type Map s α = . . .

There is an empty map, and we can map a key to a value.

emptyMap :: Ord s ⇒ Map s α
(|→) :: Ord s ⇒ s → α→ Map s α

We can test if a finite map is empty, and we can use it to lookup values. The
operation (?) corresponds to the standard lookup function on association lists,
with the arguments swapped.

isEmptyMap :: Ord s ⇒ Map s α→ Bool
(?) :: Ord s ⇒ Map s α→ s → Maybe α

To merge two finite maps we need to know what to do with conflicting values.
Therefore mergeWith takes a function that combines two values into one.

mergeWith :: Ord s ⇒ (α→ α→ α)→ Map s α→ Map s α→ Map s α

We can build a finite map from an association list, which can have duplicate
keys, in which case we need to know what to do with duplicate values. We can
also convert a map to an association list.

makeMapWith :: Ord s ⇒ (α→ α→ α)→ [(s , α)]→ Map s α
assocs :: Ord s ⇒ Map s α→ [(s , α)]

The result of assocs will be ordered on the key. Most implementations can
create the map faster if the given association list is already ordered on the keys,
and that the keys are not duplicated.

ordMap :: Ord s ⇒ [(s , α)]→ Map s α

2.3. CONTEXT-FREE GRAMMARS IN HASKELL 15

Finally it is possible to map a function on the values in a finite map.3

mapMap :: Ord s ⇒ (α→ β)→ Map s α→ Map s β

2.3 Context-free grammars in Haskell

In this section we translate the definitions in section 2.1 into Haskell code. The
categories and terminals will be Haskell types; but since they depend on the
grammar we abstract over these types.

The grammar Since the terminals only appear in unit productions, and also
only once, we can split the set P of productions into a set of nonterminal produc-
tions and a function mapping each terminal to a set of nonterminals. The type
of a context-free grammar will therefore be a four-tuple with a set of categories,
the starting category, the terminal mapping and the set of productions.4

type Grammar c t = (Set c, c, t → Set c, Set (Production c))

Observe that we do not include the set of terminals, since we will have no use
of that set in any of the algorithms presented. A production is simply a pair of
a category and a list of categories.

type Production c = (c, [c])

Parsing A parsing algorithm will be a function that, given a grammar, takes a
sequence of terminals and returns a parse result. A parse result can be anything
between a boolean value (in which case the parser is called a recognizer) and a
set of semantic functions. In this thesis we will consider lists of parse trees as
the result from the parsing algorithm, and an implementation of an algorithm
will be implemented as the functions recognize or parse.

recognize :: Grammar c t → [t]→ Bool
parse :: Grammar c t → [t]→ [ParseTree c t]

Parse trees A parse tree is either a node with a category and a sequence of
parse trees, or a leaf consisting of a terminal.

data ParseTree c t = c :∧ [ParseTree c t]
| Leaf t

3We could also have chosen to make maps an instance of the Functor class, but we use a
specific function to improve readability later.

4Throughout this thesis we will use the type variables c and t for the types of categories
and terminals respectively.

16 2. GRAMMARS AND PARSERS

Exercise
Write a function that translates a general context-free grammar into Chomsky
normal form. The translation consists of three parts.

• Removing the empty productions. To remove an empty production A→ ε
you must add an extra production B → αβ for each B → αAβ already in
the grammar. This might in turn create new empty productions, which
are handled in the same way, until there are no empty productions left.

• Removing the unit productions. To remove a unit production A → B,
where B is not a terminal, you must add an extra production A→ β for
each B → β already in the grammar.

• Removing the long productions. Every production A → BCDα will be
replaced by two productions A→ BA′ and A′ → CDα, where A′ is a new
category. The second of the new productions might in turn need to be
transformed.

Observe that the second and third steps increases the size of the grammar, which
in the worst case can become considerably larger.

�

2.3.1 Empty categories

To build the set of empty categories we start with an empty set, and build up
the final set of categories by adding new categories whose right-hand side is
empty.

empties :: Grammar c t → Set c
empties (, , , productions) = empties ′ emptySet

where empties ′ cats | cats == cats ′ = cats
| otherwise = empties ′ cats ′

where cats ′ = makeSet [cat | (cat , rhs)← elems productions,
all (‘elemSet ‘cats) rhs]

Unfortunately it is not possible to use the limit function, since we cannot define
a suitable more function.

Exercise
Define the function that returns the left corners of a sequence of categories.

leftCorners :: Grammar c t → [c]→ Set c

The left corners of a sequence Aα of categories is calculated as follows: We
calculate the left corners of the single category A, and if A is an empty category
we also add the left corners of α. The left corners of the single category A is
calculated by adding A to the union of the left corners of all β, such that A→ β.

2.4. PARSER COMBINATORS 17

Observe that we have to remember the categories we already have taken care
of, to stop us from falling into infinite recursion.

Exercise
Define a function that returns the follow set of a category.

follow :: Grammar c t → c → Set c

To calculate the follow set of a category A we can proceed as follows: For every
production B → αAβ we take the left corners of the sequence β, and if all
categories in that sequence are empty we add the follow set of the category B.
Here we also have to remember the categories visited to avoid infinite looping.

Exercise
Define the predicates cyclic and leftRecursive, saying whether a given category
is cyclic or left-recursive.

cyclic :: Grammar c t → c → Bool
leftRecursive :: Grammar c t → c → Bool

�

2.4 Parser combinators

Parser combinators were introduced in 1975 by Burge [2], but it was only after
Wadler’s paper [44] that people started using them more extensively.

In the last 10 years there has been a lot of research on creating more and more
efficient parser combinators [16, 17, 23, 26, 36, 39, 40]. So also in this thesis,
where we in chapter 4 introduce some new combinator parsers.

Wadler’s original parser was a function from strings to lists of results, where
results are pairs of values and the unparsed part of the string.

type WadlerParser α = String→ [(String, α)]

On this parser he added some basic combinators for describing context-free (and
other) grammars. His type of parsers will be generalized in this section to the
class of combinator parsers, which then can be used to implement any kind
of combinator parser. The combinators we introduce can be seen as a simple
domain-specific embedded language [14] of parsers.

The class of parsers A combinator parser can be used to parse sequences
of input symbols, returning parse results. There are many possible types for
the parse function, depending on whether the parser is deterministic or not,
and whether we have error reporting or not. As the type of results we will use
what has become the de facto standard for combinator parsers, which is a list of
values. We will not use any error reporting, but instead argue in the end of this

18 2. GRAMMARS AND PARSERS

chapter that it is not difficult to add. In some cases one might be interested in
parsing just a prefix of the input sentence, and in other cases one is interested
in the whole sequence. For this reason, and for the reason that some parsers are
more suited for the first kind of recognition, and other parsers for the second,
we will have two parse functions in our parser class.

class Parser m s | m → s where
parse :: m α→ [s]→ [([s], α)]
parseFull :: m α→ [s]→ [α]
parseFull p inp = [a | ([], a)← parse p inp]

In this type class we abstract over the type of the input symbols. This can
be done by using the extension of multi-parameter type classes with functional
dependencies [18] further described in the introduction, section 1.2.2.

The most obvious choice for the type of the input is a list of terminal sym-
bols, but there are other choices; e.g. a list of sets of terminals (if the lexer is
ambiguous) or a word graph from a speech recognizer.5

2.5 Context-free combinators

We start with defining combinators which allow us to implement context-free
grammars. We do this by introducing type classes for the different combinators.

Monoids First we need a way to introduce more than one production for a
category. We do this with the (<+>) combinator, which combines two parsers
into one. The meaning is that either of the two parsers are correct, which
corresponds to two alternative productions for the same category. We also
introduce the always failing parser zero, which corresponds to a category without
any productions at all. We put both (<+>) and zero in the same type class
called a monoid. For convenience we also add a combinator anyof , which can
be defined in terms of the other two.

class Monoid m where
zero :: m α
(<+>) :: m α→ m α→ m α
anyof :: [m α]→ m α
anyof = foldr (<+>) zero

A famous instance of the monoid class is the type of lists, where zero corresponds
to the empty list, and (<+>) is the same as list concatenation. Another instance
is the type of endomorphisms, or functions α → α, where zero is the identity
function and (<+>) is function composition. Unfortunately the type of sets

5A word graph can e.g. be implemented as a connected directed acyclic graph with words
on the edges.

2.5. CONTEXT-FREE COMBINATORS 19

cannot be turned into a monoid, since the type of elements has to have an
ordering, and we haven’t assumed an ordering in the definition of the monoid
operations.

Pre-monads We also need a parser that always succeeds, corresponding to an
empty production. Since a parser always returns a result, we will use a function
that takes a result and gives a parser that always succeeds, returning the given
result. This function is the same as the monadic return, but since we only want
that function and not the monadic bind, we put it into a new class which we
call a pre-monad.6

class PreMonad m where
return :: α→ m α

Sequencing To get productions having more than one category on the right-
hand side, we need a sequencing combinator (<?>). This particular combinator
was originally defined in [41]. It takes two parsers and combines them in se-
quence. The result of the combined parser will be the result of the first parser
applied to the result of the second. For convenience we also add a limited com-
binator which throws away the result of the first parser. We call the final class
the Sequence class, and to be able to define the limited (?>) in terms of (<?>)
it must also be a premonad.

class PreMonad m ⇒ Sequence m where
(<?>) :: m (α→ β)→ m α→ m β
(?>) :: m α→ m β → m β
p ?> q = (return (λx y → y) <?> p) <?> q

Input symbols Finally we must be able to recognize input symbols, which
will correspond to unit productions with a terminal in the right-hand side. So
we introduce a function sym that takes an input symbol and gives a parser
recognizing that symbol. We also introduce two parsers sat and skip. The sat
parser recognizes the input symbols for which a given predicate is true, and the
skip parser succeeds for any input symbol.

class Eq s ⇒ Symbol m s | m → s where
sym :: s → m s
sat :: (s → Bool)→ m s
skip :: m s

As for the Parser class we have to use multi-parameter type classes with func-
tional dependencies to be able to abstract over the type of input symbols. The

6This is not possible to implement directly in Haskell, since the Monad class is already
defined, but the presentation becomes clearer if we split the Monad class into two classes.

20 2. GRAMMARS AND PARSERS

sym and skip parsers are definable in terms of sat .

sym s = sat (s ==)
skip = sat (λx → True)

To define sat in terms of sym we need a list of all possible input symbols from
which we can filter out the ones not satisfying the predicate. And it is impossible
to define sym or sat in terms of skip unless the parser is a monad.

Precedence and associativity In this thesis we use the following prece-
dences and associativities for parser combinators, to minimize the use of paren-
theses.7

infixr 4 <:>
infixl 3 <?>
infixl 3 ?>
infixl 2 <+>

Recall that a higher value means that the operator binds harder, and infixl
means left and infixr right associativity. This means that p <?> q <?> r is the
same as (p <?> q)<?> r and that p <:> q <:> r is the same as p <:> (q <:> r).
Also recall that the monadic combinators have very low precedences in Haskell.

infixl 1 >>=
infixl 1 >>

2.6 Parsers and context-free grammars

The combinators given above can be said to be context-free, since they are
equivalent to context-free grammars in the following sense.

• Every context-free grammar can be transformed to a combinator parser
recognizing the same language.

• Every non-parametrized combinator parser can be transformed to a context-
free grammar recognizing the same language.

A parametrized parser is a function that calculates a parser from a given argu-
ment. We also say that a parser calling a parametrized parser is parametrized
itself. It is important that the parser in the second case is not parametrized,
which will be clear below.

7The (<:>) combinator will be defined later in this chapter.

2.6. PARSERS AND CONTEXT-FREE GRAMMARS 21

2.6.1 Parametrized parsers are not context-free

If we allow parsers to be parametrized over, we can recognize languages known
not to be context-free. This should not be surprizing, since e.g. a function from
integers to parsers can construct a totally new parser for every input, which
yields infinitely many parsers, which in turn corresponds to infinitely many
nonterminals and/or productions.

The reduplication language The following redup parser is a parser recog-
nizing the reduplication language αα (α ∈ {a, b}∗), which cannot be recognized
by any context-free grammar.

redup = p []
p ts = q ts

<+> sym ’a’ ?> p (’a’ : ts)
<+> sym ’b’ ?> p (’b’ : ts)

q [] = return ()
q (t : ts) = sym t ?> q ts

The p parser builds a list of all the terminals it has seen so far, which is then
given to the q parser to recognize. Both these parsers are functions depending
on a list, which makes them parametrized, and so the redup parser is also
parametrized.

The anbncn language Here is a parser recognizing the language anbncn,
which is also known not to be context-free.

abc = as 0
as n = bs n ?> cs n

<+> sym ’a’ ?> as (n + 1)
bs 0 = return ()
bs n = sym ’b’ ?> bs (n − 1)
cs 0 = return ()
cs n = sym ’c’ ?> cs (n − 1)

2.6.2 Non-parametrized parsers are context-free

If the parser is not parametrized over, it can be transformed into a context-free
grammar recognizing the same language.

The transformation consists of two steps, where the first step is to introduce
local definitions for each inner application of the five combinators. This is always
possible in pure functional languages, because of the law of beta-reduction.
Consider the following example parser.

p = q <?> p <+> return (λx → [x]) <?> sym ’a’
q = return (:) <?> (sym ’b’<+> zero)

22 2. GRAMMARS AND PARSERS

We have three applications of (<?>), two applications each of (<+>), return
and sym , and finally one application of zero. This gives eight new intermediate
parsers, with new unique names.

p = p1 <+> p2

where p1 = q <?> p
p2 = p3 <?> p4

p3 = return (λx → [x])
p4 = sym ’a’

q = q1 <?> q2

where q1 = return (:)
q2 = q3 <+> q4

q3 = sym ’b’
q4 = zero

The second step of the transformation is to create a context-free grammar.
Every definition, including the new local definitions, will be transformed to a
context-free production rule. The definition will be one of the following,

• Empty. The definition p = zero translates to nothing – a nonterminal
without any productions.

• Disjunction. The definition p = q <+> r translates to the productions
P → Q and P → R.

• Unit. The definition p = return a translates to the empty production
P → ε.

• Sequence. The definition p = q <?> r translates to the production
P → Q R

• Terminal. The definition p = sym s translates to the production P → s.

The nonterminals of the grammar will be the names of all the defined parsers;
and the terminals will be all the arguments to the sym combinator. Finally we
get the following productions for our example parser:

{
P → P1, P1 → Q P, P3 → ε Q→ Q1 Q2, Q2 → Q4,
P → Q1, P2 → P3 P4, P4 → ’a’, Q2 → Q3, Q3 → ’a’

}

2.6.3 Parsers can recognize context-free grammars

Every context-free grammar can be recognized by a corresponding combinator
parser, and the creation of the parser is left as an exercise for the reader. The
only crucial point is that the grammar must not be left-recursive, so first we
have to transform out the possible left-recursion in the grammar. But since this

2.7. MONADIC COMBINATORS 23

is a standard procedure, we thereby conclude that there is a combinator parser
that recognizes the same language as any given context-free grammar.

The reason why the grammar must not be left-recursive is that it can only
parse strings using the recursive descent parsing algorithm. And when recursive
descent parsing tries to recognize a left-recursive nonterminal X it first has to
recognize X , and to recognize X it has to recognize X , and so on ad infinitum. . .

Exercise

Given a context-free grammar that is not left-recursive, describe a procedure to
transform the grammar into a combinator parser returning the unit element ().

Exercise

Give another procedure to transform the grammar into a parser returning a
parse tree.

�

2.7 Monadic combinators

Most definitions of parser combinators use a monadic framework. This is very
handy, there is a nice syntactic sugar in the do-notation, and one can exploit a
richer language than mere context-free languages.

The main difference to the context-free combinators is that we use another
combinator for sequencing. This new sequencing combinator will be the monadic
bind (>>=), which takes as arguments a parser and a function from results to
parsers (called a continuation), and returns a new parser. The result of the
first parser decides what the parser to use next will be. For convenience we also
introduce a more limited sequencing combinator, where the result of the first
parser is ignored.

class PreMonad m ⇒ Monad m where
(>>=) :: m α→ (α→ m β)→ m β
(>>) :: m α→ m β → m β
p >> q = p >>= (λx → q)

In Haskell there is syntactic sugar that can be used instead of the monadic
bind – the do-notation. This makes monadic programs (such as parsers) easier
to read. But we will not have to use the do-notation in this thesis, since the
grammars are not that complicated.

With the monadic bind it is simple to define parsers that recognize non context-
free languages. This is clear since the second argument to (>>=) can invoke any
Haskell function, and so the strength of the language becomes Turing-complete.

24 2. GRAMMARS AND PARSERS

The reduplication language Here is a monadic parser to recognize the redu-
plication language αα (α ∈ {a, b}∗).

redup = ps >>= λxs → ps >>= λys →
if (xs == ys) then return () else zero

p = sym ’a’<+> sym ’b’
ps = return []

<+> (p >>= λx → ps >>= λxs → return (x : xs))

The anbncn language This is a monadic parser that recognizes the language
anbncn.

abc = ps ’a’ >>= λa → ps ’b’>>= λb → ps ’c’ >>= λc →
if a == b ∧ b == c then return () else zero

ps s = return 0
<+> (sym s >> ps s >>= λn → return (n + 1))

2.8 Deriving parser combinators

The Functor class transforms a parser into a parser of another type, by applying
a given function to each of the results.

class Functor m where
fmap :: (α→ β)→ m α→ m β

It is well-known how to turn a monad into a functor, and it is already imple-
mented in the standard Monad library as the liftM function.8

instance Monad m ⇒ Functor m where
fmap f p = liftM f p

= p >>= λa → return (f a)

It is also easy to turn a context-free parser into a functor, by sequencing an
empty parser with the given parser.

instance Sequence m ⇒ Functor m where
fmap f p = return f <?> p

Since the monadic bind (>>=) is more general than the sequence (<?>), we
should be able to define the latter in terms of the former. And as a matter of
fact sequencing is already defined in the Monad library as the ap combinator.

8Sometimes we will write several definitions of the same function below each other, which
only means that any of the definitions is suitable.

2.8. DERIVING PARSER COMBINATORS 25

The definition for (?>) becomes even simpler, since it is equivalent to the (>>)
combinator.

instance Monad m ⇒ Sequence m where
p <?> q = ap p q

= p >>= λf → fmap f q
p ?> q = p >> q

2.8.1 Other derived combinators

Recognizers Sometimes we are not interested in a result, but only if the
parse succeeds or not. We then use the dummy parse result () to indicate that
the parse succeeds, and sometimes call a parser returning () a recognizer. We
also introduce the dummy parser success which simply succeeds, returning the
dummy result ().

success :: PreMonad m ⇒ m ()
success = return ()

A common parametrized parser is the many0 combinator, which recognizes any
number of the given parser in sequence, including the empty sequence.

many0 :: (Monoid m, Sequence m)⇒ m α→ m ()
many0 p = ps

where ps = success <+> p ?> ps

It is also convenient with a parser that recognizes a sequence of input symbols.
We define this as a combinator syms0.

syms0 :: (Sequence m, Symbol m s)⇒ [s]→ m ()
syms0 [] = return ()
syms0 (s : ss) = sym s ?> syms ss

List returning parsers Most often we are interested in results, and for that
reason we define some useful combinators with lists as results. The (<:>) com-
binator is a lifted version of the (:) constructor on lists.

(<:>) :: Sequence m ⇒ m α→ m [α]→ m [α]
p <:> ps = return (:) <?> p <?> ps

= fmap (:) p <?> ps

We also have the many combinator, which is like many0 but it returns a list of
all the recognized results.

many :: (Monoid m, Sequence m)⇒ m α→ m [α]
many p = ps

where ps = return [] <+> p <:> ps

26 2. GRAMMARS AND PARSERS

Finally the syms combinator is like syms0, but it returns the recognized se-
quence.

syms :: (Sequence m, Symbol m s)⇒ [s]→ m [s]
syms [] = return []
syms (s : ss) = sym s <:> syms ss

Exercise
Define the redup parser and the abc parser from section 2.6.1 using the new
derived combinators.

�

2.9 Error reporting combinators

In this thesis we do not consider how to report errors while parsing, which is a
very interesting subject of its own. There are many different views on how to
do error reporting, and most of them are fairly straightforward to add to any
given parser type. Here is a simple way, and by far not the only, to add error
reporting to a combinator parser.

• We have to change the result type from lists of values to something that
can hold information about parse errors. This is just an example of how
the new type can look like.

type Result s α = Either (Error s) [α]

The type of errors can e.g. be the position of the error, what the parser
was expecting, and what the parser did find. The position can e.g. be
an index in the input sequence, and the other two can be sets of input
symbols describing the token that was expected and the token that was
found.

type Error s = (Position, Expected s , Found s)
type Position = Int
type Expected s = Set s
type Found s = Set s

• And when we change the result type, we have to reflect that in the types
of the functions in the Parser class.

class Parser m s | m → s where
parse :: m α→ [s]→ Result s ([s], α)
parseFull :: m α→ [s]→ Result s α

2.10. DISCUSSION 27

• Finally we have to do changes to the definitions of the parser combinators,
which is left as an exercise for the reader. The main thing there is to
increase the position number whenever a token is being read.

Exercise
Add error reporting to each of the combinator parsers defined in chapter 3 and 4.

Exercise
In [26, 41] the authors add an extra combinator (<?>) so that the programmer
can give explicit names to different subparsers. This makes it possible to make
more readable error messages – the parse function can reply that it was expect-
ing a “number” instead of just saying that it wanted any of the characters “0”,
“1”, . . . , “9”. Extend the error reporting parsers from the last exercise with
this useful combinator. It might be necessary to read [26] first, to understand
how the (<?>) combinator works.

�

2.9.1 Error correcting combinators

Swierstra et al have given examples of how to do simple error recovery, to be
able to continue the parsing process and thereby hopefully catch more than one
parse error at the time [39, 40, 41]. This proves to be more difficult to add as
a feature to a given combinator parser, and in this thesis we do not pursue this
path any further.

2.10 Discussion

Sets and maps There are of course different implementations of sets and
finite maps, and [32] is a good source for functional implementations of these
data structures.

The implementations in the appendix are based on ordered lists, which might
sound too simple for efficient implementations. But in fact it is only the lookup
function for finite maps that can (and should) be implemented in a more efficient
way.

Complexity of set operations The complexity of the elemSet function is
of course linear in the size of the set, and it is a simple task to convert the
ordered list to a binary search tree to get logarithmic time lookup. But since
set membership is not used in any important functions, it is not necessary to
complicate the type.

Set union and difference is used much more extensively. The (<++>) and (<−−>)
operations are also linear time O(n), in the size n of the final set. The union
of a list of sets consists of a number m of applications of (<++>), so the time

28 2. GRAMMARS AND PARSERS

complexity is O(nm), where n is the size of the final union and m is the number
of sets to union.

The limit function is quadratic in the size of the final fix-point set. Suppose that
limit more start has n elements. According to the definition in section 2.2.1,
the more function will be called exactly once for each added element. And since
the result of the application of more is a subset of the final set, it will at most
give n new elements. This means that the final set is calculated as n unions of
sets with O(n) elements, which gives us O(n2). This result is true only if the
more function does not have complexity more than linear in n, otherwise the
complexity will be O(nm), where O(m) is the complexity of more.

Efficient lookup for finite maps In several chapters we will use finite maps
extensively, and especially the lookup function (?). This means that the linear
time lookup should be improved upon. It suffices to simply pair the ordered
association list with a balanced binary search tree which is built directly from
the list. All our implementations will first build the map using mergeWith, (|→),
makeMapWith , et cetera; and then lookup elements when the map is built. This
means that the linear time conversion from association lists to binary trees will
only be applied once.

Grammars There are of course also different possible implementations of
context-free grammars. Perhaps the most straightforward one is to use the
Either type for the set V = N ∪ Σ, which would give a different type for the
productions in the grammar.

type Production c t = (c, [Either c t])

The type of grammars would not need the terminal function transforming a
terminal to a set of non-terminals. This approach would be more in line with
the standard definitions of context-free grammars, but we have chosen another
path.

One reason for this is that the implementations of the parsing algorithms be-
come simpler and more elegant with our definitions. Another reason is that
the terminal function can be thought of as a tokenizer/morphological analyzer,
which anyhow will be implemented in a real application.

Combinator parsers The class hierarchy of the parser combinators might
seem complicated, and there are of course simpler ways of defining parsers. One
important reason for the hierarchy is that we want to be able to define both
context-free and monadic parsers within the same framework.

In many implementations of combinator parsers (such as [17, 23, 36, 44]), the au-
thors treat the problems of space leaks and unwanted ambiguities by introducing

2.10. DISCUSSION 29

combinators for pruning the search space. They are called “cut”, “xor” or “de-
terministic choice”, but they all amount to approximately the same behaviour.
The relations between these approaches, and their behaviour on different parser
types, is a very interesting subject which we do not cover in this thesis.

Derived combinators The derived combinators in section 2.8.1 are only
small examples of what can be done. For more elaborate examples we refer
to the literature, e.g. [17, 26, 40].

30 2. GRAMMARS AND PARSERS

Chapter 3

Existing Parser
Combinators

In this chapter we define some standard parser combinators, which are

already defined in the literature. First we define different backtracking

parsers, which are all descended from Wadler’s original parser. Then we

shift focus to breadth-first searching parsers, which means variants of the

stream processor parser.

3.1 Backtracking Parser Combinators

Almost all combinator parsers that have been proposed are based on backtrack-
ing. Furthermore, these parsers are all based on the standard “function-from-
strings-to-lists-of-results” parser, first suggested by Wadler [44].

3.2 The standard parser

This is the basic parser from which every other backtracking parser derives.
It has been intensively studied ever since Wadler’s first papers [44, 45]. The
standard parser is just a reflection of the type of the parse function, using lists
of input symbols.

newtype Standard s α = Std ([s]→ [([s], α)])

Since a list already is a monoid, we just lift the zero and choice to functions.

instance Monoid (Standard s) where
zero = Std (λinp → [])
Std p <+> Std q = Std (λinp → p inp ++ q inp)

32 3. EXISTING PARSER COMBINATORS

The return parser does not consume any input, and returns the argument.

instance PreMonad (Standard s) where
return a = Std (λinp → [(inp, a)])

To turn it into a monad, we have to define the (>>=) combinator. This is done
by applying the first parser to the input, getting a list of remaining inputs and
results, then applying the continuation to each of the results, and applying the
resulting parser to the remaining input; finally concatenating all the possible
results.

instance Monad (Standard s) where
Std p >>= k = Std (λinp → concat [q inp′ | (inp′, a)← p inp,

let Std q = k a])

The sat parser only have to check if the next input symbol satisfies the given
predicate, and return the remaining input together with the matched symbol as
result.

instance Eq s ⇒ Symbol (Standard s) s where
sat p = Std sat ′

where sat ′ (s : inp) | p s = [(inp, s)]
sat ′ = []

Since the standard parser is a parsing function by itself, we use that function
as the parse function.

instance Parser (Standard s) s where
parse (Std p) inp = p inp

3.3 Continuation based combinator parsers

The standard parser is not the best way to implement a backtracking parser.
There are two reasons for this: list concatenation and list concatenation. Both
in the definition of (>>=) and in the definition of (<+>) we have used list con-
catenation; and we tackle the two problems in order.

3.3.1 The continuation monad transformer

The first list concatenation problem is that the definition of bind (>>=) for the
list monad requires a concatenation of a list of lists, which can be inefficient.
The problem is that the sequencing combinators associate to the left, which
means that the corresponding list concatenations also will associate to the left.
And left-associative list concatenating is expensive, since lists themselves are

3.3. CONTINUATION BASED COMBINATOR PARSERS 33

right-associative.1 Another problem is that the standard parser will create lots
of intermediate lists which will immediately be garbage collected, and therefore
slow down the parsing. The solution to these problems is to use a continuation
monad transformer. This is one of the monad transformers by Liang, Hudak
and Jones [27].

The continuation transformer is a function that takes as argument the future – a
description of what we want to do with the result of the parser – and applies the
future to the result. The result of the application can be of any particular type,
which means that we must use the Haskell extension of existential quantification
in types [9], further described in the introduction, section 1.2.2, to be able to
make it an instance of the parser classes.

newtype ContTrans m α = CT (∀β. (α→ m β)→ m β)

The nice thing about a continuation transformer is that it is a monad regardless
of whether the underlying type is a monad or not. The return function just
applies the future to the result.

instance PreMonad (ContTrans m) where
return a = CT (λfut → fut a)

The bind combinator waits for a result a for the first parser p. Then it applies
the continuation k to the result a to get a new parser q, which is applied to the
future.

instance Monad (ContTrans m) where
CT p >>= k = CT (λfut → p (λa → let CT q = k a in q fut))

If the underlying type is a monoid, we can lift the monoid functions to the
continuation monad.

instance Monoid m ⇒ Monoid (ContTrans m) where
zero = CT (λfut → zero)
CT p <+> CT q = CT (λfut → p fut <+> q fut)

To be able to parse a sentence with the continuation monad, the underlying type
needs to be a parser, as well as a premonad. The underlying return function is
used as the initial future passed to the continuation parser.

instance (PreMonad m, Parser m s)⇒ Parser (ContTrans m) s where
parse (CT p) inp = parse (p return) inp

The only thing left to define now is the instance for the Symbol class. But
to avoid inefficiencies, we postpone that definition until we know what type
constructor we are going to apply the continuation transformer to.

1The left-associative concatenation ((. . . (xs1 ++ xs2)++ . . .)++ xsn) is quadratic in n; while
the right-associative concatenation (xs1 ++ (. . . ++ (xsn−1 ++ xsn) . . .)) is linear.

34 3. EXISTING PARSER COMBINATORS

Exercise

This is a perfectly functioning definition of the sat parser in terms of the un-
derlying type’s sat parser.

instance (Monad m, Symbol m s)⇒ Symbol (ContTrans m) s where
sat p = CT (λfut → sat p >>= fut)

In what way is this definition inefficient?
�

3.3.2 The standard continuation parser

To get a working continuation parser we apply the continuation transformer to
the standard parser.

type StandardCont s α = ContTrans (Standard s) α

Now we can define a version of the sat parser, which doesn’t use the sat of the
standard parser, by applying the future to the next input symbol.2

instance Symbol (StandardCont s) s where
sat p = CT (λfut → Std (sat ′ fut))

where sat ′ fut (s : inp) | p s = let Std p = fut s in p inp
sat ′ = []

3.3.3 The endomorphism parser

The second list concatenation problem of the standard parser lies in the def-
inition of alternation – we use list concatenation to join the results together.
The problems are much the same as described for the first list concatenation
problem, but the solution is slightly different. The solution is to use a function
from lists to lists instead of just lists. This is sometimes called an endomorphism
over lists, and is used in e.g. the language definition of Haskell, in the ReadS
and ShowS types.

An endomorphism is a monoid, just as a list is. The zero is the identity function,
and the (<+>) is function composition. This means that we can define a more
efficient variant of the standard parser, by using an endomorphism instead of a

2To be correct, we need to define the StandardCont type with a newtype declaration, but
this is trivial.

3.3. CONTINUATION BASED COMBINATOR PARSERS 35

list as result type.

newtype StandardEndo s α = StdE ([s]→ [([s], α)]→ [([s], α)])

instance Monoid (StandardEndo s) where . . .
instance PreMonad (StandardEndo s) where . . .
instance Monad (StandardEndo s) where . . .
instance Symbol (StandardEndo s) s where . . .
instance Parser (StandardEndo s) s where . . .

Unfortunately this parser will be very inefficient, since the definition for (>>=)
becomes awkward.

Exercise
Write the instance definitions of the parser classes for the endomorphism parser.

Exercise
Abstract away the result type from the standard parser to get the parser trans-
former StandardAbs.

newtype StandardAbs m s α = StdA ([s]→ m ([s], α))

Write the instance declarations for this parser. What classes must the abstracted
constructor m be instances of?

�

3.3.4 The endomorphism continuation parser

Finally we can use the standard endomorphism parser as the base type for the
continuation transformer, to get a backtracking parser which doesn’t use list
concatenation at all.

type StandardEndoCont s α = ContTrans (StandardEndo s) α

All instance declarations for the continuation transformer will of course remain
the same. It is only the symbol parser that has to be tailor-made for this parser.

Exercise
Define the Symbol instance for the endomorphism contiuation parser.

�
Versions of this final backtracking parser have been used in the works of Röjemo
[36], Koopman and Plasmeijer [23] and others, to build efficient backtracking
parsers. The authors tackle the problems of backtracking discussed in section
3.5, by introducing yet more combinators that can be used to prune the search
tree. Such a solution is more of ad-hoc nature and is not the path we pursue in
this thesis, so we leave these pruning, or “cutting”, combinators as they are.

36 3. EXISTING PARSER COMBINATORS

3.4 The stack continuation transformer

Doaitse Swierstra has in some papers introduced an efficient parser which has a
very complicated structure [39, 40]. This parser can be decomposed into three
parts: error correction, a trie structure and an underlying parser. The error
correction is not part of this thesis. The trie structure will be discussed in the
next chapter, in section 4.4.

From the underlying parser one can extract a new kind of continuation trans-
former, which we will call the stack continuation transformer.

newtype StackTrans m α = ST (∀βγ. (β → m γ)→ (α→ β)→ m γ)

The type is similar to the ordinary continuation transformer, but the parser
takes an extra argument apart from the future. This extra argument is a func-
tion α → β and will work as a stack of functions, translating the result to a
value accepted by the future. To use two continuations in this way makes it
possible to make use of sharing in a better way than the standard continuation
parser can.

The stack transformer is a pre-monad, where the future is applied to the result
of applying the stack to the value.

instance PreMonad (StackTrans m) where
return a = ST (λfut stack → fut (stack a))

The stack transformer is also an instance of Sequence. The (<?>) combinator
takes two parsers as arguments. The second is applied to the future, to become
the future for the first parser, similar to the ordinary continuation parser.

instance Sequence (StackTrans m) where
ST p <?> ST q = ST (λfut stack → p (q fut) (stack ·))

If f is the value of the first parser and a is the value of the second, the resulting
value should be f a. And if we apply the stack (stack ·) to f and a, we get what
we want – i.e. the resulting value will be stacked.

(stack ·) f a = (stack · f) a = stack (f a)

The monoid instance is just lifted from the underlying type.

instance Monoid m ⇒ Monoid (StackTrans m) where
zero = ST (λfut stack → zero)
ST p <+> ST q = ST (λfut stack → p fut stack <+> q fut stack)

Similar to the continuation transformer, we get an underlying parser by applying
the parser to the initial future (which is return) and the initial stack (which will
be the identity function).

instance (PreMonad m, Parser m s)⇒ Parser (StackTrans m) s where
parse (ST p) inp = parse (p return id) inp

3.5. BREADTH-FIRST SEARCHING PARSERS 37

3.4.1 Comparing the stack continuation with the standard
continuation

If we unfold the definitions for the standard continuation, we see that sequencing
can be defined as follows.

CT p <?> CT q = CT (λfut → p (λf → q (fut · f)))

We then notice that the future given to p is a lambda-abstraction over the f .
This in turn breaks the sharing of the q parser, because the q parser with its
continuation has to be rebuilt for every application of the sequence.

If we look at the sequence definition for the stack continuation, we see that the
lambda-abstraction is missing from the future. This means that q can be shared
and doesn’t have to be rebuilt for every application.

3.4.2 The standard stack continutation parser

If we apply the stack transformer to the standard parser we get a working stack
continuation parser.

type StandardStack s α = StackTrans (Standard s) α

The definition of the Symbol instance will be very similar to the definitions for
the StandardCont parser, we just add the extra stack argument to the helper
function.

instance Symbol (StandardStack s) s where
sat p = ST (λfut stack → Std (sat ′ fut stack))

where sat ′ fut stack (s : inp) | p s = let Std p = fut (stack s) in p inp
sat ′ = []

Exercise
Implement the StandardEndoStack parser by applying the stack transformer to
the endomorphism parser.

�

3.5 Breadth-first searching parsers

3.5.1 Problems with backtracking

There is a memory problem with the backtracking parsers mentioned in the last
section. When we have a choice in the grammar, the parser must hold on to
the input at that point until it knows whether the first parser succeeds or not,
because it must be able to try the second parser. This gives rise to a space

38 3. EXISTING PARSER COMBINATORS

leak – it can make a grammar that could be parsed in constant space to grow
linearly in the size of the input.

One solution to this problem is to introduce extra combinators to cut off the
search when we know where the solution is, as we briefly described above. An-
other solution, which is the path we pursue here, is to change from depth-first
search to breadth-first search.

3.5.2 The stream processor parser

Koen Claessen [5] has discovered a parser which parses the input in parallel, or
breadth-first, instead of depth-first as backtracking parsers do. This makes it
possible for the compiler to discard the previous input, thus not introduce the
possible space leak introduced by backtracking parsers. The parser in this sec-
tion is equivalent to one implementation of the stream processor in the graphics
library Fudgets [3], hence its name.

We start with a datatype of character streams, which is an extension of the
standard list type to also support reading from a stream of characters. So we
have a cons and a nil from the list type, and a shift that reads one symbol from
the input stream.

data Stream s α = Shift (s → Stream s α)
| α ::: Stream s α
| Nil

The Nil will of course serve as the zero of the monoid, and the alternation is an
extension of list concatenation. It collects all possible results until both streams
want to shift, and then it shifts simultaneously for both.

instance Monoid (Stream s) where
zero = Nil

Nil <+> bs = bs
as <+> Nil = as
(a ::: as) <+> bs = a ::: (as <+> bs)
as <+> (b ::: bs) = b ::: (as <+> bs)
Shift f <+> Shift g = Shift (λs → f s <+> g s)

The stream is also a premonad, where the return function creates a list with
one element, just as for ordinary lists.

instance PreMonad (Stream s) where
return a = a ::: Nil

3.5. BREADTH-FIRST SEARCHING PARSERS 39

To turn the stream type into a monad we pattern match on the first argument.

instance Monad (Stream s) where
Shift f >>= k = Shift (λs → f s >>= k)
(a ::: as) >>= k = k a <+> (as >>= k)
Nil >>= k = Nil

The stream is also an instance of the Symbol class, with a very simple definition
of the skip parser.

instance Symbol (Stream s) s where
skip = Shift return
sat p = Shift (λs → if p s then return s else zero)

To parse a stream we collect all possible results together with what’s left of the
input until the stream is empty. On a shift we apply the shift function to the
next input symbol.

instance Parser (Stream s) s where
parse (Shift f) (s : inp) = parse (f s) inp
parse (a ::: p) inp = (inp, a) : parse p inp
parse = []

We can also define the parseFull function in the obvious way, which will improve
the memory behaviour slightly.

parseFull (Shift f) (s : inp) = parseFull (f s) inp
parseFull p [] = collect p

where collect (a ::: p) = a : collect p
collect p = []

parseFull (::: p) inp = parseFull p inp
parseFull = []

3.5.3 The stream continuation parser

Unfortunately the stream processor parser suffers from the same disadvantages
as the standard parser – the definition of (>>=) is inefficient. To get efficient
sequencing for the stream processor, we wrap it into a continuation.

type StreamCont s α = ContTrans (Stream s) α

The final thing we have to do is to define the Symbol class in terms of the
underlying stream datatype. The sat parser needs an input symbol, which
means that we have a Shift applying the future to an input symbol satisfying
the predicate.

instance Symbol (StreamCont s) s where
sat p = CT (λfut → Shift (λs → if p s then fut s else zero))

40 3. EXISTING PARSER COMBINATORS

Exercise
The skip parser has a very nice definition for this parser. How does the definition
look like?

�

3.5.4 The stream stack continuation parser

It is also possible to combine the stream parser with the stack transformer.

type StreamStack s α = StackTrans (Stream s) α

And the Symbol instance is similar to the definition above, with an extra argu-
ment for the stack.

instance Symbol (StreamStack s) s where
sat p = ST (λfut stack → Shift (λs → if p s then fut (stack s) else zero))

3.6 Discussion

Compiler optimizations Today’s compilers are very good at optimizing
away inefficiencies in program code. One of the more efficient optimization
strategies is deforestation, which can be used to get rid of intermediate lists
[10]. This suggests that the continuation transformers might not be the best
optimization in all cases. And in fact, in some cases the continuation transform-
ers does not give much improvement compared to the standard list parser. But
in most cases the transformers give better results, which of course is what we
hoped for.

The stack continuation The stack continuation transformer was introduced
by Swierstra [39, 39], but it was hidden inside the type of his parser. We have
extracted the transformer, and realized that it can be applied to more base
parsers than Swierstra uses.

A stack continuation parser is efficient when parsing sequences p <?>q, because
it exploits sharing while parsing. The standard continuation parser on the other
hand does not exploit sharing, which means that it has to rebuild parsers many
times while parsing.

The drawback with the stack continuation is that it is not possible to define the
monadic (>>=), which means that it has a much more restricted use.

The stream parser The advantage and disadvantage of the stream processor
parser is that it is breadth-first instead of depth-first. For certain deterministic
grammars which expect large input, e.g. grammars for programming languages,
the problem of holding on to previous input is a big problem. Since the stream

3.6. DISCUSSION 41

parser searches breadth-first, the old input can immediately be discarded and
garbage-collected. This can lead to a space complexity which is constant instead
of linear in the size of the input.

The problem with the stream parser is if the grammar is not left-factorized, i.e.
if we have to parse different alternatives in parallel. Then we get the same kind
of memory problem that breadth-first search is known to have. We trade one
memory problem for another, and it depends on the application if we win or
lose.

42 3. EXISTING PARSER COMBINATORS

Chapter 4

Left-factorizing Parser
Combinators

In this chapter we define a new class of combinator parsers, building on

the data structure of tries, or letter trees. One can see these parsers as

generalizations of finite automata, or as simplifications of the parser by

Doaitse Swierstra [39, 41].

4.1 Left-factorization

Unfortunately, the stream processor parser described in the last chapter still has
one problem left. It is possible to have an alternation in the parser where both
choices start with the same input symbol. Then the stream processor parser
will test that input symbol twice, once for each choice.

As an example we can take a simple number parser, recognizing any of the
strings “three”, “four”, “thirty” and “forty”.

number = syms "three" ?> return 3
<+> syms "thirty" ?> return 30
<+> syms "four" ?> return 4
<+> syms "forty" ?> return 40

If the string to be recognized is “forty”, the stream processor parser checks the
first letter four times – twice to check for a t, and twice to check for an f –
and the second and third letter will be checked twice each – one for the string
“four”, and one for the string “forty”. This is clearly inefficient, and there is
a standard solution to this problem: left-factorize the grammar. This means
transforming the number parser into the equivalent parser number ′, where we

44 4. LEFT-FACTORIZING PARSER COMBINATORS

will have a minimal number of tests of input symbols.

number ′ = syms "th" ?> (syms "ree" ?> return 3 <+>
syms "irty" ?> return 30)

<+> syms "fo" ?> (syms "ur" ?> return 4 <+>
syms "rty" ?> return 40)

It is always possible to left-factorize a grammar by hand, to make the parser
more efficient. Unfortunately this can be a quite involved process, yielding a
grammar which is much more difficult to read and understand.

Another solution is to use the data structure of tries, or letter trees, to implement
a breadth-first searching parser that left-factorizes the grammar automatically.

4.2 Trie structures

Trie structures, or letter trees, are widely used to represent sets of sequences
with efficient lookup – the time to lookup an element can be as fast as linear
in the length of the sequence, if we use hash tables to lookup a single element.
Tries are also space-efficient, since a prefix for many different sequences is stored
only once.

In [32] there is a description on how to implement tries in a functional language.
That description is more general than the implementation in this chapter, but
they are otherwise very similar.

A trie is a tree-shaped deterministic finite automaton. That it is tree-shaped
means that there are no cycles, and that sub-tries cannot be shared between
nodes. That it is deterministic means that the trie is left-factorized completely.
Usually one draws a trie from left to right, with circles as the nodes of the
automaton and marked circles as final nodes, such as figure 4.1.

r
t

i

t y

ee
r

h

f

o
r

u
r

yt

Figure 4.1: A trie of the number parser.

Since we are working within a lazy programming language, we can define an
infinite trie – only the parts that are needed will be evaluated. Lazy functional

4.2. TRIE STRUCTURES 45

languages also have the possibility of sharing common substructures. In the
case of tries this means that the trie can be stored as a directed graph, where
common sub-tries are shared. The graph can even be cyclic, which means we
can represent an infinite trie in finite memory.

For the representation of the edges in the trie we will use finite maps from input
symbols to tries. An example implementation of finite maps is in the appendix,
implemented as ordered association lists.

4.2.1 The Trie Parser

A trie can be implemented as a kind of list, where the empty list is replaced by
a finite map pointing to a new trie. The elements in this “trie list” represent
the results of the corresponding node in the trie. This representation is similar
to the Stream data type in the previous section, but we won’t need any Nil
constructor since this can be accomplished with the empty map.1

data Trie s α = Shift (Map s (Trie s α))
| α ::: Trie s α

The zero is simply the empty map, and to combine two tries we just collect all
results and then merge the final maps together.

instance Ord s ⇒ Monoid (Trie s) where
zero = Shift emptyMap

(a ::: p) <+> q = a ::: (p <+> q)
p <+> (b ::: q) = b ::: (p <+> q)
Shift pmap <+> Shift qmap = Shift (mergeWith (<+>) pmap qmap)

A trie is also a premonad, just as the stream processor, where we just take the
result followed by the zero trie.

instance Ord s ⇒ PreMonad (Trie s) where
return a = a ::: zero

A trie can even be turned into a monad by pattern matching on the first argu-
ment. This definition is very similar to the definition of (>>=) for lists. If we
have a result a, we apply the continuation k to a and merge it with the bind
for the rest of the trie. If we have reached the end of the “trie list” we have a
finite map, and we map the continuation on each of its values.

instance Ord s ⇒ Monad (Trie s) where
(a ::: p) >>= k = k a <+> (p >>= k)
Shift pmap >>= k = Shift (mapMap (>>=k) pmap)

1To simplify the presentation, we will abuse the Haskell standard and overload the con-
structor functions Shift, (:::) and others, for each parser in this chapter.

46 4. LEFT-FACTORIZING PARSER COMBINATORS

To read a specific input symbol is just to make a shift on that symbol, returning
the result.

instance Ord s ⇒ Symbol (Trie s) s where
sym s = Shift (s |→ return s)

Finally, to parse we just go through the trie much in the same way as we did with
the stream processor parser. When we have a shift, we lookup the corresponding
input symbol in the finite map to get a new trie to continue with.

instance Ord s ⇒ Parser (Trie s) s where
parse (a ::: p) inp = (inp, a) : parse p inp
parse (Shift) [] = []
parse (Shift pmap) (s : inp) = case pmap ? s of

Just p → parse p inp
Nothing→ []

parseFull p [] = collect p
where collect (a ::: p) = a : collect p

collect = []
parseFull (::: p) inp = parseFull p inp
parseFull (Shift pmap) (s : inp) = case pmap ? s of

Just p → parseFull p inp
Nothing→ []

With this implementation of tries we get the automatic left-factorization of
grammars that was mentioned in the beginning of the chapter.

4.2.2 Ambiguous grammars

The definition of the parseFull function reveals a slight inefficiency in the trie
structure. In the middle case, when we are not at the end of the input, and have
a trie with a result in it, we throw away the result and continue parsing with
the “tail” of the trie. But if the grammar is very ambiguous, these intermediate
results can make parsing slower, since we have to wander through every inter-
mediate result in turn until we have reached a shift. For an ambiguous grammar
we can have much more than one such garbage result in every node.

There is another way to implement tries which doesn’t have these problems
with ambiguous grammars. Instead of thinking of a node in the trie as a list of
results with the finite map at the end, we will think of it as a pair of the list of
results and the finite map.

data AmbTrie s α = [α] :&: Map s (AmbTrie s α)

It’s straightforward to turn this trie into a premonad and to make it an instance

4.3. MEMORY EFFICIENT TRIES 47

of the Symbol class.

instance Ord s ⇒ PreMonad (AmbTrie s) where
return a = [a] :&: emptyMap

instance Ord s ⇒ Symbol (AmbTrie s) s where
sym s = [] :&: (s |→ return s)

The zero trie is a pair of the empty list and the empty map, and the choice
consists of concatenating the results, together with merging the finite maps.

instance Ord s ⇒ Monoid (AmbTrie s) where
zero = [] :&: emptyMap

(as :&: pmap) <+> (bs :&: qmap)
= (as ++ bs) :&: mergeWith (<+>) pmap qmap

For the (>>=) combinator we have to collect all possible results of applying the
continuation to the collected results, sum them together, and finally map the
continuation on the sub-tries in the finite map.

instance Ord s ⇒ Monad (AmbTrie s) where
(as :&: pmap) >>= k = foldr (<+>)

([] :&: mapMap (>>=k) pmap)
(map k as)

To parse a full sentence we simply go through the trie by looking up each symbol
in turn and when the sentence is finished the lists of results is returned.

instance Ord s ⇒ Parser (AmbTrie s) s where
parseFull (as :&:) [] = as
parseFull (:&: pmap) (s : inp) = case pmap ? s of

Just p → parseFull p inp
Nothing→ []

Exercise
Define the parse function on ambiguous tries and explain why this kind of trie
is more suited for parsing full sentences.

�

4.3 Memory efficient tries

A finite letter tree can only be used to represent a finite language. But context-
free grammars are used to represent infinite languages, which means that the
language {three, thirty, four, forty}∗ from the beginning of this chapter, will be
calculated to an infinite trie, as in figure 4.2.

48 4. LEFT-FACTORIZING PARSER COMBINATORS

r
i

t y

ee
r

u
r

f
t

y
t

r

t

h

f

o

f

f
t

t

o

h

Figure 4.2: The trie of the numbers0 parser.

This language is recognized by the numbers0 recognizer, and the question arises
how this will be stored in the memory of a lazy functional language, which
shares the common structures in a program.

numbers0 = many0 number

To start with, we need to know how the number parser is stored in memory.
We will show the parser as a graph, with arrows to picture the finite maps, see
figure 4.3

Shift
Shift

Shift

ShiftShift 3 ::: Shift

Shift

Shift

Shift
Shift 4 ::: Shift

Shift Shift 40 ::: Shift

Shift 30 ::: ShiftShifti

er

h

e

f

t

o

r
u

yt
r

ytr

Figure 4.3: The memory structure for the number trie.

4.3.1 Lazy tries are finite automata

The sharing behaviour of a lazy functional language turns the tree structure of
a trie into a directed graph, since two sub-tries can be shared. It is also possible
to have cycles in the graph, if a trie contains itself as sub-trie.

Consider the simple ab0 recognizer, defined as many0 (sym ’a’ <+> sym ’b’).
When parsing this trie, Haskell will expand the definitions of the combinators
and create a trie structure in memory. By doing the expansions ourselves we

4.3. MEMORY EFFICIENT TRIES 49

can informally reason about its space behaviour.2

ab0 ≡ many0 (sym ’a’<+> sym ’b’)
≡ let ps = return () <+> ((sym ’a’<+> sym ’b’) >> ps) in ps
≡ let ps = (() ::: zero) <+> ((sym ’a’<+> sym ’b’) >> ps) in ps
≡ let ps = () ::: (zero <+> ((sym ’a’<+> sym ’b’) >> ps)) in ps
≡ . . .
≡ let ps = () ::: (Shift [(’a’, ’a’ ::: zero),

(’b’, ’b’ ::: zero)] >> ps) in ps
≡ let ps = () ::: Shift [(’a’, (’a’ ::: zero) >> ps),

(’b’, (’b’ ::: zero) >> ps)] in ps
≡ . . .
≡ let ps = () ::: Shift [(’a’, ps), (’b’, ps)] in ps

Out informal reasoning therefore suggests that the ab0 recognizer will be ex-
panded to () ::: Shift [(’a’, ab0), (’b’, ab0)] while parsing, but then it is not
necessary to expand it further, since the sub-tries will be shared with the main
trie. The trie will thus be stored in memory as a graph with two cycles, see
figure 4.4.

() ::: Shift
a

b

Figure 4.4: The memory structure for the ab0 trie.

Observe that we have not proved anything, we have only tried to argue why a
reasonable implementation of a lazy functional language should store the ab0

recognizer as a cyclic graph. Informal tests performed for the Haskell imple-
mentations Hugs and GHC show that the reasoning really is correct. To prove
the claim formally one could use e.g. the theory of weak space improvement by
Gustavsson and Sands [12], but such a proof has yet to be done.

The numbers0 recognizer is also stored in finite memory due to sharing. A
similar reasoning as for the ab0 recognizer reveals the memory behaviour in
figure 4.5.

When parsing these tries, we do not have to recalculate the finite maps more
than once because of sharing. This means that they behave just as deterministic
finite automata.

2Observe that in this reasoning, we assume that the finite maps are stored as association
lists. To simplify the reasoning, we also assume zero <+> p ≡ p which is not quite the case,
it is more like zero <+> Shift pmap ≡ Shift pmap. It is no real problem, since the eqivalence
can be added as a case to the definition of (<+>) by using the predicate isEmptyMap.

50 4. LEFT-FACTORIZING PARSER COMBINATORS

() ::: Shift

Shift

Shift

Shift

Shift
Shift

Shift

Shift Shift

Shift

Shift

Shift Shift
o

f

t

i

e

ytr

r

h

u
r t y

e

r

Figure 4.5: The memory structure for the numbers0 trie.

Exercise
Manuel Chakravarty has described an efficient lexer using trie structures to
represent finite automata [4]. Read his paper and discuss the similarities with
our approach. How can we define his combinators using the combinators defined
in this thesis?

�

4.3.2 Failure of sharing

Unfortunately the construction above only works when we have cycles created
by the (>>) constructor; i.e. when we want to throw away the results of the cycle.
The many parser on the other hand returns a list of the results that are found
on the way. This means that if we define the ab parser as many (sym ’a’<+>
sym ’b’) we get a trie that takes up infinite memory.3

"a" ::: Shift
"aa" ::: Shift

"ab" ::: Shift

"bb" ::: Shift

"ba" ::: Shift
"b" ::: Shift

"" ::: Shift

b

b

a

ab

a

Figure 4.6: The memory structure for the ab trie.

It is impossible for any part to be shared with any other, since all results are
different from each other. Our numbers trie will also be infinite of exactly the
same reason.

3Lazy evaluation saves us here by only calculating the parts of a trie that is necessary, but
it is anyhow a problem.

4.3. MEMORY EFFICIENT TRIES 51

4.3.3 Extended tries

It is possible to solve this problem partly – not for the general monadic bind,
but for the fmap function, and therefore also for the (<?>), (<:>) and many
combinators which are definable in terms of the fmap function. We simply add
fmap as a constructor to the trie structure.

data ExTrie s α = Shift (Map s (ExTrie s α))
| α ::: ExTrie s α
| ∀β. FMap (β → α) (ExTrie s β)

This needs the extension of existential quantification in types [9], further de-
scribed in the introduction, section 1.2.2. We use the constructor FMap as the
implementation of the fmap function.

instance Ord s ⇒ Functor (ExTrie s) where
fmap = FMap

We now need a way to map a function to a trie, which we will call unfold . The
unfold function is like the traditional fmap, but it is only applied one step into
the trie structure.

unfold :: Ord s ⇒ (α→ β)→ ExTrie s α→ ExTrie s β
unfold f (Shift pmap) = Shift (mapMap (FMap f) pmap)
unfold f (a ::: p) = f a ::: FMap f p
unfold f (FMap g p) = FMap (f · g) p

The zero remains the same as before, and for the (<+>) we have to add cases
for the new constructor. The only thing we can do when we stumble upon a
FMap is to unfold the function into the trie.

instance Ord s ⇒ Monoid (ExTrie s) where
zero = Shift emptyMap

(a ::: p) <+> q = a ::: (p <+> q)
p <+> (b ::: q) = b ::: (p <+> q)
FMap f p <+> q = unfold f p <+> q
p <+> FMap f q = p <+> unfold f q
Shift pmap <+> Shift qmap = Shift (mergeWith (<+>) pmap qmap)

We do not have to make any changes to the PreMonad and Symbol classes.

instance Ord s ⇒ PreMonad (ExTrie s) where
return a = a ::: zero

instance Ord s ⇒ Symbol (ExTrie s) s where
sym s = Shift (s |→ return s)

52 4. LEFT-FACTORIZING PARSER COMBINATORS

To implement (>>=) we again need to add a case for the new constructor, and
still the only thing we can do is to unfold the function into the trie.

instance Ord s ⇒ Monad (ExTrie s) where
Shift pmap >>= k = Shift (mapMap (>>=k) pmap)
(a ::: p) >>= k = k a <+> (p >>= k)
FMap f p >>= k = unfold f p >>= k

When we want to parse an extended trie we could do it the simple way by just
adding an extra case for the FMap constructor and applying the function to all
results.

instance Ord s ⇒ Parser (ExTrie s) s where
parse (FMap f p) inp = [(inp′, f a) | (inp′, a)← parse p inp]
parse (a ::: p) inp = (inp, a) : parse p inp
parse (Shift) [] = []
parse (Shift pmap) (s : inp) = case pmap ? s of

Just p → parse p inp
Nothing→ []

But this will create a series of calls to map (for lists) while parsing, which will
consume memory, and another possibility is to add a continuation which will be
applied in the end instead.

instance Ord s ⇒ Parser (ExTrie s) s where
parse p inp = parse′ p inp id

where parse′ (FMap f p) inp k = parse′ p inp (k · f)
parse′ (a ::: p) inp k = (inp, k a) : parse′ p inp k
parse′ (Shift) [] k = []
parse′ (Shift pmap) (s : inp) k = case pmap ? s of

Just p → parse′ p inp k
Nothing→ []

Of course, this version will consume memory by building a big series of function
compositions which will not be resolved until the very end, but it is still an
improvement.

Exercise
Define the parseFull function for parsing full sentences.

�
Now assume that the many combinator is defined as in chapter 2, via applica-
tions of fmap

many p = ps
where ps = return [] <+> (p <:> ps)

= return [] <+> (fmap (:) p <?> ps)
= return [] <+> (fmap (:) p >>= λf → fmap f ps)

4.3. MEMORY EFFICIENT TRIES 53

With this definition we can derive the following memory behaviour of the ab
parser, defined previously as many (sym ’a’<+> sym ’b’).4

ab ≡ many (sym ’a’<+> sym ’b’)
≡ let ps = return [] <+> (fmap (:) (sym ’a’ <+> sym ’b’)>>=

λf → fmap f ps)
in ps

≡ let ps = [] ::: (FMap (:) (Shift [(’a’, ’a’ ::: zero),
(’b’, ’b’ ::: zero)])>>=

λf → FMap f ps)
in ps

≡ let ps = [] ::: (Shift [(’a’, (’a’:) ::: zero),
(’b’, (’b’:) ::: zero)]>>=

λf → FMap f ps)
in ps

≡ let ps = [] ::: Shift [(’a’, ((’a’:) ::: zero) >>= λf → FMap f ps),
(’b’, ((’b’:) ::: zero) >>= λf → FMap f ps)]

in ps
≡ let ps = [] ::: Shift [(’a’, FMap (’a’:) ps),

(’b’, FMap (’b’:) ps)]
in ps

In figure 4.7, we see how the ab trie is stored in memory by sharing its subtrees.
The same, but more complicated, reasoning leads to a memory behaviour of the
new version of the numbers trie as shown in figure 4.8

FMap (’b’:)

FMap (’a’:)

b

a
"" ::: Shift

Figure 4.7: The memory structure for the new ab trie.

There are still many possibilities for creating infinite tries – one is just to merge
a cyclic trie with itself. There is no way for the combinators to realize that
the functions in the FMap constructors really are the same, so the tries will be
unfolded to infinity. This means that even though the ab and numbers tries are
finite, the ab <+> ab and numbers <+> numbers tries will be infinite.

4We make the same assumptions about association lists and zero <+> p ≡ p as for the ab0

recognizer above.

54 4. LEFT-FACTORIZING PARSER COMBINATORS

() ::: Shift

Shift

Shift

Shift

Shift
Shift

Shift

Shift Shift

Shift

Shift

Shift Shift
o

f

t

i

e

tr

r

h

u
r

r

t y

y

e

FMap (4:)

FMap (40:)

FMap (30:)

FMap (3:)

Figure 4.8: The memory structure for the the new numbers trie.

Exercise
Why is it not possible to add an extra constructor for (>>=) instead of fmap, as
in the following definition?

data MonadTrie s α = Shift (Map s (MonadTrie s α))
| α ::: MonadTrie s α
| ∀β. MonadTrie s β :>>=: (β → MonadTrie s α)

�

4.3.4 Ambiguous grammars

We can do the same kind of fmap extension to the ambiguous trie from section
4.2.2, by adding a new constructor FMap to the data structure. This will increase
the possibilities of sharing in the same way as for the ExTrie parser.

data AmbExTrie s α = [α] :&: Map s (AmbExTrie s α)
| ∀β. FMap (β → α) (AmbExTrie s β)

Exercise
Give the definitions of the combinators and the parseFull function for this new
trie structure.

�

4.4 Parsing to parsers

Doaitse Swierstra has in recent papers [39, 41] devoted some time to implement
an efficient left-factorizing parser, and of course it is interesting to see where his
work fits in this framework.

The main idea is to combine the standard backtracking parsers from chapter 3
with trie structures, hopefully getting the advantages of both approaches. The

4.4. PARSING TO PARSERS 55

backtracking parsers are efficient on deterministic grammars, and the tries are
efficient for ambiguities. The basic idea of Swierstra’s parser is to use a standard
parser for the deterministic parts of the grammar and a trie for the choices.

Swierstra’s solution is to define a trie which contains parsers, not result values.
When we come to a choice in the grammar, we parse the trie until we come
to a deterministic part of the grammar. Then the trie will give us an efficient
deterministic parser with which we can proceed with the parsing. Until we again
come to a choice, when we parse the trie instead, and so on.

4.4.1 A trie of parsers

After removing the extra facilities for error reporting and error correction, which
we don’t cover in this thesis, and making the types more readable, we end up
with a type very similar to our basic trie, but with one extra constructor. The
basic idea of this trie structure is that it contains parsers, not values.

data ParserTrie s α = Shift (Map s (ParserTrie s α))
| α ::: ParserTrie s α
| Found α (ParserTrie s α)

The idea with the Found constructor is that if we reach it, we know how to
proceed with the parsing in a deterministic way, and thus do not have to look any
further in the trie. The second argument to Found is the trie to use when merging
two tries. The Found constructor is really only used in the definition of the sym
parser, since that parser is fully deterministic. The choice (<+>) removes all
Found constructors since the result is potentially non-deterministic. Sequencing
(<?>) keeps the structure of the trie, thus keeping the Found constructors, but
does not introduce any more.

Since the choice is potentially non-deterministic, we simply remove all Found
constructors. Otherwise the monoid instance is the same as for the standard
trie.

instance Ord s ⇒ Monoid (ParserTrie s) where
zero = Shift emptyMap

Found p ptrie <+> qtrie = ptrie <+> qtrie
ptrie <+> Found q qtrie = ptrie <+> qtrie
(p ::: ptrie) <+> qtrie = p ::: (ptrie <+> qtrie)
ptrie <+> (q ::: qtrie) = q ::: (ptrie <+> qtrie)
Shift ptries <+> Shift qtries = Shift (mergeWith (<+>) ptries qtries)

56 4. LEFT-FACTORIZING PARSER COMBINATORS

It is possible to map a function on parsers onto the trie structure, which means
we can make it an instance of the Functor class.

instance Ord s ⇒ Functor (ParserTrie s) where
fmap f (Shift pmap) = Shift (mapMap (fmap f) pmap)
fmap f (p ::: ptrie) = f p ::: fmap f ptrie
fmap f (Found p ptrie) = Found (f p) (fmap f ptrie)

Finally we can parse the trie to get a list of possible parsers to use. As soon as
we see a Found we have found a matching parser and do not have to look any
further in the input. The other cases are just like the parsing function for the
standard trie.

instance Ord s ⇒ Parser (ParserTrie s) s where
parseFull (Found p) inp = [p]
parseFull (p ::: ptrie) inp = p : parseFull ptrie inp
parseFull (Shift) [] = []
parseFull (Shift pmap) (s : inp) = case pmap ? s of

Just ptrie → parseFull ptrie inp
Nothing → []

4.4.2 Pairing a trie with a parser

To save unnecessary work we pair the trie with the underlying parser, which in
turn is defined in terms of parts in the trie. The underlying parser will be a
fast deterministic backtracking parser, such as the standard continuation parser
from section 3.3.2, or the stack continuation parser from section 3.4. We will
call this parser the real-parser in this section.

data PairTrie m s α = ParserTrie s (m α) :&: m α

We also have to define how to create a real-parser from a trie structure. To
do that we parse the trie with the input to get some parsers which we can
join together and use to parse the input. This sounds like duplicated work,
and indeed in the worst case it can lead to duplicated work. But for real-world
grammars, especially deterministic grammars, we will reach a Found constructor
quite soon and do not have to look any further into the trie structure.

makeParser :: (Ord s , Monoid m, Lookahead m s)⇒ ParserTrie s (m α)→ m α
makeParser ptrie = lookahead (anyof · parseFull ptrie)

Here we must make use of a function lookahead , which creates a parser from a
function on the input.

class Lookahead m s | m → s where
lookahead :: ([s]→ m α)→ m α

4.4. PARSING TO PARSERS 57

The standard parser is an instance of the Lookahead class, as well as the con-
tinuation transformer and the stack continuation transformer.

instance Lookahead (Standard s) s where
lookahead f = Std (λinp → let Std p = f inp in p inp)

instance Lookahead m s ⇒ Lookahead (ContTrans m) s where
lookahead f = CT (λfut → lookahead (λinp → let CT p = f inp in p fut))

Exercise
Define the Lookahead instance for the stack continuation parser.

�
The zero of the paired parser is the pair of the trie’s zero and the real-parser’s
zero. To join two parsers, we calculate a new trie structure from the given tries,
and create a new real-parser from the trie structure. Observe that we throw
away the given real-parsers, because they do not correspond to the resulting trie
structure.

instance (Ord s , Monoid m, Lookahead m s)⇒ Monoid (PairTrie m s) where
zero = zero :&: zero

(ptrie :&:) <+> (qtrie :&:) = pqtrie :&: makeParser pqtrie
where pqtrie = ptrie <+> qtrie

To return a result, we pair the underlying return real-parser with a trie that
returns that parser.

instance (Ord s , PreMonad m)⇒ PreMonad (PairTrie m s) where
return a = (p ::: zero) :&: p

where p = return a

The sym parser will be a pair of a trie structure and the natural real-parser.
The trie structure will be a Found to say that we do not have to look any further
ahead to know what parser we want to use. The rest of the trie structure is
what will be used if we want to join this parser with another one sometime.
This trie shifts the symbol to a trie that returns a skip real-parser.

instance (Ord s , Symbol m s)⇒ Symbol (PairTrie m s) s where
sym s = Found p ptrie :&: p

where p = sym s
ptrie = Shift (s |→ Found skip (skip ::: zero))

Recall that the skip parser doesn’t look at the next input symbol at all, which
makes it faster than the sym parser since it doesn’t have to do any comparisions.

58 4. LEFT-FACTORIZING PARSER COMBINATORS

To sequence two parsers, we create a brand new trie structure by adding the
second trie to the ends of the first one. And whenever we have a Found parser
in the first trie, we sequence that parser with the second’s real-parser.

instance (Ord s , Monoid m, Sequence m, Lookahead m s)
⇒ Sequence (PairTrie m s) where

(ptrie :&:) <?>∼(qtrie :&: q) = pqtrie :&: makeParser pqtrie
where pqtrie = mapPQ ptrie

mapPQ (Shift pmap′) = Shift (mapMap mapPQ pmap′)
mapPQ (p′ ::: ptrie ′) = mapPQ ptrie′

<+> fmap (p′<?>) qtrie
mapPQ (Found p′ ptrie ′) = Found (p′ <?> q) (mapPQ ptrie ′)

Observe that it is important that we pattern-match lazily on the second argu-
ment (which is denoted in Haskell by the preceding ∼), to stop us from falling
into a right-recursive trap.

Finally, to parse with a given parser, we can use the real-parser that has been
created from the trie. Observe that we cannot define the parse function, since
the makeParser function looks at the whole input sequence.

instance (Ord s , Parser m s)⇒ Parser (PairTrie m s) s where
parseFull (:&: p) = parseFull p

The pairing of a trie and a continuation parser makes it difficult to under-
stand how this parser really works. The simple explanation is that we use the
continuation parser where it is efficient – for deterministic parsing – and the
trie structure where it is appropriate – for the non-deterministic choices in the
grammar.

If we try to parse the string "threeforty" using the numbers parser, the parser
will behave something like the following. The parser first walks through the trie
for the initial "thr", then it can use the continuation parser for the following
"ree" until it comes to a choice again where it must walk through the trie for
the next "for", and then finally it can use the continuation parser for the last
"ty".

4.5 Discussion

Trie structures and LL(k)-grammars An LL(k) grammar is a grammar
which can be parsed in linear time by a recursive-descent parser with k symbols
of lookahead. Trie structures are deterministic, which means that a trie can
always be parsed in linear time through recursive-descent parsing. Thus a trie
structure can be said to implement an LL(∞) parser. But this is not entirely
true – since the trie structures are computed during parsing, the parsing will
not be linear in general.

4.5. DISCUSSION 59

Regular expressions and finite automata That tries can be used to com-
pile regular expressions to finite automata has already been noticed by Chakravarty
[4]. Here we go a step further to include polymorphic parse results, by defining
the ExTrie constructor.

60 4. LEFT-FACTORIZING PARSER COMBINATORS

Chapter 5

Chart Parsing

One particular algorithm, or rather a family of algorithms, common for

natural language grammars, is chart parsing [20, 46]. The algorithm is de-

scended from the algorithms of Earley [8] and Cocke, Kasami and Younger

[19, 47]. In chart parsing there are different strategies – you can parse top-

down or bottom-up, and combinations, with or without filtering. In this

chapter we implement unfiltered bottom-up chart parsing à la Kilbury

[21].

Chart parsing is a family of parsing algorithms, well suited for linguistic appli-
cations. It is a generalization of the algorithms of Earley [8] and Cocke, Younger
and Kasami [19, 47], of which the latter is described in more detail in chapter
7. Chart parsing has been described by Kay [20] and Wirén [46] among others,
and in the last years it has been even more generalized to the ideas of deductive
parsing [37] parsing schemata [38].

5.1 Edges and the chart

A chart is a set of items called edges. Each edge is of the form 〈i, j : A/β〉,
where 0 6 i 6 j are integers, A is a category and β is a sequence of categories.
If β is empty the edge is called passive, and we write it as 〈i, j : A〉; otherwise it
is called active. For an input of n words, we create n + 1 nodes labelled 0 . . . n.
The i:th word in the input will then span the nodes i− 1 to i.

The intended meaning of a passive edge 〈i, j : A〉 is that we have found the
category A spanning the nodes i and j. The meaning of an active edge 〈i, j :
A/β〉 is that if we can find the categories β between j and some k, then we will
know that A spans between i and k.

The key idea of chart parsing is that we start with an empty chart, to which we
add new edges by applying some inference rules. We write the rules in a natural

62 5. CHART PARSING

deduction style, where the following rule means that if the edges e1 . . . ek are in
the chart, and the property φ holds, add the edge e to the chart.

e1 . . . ek

e
φ

The properties are either on the form A→ β, which means that that particular
production is in the grammar; or on the form α⇒∗ ε, to say that the sequence
α is nullable, i.e. it only consits of empty categories. We write ti for the i:th
token in the input sequence.

5.2 Kilbury bottom-up chart parsing

There are different strategies for chart parsing, which are reflected in the infer-
ence rules. In the bottom-up strategy, we start by adding the input tokens as
passive edges, and then build the chart upwards. In this first version we assume
that we have no empty productions in the grammar, i.e. rules of the kind A→ ε.
This has the effect that there will never be any edges on the form 〈i, i : A/β〉
in the chart, which means that the corresponding graph will be acyclic. This
in turn makes it possible to implement the algorithm elegantly in Haskell. In
section 5.5 we will add specific inference rules for empty productions, to keep
the chart acyclic.

Scan All the categories for the k:th input token tk are added as passive edges
spanning the nodes k − 1 and k. As mentioned in section 2.1, we assume the
terminals only appear in unit productions, which means that this is the only
necessary inference rule dealing with terminals.

〈k−1, k : A〉 A→ tk

Predict If we have found a passive edge for the category A, spanning the
nodes j and k, and there is a production in the grammar that looks for an A,
we add that production as an edge. And since we have found the category A in
the right-hand side, we only have the categories after A left to look for.

〈j, k : A〉
〈j, k : B/β〉 B → Aβ

This particular variant of bottom-up parsing is called Kilbury parsing, first
described in [21]. The difference to the traditional bottom-up strategy is that
we do not add 〈j, j : B/Aβ〉 as an edge, since we anyhow will end up in the
edge above. Apart from saving some extra work, it will also help us keeping the
chart acyclic.

5.3. KILBURY PARSING IN HASKELL 63

Combine If we have an active edge looking for a A at the j:th node, and
there is a passive edge labelled A spanning j and k, we can move the active
edge forward to the k:th node.

〈i, j : B/Aβ〉 〈j, k : A〉
〈i, k : B/β〉

The parsing succeeds if there exists a passive edge for the starting category,
spanning the whole chart; i.e. if 〈0, n : S〉 is in the chart, where n is the number
of input tokens.

Depending on the parsing strategy the inference rules might look different, and
there can be even more rules. But one rule always exist in all chart parsing al-
gorithms, the Combine rule, also called “the fundamental rule of chart parsing”.

5.2.1 The chart as a directed graph

A nice way to visualize a chart is as a directed graph. The graph is almost
acyclic, because we can have edges going from one node to itself, but never
backwards to a previous node. As an example, suppose that we have the fol-
lowing fragment of an English grammar.

S −→ NP VP

VP −→ Verb | Verb NP

NP −→ Noun | Det Noun | NP PP

PP −→ Prep NP

Verb −→ flies | like | . . .

Noun −→ flies | time | arrow | . . .

Det −→ an | . . .

Prep −→ like | . . .

In figure 5.1 we see the chart after the first four words in the sentence “time
flies like an arrow”. The dotted arrows denote the edges that will be created
when the fifth word has been incorporated. Each arrow really symbolizes a set
of edges, which are written above and below the edge. E.g. there are seven edges
between node 1 and 2, of which three are active and four passive.

5.3 Kilbury parsing in Haskell

We will implement chart parsing in an incremental way, by starting with the
first input token and then applying all the inference rules. Then we add the

64 5. CHART PARSING

fliestime like an arrow

0 1 2 3 4 5

NPNP/PP NP/NounNP S/VP
NP VP

VP/NP
NP/PP

S/VP

S S

S VP

NP

Det NounPrep VerbNoun
Noun Verb

S

VP

PP

Figure 5.1: The chart after the first four words have been incorporated.

second token and apply the inference rules again. And so on until we have added
the last token, when we will have a final chart.

This strategy makes it possible to represent the chart as a list of states, each
state being all the edges ending in a particular node. The states will be called
Earley states, since this is how to represent the parsing state in Earley’s original
parsing algorithm, which in turn can be seen as an implementation of top-down
chart parsing. So, a chart will be a list of sets of edges.

type Chart c = [State c]
type State c = Set (Edge c)

The edge 〈j, k : A/α〉 is a 4-tuple of the two nodes j and k, the category A and
the list of categories α. But the ending node k is not necessary to remember,
since it is implicit in the position of the state in the chart list.

type Edge c = (Int, c, [c])

The main function builds a chart from a given grammar and the input sequence.

buildChart :: Ord c ⇒ Grammar c t → [t]→ Chart c
buildChart (, , terminal , productions) input = finalChart

where finalChart = map buildState initialChart
initialChart = . . .
buildState = . . .

For the sake of presentation we will define the rest of the functions on the top-
level, but in reality they need to be in the scope of the grammar and the input
sequence.

The initial chart consists of the results of the Scan inference rule applied to
the input tokens. Each Earley state k (except from the empty 0:th state) will

5.3. KILBURY PARSING IN HASKELL 65

consist of all the edges 〈k−1, k : A〉 such that A→ tk, where tk is the k:th input
token.1

initialChart :: Chart c
initialChart = emptySet : map initialState (zip [0 . .] input)

where initialState (j , sym)
= ordSet [(j , cat , []) | cat ← elems (terminal sym)]

Now we have to argue that we are allowed to use the ordSet function, i.e. that
the list is ordered. But since the elems function returns an ordered list, and
the list comprehension doesn’t change the order, the argument to ordSet will
be ordered.

Both the Predict and the Combine inference rule only apply to passive edges,
which means that an active edge will not lead to any new edges being added
to the chart. The reason why the Combine rule only applies to passive edges is
that the active edge 〈i, j : A/Bβ〉 ends in the j:th node, and since we have no
cycles in the graph, j < k, where k is the Earley state to which the new edge
〈i, k : A/β〉 will be added.

buildState :: State c → State c
buildState = limit more

where more (j , a, [])
= ordSet [(j , b, bs) |

(b, a′ : bs)← elems productions , a == a′]
<++> ordSet [(i , b, bs) |

(i , b, a′ : bs)← elems (finalChart !! j), a == a′]
more (j , b, a : bs)

= emptySet

The first list comprehension for the more function corresponds to the Predict
inference rule, and the second to the Combine rule. The Predict rule only has
to find the productions in the grammar that are looking for the found category
a, and the Combine rule searches in the previous j:th Earley state for the active
productions looking for an a.

Observe that buildState makes use of finalChart , which in turn is built by calling
the function buildState. This is permitted because buildState only looks up
previously built states in finalChart , and we use lazy evaluation. This technique
helps us to write a loop in an imperative algorithm in a clean functional way.

We finally have to prove that the arguments to the two applications of the ordSet
function are ordered lists. But this is true since the variables a and j are fixed
and the order between the other variables is retained in the comprehensions.

1We do not write k − 1 in the code, since it is already accounted for in the zip [0 . .]
application.

66 5. CHART PARSING

5.4 Building the parse trees

To build the parse trees, we only need the passive edges from the chart. Also,
things become simpler if we transform the list of Earley states into a big collec-
tion of all the passive edges.2

type Passive c = (Int, Int, c)

passiveEdges :: Chart c → [Passive c]
passiveEdges chart = [(i , j , cat) |

(j , state)← zip [0 . .] chart ,
(i , cat , [])← elems state]

Assuming that we already have built a collection of passive edges, we can pair
each edge with the parse trees corresponding to that edge.

buildTrees :: Grammar c t → [t]→ [Passive c]
→ [(Passive c, [ParseTree c t])]

buildTrees (, , terminal , productions) input passiveChart = edgeTrees
where edgeTrees = [(edge, treesFor edge) | edge ← passiveChart]

treesFor = . . .

To construct the parse trees of an edge 〈i, j : A〉, we find each matching pro-
duction A → α and get its right-hand side as a list of categories α. Then the
children function tries to find a path for α from i to j in the chart, while collect-
ing the parse trees for all the visited edges. Since there can be many different
paths for α between i and j, we can get many sequences of trees as the result
of the children function, and every one of these sequences are used to form a
parse tree for our given edge.

There is also the possibility that the edge was created by the Scan inference
rule, in which case we just add the parse tree for the i:th input token.

treesFor :: Passive c → [ParseTree c t]
treesFor (i , j , cat) = [cat :∧ trees |

(cat ′, rhs)← elems productions ,
cat == cat ′,
trees ← children rhs i j]

++ [cat :∧ [Leaf sym] |
i == j − 1,
let sym = input !! i ,
cat ‘elemSet ‘ terminal sym]

To collect the trees of the children, we make use of lazy evaluation and simply
lookup the trees in the list edgeTrees of edges and trees we are in the process of

2The collection will not necessarily be ordered, so we can not give it the type Set Edge,
but there will be no duplicated edges since it is calculated from a set.

5.5. ADDING EMPTY PRODUCTIONS 67

computing.

children :: [c]→ Int→ Int→ [[ParseTree c t]]
children [] i k = [[] | i == k]
children (c : cs) i k = [tree : rest |

i 6 k ,
((i ′, j , c′), trees)← edgeTrees ,
i == i ′, c == c′,
rest ← children cs j k ,
tree ← trees]

Observe that it is important to call the functions in the correct order – we must
collect the tail of the trees we are constructing before we take out one tree at
a time. Otherwise we get into an infinite loop because we try to look into the
trees before we have constructed them.

Finally we can collect the parse trees that correspond to an edge for the starting
category, spanning the whole input.

parse :: Ord c ⇒ Grammar c t → [t]→ [ParseTree c t]
parse grammar@(, start , ,) input

= case lookup (0, length input , start) edgeTrees of
Just trees → trees
Nothing → []

where edgeTrees = buildTrees grammar input passiveChart
passiveChart = passiveEdges finalChart
finalChart = buildChart grammar input

5.5 Adding empty productions

To be able to parse a grammar containing empty productions, i.e. productions
on the form A→ ε, we have to change the inference rules slightly.

Scan This inference rule remains the same as before.

〈k−1, k : A〉 A→ tk

Predict When we allow empty productions, a production can start with a
sequence of categories which are all empty. So, when we want to predict a new
possible edge, we skip the initial empty categories and go directly to the first
non-empty category.

〈j, k : A〉
〈j, k : B/β〉 B → αAβ, α⇒∗ ε

68 5. CHART PARSING

Combine The traditional inference rule remains the same, but we also have
to add another Combine rule. When we have an edge that looks for a category
A which is empty, i.e. can be rewritten to ε, we can simply skip that category.

〈i, j : A/Bβ〉 〈j, k : B〉
〈i, k : A/β〉

〈j, k : B/Aβ〉
〈j, k : B/β〉 A⇒∗ ε

This final algorithm is similar to the algorithm of Graham, Harrison and Ruzzo
[11], with only minor deviations.

5.5.1 Adding empty productions to the Haskell version

Since we have added a new Combine rule and changed the Predict rule, our
Haskell implementation should be changed. This means that the buildState
function that builds an Earley state from the initial edges needs some fixing.

buildState :: State c → State c
buildState = limit more

where more (j , a, [])
= makeSet [(j , b, bs) |

(b, abs)← elems productions ,
(a′ : bs)← removeNullable abs, a == a′]

<++> ordSet [(i , b, bs) |
(i , b, a′ : bs)← elems (finalChart !! j), a == a′]

more (j , b, a : bs)
= ordSet [(j , b, bs) |

a ‘elemSet ‘ empties grammar]

The changes to the previous definitions are two:

• In the list comprehension corresponding to the Predict inference rule, we
use a function removeNullable which removes possible empty categories
from the beginning of a list of categories, i.e. it removes all possible initial
sequences α⇒∗ ε from a given sequence.

removeNullable :: [c]→ [[c]]
removeNullable [] = []
removeNullable cats@(cat : cats ′)

| cat ‘elemSet ‘ empties grammar = cats : removeNullable cats ′

| otherwise = [cats]

Observe that this function does not necessarily return an ordered list,
which makes it necessary to use the makeSet function instead of ordSet
when defining buildState.

• We have added a list comprehension for the case of an active edge, which
corresponds to the extra Combine inference rule.

5.6. IMPROVING EFFICIENCY 69

5.5.2 Adding the parse trees

Since the cyclic passive edges corresponding to an empty production rule are
not stored in the chart, we have to consider them while building the trees. And
the only thing we have to do is to add all possible empty edges to the collection
of passive edges, which is done by simply enumerating all possible nodes and
empty categories.

passiveEdges :: Chart c → [Passive c]
passiveEdges chart = [(i , j , cat) |

(j , state)← zip [0 . .] chart ,
(i , cat , [])← elems state]

++ [(i , i , cat) |
i ← [0 . . length input],
cat ← elems (empties grammar)]

5.6 Improving efficiency

There are some ways to improve the efficiency of our implementation. Since
we are building the chart incrementally – building one Earley state fully before
starting to build the next – we can transform the previous states into more
efficient data structures when they are finished.

5.6.1 Analyzing the grammar

While building the chart and the parse trees we make heavy use of the grammar,
and the first thing one can try is to make the lookup in the grammar more
efficient.

In the Predict inference rule we search for a production whose leftmost category
matches a certain one. Also, it skips empty categories in the production. To
make this more efficient, one can transform the grammar into a balanced binary
search tree in which categories can be looked up to immediately get the matching
right-hand sides with the initial empty categories skipped. This turns the lookup
of productions logarithmic in the size of the grammar instead of linear.

While building parse trees we also lookup categories in the grammar, but this
time it is the main category of a production we are looking for, which means
that we need another binary search tree to make this lookup more efficient.

Exercise
Implement these two finite maps as balanced binary search trees. Call the first
one leftcornerMap and the second grammarMap . Change the implementations
of the functions buildState and treesFor to use the finite maps instead of the set
productions directly.

�

70 5. CHART PARSING

5.6.2 Efficient lookup in the chart

When we are building a new Earley state, we need to look up edges in the
previous states. Here we can make two improvements.

First, we can turn the chart into an array indexed over integers, instead of a list.
This will make it constant time to find a certain state in the chart. Second, we
can turn each state into a finite map, since we are looking for a certain category
in the state.

Exercise
Implement these two improvements on the chart, and change the buildState
function correspondingly.

�

5.6.3 Efficient lookup for parse trees

While building the parse trees, the children function searches for the parse trees
of a certain edge in the set edgeTrees of edges and trees. This can be improved
upon by transforming the set into a finite map, where we can lookup edges more
efficient.

Exercise
Implement this improvement on the edgeTrees set, and change the children
function correspondingly. The lookup in the parseResult can also use this im-
provement.

�

5.7 Discussion

Space complexity An edge in the k:th Earley state ends in node k and can
start in any node j < k. It can be derived from any of the productions in G,
and up to δ categories can have been removed from the right-hand side of its
production, where δ is the length of the longest production in G. This means
that there will be O(n|G|δ) edges in the k:th Earley state, since k = O(n). Since
there are n states altogether, we will have O(n2|G|δ) edges in the final chart.

Time complexity The Earley states are defined in terms of the limit func-
tion, which has a worst-case complexity of O(m2), where m is the size of the
final Earley state. See section 2.2.1 for a discussion of the limit function. This
gives us that the time to build one Earley state will be O(n2|G|2δ2). And since
we have n states in total, the worst-case complexity is O(n3|G|2δ2). This is the
standard complexity for imperative algorithms.

This result is not entirely true though, since the more function in buildState
has to do some extra work to calculate the edges to be added. In the version in

5.7. DISCUSSION 71

section 5.3 there are two list comprehensions – one going through all productions
and one going through all edges in a previous state. The first comprehension
has a complexity of O(|G|) and the second a complexity of O(n|G|δ), which
then have to be multiplied with the result above.

The improvements suggested in section 5.6 will only add an extra overhead of
O(log |N |), for the logarithmic lookup time in binary trees, where |N | is the
number of non-terminals in the grammar. Thus the final worst-case complexity
for chart parsing with the suggested improvements will be O(n3|G|2 log |N |δ2).

Building the parse trees The space and time complexity for building the
parse trees is of course exponential, since there can be an exponential number
of trees.

Lazy evaluation Lazy evaluation is used in two places; i) when building the
final chart as a list of Earley states, where we refer back to the earlier states
while building a new state; and ii) when calculating the parse trees, where we
refer to the parse trees of an edge, sometimes even before the trees of that edge
are calculated. Without laziness the code would be much clumsier and less
declarative, making it harder to read and understand.

Also, laziness will only calculate the parse trees that are used in the final parse
result. For our example grammar, this means that the parse tree of the sentence
(S) “flies like an arrow” will never be calculated, only the parse tree of the
corresponding verb phrase (VP).

72 5. CHART PARSING

Chapter 6

Generalized LR Parsing

In this chapter we define several versions of generalized LR parsing. The
original deterministic LR algorithm due to Knuth [22] was extended by
Lang [24] by using the LR table to process general context-free grammars.
We start with a simple bottom-up approach and improve it step-wise until
we reach an approximation of Tomita’s efficient LR algorithm [42]. This is
accomplished without using the complicated graph-structured stack used
in the Tomita algorithm. The approximation comes from the fact that in
Haskell we cannot know whether two structures are shared or not. Unfor-
tunately this approximation does not have polynomial time complexity.

The LR parsing algorithm is one of the ancient ones, dating back to the mid
60’s and Donald Knuth [22]. Most of the work in LR parsing has been done on
deterministic LR grammars, but the ideas can be used to parse general context-
free grammars. This was noted first by Lang in the 70’s [24], but his algorithm
was in the worst case exponential in the length of the input. It was not until
the mid 80’s when Tomita published his efficient parsing algorithm [42] that the
ideas became useful for e.g. natural language parsing.

Since the term “LR parsing” is often used to describe deterministic parsing of LR
grammars, we will follow the terminology in [38] and use the term “generalized
LR parsing” for the algorithms in this chapter.

The special thing with LR parsing is that the grammar is analyzed and compiled
into an “LR table” before the real parsing begins. While parsing we will only
make use of the LR table, and not refer to the original grammar at all.

6.1 The LR table

Before all parsing begins, the grammar is analyzed and compiled into a finite
automaton, with some extra facilities to handle the recursion in the grammar.

74 6. GENERALIZED LR PARSING

Here we will briefly describe the result of the compilation, and in section 6.5
later we will show an example of how the grammar can be analyzed.

All the functions described in this section, together with the type of LR states,
will be defined in that later section. Observe that they all depend on the gram-
mar, so in reality they will be defined as local functions inside the main parse
function.

6.1.1 The grammar as a finite automaton

The grammar is compiled into a finite automaton over the categories of the
grammar. The states of the automaton are called LR states, of which there is
a starting state and a set of final states. We implement the final state set as a
predicate accept .

type LRState c = . . .
startState :: LRState c
accept :: LRState c → Bool

The transition function is called shift, and it takes an old LR state and a cate-
gory, and returns a collection of new states.1 The collection might be empty, in
which case the shift is not possible.

shift :: LRState c → c → [LRState c]

6.1.2 The recursive parts of the grammar

A finite automaton can only recognize regular languages, but a context-free
grammar can do more than that. The difference is that a context-free grammar
is recursive, and we need a way to handle this to be able to use the automaton.

While traversing the automaton, the LR parser remembers the states it has
visited in a stack of states. In some of the states it is possible to, instead of
shifting to a new state, replace some of the top states of the stack with a new
one. This is determined by the reduce function, which returns a collection of
categories and integers, depending on the current state.2

reduce :: LRState c → [(c, Int)]

The integer determines how many states are to be popped off the stack, and
then we use apply the shift function to the new current state and the returned
category, to get the next state to be pushed onto the stack.

1In reality the automaton is deterministic, and it will never be possible to shift to more
than one state. This means that we could use Maybe (LRState c) as the result type, but the
code becomes simpler if we stick to lists.

2This particular definition of reduce gives rise to a LR(0) recognizer, where we do not care
about the next input symbol when determining whether to reduce or not.

6.1. THE LR TABLE 75

The reduce function applies when we have reached the end of a context-free
production, say A → β. The returned category will be A, and the integer
represents the number of symbols on the right-hand side, i.e. the length of β.
When we pop that number of states off the stack, we come to the state where
we were before we started to recognize β; and shift tells us where to go now
that we have recognized A.

6.1.3 A grammar of expressions

Consider the following grammar of simple mathematical expressions.

Sent −→ Expr

Expr −→ Digit | Expr Oper Expr

Digit −→ "5"

Oper −→ "-"

The grammar is highly ambiguous, since the operator can associate both to
the left and to the right. So the expression "5-5-5-5" can mean any of the
following: "((5-5)-5)-5", "(5-(5-5))-5", "(5-5)-(5-5)", "5-((5-5)-5)"
and "5-(5-(5-5))".

Figure 6.1 shows the automaton for this grammar. The reduce actions are shown
at the states where they act. The starting state is 1 and there is one final state,
number 2. In section 6.5 later, the automaton is explained more thoroughly.

Reduce (Expr,3)

Reduce (Expr,1)

3

1

2

4 5

Digit Digit

Expr Oper
Expr

Oper

Figure 6.1: The LR automaton for the expression grammar.

76 6. GENERALIZED LR PARSING

6.2 LR parsing without parse results

In this section we describe three different versions of LR parsing, which we call
depth-first, breadth-first and Tomita. They are given in order of simplicity, to
be able to explain the efficient Tomita parser.

The parsers given in this section do not calculate any parse results. In the next
section we will add parse trees to the implementations.

The implementations all define a function processX (where X depends on the
version), taking a stack (or a collection of stacks), and a list of categories as
arguments, and return a collection of stacks. The list of categories is the input
to be recognized, and the result will be all final parse stacks, whose top state is
accepted by the LR automaton.

6.2.1 A simple parse stack

Before we can describe a simple implementation of LR parsing, we must decide
on how the parse stack should look like. The stack will have the usual three
operations, push, top and pop. The pop operation will be a bit more general
than usual – it will take a number as argument, and pop that many elements
off the top of the stack.

For the first two algorithms we can simply say that a parse stack is a list of LR
states.

type Stack c = [LRState c]

The current state will always be the top of the stack, which can be retrieved
using the top operation.

Stack operations The stack operations are already defined in the Haskell
prelude as the list constructor (:), and the functions head and drop respectively.

push :: LRState c → Stack c → Stack c
push = (:)

top :: Stack c → LRState c
top = head

pop :: Int→ Stack c → Stack c
pop = drop

Reducing and shifting stacks Before we start defining the processing func-
tions, we introduce two auxiliary functions reduceS and shiftS , which work on
stacks, not states. reduceS reduces a stack any number of times, returning a

6.2. LR PARSING WITHOUT PARSE RESULTS 77

collection of stacks. Firstly, the stack need not be reduced at all, so we return
the stack itself. Secondly, we try to reduce the stack once by reducing the top
state, popping a number of elements off the stack and pushing a new shifted
state onto the popped stack. This gives us a number of new stacks, which in
turn can be reduced any number of times.

reduceS :: Stack c → [Stack c]
reduceS stack = stack : concat [reduceS (push state stack ′) |

(cat , n)← reduce (top stack),
let stack ′ = pop n stack ,
state ← shift (top stack ′) cat]

shiftS shifts a stack on a given terminal symbol. This can give rise to any
number of resulting stacks, since there can be many categories matching the
terminal. The new shifted state is pushed onto the stack, for each category.

shiftS :: Stack c → t → [Stack c]
shiftS stack sym = [push state stack |

cat ← terminal sym ,
state ← shift (top stack) cat]

6.2.2 Depth-first recognition

The depth-first version takes a parse stack and the input as arguments. The
first thing to do is to reduce the stack any number of times, and try to shift on
the input for each of the reduced stacks.

processDF :: Stack c → [t]→ [Stack c]
processDF stack input = concat [shiftDF stack ′ input |

stack ′ ← reduceS stack]

If we have reached the end of the input we return the given stack, provided
that the top state is a final state. Otherwise we shift on the next input symbol,
pushing the new state on the stack. Then we continue processing the rest of the
input.

shiftDF :: Stack c → [t]→ [Stack c]
shiftDF stack [] = [stack | accept (top stack)]
shiftDF stack (sym : input) = concat [processDF stack ′ input |

stack ′ ← shiftS stack sym]

Often one uses LR parsers only for deterministic LR grammars, in which case
there will only be one single choice every time. But we want to parse general
context-free grammars, and therefore we simply concatenate all possible results
from the shifts and the reduces. This gives a behaviour similar to the depth-first
search strategy of the programming language Prolog – we try to follow a path
as far as possible and then try the next one.

78 6. GENERALIZED LR PARSING

Exercise
Rewrite the list comprehensions in the Haskell do-notation, and use monoid op-
erations instead of list concatenation, to make the result type of stacks abstract.

reduceS :: (Monoid m, Monad m)⇒ Stack c → m (Stack c)
shiftS :: (Monoid m, Monad m)⇒ Stack c → t → m (Stack c)
processDF :: (Monoid m, Monad m)⇒ Stack c → [t]→ m (Stack c)
shiftDF :: (Monoid m, Monad m)⇒ Stack c → [t]→ m (Stack c)

�

6.2.3 Breadth-first recognition

The depth-first version works fine on deterministic and almost-deterministic
grammars, but not as well as we want on ambiguous grammars such as natural
language grammars. The problem is that on every ambiguity, we will create
new parse stacks, thus leading to an exponential number of stacks in the worst
case.

The solution is to merge the stacks while parsing, to reduce the exponential
explosion. But to be able to do this we have to parse the input breadth-first
instead of depth-first. I.e. we have to process all possible stacks at once, and shift
on them simultaneously. The new processing function will therefore work on a
list of stacks. It reduces all stacks at once and shifts on them simultaneously.

processBF :: [Stack c]→ [t]→ [Stack c]
processBF stacks input = shiftBF stacks ′ input

where stacks ′ = concat [reduceS stack | stack ← stacks]

If there is no input left, shiftBF filters out the stacks whose top state is accepted.
If there are input symbols left, it shifts on each of the stacks. Then it continues
processing the rest of the input.

shiftBF :: [Stack c]→ [t]→ [Stack c]
shiftBF stacks [] = [stack | stack ← stacks , accept (top stack)]
shiftBF stacks (sym : input)

= processBF stacks ′ input
where stacks ′ = concat [shiftS stack sym | stack ← stacks]

Exercise
Do the same as in the previous exercise; rewrite the list comprehensions in do-
notation, and use monoid operations instead of list concatenation, to abstract
over the list of stacks.

processBF :: (Monoid m, Monad m)⇒ m (Stack c)→ [t]→ m (Stack c)
shiftBF :: (Monoid m, Monad m)⇒ m (Stack c)→ [t]→ m (Stack c)

�

6.2. LR PARSING WITHOUT PARSE RESULTS 79

6.2.4 Tomita parsing

The breadth-first version is approximately as fast as the depth-first version.3

They both work on the same number of stacks, only with different search strate-
gies. What we want to do now is to reduce the number of stacks to work on.
Consider the ambiguous grammar of expressions described in section 6.1.3. Af-
ter having processed the first six symbols of the input "5-5-5-5" (thus only
having the final ’5’ left to process), we will have five parse stacks, as follows,
where the top of the stack is shown to the right.

1 2 4

1 2 4 5 4

1 2 4 5 4 5 4

1 2 4 5 4

1 2 4

We see that the stacks are very similar, in fact some of them are equal. And
since shift and reduce only depend on the top state of a stack, the processing
function will do the same work for each of the five stacks.

To avoid this duplicated work, we change the type of parse stacks to a tree-
structure, where the top states in the stacks are joined to a single “Tomita
stack”. This stack really represents a set of stacks – the set of all stacks with
the same top element. The five different parse stacks of above will then be
joined into one single Tomita stack.

1

1

1 2 4 5

2

2

4 5
4

The Tomita stack For more complicated grammars it might be the case
that not all stacks have the same top state, which means that the processing
function should work on a set of Tomita stacks. Since we have now changed data
structure from a list of stacks to a set of Tomita stacks, we need new versions of
the list functions we have been using. We can still use the list comprehensions
on the sets, since the sets are ordered lists of Tomita stacks, but we need new
versions of the concatenation functions (++) and concat , which we will call plusT
and unionT . We also need a way to join a list of Tomita stacks, which will be

3This is when we want all possible parses – the depth-first version is by far the fastest one
if we only want the first parse result.

80 6. GENERALIZED LR PARSING

called joinT .

plusT :: Ord c ⇒ TStacks c → TStacks c → TStacks c
unionT :: Ord c ⇒ [TStacks c]→ TStacks c
joinT :: Ord c ⇒ [TStack c]→ TStacks c

The type TStacks of sets of Tomita stacks will be implemented as ordered lists of
Tomita stacks. But the exact definitions of the operations and the type TStack
of Tomita stacks will be revealed in the next subsection; for now we can consider
the Tomita stack as an abstract data type.

We also need new versions of the push, top and pop stack operations, which will
be called pushT , topT and popT . The popT function will now return a list of
stacks, since a single Tomita stack is really a representation of a collection of
stacks.

pushT :: LRState c → TStack c → TStack c
topT :: TStack c → LRState c
popT :: Int→ TStack c → [TStack c]

The reason why we call the stack a “Tomita stack” is that since Haskell shares
common subparts of our tree structure, the tails of the stacks will be shared
and we end up with the tree stored as a graph in memory. This graph structure
corresponds to the graph structured stack used in the original Tomita algorithm.

1

4 5
42

4

5

Reducing and shifting Tomita stacks The auxiliary functions reduceS and
shiftS have to be slightly modified, so we rename them to reduceTS and shiftTS .
In principle we only have to replace concatenation with union and (stack :) with
plusT [stack]. Apart from that we have to remember that popT returns a
collection of stacks, not a single one.

reduceTS :: TStack c → TStacks c
reduceTS stack = [stack] ‘plusT ‘

unionT [reduceTS (pushT state stack ′) |
(cat , n)← reduce (topT stack),
stack ′ ← popT n stack ,
state ← shift (topT stack ′) cat]

The shiftT function has to join the resulting list of Tomita stacks into a set.

shiftTS :: TStack c → t → TStacks c
shiftTS stack sym = joinT [pushT state stack |

cat ← terminal sym,
state ← shift (topT stack) cat]

6.2. LR PARSING WITHOUT PARSE RESULTS 81

Tomita processing The processing functions are not changed much from the
breadth-first version. The only real difference is that concatenation is replaced
by union.

processT :: TStacks c → [t]→ TStacks c
processT [] input = []
processT stacks input = shiftT stacks ′ input

where stacks ′ = unionT [reduceTS stack | stack ← stacks]

shiftT :: TStacks c → [t]→ TStacks c
shiftT stacks [] = [stack | stack ← stacks , accept (topT stack)]
shiftT stacks (sym : input)

= processT stacks ′ input
where stacks ′ = unionT [shiftTS stack sym | stack ← stacks]

6.2.5 The Tomita parse stack

The Tomita parse stack will be a tree of states – the top state can be followed
by any number of stacks, represented by a set of stacks.

data TStack c = LRState c ::: TStacks c
type TStacks c = [TStack c]

Remember that the set of stacks is a list of stacks, ordered by the top state. The
reason why we do not use our standard Set datatype is that we cannot make
use of set union (<++>), but have to define our own variant plusT , which also
joins the tails of the stacks.

Stack operations To pop a number of states from a Tomita stack we have
to collect all possible stacks that can be the result.

popT :: Int→ TStack c → [TStack c]
popT 0 stack = [stack]
popT n (state ::: stacks) = concat [popT (n − 1) stack | stack ← stacks]

To push a state onto a stack, we put it in front of the singleton stack. The top
element of a Tomita stack is also straightforward.

pushT :: LRState c → TStack c → TStack c
pushT state stack = state ::: [stack]

topT :: TStack c → LRState c
topT (state ::: stacks) = state

82 6. GENERALIZED LR PARSING

Set operations To join a list of stacks into a set, we turn each of the stacks
into a singleton set, which we then union together. This corresponds to the
makeSet function on ordered lists in appendix A.

joinT :: Ord c ⇒ [TStack c]→ TStacks c
joinT xs = unionT [[x] | x ← xs]

To union a list of sets together, we do the usual splitting and merging as in the
ordered list union in the appendix. The merging is done by the plusT operation.

unionT :: Ord c ⇒ [TStacks c]→ TStacks c
unionT [] = []
unionT [x] = x
unionT xys = let (xs , ys) = split xys

in unionT xs ‘plusT ‘ unionT ys
where split [] = ([], [])

split [x] = ([x], [])
split (x : y : xys) = let (xs , ys) = split xys in (x : xs, y : ys)

To merge two sets together, we go through them in parallel, similarly to the
mergeWith function for association lists in the appendix. Since the tail of each
Tomita stack is a set of Tomita stacks, we use plusT recursively to join the tails.

plusT :: Ord c ⇒ TStacks c → TStacks c → TStacks c
plusT [] ys = ys
plusT xs [] = xs
plusT xs@(x@(a ::: as) : xs ′) ys@(y@(b ::: bs) : ys ′)

= case compare a b of
LT→ x : plusT xs ′ ys
GT→ y : plusT xs ys ′

EQ→ (a ::: plusT as bs) : plusT xs ′ ys ′

Exercise
The alert reader may have noticed that the type of sets of Tomita stacks corre-
sponds to a finite map from states to sets of Tomita stacks.

newtype TStacks c = TS (Map (LRState c) (TStacks c))

We have to declare it as a newtype, since the type is recursive. How will
the stack operations look like is we use this definition of Tomita stacks? What
operations on finite maps can we reuse? How will the type TStack look like,
and what changes must be made to the processing functions?

�

6.3 Adding parse results

For the parsing to be really useful we have to return some kind of parse result –
the final parse stack doesn’t give us much. This means that we have to change

6.3. ADDING PARSE RESULTS 83

the type of stacks, as well as the processing functions.

6.3.1 The parse stack with interleaved parse results

It is only the states below the top state in a stack that have a parse result
associated with them; i.e. the top state does not have a parse result yet. This
suggests that we use a list of pairs of parse results and states for the tail of the
stack, and then pair that list with the top of the stack.

type Stack c res = (LRState c, [(res , LRState c)])

Stack operations The push function has to take a parse result as well as a
state to be able to push something onto the stack. Observe that the given parse
result is associated with the previous top state, not for the new state.

push :: LRState c → res → Stack c res → Stack c res
push state result (state ′, stack) = (state, (result , state ′) : stack)

The top of the stack is the first element of the pair.

top :: Stack c res → LRState c
top (state,) = state

The new pop function will, apart from the new stack, also return the parse
results that have been popped from the stack. This list might then be used while
reducing to calculate a new parse result. The list will be returned in reversed
order, since a stack stores its elements in reversed order. This reversing is done
by accumulating the popped trees via an auxiliary pop′ function.

pop :: Int→ Stack c res → ([res], Stack c res)
pop n = pop′ n []

where pop′ 0 popped stack = (popped , stack)
pop′ n popped (state, (result , state ′) : stack)

= pop′ (n − 1) (result : popped) (state ′, stack)

In the rest of this section we will consider parse trees as the possible parse results.
An exercise in section 6.3.3 gives another alternative type of parse result.

6.3.2 Depth- and breadth-first parsing with parse trees

Reducing and shifting stacks The changes necessary to the reduceS and
shiftS functions are to calculate a parse tree which will be pushed onto the stack.

84 6. GENERALIZED LR PARSING

The parse tree for reduceS is the reduced category together with the popped
parse trees.

reduceS :: Stack c (ParseTree c t)→ [Stack c (ParseTree c t)]
reduceS stack = stack : concat [reduceS (push state tree stack ′) |

(cat , n)← reduce (top stack),
let (popped , stack ′) = pop n stack ,
let tree = cat :∧ popped ,
state ← shift (top stack ′) cat]

The parse tree for shiftS is the input symbol together with its corresponding
category.

shiftS :: Stack c (ParseTree c t)→ t → [Stack c (ParseTree c t)]
shiftS stack sym = [push state tree stack |

cat ← terminal sym ,
let tree = cat :∧ [Leaf sym],
state ← shift (top stack) cat]

Processing the input We do not have to change the processing functions for
depth-first and breadth-first – the necessary changes are already done in reduceS

and shiftS . Only the type signatures will be slightly different, to incorporate
that the stacks now hold parse trees as results.

processDF :: Stack c (ParseTree c t)→ [t]→ [Stack c (ParseTree c t)]
shiftDF :: Stack c (ParseTree c t)→ [t]→ [Stack c (ParseTree c t)]

processBF :: [Stack c (ParseTree c t)]→ [t]→ [Stack c (ParseTree c t)]
shiftBF :: [Stack c (ParseTree c t)]→ [t]→ [Stack c (ParseTree c t)]

6.3.3 Tomita parsing

The changes to the Tomita parsing functions are the same as the changes to
the breadth-first version above. The processT and shiftT functions remain the
same; and the changes to shiftTS and reduceTS is that we have to calculate a
parse tree to be pushed onto the stack.

Exercise
Change reduceTS and shiftTS in the same way as was done for reduceS and
shiftS ; by calculating a parse tree to be pushed onto the Tomita stack.

Finally implement the functions processT and shiftT to work on Tomita stacks
with parse trees. You can assume the changes to the Tomita stack described
below.

�

6.3. ADDING PARSE RESULTS 85

Exercise
Implement an alternative way to do the LR processing by building a chart while
reducing the stacks. Recall from chapter 5 that a chart is a collection of edges,
and in this case it will only consist of passive edges, where a passive edge is a
triple 〈i, j : A〉, saying that the category A spans the nodes i and j.

type Passive c = (Int, Int, c)

Our stack will now have passive edges as results, and not parse trees. When
reducing a stack, we add a new passive edge to the chart. The category of the
passive edge is the reduced category, and the starting node can be recovered
from the edges that are popped off the stack. The ending node depends on
where in the input we are right now, which means that we have to propagate
an integer saying how many symbols that have been processed so far.

reduceTS :: TStack c (Passive c)→ Int→ TStacks c (Edge c)

When shifting, we add a passive edge corresponding to the shifted category,
spanning i and i + 1, where i is node of the current input symbol.

shiftTS :: TStack c (Passive c)→ t → Int→ TStacks c (Edge c)

The processing function can now add all newly created edges to the final chart,
before continuing with the next input symbol

processT :: TStacks c (Passive c)→ [t]→ Int→ Set (Passive c)
processT stacks input i = edges <++> shiftT stacks ′ input i

where stacks ′ = unionT [reduceTS stack i | stack ← stacks]
edges = makeSet [edge | stack ′ ← stacks ′,

([edge],)← popT 1 stack ′]

The shiftT function can return the empty set when there is no input left, since
we have already added all possible edges to the chart.

shiftT :: TStacks′ c → [t]→ Int→ Set (Passive c)
shiftT stacks [] = emptySet
shiftT stacks (sym : input) i = processT stacks ′ input (i + 1)

where stacks ′ = unionT [shiftTS stack sym i |
stack ← stacks]

When the processing has suceeded we can use the function buildTrees in section
5.4 to calculate the final parse trees.

�

6.3.4 The Tomita stack

The change necessary for the Tomita stack is to pair a parse result with a set
of stacks, for the tail of the Tomita stack, similar to what was done for the

86 6. GENERALIZED LR PARSING

standard parse stacks. This means that the tail of a Tomita stack will be a
finite map from results to sets of Tomita stacks.

data TStack c res = LRState c ::: Map res (TStacks c res)
type TStacks c res = [TStack c res]

Stack operations The change to pushT is very small; the pushed parse tree
is paired with the old stack. The topT function remains the same.

pushT :: LRState c → res → TStack c res → TStack c res
pushT state result stack = state ::: (result |→ [stack])

topT :: TStack c res → LRState c
topT (state ::: stacks) = state

To pop elements off a Tomita stack, we use an accumulator, as we did for
the ordinary parse stack. We only have to remember that there can be many
resulting stacks, which gives a list of results.

popT :: Int→ TStack c res → [([res], TStack c res)]
popT n = popT ′ n []

where popT ′ 0 popped stack = [(popped , stack)]
popT ′ n popped (state ::: smap)

= concat [popT ′ (n − 1) (result : popped) stack |
(result , stacks)← assocs smap,
stack ← stacks]

Set operations The joinT and unionT operations remain exactly as before,
so we do not repeat their definitions here. The plusT will be just slightly
different, in that we have to merge the two finite maps. This has the effect that
the result type must have an ordering.

plusT :: (Ord c, Ord res)⇒ TStacks c res → TStacks c res → TStacks c res
plusT [] ys = ys
plusT xs [] = xs
plusT xs@(x@(a ::: as) : xs ′) ys@(y@(b ::: bs) : ys ′)

= case compare a b of
LT→ x : plusT xs ′ ys
GT→ y : plusT xs ys ′

EQ→ (a ::: mergeWith plusT as bs) : plusT xs ′ ys ′

6.4. INITIALIZING AND RUNNING THE PARSING 87

Exercise
Implement the type of sets of Tomita stacks as a finite map from states to finite
maps from results to Tomita stacks.

newtype TStacks c res = TS (Map (LRState c) (Map res (TStacks c res)))

What changes must be made to the stack operations and to the processing
functions?

�

6.4 Initializing and running the parsing

The processing functions defined above all take as input a stack (or a collection
of stacks) and return a collection of stacks. The main parsing function initializes
the processing a single stack consisting of only the starting LR state. After the
end of the processing we will have a collection of stacks, which all are of length 2
– the top state being the accepted state, and the bottom state being the starting
state. Between those two states we will find one of the parse trees we are looking
for. So to retrieve the final parse trees, we only have to pop one state off each
of the stacks and use the popped parse tree.

Depth-first parsing The parsing function for the depth-first version uses
the initial stack with the start state as the top element. All the previously
mentioned functions (except for the stack operations) must be declared locally,
because they all depend on the grammar.

parseDF :: Ord c ⇒ Grammar c t → [t]→ [ParseTree c t]
parseDF grammar input = [tree |

stack ← processDF (startState, []) input ,
let ([tree],) = pop 1 stack]

where processDF = . . .
shift = . . .
reduce = . . .
accept = . . .
startState = . . .

Breadth-first parsing The single difference with the breadth-first version is
that we start with a singleton list of initial stacks.

parseBF :: Ord c ⇒ Grammar c t → [t]→ [ParseTree c t]
parseBF grammar input = [tree |

stack ← processBF [(startState, [])] input ,
let ([tree],) = pop 1 stack]

where processBF = . . .
. . .

88 6. GENERALIZED LR PARSING

Tomita parsing The Tomita version is similar, the only real issue being to
remember that the popT operation returns a list of results instead of just a
single result. Also we need an ordering on the terminals, since we use parse
trees as parse results in the stack.

parseT :: (Ord c, Ord t)⇒ Grammar c t → [t]→ [ParseTree c t]
parseT grammar input = [tree |

stack ← processT [startState ::: []] input ,
([tree],)← popT 1 stack]

where processT = . . .
. . .

6.5 Creating the LR parsing table

There is a restriction on the grammar for the parsing process to be correct.
There has to be only one production for the starting category, and that produc-
tion has to be a unit production. The example grammar obeys this restriction
by the unit production Sent −→ Expr.

A grammar that doesn’t obey the restriction can easily be augmented with a
new starting category S′ and a new production S′ → S, where S is the old
starting category. In the literature one usually augments the grammar with a
production S′ → S$, where $ is a new end-marker terminal category; but this
is strictly only necessary when we have lookahead. See also the final exercise in
this chapter.

The reason for the restriction is that otherwise will the final parsing stack not
be of length 2 with the final parse tree in between as described previously.

The LR state The LR state is a set of LR items, an item is a dotted pro-
duction. A dotted production is of the form A→ α ·β, where the symbols after
the dot represents the unrecognized part of the production. Since the symbols
before the dot are uninteresting for the LR item, we skip that part. An item is
therefore a pair of the sequence of categories β and what production the item
is derived from.

type LRState c = Set (Item c)
type Item c = ([c], Production c)

We will need a helper function for building a LR state from an initial set of
items. This uses the limit function to calculate a minimal fixpoint set, and for
each added item it adds new items for the next category of that item.

buildState :: Set (Item c)→ LRState c
buildState = limit more

where more (cat : ,) = newItems cat
more = emptySet

6.5. CREATING THE LR PARSING TABLE 89

The newItems function selects the productions for a given category.

newItems :: c → Set (Item c)
newItems cat = makeSet [(tofind , rule) |

rule@(cat ′, tofind)← elems productions ,
cat == cat ′]

The shift table The transition function finds all items in the given state
matching the given category, and builds a new state from them.

nextState :: LRState c → c → LRState c
nextState state cat = buildState

(makeSet [(tofind , rule) |
(cat ′ : tofind , rule)← elems state,
cat == cat ′])

If a transition is not possible, the resulting state will be an empty set, so the
shift function has to check that the result is not an empty set.

shift :: LRState c → c → [LRState c]
shift state cat = if isEmpty state ′ then [] else [state ′]

where state ′ = nextState state cat

The reduce table It is possible to reduce in a state if there is an item which
has no more categories to find. The result will be the main category of the
production and the number of symbols in the right-hand side, which determines
the number of states to pop off the stack.

reduce :: LRState c → [(c, Int)]
reduce state = [(cat , length rhs) | ([], (cat , rhs))← elems state]

The accepting states A state is accepted if the starting category is recog-
nized.

accept :: LRState c → Bool
accept state = or [cat == start | ([], (cat ,))← elems state]

The starting state For the starting state we only have to build the LR state
corresponding to the starting category.

startState :: LRState c
startState = buildState (newItems start)

In figure 6.2 we show the LR automaton for the example grammar, with the
states represented as sets of LR items.

90 6. GENERALIZED LR PARSING

Expr Expr Oper Expr
Expr
Expr

 Expr Oper Expr
 Digit

4

Sent
Expr
Expr

 Expr
 Expr Oper Expr
 Digit

1

Expr Digit
3

Reduce (Expr,1)

Sent Expr
Expr Expr Oper Expr

2

Expr Expr Oper Expr
Expr Expr Oper Expr

5

Reduce (Expr,3)

O
pe

r

Expr

D
ig

it

Digit

O
perExpr

Figure 6.2: The LR automaton for the expression grammar.

Exercise
Make the LR functions more efficient by numbering all the sets of items, and
using the index of the set as the LR state. Then you can create tables in the
form of finite maps or arrays, to efficiently lookup the results of shift , reduce
and accept .

Exercise
The implementation in this section uses an LR(0) automaton, with no lookahead
for the reduction step. Implement a SLR(1) parser by the following changes.

• The reduce function has to take the next input category as another ar-
gument. In the definition for reduce, we can add the constraint that the
next category is in the follow set of the reduced category (nextcat ‘elemSet ‘
follow cat).

• The grammar has to be augmented with a special end marker category E
(and corresponding terminal), and the production for the starting category
has to be changed to S′ → S E.

• In the parsing function, the end marker terminal has to be added to the
end of the input sequence (input ++ [endMarker]).

• The reduceS function and corresponding has functions to be changed to
accomodate the changed type of reduce.

�

6.6. DISCUSSION 91

6.6 Discussion

Space complexity The depth-first and breadth-first parsing strategies are
both exponential in the worst case. The number of stacks can grow exponentially
for an ambigous grammar such as the expression grammar.

By using the Tomita stack, we will not get this explosion of stacks, since the
top states are merged together. The data structure TStack is a tree; but since
whenever we duplicate a stack the results will be shared in a lazy language,
this means that the bottoms of the tree of stacks will be shared. Thus, the
Tomita stack will be stored in memory as a directed acyclic graph. This memory
structure makes the memory behaviour the same as Tomita’s original GLR
algorithm [42]. But in the version presented here we do not have to implement
a data structure of directed graphs, but a simpler tree data structure.

Time complexity Unfortunately the time complexity is not the same as in
the GLR algorithm. Although the stacks are are stored in memory polynomial
in the length of the input, Haskell doesn’t know this. It is still possible to do the
same reduction on shared sub-stacks twice (or more times), because we cannot
observe that they are the same stack.

The time complexity of the original GLR algorithm is O(nδ+1), where δ is the
length of the longest production in the grammar. Our approximation will still
be in the worst case exponential in the length of the input, which is the same
as the depth-first and breadth-first versions. The Tomita approximation is still
an improvement over the other versions, although not complexity-wise.

Implicit stack graph Another problem with the implicit sharing of sub-
stacks is that it is impossible to extract the graph if we e.g. would like to
visualize it in some way. Or to be more correct, it is impossible unless we
use some impure extension of Haskell, such as observable sharing described in
chapter 8.

Limitations on the grammar Tomita’s original algorithm does not work on
hidden left-recursive grammars. This is because we get infinitely many reduc-
tions when trying to decide how many times we want to apply the left-recursion.
The problem has been solved in e.g. [30, 31] by tweaking the data structures
in different ways. The implementations in this chapter still has a problem with
hidden left-recursive grammars though.

Lazy evaluation Laziness is not used at all in the parsing functions – they
are very strict indeed. If we are interested in only the first few parse trees, we
will gain something by lazy evaluation. Especially the depth-first version will
gain a lot on using laziness, since it will only create one parse result at the time.

92 6. GENERALIZED LR PARSING

Another place where we could make use of laziness would be in the exercise in
section 6.5, which was about converting the LR states to integers, making the
LR tables more efficient.

Chapter 7

CYK Parsing

The parsing algorithm of Cocke, Younger and Kasami [19, 47] is one

of the oldest parsing algorithms known. Still it is a very nice algorithm

due to its simplicity. In this chapter we will use vectors to represent

the parse matrix, and compute new cells by repeated scalar products.

The drawback with the CYK parsing algorithm is that it only works for

context-free grammars in Chomsky normal form.

The last parsing algorithm in this thesis is CYK parsing, which can be im-
plemented very compact and elegant in a functional way, while still being as
efficient as the standard imperative algorithms. It is one of the earliest context-
free parsing algorithms, named after its inventors Cocke, Younger and Kasami
[19, 47].

This algorithm only works for context-free grammars in Chomsky normal form,
which is no serious problem since every context-free grammar can be trans-
formed to Chomsky normal form, as discussed in section 2.1 and in the exercise
in section 2.3. A grammar is in Chomsky normal form if all rules are either unit
productions to terminals (C → s), or productions with two non-terminals on
the right-hand side (C → AB).

7.1 CYK parsing

In CYK parsing one uses a parse matrix instead of a chart. One can see it as
instead of having Earley states consisting of edges that end in a certain node,
we divide the chart further into cells of edges that both start and end in given
nodes. This turns the chart into a matrix of cells, where we will write Ci,j for the
i:th cell in the j:th Earley state. Furthermore we will only store passive edges
in the cells, which means that a cell only has to consist of a set of categories.

94 7. CYK PARSING

The parse matrix will thus consist of the cells Ci,j , with 0 6 i < j 6 n where n
is the length of the input sequence. Observe that the inequality i < j is strict,
since we have no empty productions. Each cell Ci,j is a set that contains all the
categories spanning the nodes i to j. Or using the vocabulary of chart parsing,
Ci,j = { C | 〈i, j : C〉 }.

7.1.1 Initialization of the parse matrix

Since the grammar is in Chomsky normal form, there are no empty productions.
This means that an application of a binary production C → AB will span at
least two nodes (since A and B span at least one node each). So, the only way
to fill the cells Ci−1,i is to use the terminal productions C → ti, where ti is the
i:th input terminal. Before we start the real parsing process we initialize these
cells by applying the appropriate terminal productions.

Ci−1,i = { C | C → ti }

7.1.2 The CYK parsing process

In a grammar in Chomsky normal form, a category C between i and k, where
k− i > 2, must come from a binary production C → AB. Then the category A
must span the nodes i and j for some i < j < k,1 and the category B must span
the nodes j and k. Therefore we can calculate the value of Cik as the union of
all CijCjk for i < j < k, where the cell product is defined as follows.

AB = { C |A ∈ A, B ∈ B, C → AB }
And if we use set union as the additive operator, this can be seen as the scalar
product of a row vector and a column vector.

Cik =
k−1⋃

j=i+1

CijCjk

= 〈Ci,i+1, Ci,i+2 . . .Ci,k−1〉 · 〈Ci+1,k, Ci+2,k . . .Ck−1,k〉
One way to see this is as calculating the transitive closure of a (n+1)× (n+1)
matrix, which is empty everwhere except for the cells just above the main diag-
onal. Valiant uses this in [43] to translate the CYK parsing problem into matrix
multiplication to show that it is possible to recognize general context-free lan-
guages in less than cubic time.

7.1.3 An illustrative example

As an example grammar we use the same grammar as we used in chapter 5, but
converted to Chomsky normal form. This means that the two unit productions

1The inequality i < j < k is strict since there are no empty productions.

7.1. CYK PARSING 95

are deleted, but instead the Noun and Verb terminals have to be repeated in the
NP and VP definitions.

S −→ NP VP

VP −→ Verb NP
| flies | like | . . .

NP −→ Det Noun | NP PP
| flies | time | arrow | . . .

PP −→ Prep NP

Verb −→ flies | like | . . .

Noun −→ flies | time | arrow | . . .

Det −→ an | . . .

Prep −→ like | . . .

In figure 7.1 the parse matrix for the sentence “time flies like an arrow” is shown,
just before calculating the contents of cell C15.

C15 = C12 ·C25 ∪ C13 ·C35 ∪ C14 ·C45

= {Noun,Verb,NP,VP} · {PP} ∪ {S} · {NP} ∪ ∅ · {Noun,NP}
= {S,VP}

NP
S ?

?

PP

NP

NP
Noun

Det

Prep

VP
Verb

Noun
Verb

VPNP

Noun

21 3 4 5

0

1

2

3

4

time

flies

like

an

arrow

S

Figure 7.1: The parse matrix before calculation of cell C15.

96 7. CYK PARSING

7.2 A Haskell implementation of CYK parsing

For the sake of presentation we define all functions in this section on the top-
level, but in reality they are all local definitions to the main parsing function.
This means that we can assume the grammar to be known, and we will use
the names terminal and productions for the terminal function and the set of
production rules.

terminal :: t → Set c
productions :: Set (Production c)

Observe that since the grammar is in Chomsky normal form, every production
is a binary production (c, [a, b]).

7.2.1 The parse matrix

As described above, a cell constists of a set of categories.

type Cell c = Set c

To calculate the elements in the cells we need to have a representation of a vector
of cells, which we can do the scalar product over. Since for practical grammars
(both for formal and natural languages), most of the cells will be empty, we use
a sparse representation of the vectors. A vector is thus an ordered list of pairs
of indices and cells.

type Vector c = [(Int, Cell c)]

Indices start from 0, which means that the list [(1, a), (3, b)] will be a repre-
sentation of the vectors 〈∅, a, ∅, b〉, 〈∅, a, ∅, b, ∅〉, 〈∅, a, ∅, b, ∅, ∅〉, etc.

The representation of the parse matrix will be a list of row vectors Vi, repre-
senting all the edges starting in the node i. The maximum index k is the same
as the number of input tokens.

Vi = 〈Ci,i+1,Ci,i+2, . . . ,Ci,k〉

To be able to calculate the scalar product over Vi, we will also need the col-
umn vector 〈Ci+1,k . . .Ck−1,k〉, but this will be created while updating the row
vectors, and will not have to be remembered afterwards.

7.2.2 Scalar product over vectors

To compute the scalar product of two vectors we go through them at the same
time, comparing their respective indices. If they are equal, we multiply the cells,

7.2. A HASKELL IMPLEMENTATION OF CYK PARSING 97

adding to the result of the rest of the computation. Otherwise, we just move
further on.

scalarProduct :: Ord c ⇒ Vector c → Vector c → Cell c
scalarProduct [] = []
scalarProduct [] = []
scalarProduct as@((i , a) : as ′) bs@((j , b) : bs ′)

= case compare i j of
LT→ scalarProduct as ′ bs
GT→ scalarProduct as bs ′

EQ→ scalarProduct as ′ bs ′ <++> product a b

To multiply two cells, we try to find a binary production whose right-hand side
categories are contained in the given cells.

product :: Cell c → Cell c → Cell c
product as bs = makeSet [c | (c, [a, b])← elems productions ,

a ‘elemSet ‘ as ,
b ‘elemSet ‘ bs]

Exercise
Implement the product using a finite map for the productions in the grammar.

�

7.2.3 Processing one input token

When we have processed k input tokens, we will have a list of k intermediate
row vectors Vi = 〈Ci,i+1 . . .Ci,k〉. The next input token will create a new row
vector Vk+1 = 〈Ck,k+1〉 consisting of the categories for the given terminal. The
previous vectors Vi also have to be updated with a new cell Ci,k+1 at the end.

nextInputToken :: (Int, [Vector c])→ t → (Int, [Vector c])
nextInputToken (size, vectors) token = (size ′, vectors ′)

where size ′ = size + 1
vectors ′ = [(size′, cell)]

: updateVectors vectors [(size, cell)] size size′

cell = terminal token

The size variable is a counter of how many cells have been processed so far, i.e.
the number of vectors.

To calculate the new row vector 〈Ci,i+1 . . .Ci,k, Ci,k+1〉 from the old one
〈Ci,i+1 . . .Ci,k〉, we have to add the cell Ci,k+1. That cell is calculated as the
scalar product of the old row vector and the column vector 〈Ci+1,k . . .Ck−1,k〉.
So the second argument to updateVectors is the column vector, which is updated
for each new row vector. We also have to remember the row and column indices.

98 7. CYK PARSING

Remember that it is only when the scalar product is non-empty that we update
the row and column vector.

updateVectors :: [Vector c]→ Vector c → Int→ Int→ [Vector c]
updateVectors [] = []
updateVectors (row : rows) col nrow ncol

| isEmpty product = row : updateVectors rows col nrow ′ ncol
| otherwise = row ′ : updateVectors rows col ′ nrow ′ ncol

where product = scalarProduct row col
nrow ′ = nrow − 1
row ′ = row ++ [(ncol , product)]
col ′ = (nrow ′, product) : col

7.2.4 Processing the whole input

The main processing function takes as input a list of terminals, and gives as
output one single cell, which is the cell spanning the whole sentence.

We have to iterate the nextInputToken on all the input, building the final list
of vectors. The last vector in this list is the vector 〈C0,1, C0,2 . . .C0,n〉, where
n is the length of the sentence (which is equal to the size returned with the
vectors). It is the last cell C0,n that we want to return, but since the vectors
are stored in a sparse way we have to check that the last cell in the last vector
is indeed C0,n, which is done by comparing the length of the sentence with the
index of the last cell.

process :: [t]→ Cell c
process input

| size == ncell = cell
| otherwise = emptySet

where (size, vectors) = foldl nextInputToken (0, []) input
(ncell , cell) = last (last vectors)

To recognize an input sequence we only have to check whether the starting
category is contained in the final cell.

recognize :: Ord c ⇒ Grammar c t → [t]→ Bool
recognize (, start , terminal , productions) input

= start ‘elemSet ‘ process input
where process = . . .

nextInputToken = . . .
updateVectors = . . .
scalarProduct = . . .
product = . . .

7.3. CALCULATING THE PARSE TREES 99

Exercise
Implement a CYK recognizer for general context-free grammars, by translating
the grammar to Chomsky normal form. The translation is described in an
exercise in section 2.3.

�

7.3 Calculating the parse trees

To make things more interesting, we also add calculation of parse trees to the
algorithm. To do this we change the representation of a cell to a finite map
from a category to its parse trees.

type Cell c t = Map c [ParseTree c t]

Things will be simplified if we define an auxiliary lookup function which always
succeeds, indicating failure by the empty list.

(??) :: Ord c ⇒ Cell c t → c → [ParseTree c t]
cell ?? c = case cell ? c of

Just trees → trees
Nothing → []

The functions nextInputToken, scalarProduct , updateVectors and process re-
main almost the same. We will only have to use the functions emptyMap instead
of emptySet (in process), isEmptyMap instead of isEmpty (in updateVectors),
joinCell instead of (<++>) (in scalarProduct), and terminalCell instead of terminal
(in nextInputToken). The last two functions are new functions described in this
section, together with the new cell product .

To join two cells we just merge the maps using list concatenation.

joinCell :: Ord c ⇒ Cell c t → Cell c t − Cell c t
joinCell = mergeWith (++)

We need a new terminal lookup function terminalCell which has to return a
finite map instead of a set. To do this we pair each category with its cor-
responding parse tree. Observe that the association list is ordered since the
original terminal function returns a set, and therefore we can use the ordMap
function instead of makeMap.

terminalCell :: t → Cell c t
terminalCell term = ordMap [(cat , treesFor cat) |

cat ← elems (terminal term)]
where treesFor cat = [cat :∧ [Leaf term]]

100 7. CYK PARSING

The new cell product has to look up the parsetrees in the given cells and combine
them to new trees.

product :: Cell c t → Cell c t → Cell c t
product acell bcell = makeMapWith (++)

[(c, [c :∧ [atree, btree]]) |
(c, [a, b])← elems productions,
atree ← acell ?? a,
btree ← bcell ?? b]

Finally we can define a parsing function that takes a list of terminals, and
returns a collection of parse trees. It only has to lookup the starting category
in the final cell from the processing.

parse :: Ord c ⇒ Grammar c t → [t]→ [ParseTree c t]
parse (, start , terminal , productions) input

= process input ?? start
where process = . . .

nextInputToken = . . .
updateVectors = . . .
scalarProduct = . . .
terminalCell = . . .
product = . . .

Exercise
Extend the previuos exercise by implementing CYK parsing for general context-
free grammars, not just recognition. To do this you have to transform the result-
ing parse trees after successful parsing, to correspond to the original grammar
instead of the Chomsky normal form variant.

Exercise
Instead of calculating the parse trees while parsing, it is possible to do it after-
wards from the parse matrix. Translate the matrix to a chart (a list of passive
edges), so that you can apply the buildTrees function of section 5.4 to calculate
the parse trees.

type Passive c = (Int, Int, c)
�

7.4 Discussion

Space complexity In the simple parse matrix, every cell can have at most
|N | elements, where N is the set of non-terminals in the grammar. And since
the matrix is two-dimensional, the space complexity is O(n2|N |), where n is the
number of input tokens.

7.4. DISCUSSION 101

The final parse matrix also holds parse trees. And since there can be an expo-
nential number of trees, the space complexity will be exponential in the length
of the input.

Time complexity The cell product is defined by a list comprehension over
the productions in the grammar, giving |G| possible choices of categories. Each
of these categories has to first be checked for inclusion in the given cells, and be
turned into a set, amounting to an extra logarithmic factor. Therefore, the cell
product as defined in section 7.2.2 has a worst-case complexity of O(|G| log |G|).
By implementing the product in a different way, it is possible to get rid of the
logarithmic factor and thus have an O(|G|) worst-case complexity.

The scalar product over two vectors of length k consists of k cell products
together with k unions, in the worst case. To build an arbitrary cell, we have
to do a scalar product over two vectors of length k 6 n. The O(n) cell products
can be calculated in O(n|G| log |G|) time, and the O(n) union in O(n|N |) time.
Since |N | 6 |G|, the unions are outweighed by the products, and the complexity
for building an arbitrary cell is O(n|G| log |G|).
This gives us a final worst-case complexity of O(n3|G| log |G|) for CYK parsing
without calculating parse trees. If we optimize the cell product, we can also
remove the logarithmic factor. Observe that calculating the parse trees is still
exponential in the length of the input.

Comparing with chart parsing The worst-case complexity of chart parsing
is O(n3|G|2), as discussed in section 5.7.2 CYK parsing is linear in the size of the
grammar, while chart parsing is quadratic. So why don’t we simply convert our
general grammar G into a Chomsky normal form equivalent G′ and parse using
CYK, to get an improvement of the complexity? This is because the size of G′

might be quadratic in the size of G, or to put it another way O(|G′|) = O(|G|2).
Thus we will still get quadratic complexity in the size of the original grammar
G.

Lazy evaluation The implementation presented here does not make use of
laziness much. If a cell is a “dead end” it will never be calculated – i.e. if no
later cell will use the contents of the dead cell. This will happen only when the
dead cell will only be combined with empty cells – then we know that the cell
product will be empty and do not have to look into the dead cell.

The same kind of reasoning goes for the parse trees – only the parse trees that
are really used in the final result will be calculated. Coming back to our example
grammar, this means that the parse tree of the sentence (S) “flies like an arrow”
will never be calculated, only the parse tree of the corresponding verb phrase
(VP).

2We have removed the factor δ2, since it is not interesting for this discussion.

102 7. CYK PARSING

Chapter 8

Grammar-collecting Parser
Combinators

With the help of an extension of Haskell called observable sharing, in-

troduced by Claessen and Sands [6], we define context-free parser combi-

nators that can handle general context-free grammars, even left-recursive

ones. We can also parse with any available context-free parsing algorithm,

and not just recursive descent parsing, which all standard parser combi-

nators implement. We do this by collecting the context-free productions

that correspond to the structure of the parser, and invoking any parsing

algorithm, such as chart parsing, LR parsing or CYK parsing.

There are in principle three different ways in which one can define a parser for a
given grammar. All three have their own specific advantages and disadvantages.

Explicit grammar object One approach is to implement the grammar as
an explicit object in the host language, and then use a nice parsing algorithm
to parse input sentences. This approach is treated in chapters 5, 6 and 7.

The main advantage is that there are no restrictions on the parsing algorithm,
which can be tailor-made for our purposes.

The main disadvantage is that we cannot parse directly to the semantic result
type we want, but have to go through an intermediate type such as the type of
parse trees or charts.

Parser combinators Another approach is to implement the grammar di-
rectly with parser combinators, and use a suitable parser type. This approach
is treated in chapters 3 and 4. Parser combinators form a domain-specific em-
bedded language [14], with all accompanying features.

104 8. GRAMMAR-COLLECTING PARSER COMBINATORS

The three main advantages are that i) we can use the features of the host lan-
guage to create new combinators; ii) the parsers can return the desired semantic
action directly instead of using an intermediate type of parse results; and iii)
the type checker in the host language can catch errors in the grammar, which
can be very difficult to find with an untyped grammar. Furthermore, many
parser types can be used to implement monadic combinators, which makes it
possible to parse non context-free languages.

The main disadvantage with parser combinators is that they all implement
the same parsing algorithm – recursive-descent parsing, which is not the most
efficient parsing algorithm for many kinds of grammars. The algorithm is not
even capable of parsing all possible grammars – left-recursive grammars leads
to non-termination, which is a seriuos problem since they are very common in
both formal and natural languages.

Parser generator A third alternative is to use a parser generator, such as
Happy [28]. A parser generator extends the host language with the ability to
define a grammar, together with semantic actions. The grammar file is then
compiled to a tailor-made parser in the host language.

This approach combines many of the advantages of the previous two approaches
– we can use an efficient parsing algorithm, we can define semantic actions on
grammar productions directly, and the semantic results are type checked by the
host language.

The main disadvantage is that we cannot use features of the host language to
define “macros” for simplifying the grammar writing. Another disadvantage
is that we have to learn a new syntax for writing grammar files, but this dis-
advantage can be considered minor since the syntax often is very natural and
simple.

Combining combinators with explicit grammars

In this chapter we show how to combine the first two approaches by using an
impure extension of Haskell. Claessen and Sands [6] have investigated the idea
of observable sharing for hardware circuit descriptions, and we will use this idea
to implement parser combinators which can be used to implement any parsing
algorithm, not just recursive descent.

Our basic idea is that if we have a way of detecting when a parser is a sub-
element of itself, i.e. that we have some kind of cycle or recursion in the grammar,
then we can collect the call structure of the parser as a set of productions in
a context-free grammar. After that we simply call the parsing algorithm of
our choice with the grammar and the input. This means that we translate a
grammar as a Haskell program (defined by parser combinators) into a grammar
as a Haskell object (as a set of production rules), parse using this grammar
object, and finally we translate back the result.

8.1. OBSERVABLE SHARING 105

8.1 Observable sharing

Claessen and Sands introduce in [6] an extension of Haskell called observable
sharing, which allows them to detect and manipulate cycles in data structures.
They use this for hardware circuit descriptions, and we will use it to collect the
underlying grammar of a combinator parser.

A problem with observable sharing is that it is not a conservative extension
of Haskell. In their paper Claessen and Sands investigate what properties of
Haskell are lost and what remains, and it turns out that the extension is indeed
small:

We have shown that the extended language has a rich equational
theory, which means that the semantics is robust with respect to
program transformations which respect sharing properties. For ex-
ample, we have shown that standard compiler transformations which
use strictness analysis to turn call-by-need into call-by-value are still
sound in this extension. [6]

The extension introduces an abstract data type, the type of references to objects,
and three new functions to create references, recover the values, and compare
references for equality.

newtype Ref α = . . .

instance Eq (Ref α)

ref :: α→ Ref α
deref :: Ref α→ α

8.1.1 Example implementation of observable sharing

One way to implement the extension in Haskell is to use unsafePerformIO and
IO references as described by Peyton-Jones [34], but then one must be careful to
turn off any inlining and common subexpression elimination that the compiler
might want to do.

type Ref α = IORef α
ref a = unsafePerformIO (newIORef a)
deref ref = unsafePerformIO (readIORef ref)

8.1.2 Observable sharing and grammatical categories

We will use references to represent the grammatical categories. The only thing
we will use them for is comparison, to detect cycles and recursion in the gram-
mar, so we will never use the function deref . Since we are not interested in

106 8. GRAMMAR-COLLECTING PARSER COMBINATORS

what the references contain, we could implement the categories as references to
nothing in particular, i.e. the unit type.

type Cat = Ref ()

This works fine in the extension, but as noted above, we must turn off the
inlining capabilities of the compiler we are using. And in this special case we
can do better than that.

If we can guarantee that the categories refer to objects that uniquely determine
the categories themselves, we impose even fewer restrictions on the Haskell
implementation. Then it will not matter whether the compiler returns a new
reference or an already existing reference to an equivalent object. This means
that we do not have to turn off inlining and common subexpression elimination.

Since a grammatical category is defined by the set of its productions, we will
use references to lists of productions as the type of categories. This is described
further in section 8.2.1.

8.2 A grammar-collecting combinator parser

The type of parsers will consist of three things: a category, some way of collecting
the grammar, and the semantics which will give the result of the parser.

data CollectingParser s α = P Cat (Collect s) (Semantics s α)

The category will be a unique reference for each occurrence of a parser in the
program. The collecting function is an endomorphism that gathers all the cate-
gories and context-free productions of the parser and its children. This function
will make critical use of the fact that the type of categories has an equality, to
be able to stop the infinite recursion that it would otherwise fall into.

type Collect s = Grammar Cat s → Grammar Cat s

The semantics is a function that transforms a parse tree into a result of the
correct type.

type Semantics s α = ParseTree Cat s → α

These parts of the parser type are defined in the following two subsections.
First we define the categories and the grammar collecting function, and then
the semantics.

8.2.1 Collecting the grammar

We must be able to create new unique categories while building the grammar,
which means that the type of categories must be a reference.

8.2. A GRAMMAR-COLLECTING COMBINATOR PARSER 107

The naive implementation would be to have a reference to nothing in particular,
e.g. the unit type. But then smart Haskell implementations might transform all
these categories into one single category, as discussed in section 8.1.2. So, we
need to come up with something that uniquely determines the category, which
the reference can point to. One thing that uniquely determines a category
are the production rules that define it. Therefore we say that a category is a
reference to a list of rules.1

newtype Cat = Cat (Ref [Production Cat]) deriving Eq

Observe that two different categories in a grammar can be defined by the same
set of productions, in which case a smart compiler very well could join those two
categories into one. Although this will change the grammar, it will not change
the language, and it will not change the the structure of the parse trees, and
that is enough for our purposes.

To create a new category we create a new reference by giving a list of rules that
it can point to.

makeCat :: [Production Cat]→ Cat
makeCat prods = Cat (ref prods)

Before we start defining the basic combinators, we introduce a helper function
extendGrammar that creates a new category and computes the collecting func-
tion. This helper function takes two arguments, a list of production rules and
a list of terminal productions to be added to the grammar and a collecting
function that adds more rules to the grammar (which is used when defining the
(<?>) and (<+>) combinators).

To create the new category, we simply call makeCat with the given rules. The
collecting function takes a grammar, and the first thing we do is to check if we
have already seen the created category. If this is the case, we do nothing at all,
since we have already accounted for this category – it is this that stops us from
falling into a left- or right-recursive trap. If the category is indeed new, we add
the category to the seen categories, add the given productions to the grammar,
and call the given collecting function to collect the rest of the grammar.

extendGrammar :: Ord s ⇒ Set (Production Cat)→ (s → Set Cat)→
Collect→ (Cat, Collect)

extendGrammar prods term collect = (cat , collect ′)
where cat = makeCat prods

collect ′ grammar@(cats, start , prods ′, term ′)
| cat ‘elemSet ‘ cats = grammar
| otherwise = collect (unitSet cat <++> cats,

start ,
prods <++> prods ′,
λs → term s <++> term ′ s)

1We need a newtype declaration here, since the type of production rules is defined in
terms of the type of categories.

108 8. GRAMMAR-COLLECTING PARSER COMBINATORS

Exercise
This definition can make the terminal function in the grammar very inefficient.
Implement this function as a finite map from terminals to sets of categories
instead. Which functions have to be changed?

�
Now we are ready to define the parser combinators in terms of the extendGrammar
function.

The production rule of the return parser is a production with an empty right-
hand side. There is no need to extend the grammar further so we simply use
the id function to collect the rest of the grammar. Observe that a smart Haskell
implementation can transform the categories of all occurrences of succeed into
one single category. This will have the effect that the resulting grammar will be
smaller, but still recognize the same language, thus making the implementation
more efficient.2

instance Ord s ⇒ PreMonad (CollectingParser s) where
return a = P cat collect sem

where (cat , collect) = extendGrammar prods term id
prods = unitSet (cat , [])
term s = emptySet
sem = . . .

For the sym parser, one single terminal production has to be added – the pro-
duction with the given input symbol as the right-hand side.3

instance Ord s ⇒ Symbol (CollectingParser s) s where
sym s = P cat collect sem

where (cat , collect) = extendGrammar prods term id
prods = emptySet
term s = unitSet cat
sem = . . .

The zero parser has no context-free productions at all, and there is no need to
extend the grammar further.4

instance Ord s ⇒ Monoid (CollectingParser s) where
zero = P cat collect sem

where (cat , collect) = extendGrammar prods term id
prods = emptySet
term s = emptySet
sem = . . .

. . .
2Since this will only have a positive effect, we can do this transformation ourselves by

defining emptyCat :: Cat on the top-level instead of inside the definition of return.
3As for the return parser, we can join all the categories for each input symbol into one

single category, to reduce the size of the grammar.
4There is really no need to create a category at all for this parser, we could use undefined

to reduce the size of the grammar.

8.2. A GRAMMAR-COLLECTING COMBINATOR PARSER 109

There are two productions that have to be added for the choice combinator
(<+>), one for each of the two given categories. After we have added the
productions, we extend the grammar further by collecting the grammars for the
given parsers. Observe that the pattern matching needs to be lazy (by putting a
∼ in front of the patterns), to stop Haskell from evaluating the children parsers
before it has created the mother parser.

. . .
∼(P pcat pcollect psem) <+>∼(P qcat qcollect qsem)

= P cat collect sem
where (cat , collect) = extendGrammar prods term (pcollect · qcollect)

prods = makeSet [(cat , [pcat]), (cat , [qcat])]
term s = emptySet
sem = . . .

And finally for the sequencing (<?>), there is one production that has to be
added – a sequence of the two given categories. As for (<+>), we need to
make the pattern matching lazy on both arguments to avoid falling into infinite
recursion.

instance Ord s ⇒ Sequence (CollectingParser s) where
∼(P pcat pcollect psem) <?>∼(P qcat qcollect qsem)

= P cat collect sem
where (cat , collect) = extendGrammar prods term (pcollect · qcollect)

prods = unitSet (cat , [pcat , qcat])
term s = emptySet
sem = . . .

8.2.2 Adding the semantics

We need a way of converting a parse tree to a parse result, so the type of the
semantics should be a function from parse trees to results.

type Semantics s α = ParseTree Cat s → α

Calculating the semantic result is straightforward for each of the given combi-
nators. It is only when in the choice combinator we have to check which of the
rules the parse tree is applied to.

The three simple parsers have their value already given, so we won’t have to
look at the parse tree at all. The result of return a is the argument a.

return a = P cat collect sem
where (cat , collect) = . . .

. . .
sem tree = a

110 8. GRAMMAR-COLLECTING PARSER COMBINATORS

The result of sym s is the symbol s .

sym s = P cat collect sem
where (cat , collect) = . . .

. . .
sem tree = s

The zero parser will never succeed, which means that its semantic function never
will be called. So we can use undefined as the result.

zero = P cat collect sem
where (cat , collect) = . . .

. . .
sem tree = undefined

For the choice we have to investigate the parse tree, which we know will be a
tree with one daughter. If the category of the daughter tree is the first parser’s
category, we choose that parser’s semantic function, and apply it to the daughter
tree. Otherwise the category of the daughter tree will be the category of the
second parser, so we apply its semantic function to the daughter tree.

∼(P pcat pcollect psem) <+>∼(P qcat qcollect qsem)
= P cat collect sem

where (cat , collect) = . . .
. . .
sem (:∧ [tree@(cat ′ :∧)])

= (if cat ′ == pcat then psem else qsem) tree

For the sequencing we will get a parse tree with two daughters, and we apply
them to their corresponding semantic functions, and then apply the first parser’s
result to the second’s.

∼(P pcat pcollect psem) <?>∼(P qcat qcollect qsem)
= P cat collect sem

where (cat , collect) = . . .
. . .
sem (:∧ [ptree, qtree])

= (psem ptree) (qsem qtree)

Observe that we only partially look at the parse trees. This is because the parse
tree reflects the structure of the grammar, so we will always know the structure
of the parse tree. It’s only in the choice we have to test which branch in the
grammar we should continue with.

8.2.3 Parsing

To parse a sentence, we also need an implementation of a parsing algorithm,
which can be called parseCFG . In the previous chapters there are examples of

8.2. A GRAMMAR-COLLECTING COMBINATOR PARSER 111

algorithms that can be used.

First we apply the collecting function to the empty grammar, i.e. empty lists of
categories, productions and terminal productions, to get the final productions
for the given parser. Then we simply invoke the parsing algorithm with the
productions and the starting category, applying the semantic function to each
of the resulting parse trees.

instance Ord s ⇒ Parser (CollectingParser s) s where
parseFull (P start collect sem) input

= map sem (parseCFG grammar input)
where grammar = collect emptyGr

emptyGr = (emptySet , start , emptySet , λs → emptySet)

Exercise
Implement a parsing function that uses the chart parsing implementation de-
scribed in chapter 5.

Exercise
Almost all combinator parsers implementing left-recursive grammars are also
hidden left-recursive, since it is not type-correct to define p = p <?> q, but
instead we have to coerce the result by e.g. p = return f <?> p <?> q. And
since return f is empty, the category corresponding to p will be hidden left-
recursive. Unfortunately our implementation of LR parsing does not work for
hidden left-recursive grammars, as explained in section 6.6.

One way to solve this is to remove all empty productions from the grammar.
Write a function that does this. It should return a new set of productions,
together with a set of empty categories. Use this function to implement LR
parsing for the combinators in this chapter.

Exercise
The reader might have noticed that our context-free combinators yields a gram-
mar in almost Chomsky normal form. The return parser and the (<+>) com-
binator break this correspondence. Write a function that transforms out the
empty productions from the return parser and the unit productions from the
(<+>) combinator, to yield a grammar in Chomsky normal form. This grammar
can then be used to parse with the CYK parsing algorithm in chapter 7. Then
finally the parse trees must be transformed back to the original grammar to be
able to apply the semantics function.

�

8.2.4 Other operations on a grammar

There are other things than just parsing we can do with a grammar. We can
gather information about the grammar – e.g. if it is left-recursive, cyclic, LR(k)
or maybe ambiguous. Another thing is to transform the grammar to make the
parsing more efficient, e.g. by removing left-recursiveness.

112 8. GRAMMAR-COLLECTING PARSER COMBINATORS

The method is in all cases the same as the one described, collect the grammar
corresponding to the parser structure and call a standard algorithm for the thing
you want.

Exercise
Implement a check for left-recursiveness and another for checking if a parser is
cyclic.

�

8.3 Discussion

With an implementation of any general parsing algorithm, such as chart parsing
described in chapter 5, we can implement a combinator version of a general
version of the ambiguous example grammar in section 6.1.3.

expr = return appOp <?> expr <?> oper <?> expr
<+> return toInt <?> digit

where toInt c = ord c − ord ’0’
digit = sym ’0’<+> . . . <+> sym ’9’
appOp x f y = f x y
oper = return (−) <?> sym ’-’

<+> return (+) <?> sym ’+’

And this is how it might look like in Hugs.

? parseFull expr "1-2-3+4"
[0,6,-8,-2,6]

In the rest of this section we discuss some implications and extensions of the
ideas introduced in this chapter.

8.3.1 Parametric parsers

Observe that a context-free grammar can only have a finite number of categories.
This means that one must be careful when using parsers with parameters, or
higher-order parsers, as previously discussed in section 2.6.1. The standard ex-
ample is the many combinator, which takes as argument a parser and returns
a parser that recognizes a sequence of the argument parser. The naive defi-
nition of many is not safe, since it leads to non-termination for some Haskell
implementations.5

many p = return [] <+> p <:> many p
5Hugs, version Feb 2001, has no problem with this definition. But it falls into non-

termination if we instead define many = λp →

8.3. DISCUSSION 113

The risk is that the call to many p on the right-hand side will generate a new
category, in which case the grammar collecting function will fall into a non-
terminating loop. The correct way to implement many is the following, as
already done in section 2.8.1.

many p = ps
where ps = return [] <+> p <:> ps

It is not always unsafe to use parametric parsers. One has to be careful that the
recursion on the parameters terminates, so that the set of introduced categories
will be finite.

8.3.2 Adding other basic combinators

It is very common to have a choice of more than two sub-parsers in a grammar.
One example is the parser lowercase that recognizes lowercase characters.

lowercase = sym ’a’<+> . . . <+> sym ’z’
= anyof (map sym [’a’ . . ’z’])
= foldr (<+>) zero (map sym [’a’ . . ’z’])

This will introduce 26 × 2 = 52 new categories, and 26× 3 = 78 productions,
to the grammar, which is a lot more than is necessary. This can make even the
fastest parsing algorithm inefficient.

Exercise
Define the anyof combinator using the extendGrammar function (instead of the
default implementation in section 2.5), to introduce fewer new categories and
productions to the grammar.

�
Of course one can specialize more combinators to make the grammars even
more compact. This is just an example, but an example which will have a great
impact on many grammars.

8.3.3 Efficiency

The efficiency of the parsing is of course the same as that of the parsing algorithm
used. For example, LR parsing is linear for many unambiguous grammars, and
chart parsing is cubic for any context-free grammar.

One problem that is possible to solve is that the references in observable sharing
can only be tested for equality, which means that we cannot use sets as ordered
lists or binary search trees, as we have done in our implementations in the
chapters 5, 6 and 7. The solution to this problem is to translate the categories
to e.g. integers before invoking the parsing algorithm.

114 8. GRAMMAR-COLLECTING PARSER COMBINATORS

Exercise
Use the collection of categories returned by the collect to write the functions
cat2int and int2cat translating between categories and integers. Then use these
functions to transform the productions to use the integer categories instead, to
be used in the parsing algorithm. You also need to translate back the integer
categories in the resulting parse trees, so that the semantic function can be
applied.

�
There is still one problem, which occurs after we have parsed a sentence when we
want to calculate the parse results. If the parsed sentence has many solutions,
parts of the different parse trees can sometimes be shared, to make the parsing
more efficient. Unfortunately, this sharing will be lost when we use the semantic
function to calculate the results, since Haskell cannot know that it already has
calculated a certain part of a result.

This problem will have an impact if we both have computationally expensive
functions in the calculation of the semantics, and a very ambiguous grammar
at the same time. One possible way to solve the problem is to use lazy memo
functions as in e.g. [7], which is another extension to Haskell.

8.3.4 Conclusion

We have used a small extension to Haskell, observable sharing, to translate a
grammar written with parser combinators into a set of context-free productions.
Then we can invoke any parsing algorithm, and translate the parse trees back
to results of the parser combinators.

The resulting behaviour is similar to parser generators like Happy [28], in that
we can make use of static typing and semantic actions at the same time as we
can use an efficient parsing algorithm. Advantages over parser generators are
that we can make use of Haskell to define new combinators to relieve us from
cumbersome grammar writing, and that we don’t have to use another formalism
than the syntax of standard Haskell. Some additional features of Happy, such
as fixity declarations, can be handled by defining a tailor-made combinator that
does the work for you. It is also straightforward to implement tests of the
resulting grammar – e.g. to test whether it is in a certain class of languages.

But there are disadvantages too. First, we have to use impure and experimental
features of the Haskell implementations. In our opinion this is not a severe draw-
back, since we use the features in a well-behaved way. Second, since we convert
the parsers to context-free grammars we can only use context-free combinators.
Third, we must be careful when we define parametric parsers, such as the many
combinator, to avoid falling into non-termination while collecting the grammar.
A final disadvantage is that we still have to go through an intermediate parse
result, even though it is hidden from the user. This might lead to inefficiences
when calculating the semantic actions.

Chapter 9

Final Discussion

In this final chapter we summarize the contents and results from the

previous chapters. We discuss the advantages and disadvantages of the

different approaches, and in particular we discuss parser combinators vs.

parsing algorithms vs. other attempts, such as parser generators. There

is a section summarizing the tests that were performed on the parsers and

algorithms in the thesis.

The previous chapters have introduced many different combinator parsers and
implementations of parsing algorithms, and this final chapter tres to relate them
in a bigger perspective.

9.1 A summary of the thesis

The thesis is conceptually divided into two parts, discussing the parsing problem
from different perspectives. There is also a final chapter trying to combine the
two approaches, to gain the advantages of both.

The first part, chapters 3 and 4, deals with combinator parsers. It is a survey
of different possible implementations of parsers; well-known variants as well as
brand new ones.

The second part, chapters 5, 6 and 7, deals with parsing algorithms. It con-
sists of implementations of familiar parsing algorithms for general context-free
grammars, in a functional setting.

Chapter 2: Grammars and parsers Chapter 2 is an introduction to the
basic concepts of the thesis. Context-free grammars are defined, as well as
different properties on grammars and sub-classes of grammars; which are also
implemented in the functional language Haskell.

116 9. FINAL DISCUSSION

The chapter then moves over to parser combinators and defines a Haskell type
class hierarchy of parsers. It points out two different versions of parser combi-
nators – context-free and monadic. The monadic combinators are stricly more
powerful than the context-free ones in that they can recognize non context-free
languages.

9.1.1 Part I: Parser combinators

Chapter 3: Existing parser combinators Chapter 3 starts from the basic
type of backtracking combinator parser, which is descended from Wadler’s orig-
inal paper on combintor parsing [44]. The standard continuation transformer
and the endomorphism parser are defined to cure some inefficiencies in the orig-
inal type. This is done by many previous authors, such as Röjemo [36] and
Koopman and Plasmeijer [23].

The stack continuation transformer lies hidden within the type of Swierstra’s
efficient parser [39, 40], and it is extracted in chapter 3. It can make better use
of sharing than the standard continuation transformer, but on the other hand it
can only implement the context-free parser combinators, not the monadic ones.

The chapter ends by introducing the breadth-first searching stream processor
parser, which first appeared in the Fudgets graphics library [3], but not as a
parser. It was Claessen [5] who first realized that it is a parser. Both continua-
tion transformers can be applied to the stream parser, yielding a parser which is
very efficient for certain kinds of grammars. The parser gets rid of the problem
that backtracking parsers cannot discharge previous input until the parse has
finally succeeded, which can be a serious space leak for grammars accepting
very large input. On the other hand, the idea of breadth-first search is that
the stream parser has to remember all possibilities in parallel, which will be a
problem for non left-factorized or ambiguous grammars.

Chapter 4: Left-factorizing parser combinators Chapter 4 is devoted to
trie structures, or letter trees as they are also called. It is shown that the trie
data structure is a parser, doing automatic left-factorization. A problem with
tries is that it has to build the structure during parsing. This can be expensive,
and more important, it will allocate lots of memory for the trie. The chapter
explores the possibilities of sharing of sub-tries, to reduce memory allocation
and save time. It turns out that parsers describing regular expressions will be
translated to parsers with a call structure resembling finite automata.

It is even possible to associate parse results with regular expressions and still
get a finite automata for the parser’s call structure. This needs existential
quantification in types, which is a simple and well-behaved extension to Haskell.

The chapter ends with describing how to combine the advantages of an efficient
backtracking parser with the left-factorization of tries. This final parser trans-
former is an extraction and simplification of Swierstra’s efficient parser [39, 41].

9.1. A SUMMARY OF THE THESIS 117

By letting the trie structure return an efficient backtracking parser, instead of
a parse result, we can use the backtracking parser on the deterministic parts of
the grammar and the trie on the potentially ambiguous parts. The drawbacks
are that the transformer can only implement the more limited context-free com-
binators, and that it introduces extra overhead because of its complexity.

9.1.2 Part II: Parsing algorithms

Chapter 5: Chart parsing Chapter 5 implements a simple and elegant ver-
sion of bottom-up Kilbury chart parsing [20, 46]. This is one of the many chart
parsing variants, which are all based on the data structure of charts. A chart is
a set of known facts called edges, which can be depicted as a directed graph over
nodes representing positions in the input sequence. The chart parsing process
uses inference rules to add new edges to the chart, and parsing is complete when
no further edges can be added.

The implementation in this chapter divides the chart into a list of Earley states,
named after the top-down Earley parsing algorithm [8]. This makes it possible
to parse the input incrementally, building each state in sequence, which in turn
gives a clean, elegant and declarative code. The elegance is not traded against
efficiency, since the worst-case complexity is shown to be cubic in the length of
the input which is as good as any imperative implementation.

Chapter 6: Generalized LR parsing Chapter 6 implements several differ-
ent versions of generalized LR parsing. LR parsing is a way of pre-compiling the
grammar into parse tables, which then can be used to efficiently parse the gram-
mar. Lang [24] showed how to generalize the standard deterministic LR parsing
algorithm to be able to parse general context-free grammars, and Tomita [42]
implemented a polynomial version of the algorithm.

The most interesting of the implementations in the chapter is an approximation
to Tomita’s algorithm. The originally complicated graph-structured stack has
been simplified to a tree structure, which makes it possible to define an elegant
implementation. The graph structure of the stack will still be stored in Haskell
memory, because equivalent sub-trees will be shared.

A major drawback is that the algorithm is not polynomial in time but exponen-
tial in the length of the input. This is due to the fact that although sub-trees
of the stack are shared, it is impossible to know this from within Haskell. This
in turn will make the algorithm repeat work unnecessary while traversing the
stack.

Chapter 7: CYK parsing Chapter 7 implements an elegant, declarative and
purely functional version of the parsing strategy of Cocke, Younger and Kasami
[19, 47]. This parsing algorithm is often described as matrix multiplication, but
the actual imperative implementations seldom bears any resemblance with the

118 9. FINAL DISCUSSION

higher-level descriptions. When using a high-level language such as Haskell it
is possible retain the idiom, while still having an efficient implementation. The
worst-case complexity is cubic in the length of the input, which is as good as
one can hope to get.

9.1.3 Tying the parts together

Chapter 8: Grammar-collecting parser combinators Claessen and Sands
[6] has developed the mildly impure extension of “observable sharing” which
gives the possibility to compare whether two objects are shared or not. This is
used in chapter 8 to implement a combinator parser that can collect the gram-
matical structure in the program. Then this grammar can be used on any of
the parsing algorithms described above, and not just recursive descent which is
the algorithm implemented by traditional combinator parsers. The parse results
from the parsing algorithm are then used to calculate the parse results of the
original parser.

There are some disadvantages with this approach, of which the most important
is that one must be very careful when defining new combinators. The result-
ing grammar has to be finite, and vital sharing information must be retained;
otherwise the collection procedure might not terminate.

9.2 Different representations of grammars

There are in principle three different ways in which one can define a parser for a
given grammar. All three have their own specific advantages and disadvantages;
and both the desired implementation and personal taste have influence on which
approach is preferred.

We do not give any advice on which approach to use and in which circumstances,
but simply describe the three alternatives and let the reader choose which is the
method of choice.

Explicit grammar object One approach is to implement the grammar as
an explicit object in the host language, and then use a nice parsing algorithm
to parse input sentences. This approach is treated in chapters 5, 6 and 7.

The main advantage is that there are no restrictions on the parsing algorithm,
which can be tailor-made for our purposes.

The main disadvantage is that we cannot parse directly to the semantic result
type we want, but have to go through an intermediate type such as the type of
parse trees or charts.

9.3. SUMMARY OF TEST RESULTS 119

Parser combinators Another version is to implement the grammar directly
with parser combinators, and use a suitable parser type. This approach is
treated in chapters 3 and 4. Parser combinators form a domain-specific embed-
ded language [14], with all the accompanying features.

The three main advantages are that i) we can use the features of the host lan-
guage to create new combinators; ii) the parsers can return the desired semantic
action directly instead of using an intermediate type of parse results; and iii)
the type checker in the host language can catch errors in the grammar, which
can be very difficult to find with an untyped grammar. Furthermore, many
parser types can be used to implement monadic combinators, which makes it
possible to parse non context-free languages.

The main disadvantage with parser combinators is that they all implement
the same parsing algorithm – recursive-descent parsing, which is not the most
efficient parsing algorithm for many kinds of grammars. This algorithm is also
not capable of parsing all possible grammars – left-recursive grammars lead to
non-termination, which is a seriuos problem since they are very common in both
formal and natural languages.

Parser generator A third alternative is to use a parser generator, such as
Happy [28]. A parser generator extends the host language with the ability to
define a grammar, together with semantic actions. The grammar file is then
compiled to a tailor-made parser in the host language.

This approach combines many of the advantages of the previous two approaches
– we can use an efficient parsing algorithm, we can define semantic actions on
grammar productions directly, and the semantic results are type checked by the
host language.

The main disadvantage is that we cannot use features of the host language to
define “macros” for simplifying the grammar writing. Another disadvantage
is that we have to learn a new syntax for writing grammar files, but this dis-
advantage can be considered minor since the syntax often is very natural and
simple.

9.3 Summary of test results

Since it is difficult to reason about efficiency issues for lazy functional languages,
it is very important to test the implementations on real data.

Every different algorithm and data structure has its own natural method of
use. Some are very general and others are tailor-made for a special domain.
For combinator parsers and parsing algorithms this means that some parsers
are especially efficient on special sub-classes of grammars, and others are more
general-purpose.

120 9. FINAL DISCUSSION

Most of our testing work has been on combinator parsers. The parsing algo-
rithms are well-known and have been studied for many years. We have also
shown complexity results on the implementations in this thesis. Combinator
parsers on the other hand have not been studied much – there are not many
theoretical results, and the different implementations are not tested against each
other.

Recall that the tests reported in this section are quite small. The grammars
consist of less than one hundred productions and the test data does not come
from real life, except for some natural language data. This means that there
are more work to be done to see how the different parsers and algorithms scale
up for real life applications.

Finally it can be good to keep in mind that the tested parsers are the ones de-
scribed in this thesis. The continuation based pairing trie parser consists of two
parser transformers applied to a base parser, and each transformer introduces
some extra overhead which can be optimized. I.e. some of the parsers are possi-
ble to optimize, which has not been done here. And if we are only interested in
e.g. deterministic grammars there are sometimes further possible optimizations
to be done.

9.3.1 Sub-classes of grammars

We can divide the spectrum of context-free grammars in several different ways,
and here we have chosen four different dimensions on which to categorize gram-
mars.

Complexity We say that a grammar is simple when its language is a regular
language. A complex grammar is the opposite, e.g. an expression grammar with
nested parentheses. We can also talk about complexity of the input – e.g. how
deeply nested the input is.

Left-factorization Since some of the parsers do left-factorization automat-
ically, it can be interesting to compare ordinary grammars with already left-
factorized grammars.

Ambiguity A grammar can finally be ambiguous or not. This distinction
often coincides with the distinction between natural and formal languages – a
natural language is ambiguous and a formal language is unambiguous.

9.3.2 Testing combinator parsers

From the different dimensions described above we created seven test grammars,
and on each of the grammars we tested a number of different inputs. In appendix

9.3. SUMMARY OF TEST RESULTS 121

B the exact figures of the tests can be found. The seven test grammars were all
context-free, to be parseable by every combinator parser.

• Two very simple grammars for recognizing sequences of numbers – one
of them is left-factorized and the other is not.1 The two grammars were
tested on randomly generated text files consisting of long lines of numbers.

• Two more complex grammars recognizing nested mathematical expres-
sions – one of them left-factorized in the same way as above. The test
data consisted of randomly generated huge mathematical expressions, ei-
ther in English or in standard syntax. The parsers were tested on flat
expressions as well as very nested expressions.

• Three ambiguous natural language grammars recognizing Swedish declar-
ative sentences. One is left-factorized, one is not left-factorized, and the
third is a quite complex, partly left-factorized, natural language gram-
mar. The simple grammars were tested on randomly generated sentences,
of which many were quite ambiguous. The complex grammar was tested
on sentences from a real Swedish corpus. Only sentences recognized by
the grammar were used in the test data.

In this section we give two tables summarizing the test results for the different
grammars. The first of the tables contains the unambiguous grammars and the
second contains the ambiguous grammars. Observe that the last line in the
tables, is the PairTrie transformer applied to the most efficient of the standard
parsers – we do not list all possible variants for the PairTrie to make the table
manageable. We do not list the standard trie parser, since it is only efficient
for recognition as mentioned in section 4.3. We also leave out the ambiguous
trie for the unambiguous grammars, and the ordinary trie for the ambiguous
grammars for obvious reasons.

In appendix B the results for all tested parsers can be found. Observe that
the results can be improved for some of the parsers – the applicatations of
parser transformers can be hard-coded into a tailor-made parser, thus reducing
the overhead introduced by having transformers. Observe also that the stack
continuation transformer and the pairing trie transformer both prohibit the use
of monadic combinators. So, if you want to use monadic parsing, these parsers
are out of the question.

There are four possible symbols in the tables; minus, zero, plus and double-
plus. There are no absolute meaning assigned to these symbols, just a relative
comparision between the parsers for one specific grammar. I.e. a double-plus
means that the parser is “the best” parser for that specific grammar, and a
minus means that the parser is very slow compared to the other parsers for the
grammar.

1To be more specific, the first grammar recognizes numbers written with digits, and the
second recognizes numbers written in plain English.

122 9. FINAL DISCUSSION

Memory usage The symbols in the tables only regard the time for the parsing
to finish – memory usage cannot be read from the tables. Thus it is interesting
to know how much memory the parsers allocate while parsing. According to
the tests performed, this is quite straightforward and not at all unnatural.

The trie parsers are eating up much memory almost always, and the backtrack-
ing parsers are quite memory efficient. The pairing trie parsers lies somewhere
in between the two extremes. The stream parser finally is very memory effi-
cient on the determinstic grammars – better than the backtracking parsers –
but extremely memory consuming on the ambiguous grammars – much worse
than the trie parsers.

Unambiguous grammars As general parsers for unambiguous grammars,
the endomorphism continuation parser, the stream continuation parser and the
pairing trie parser are all well suited. The trie parser is efficient for very sim-
ple non left-factorized grammars, which means that it is suited for tokeniza-
tion/lexing or morphological analysis. The continuation transformers all work
well on unambiguous grammars, with the stack continuation transformer slightly
better than the ordinary continuation transformer. The efficiency of the stream
parser decreases somewhat when the grammar is not left-factorized.

Unambiguous Num Num (LF) Expr Expr (LF)
Standard (3.2) – – 0 0
StdCont (3.3.2) – – 0 0
StdStack (3.4.2) – – 0 0
StdEndoCont (3.3.4) 0 + + +
StdEndoStack (3.4.2) 0 ++ + +
Stream (3.5) – – + 0
StreamCont (3.5.3) 0 + ++ ++
StreamStack (3.5.4) 0 ++ ++ ++
ExTrie (4.3.3) ++ 0 – –
PairTrie (4.4.2) + 0 ++ 0

Ambiguous grammars For ambiguous grammars, the ambiguous trie parser
stands out as being much more efficient than any of the others. On second place
comes the pairing trie parser, thus making it a good general-purpose parser
for both deterministic and ambiguous grammars. The stream parsers work
especially poorly on ambiguous grammars.

Observe that we calculated all possible parse results and not only the first, or
the first ten. If we were interested in only a few of the results, the results for
the standard parsers would probably be much better.

9.3. SUMMARY OF TEST RESULTS 123

Ambiguous NL NL (LF) NL (Complex)
Standard (3.2) – – 0
StdCont (3.3.2) – 0 0
StdStack (3.4.2) – + 0
StdEndoCont (3.3.4) – 0 0
StdEndoStack (3.4.2) – + 0
Stream (3.5) – – 0
StreamCont (3.5.3) – – –
StreamStack (3.5.4) – – –
AmbExTrie (4.3.3) ++ ++ ++
PairTrie (4.4.2) + + –

9.3.3 Testing parsing algorithms

The three different parsing algorithms described in chapters 5, 6 and 7 was
tested on three different natural language grammars.

• The first grammar is a trivial grammar with only 5 productions, for testing
very ambiguous data. It was tested on ambiguous sentences of increasing
length.

• The second grammar is a simple natural language grammar, with 19 pro-
ductions. This grammar is similar to the left-factorized version of the
natural language parser; with some differences stemming from the fact
that parsers cannot handle left-recursion. It was tested on real data from
a Swedish corpus of newspaper texts, of which the grammar recognized
about 15% of the sentences.

• The third grammar is a slightly more complex natural language gram-
mar consisting of 31 productions, similar to the complex natural language
parser. This grammar was tested on the same corpus as the simple gram-
mar, and this time it recognized about 40% of the sentences.

The last two grammars were also transformed to Chomsky normal form, to be
able to test the CYK parsing algorithm.

The testing procedure calculated all possible parse trees, and it can of course
be discussed if this is the best method. Another possible variant is to calculate
the parse graph or a chart, which is known to be polynomial in space, even
when there are an exponential number of parse trees. The latter is often a
better approach in large-scale natural language applications, where they often
have thousands of possible parse trees of which only some are chosen for the
semantic processing.

Memory behaviour The memory behaviour is similar for all the different
implementations, which should come as no surprise since their space complexity

124 9. FINAL DISCUSSION

is only quadratic in the length of the input. The exponential number of parse
trees did not have an impact, probably because the trees were calculated one at
the time and then discarded.

Efficiency The CYK algorithm was faster than chart parsing, probably be-
cause it is a simpler algorithm which doesn’t have to calculate minimal fix-point
sets.

The Tomita approximation was the fastest of the three LR implementations.
It was more efficient than chart parsing and CYK parsing on the simple input
without many ambiguities.

On very ambiguous input the Tomita implementation became terribly slow,
which probably is because the implementation is just an approximation with an
exponential worst-case complexity.

If we had been interested in only the first few parse trees, the depth-first LR
implementation would probably be the most efficient one.

9.4 Future work

The area of parsing is wide and there are many possible paths leading out of
this thesis. Since there has been so little work done on parsing in a functional
framework, it is in principle possible to continue with anything parsing related.
In this final section we will just hint at some areas where there are interesting
questions to be answered.

Parser combinators Much research has been conducted to implement dif-
ferent combinator parsers, but almost no-one have studied combinators more
theoretically.

One very interesting issue is to explore the expressiveness of different parser
combinators. How will the language be affected if we introduce a special com-
binator, such as a pruning combinator? Or, what languages can be recognized
if we only accept a limited range of functions as the second argument to the
monadic bind? A related question is how to make parser combinators safer –
how can we check that a parser is guaranteed to terminate?

Grammar formalisms It is interesting to look at how more expressive gram-
mar formalisms than context-free grammars can be elegantly implemented in a
pure functional language.

Parsing algorithms One very burning question from this thesis is how to
implement a real Tomita LR parser in a functional way. The imperative al-
gorithm is both big, hard to read, non-intuitive and. . . well. . . imperative. Is it

9.4. FUTURE WORK 125

possible to implement an efficient Tomita parser in an elegant and declarative
way? Attemps at this have already been conducted by Callaghan and Medlock
[29].

Otherwise one can always implement other parsing algorithms, such as left-
corner or head-corner chart parsing; or even parsing algorithms for other gram-
mar formalisms. Remember that the goal should be to implement the algorithm
in an elegant and declarative way without losing the efficiency of the imperative
algorithm.

Parser generators One interesting issue is if it is possible to combine more of
the features of parser generators into the grammar-collecting parser of chapter 8.
Maybe also the other way around – is it possible to use something from chapter 8
when designing a parser generator?

Evaluation The evaluation in this chapter is not very thorough, and a more
comprehensive evaluation would be nice. The parsers and algorithms should
be tested on real-sized applications, and in a more systematic way. Especially
it would be interesting with a comparision between combinator parsers, pars-
ing algorithms and parser generators. Then one might draw more interesting
conclusions about the usefulness of different approaches.

Another interesting evaluation would be to try to compare the different ap-
proaches with each other on other aspects, such as how error prone they are
and how easy they are to use. Of course such an evaluation would be very
difficult, since these things often boil down to personal taste.

126 9. FINAL DISCUSSION

Appendix A

Sets and Finite Maps

In this appendix we give example implementations of sets and finite maps, the
former as ordered lists and the latter as ordered association lists.

A.1 Sets as ordered lists

One of the obvious representations of sets is as ordered lists. This means that
the type Set α is just a list of α:s. t

type Set α = [α]

The empty set is the empty list and the singleton set is the singleton list

emptySet :: Ord α⇒ Set α
emptySet = []

unitSet :: Ord α⇒ α→ Set α
unitSet x = [x]

The test for emptiness is already defined in the null predicate, and membership
in the elem predicate.

isEmpty :: Ord α⇒ Set α→ Bool
isEmpty = null

elemSet :: Ord α⇒ α→ Set α→ Bool
elemSet = elem

128 A. SETS AND FINITE MAPS

We can take the union of two sets, defined as the function plus . This is a
standard merge, as in the merge sort algorithm.

(<++>) :: Ord α⇒ Set α→ Set α→ Set α
[] <++> ys = ys
xs <++> [] = xs
xs@(x : xs ′) <++> ys@(y : ys ′)

= case compare x y of
LT→ x : (xs ′ <++> ys)
GT→ y : (xs <++> ys ′)
EQ→ x : (xs ′ <++> ys ′)

The naive way of doing the union of a list of sets is to fold the list with (<++>),
but it is more efficient to split the list of sets into two, union then separately
and then adding the results together. This is really a version of merge sort.

union :: Ord α⇒ [Set α]→ Set α
union [] = emptySet
union [xs] = xs
union xyss = union xss <++> union yss

where (xss, yss) = split xyss
split [] = ([], [])
split [x] = ([x], [])
split (x : y : xys) = let (xs, ys) = split xys in (x : xs, y : ys)

To turn an unordered list into a set, we turn each element of the list into a
singleton set, and then apply union.

makeSet :: Ord α⇒ [α]→ Set α
makeSet xs = union (map unitSet xs)

Getting the list of elements in a set is just the identity function, as well as
creating a set from an ordered list.

elems :: Ord α⇒ Set α→ [α]
elems = id

ordSet :: Ord α⇒ [α]→ Set α
ordSet = id

As the definition for the limit function we use the one given in section 2.2.1.

limit :: Ord α⇒ (α→ Set α)→ Set α→ Set α
limit more start = limit ′ start start

where limit ′ old new
| isEmpty new ′ = old
| otherwise = limit ′ (new ′ <++> old) (new ′ <−−> old)

where new ′ = union (map more new)

A.2. FINITE MAPS AS ORDERED ASSOCIATION LISTS 129

The set difference used in the limit function can be calculated in the same
manner as the set union.

(<−−>) :: Ord α⇒ Set α→ Set α→ Set α
[] <−−> ys = []
xs <−−> [] = xs
xs@(x : xs ′) <−−> ys@(y : ys ′)

= case compare x y of
LT→ x : (xs ′ <−−> ys)
GT→ xs <−−> ys ′

EQ→ xs ′ <−−> ys ′

A.2 Finite maps as ordered association lists

We can extend the representation of sets as ordered lists to represent finite maps
as ordered association lists. An association list is a list of pairs of key and values.
The list is ordered on the keys, and there are no duplicate keys in the list.

type Map s α = [(s , α)]

The empty map is represented as the empty list and to map a symbol s to a
value a we use a singleton list.

emptyMap :: Ord s ⇒ Map s α
emptyMap = []

(|→) :: Ord s ⇒ s → α→ Map s α
s |→ a = [(s , a)]

The test for emptiness is trivial, and to lookup a value in the map we can use
the standard lookup function.

isEmptyMap :: Ord s ⇒ Map s α→ Bool
isEmptyMap = null

(?) :: Ord s ⇒ s → Map s α→ Maybe α
s ? ass = lookup ass s

To merge two association lists we need to know what to do with two conflicting
values for the same input symbol. Otherwise it is a standard merge, like the

130 A. SETS AND FINITE MAPS

one used in the merge sort algorithm.

mergeWith :: Ord s ⇒ (α→ α→ α)→ Map s α→ Map s α→ Map s α
mergeWith join [] bss = bss
mergeWith join ass [] = ass
mergeWith join ass@(x@(s , a) : ass ′) bss@(y@(t , b) : bss ′)

= case compare s t of
LT→ x : mergeWith join as ′ bs
GT→ y : mergeWith join as bs ′

EQ→ (s , join a b) : mergeWith join as ′ bs ′

To create a finite map from a list of key-value pairs, we extend the union function
on ordered lists to association lists

makeMapWith :: Ord s ⇒ (α→ α→ α)→ [(s , α)]→ Map s α
makeMapWith join [] = emptyMap
makeMapWith join [(s , a)] = s |→ a
makeMapWith join xyss = mergeWith join (makeMapWith join xss)

(makeMapWith join yss)
where (xss, yss) = split xyss

split [] = ([], [])
split [x] = ([x], [])
split (x : y : xys) = let (xs , ys) = split xys in (x : xs, y : ys)

The functions to return the association list of a finite map and to create a finite
map from an ordered association list are just the identity functions.

assocs :: Ord s ⇒ Map s α→ [(s , α)]
assocs = id

ordMap :: Ord s ⇒ [(s , α)]→ Map s α
ordMap = id

Finally, we can map a function over the values of a finite map.

mapMap :: Ord s ⇒ (α→ β)→ Map s α→ Map s β
mapMap f ass = [(s , f a) | (s , a)← ass]

Appendix B

Test Results

In this appendix we list the results of the performed tests which are summarized
in chapter 9. Each parser and algorithm have been tested on three or four
different test files of different sizes and complexity. In the tables are listed
the total time to finish the task, together with a number indicating how many
percent of that time was spent on garbage collection. The third figure is the
maximum amount of allocated memory during the process. We have left out
the total amount and the average amount of allocated memory.

The tests were performed on a Sun Ultra 80 with 4GB main memory. The
compiler was GHC version 5.02.1, and all files were compiled with optimization
turned on. The tests were then run with a maximum heap size of 1GB and a
maximum stack size of 10MB.

The timings are not quite exact, since each test varied a bit for each run. But
they are within ±5% of the given value. The allocated memory is exact though.

132 B. TEST RESULTS

B.1 Combinator parsers

The Number parser The test data consisted of a number of long lines of
numbers written in plain English. The length of the lines veried from 2000 to
65000 characters, or 100 to 3000 numbers. The first file consisted of many short
lines, and then the line length increased until the last file which consisted of a
few very long lines.

numbers = fmap sum (number <:> many (sym ’ ’ ?> number))
number = sub1000 <+> sup1000 <+> fmap (+) sup1000 <?> sub1000

sup1000 = fmap (const · (1000∗)) sub1000 <?> thousand
sub1000 = sub100 <+> sup100 <+> fmap (+) sup100 <?> sub100

sup100 = fmap (const · (100∗)) digit <?> hundred
sub100 = digit <+> teen <+> ten <+> fmap (+) ten <?> digit

thousand = syms0 "thousand"
hundred = syms0 "hundred"

ten = syms0 "twenty" ?> return 20 <+> . . .
<+> syms0 "ninety" ?> return 90

teen = syms0 "ten" ?> return 10 <+> . . .
<+> syms0 "nineteen" ?> return 19

digit = syms0 "one" ?> return 1 <+> . . .
<+> syms0 "nine" ?> return 9

Number Test 1 Test 2 Test 3
Standard 20.4s (14%) 0.5M 27.3s (17%) 2.5M > 1000s
StdCont 14.8s (20%) 0.2M 59.7s (43%) 1.0M > 1000s
StdStack 15.6s (21%) 0.3M 58.4s (40%) 1.2M > 1000s
StdEndoCont 10.3s (20%) 0.2M 11.6s (21%) 0.7M 56.8s (27%) 4.2M
StdEndoStack 11.3s (23%) 0.2M 12.1s (29%) 0.9M 40.2s (35%) 4.9M
Stream 14.2s (5%) 0.1M 24.2s (6%) 0.1M 318.4s (21%) 3.7M
StreamCont 7.5s (7%) 0.1M 8.2s (6%) 0.4M 40.4s (13%) 2.3M
StreamStack 8.9s (9%) 0.1M 8.7s (8%) 0.5M 27.4s (12%) 3.3M
ExTrie 1.8s (47%) 4.3M 1.8s (49%) 4.9M 4.1s (44%) 8.8M
AmbExTrie 1.8s (47%) 4.5M 1.9s (48%) 4.8M 4.6s (52%) 11.6M
PairTrieStd 9.3s (38%) 3.6M 18.0s (28%) 5.5M 683.5s (70%) 21.8M
PairTrieStdCont 4.8s (29%) 3.1M 10.5s (24%) 3.4M 316.8s (49%) 10.3M
PairTrieStdStack 6.1s (36%) 3.2M 10.4s (28%) 3.3M 205.4s (37%) 11.8M
PairTrieStdEndoCont 3.9s (35%) 3.2M 4.8s (32%) 3.3M 31.6s (21%) 9.3M
PairTrieStdEndoStack 5.1s (39%) 3.2M 5.0s (46%) 4.0M 14.2s (43%) 11.5M

As can be seen, the trie parsers are the clear winners, but they also allocate the
most memory. Otherwise one can see that the continuation transformers give
a real improvement, and the stack continuation more then the ordinary. The
pairing trie transformer also give an improvement, but it will instead use up
memory.

B.1. COMBINATOR PARSERS 133

The left-factorized Number parser The test data consisted of long lines of
numbers written as sequences of digits. The length of the lines varied between
1200 and 12500 characters, or between 250 and 2500 numbers. The first file
consisted of many short lines, and then the line length increased until the last
file which consisted of a few very long lines.

numbers = fmap sum (number <:> many (sym ’ ’ ?> number))

number = fmap conv (digit <:> many digit)
where conv = foldl (λn d → n ∗ 10 + d) 0

digit = fmap conv (sat isDigit)
where conv c = toInteger (ord c − ord ’0’)

Number (LF) Test 1 Test 2 Test 3
Standard 10.7s (17%) 0.3M 18.1s (21%) 1.0M 130.8s (36%) 3.3M
StdCont 4.6s (9%) 0.1M 8.0s (16%) 0.1M 55.7s (35%) 1.1M
StdStack 3.5s (18%) 0.2M 5.4s (13%) 0.4M 33.3s (24%) 1.3M
StdEndoCont 2.3s (13%) 0.1M 2.8s (10%) 0.1M 13.5s (15%) 0.9M
StdEndoStack 1.2s (31%) 0.1M 0.8s (41%) 0.3M 1.6s (45%) 1.2M
Stream 6.7s (8%) 0.0M 11.2s (13%) 0.3M 72.4s (27%) 0.9M
StreamCont 1.9s (13%) 0.1M 2.4s (11%) 0.0M 12.2s (15%) 0.4M
StreamStack 0.9s (30%) 0.1M 0.6s (40%) 0.2M 1.2s (42%) 0.7M
ExTrie 6.5s (56%) 22.1M 5.2s (57%) 20.3M 6.4s (55%) 22.1M
AmbExTrie 6.6s (53%) 22.1M 5.5s (59%) 22.1M 6.5s (55%) 22.1M
PairTrieStd 17.6s (23%) 20.3M 29.6s (26%) 22.1M 307.6s (60%) 22.1M
PairTrieStdCont 24.6s (25%) 20.3M 53.8s (36%) 22.1M 866.2s (71%) 20.3M
PairTrieStdStack 22.8s (24%) 22.1M 47.0s (35%) 20.3M 843.7s (66%) 22.1M
PairTrieStdEndoCont 7.2s (41%) 22.1M 7.1s (37%) 22.1M 18.8s (25%) 20.3M
PairTrieStdEndoStack 6.3s (44%) 22.1M 4.9s (48%) 22.1M 6.7s (49%) 20.3M

Now the tries and pairing tries are no longer the fastest parsers, but this is
not because they have become slower on this input, but rather that the stream
and backtracking parsers are especially well suited for the purpose. The stack
continuation give an exceptionally good improvement.

134 B. TEST RESULTS

The Expression parser The test data consisted of mathematical expressions
written in plain English. The length of the lines varied between 300 and 23500
characters, or between 30 and 2300 words. The first of the test files consisted
of very simple (non-nested) expressions, and then the complexity of the input
increased until the last of the files with deeply nested expressions.

expr = fmap apply expr0 <?> many (fmap flip oper <?> expr0)
where apply = foldl (λx f → f x)

expr0 = fmap const (listoper <?> exprs) <?> sym ’;’
<+> number
<+> sym ’(’ ?> fmap const expr <?> sym ’)’
<+> syms0 "minus " ?> fmap negate expr0

oper = syms0 " plus " ?> return (+)
<+> syms0 " minus " ?> return (−)
<+> syms0 " times " ?> return (∗)
<+> syms0 " divided by "?> return div

exprs = fmap addlast exprs0 <?> (syms0 " and " ?> expr)
where addlast ns n = ns ++ [n]

exprs0 = expr <:> many (syms0 ", " ?> expr)

listoper = syms0 "the sum of " ?> return sum
<+> syms0 "the product of "?> return product

The number parser is the same parser as defined on page 132.
Expression Test 1 Test 2 Test 3
Standard 12.2s (19%) 2.5M 9.7s (19%) 1.8M 8.7s (18%) 2.3M
StdCont 26.4s (41%) 1.0M 5.8s (35%) 0.9M 5.0s (31%) 1.0M
StdStack 26.3s (39%) 1.2M 6.6s (37%) 1.2M 5.7s (33%) 1.3M
StdEndoCont 6.1s (25%) 0.6M 5.8s (26%) 0.6M 5.4s (28%) 0.6M
StdEndoStack 6.1s (28%) 0.9M 5.7s (28%) 0.8M 5.6s (26%) 0.9M
Stream 9.9s (7%) 0.6M 5.9s (6%) 0.3M 5.6s (8%) 0.6M
StreamCont 4.1s (7%) 0.3M 3.6s (4%) 0.1M 3.4s (5%) 0.2M
StreamStack 4.2s (12%) 0.5M 4.0s (11%) 0.4M 3.9s (11%) 0.6M
ExTrie 1.2s (54%) 3.7M 6.8s (69%) 32.1M 12.4s (73%) 69.0M
AmbExTrie 1.2s (47%) 3.6M 6.8s (64%) 29.2M 12.6s (70%) 64.5M
PairTrieStd 7.5s (38%) 3.9M 4.3s (49%) 4.1M 4.0s (50%) 6.1M
PairTrieStdCont 10.6s (33%) 2.6M 2.7s (51%) 2.4M 2.5s (44%) 3.6M
PairTrieStdStack 10.9s (34%) 2.9M 3.6s (47%) 2.8M 3.1s (48%) 4.4M
PairTrieStdEndoCont 2.6s (37%) 2.3M 2.3s (37%) 2.8M 2.1s (52%) 3.2M
PairTrieStdEndoStack 3.1s (45%) 2.4M 3.1s (42%) 2.5M 3.0s (47%) 3.9M

The winner this time is the pairing trie, followed by the stream parser. Observe
that this time the standard continuation transformer has the best performance,
even if just by a little. Interesting is the behaviour of the trie parsers – on the
simple input they are very efficient indeed, but as soon as we introduce some
nesting, they become slower and slower. Also notice that the memory allocation
for the tries is tightly connected with the running time.

B.1. COMBINATOR PARSERS 135

The left-factorized Expression parser The test data consisted of mathe-
matical expressions written in standard Haskell syntax. The length of the lines
varied between 200 and 20000 characters, or between 20 and 9000 tokens. The
first of the test files consisted of very simple (non-nested) expressions, and then
the complexity of the input increased until the last of the files with deeply nested
expressions.

expr = fmap apply expr0 <?> many (fmap flip oper <?> expr0)
where apply = foldl (λx f → f x)

expr0 = listoper <?> (sym ’[’ ?> fmap const exprs <?> sym ’]’)
<+> number
<+> sym ’(’ ?> fmap const expr <?> sym ’)’
<+> syms0 "-" ?> fmap negate expr0

oper = syms0 "+" ?> return (+)
<+> syms0 "-" ?> return (−)
<+> syms0 "*" ?> return (∗)
<+> syms0 "/" ?> return div

exprs = expr <:> many (sym ’,’ ?> expr)

listoper = syms0 "sum " ?> return sum
<+> syms0 "product " ?> return product

The number parser is the left-factorized version defined on page 133.
Expression (LF) Test 1 Test 2 Test 3
Standard 48.3s (30%) 2.1M 11.3s (14%) 1.6M 5.8s (22%) 2.3M
StdCont 112.0s (49%) 1.3M 14.1s (16%) 0.3M 3.0s (33%) 1.0M
StdStack 91.4s (42%) 1.4M 12.5s (16%) 0.8M 2.9s (33%) 1.0M
StdEndoCont 7.0s (18%) 0.9M 2.8s (12%) 0.3M 2.4s (17%) 0.7M
StdEndoStack 2.6s (37%) 1.1M 1.9s (23%) 0.7M 2.5s (22%) 1.0M
Stream 29.2s (20%) 0.5M 6.3s (9%) 0.2M 3.3s (10%) 0.5M
StreamCont 5.7s (12%) 0.4M 2.3s (13%) 0.3M 1.8s (16%) 0.4M
StreamStack 1.7s (27%) 0.5M 1.4s (24%) 0.4M 1.7s (26%) 0.5M
ExTrie 4.4s (55%) 22.1M 9.0s (58%) 43.7M 25.1s (68%) 112.6M
AmbExTrie 4.5s (56%) 22.1M 9.0s (58%) 43.7M 23.6s (67%) 100.1M
PairTrieStd 75.7s (37%) 30.4M 16.6s (24%) 22.1M 8.8s (37%) 22.1M
PairTrieStdCont 131.8s (54%) 31.4M 108.9s (40%) 31.2M 10.0s (52%) 22.1M
PairTrieStdStack 99.6s (45%) 31.5M 94.3s (41%) 31.3M 9.7s (53%) 20.3M
PairTrieStdEndoCont 11.3s (35%) 30.0M 6.4s (36%) 20.3M 6.5s (41%) 22.1M
PairTrieStdEndoStack 6.9s (56%) 31.0M 6.2s (53%) 31.3M 6.4s (46%) 22.1M

When the grammar is left-factorized the stream parser wins, followed by the
backtracking parser. The stack continuation is much better than the standard
continuation on simple input, but there is not difference on the nested input.
The tries and the pairing tries lose this time, furthermore they allocate lots of
memory. One interesting thing is that the standard parser and the stream parser
(without any continuations) are very slow on the simple input, but become more
efficient on nested data.

136 B. TEST RESULTS

The NL parser The natural language parser is a quite simple, but highly
ambiguous, natural language grammar for Swedish, with a lexicon consisting of
960 words. The tokenization and morphological analysis (word class tagging)
were all part of the grammar. The test data consisted of seven lines each of
between 90 and 240 characters, or between 10 and 30 word sentences. The
ambiguities varied between 2 and 700 different results for a sentence.

sentences = sentence <:> many sentence
sentence = mapNode2 S np <?> vp
vp = fmap (VP:∧) (vp0 <:> many pp)
vp0 = mapNode1 VP verb

<+> mapNode2 VP verb <?> np
np = fmap (NP:∧) (np0 <:> many (pp <+> rp))
np0 = mapNode1 NP (name <+> pronoun <+> noun)

<+> mapNode2 NP ap <?> noun
<+> mapNode2 NP det <?> noun
<+> mapNode3 NP det <?> ap <?> noun

pp = mapNode2 PP prep <?> np
rp = mapNode2 RP relpro <?> vp
ap = fmap (AP:∧) (adj <:> many adj)

adj = leaf ["allvarlig", "gamle", "tekniskt", . . .]
. . .
verb = leaf ["arbetar", "omfattar", "pekade", . . .]

mapNode1 n = fmap (λa → n :∧ [a])
mapNode2 n = fmap (λa b → n :∧ [a, b])
mapNode3 n = fmap (λa b c → n :∧ [a, b, c])
leaf strs = anyof [syms0 str ?> return (Leaf str) | str ← strs]

NLParser Test 1 Test 2 Test 3
Standard 7.1s (3%) 0.4M 163.1s (3%) 1.2M 376.8s (3%) 1.4M
StdCont 5.4s (30%) 0.4M 130.8s (35%) 0.6M 305.1s (36%) 0.7M
StdStack 4.3s (12%) 0.4M 96.7s (13%) 1.0M 222.7s (13%) 1.2M
StdEndoCont 6.6s (34%) 0.4M 160.8s (36%) 0.6M 373.1s (37%) 0.7M
StdEndoStack 9.3s (19%) 0.4M 218.2s (23%) 1.1M 495.8s (24%) 1.2M
Stream 6.0s (28%) 1.8M 167.1s (39%) 43.6M 420.7s (41%) 88.1M
StreamCont 6.8s (52%) 2.9M 212.7s (61%) 79.1M 514.1s (62%) 178.0M
StreamStack 8.7s (58%) 3.7M 287.9s (69%) 104.0M 705.7s (70%) 211.5M
ExTrie 0.8s (50%) 2.3M 5.4s (64%) 9.7M 16.7s (70%) 23.6M
AmbExTrie 0.7s (60%) 2.1M 3.5s (68%) 10.2M 9.2s (70%) 21.8M
PairTrieStd 0.7s (63%) 1.1M 10.2s (36%) 6.0M 27.1s (42%) 14.5M
PairTrieStdCont 0.6s (59%) 0.9M 6.3s (43%) 7.1M 17.3s (47%) 16.9M
PairTrieStdStack 0.6s (61%) 1.1M 8.2s (42%) 9.5M 21.1s (51%) 19.2M
PairTrieStdEndoCont 0.6s (64%) 1.1M 6.7s (45%) 6.2M 17.7s (50%) 17.0M
PairTrieStdEndoStack 0.6s (67%) 1.1M 8.6s (50%) 10.8M 21.6s (55%) 17.5M

The trie parsers are the clear winners, tightly followed by the pairing tries. The
streams are simply not very suited for ambiguous input. One interesting thing is
that the endomorphisms are not good for ambiguous input. Also to note is the
difference in memory usage between the backtracking parsers and the others.

B.1. COMBINATOR PARSERS 137

The left-factorized NL parser This parser is the same grammar as before,
but working on already tokenized and tagged sentences. The test data consisted
of seven lines each of between 20 and 45 words. The ambiguities varied between
4 and 15000 different results for a sentence.
NLParser (LF) Test 1 Test 2 Test 3
Standard 5.4s (16%) 1.1M 30.5s (20%) 6.1M 88.9s (16%) 10.9M
StdCont 3.6s (36%) 0.7M 22.7s (44%) 3.7M 61.5s (42%) 6.0M
StdStack 2.8s (20%) 0.9M 16.6s (22%) 4.7M 41.0s (14%) 7.3M
StdEndoCont 3.7s (37%) 0.7M 24.5s (46%) 3.6M 67.1s (43%) 6.0M
StdEndoStack 3.2s (23%) 0.9M 18.7s (28%) 4.5M 48.7s (22%) 7.7M
Stream 12.8s (44%) 4.9M 252.1s (52%) 19.3M > 1000s
StreamCont 4.5s (54%) 6.4M 27.4s (56%) 19.4M 81.8s (60%) 109.4M
StreamStack 5.8s (64%) 8.4M 35.5s (66%) 35.8M 111.0s (70%) 183.9M
ExTrie 7.5s (43%) 3.5M 198.8s (57%) 16.1M > 1000s
AmbExTrie 1.4s (51%) 3.6M 8.5s (54%) 16.2M 32.2s (73%) 50.5M
PairTrieStd 3.8s (19%) 1.3M 23.9s (26%) 6.8M 66.8s (20%) 10.2M
PairTrieStdCont 2.6s (18%) 1.3M 16.5s (22%) 6.4M 41.0s (14%) 10.7M
PairTrieStdStack 2.9s (20%) 1.5M 18.7s (26%) 6.3M 43.7s (16%) 11.3M
PairTrieStdEndoCont 3.3s (28%) 1.3M 21.1s (32%) 6.5M 54.2s (30%) 10.6M
PairTrieStdEndoStack 3.2s (37%) 1.4M 20.9s (37%) 7.2M 52.4s (32%) 11.5M

The winner is still the trie parsers, but only the ambiguous trie can handle
this grammar. Probably the input were simple too ambiguous to the ordinary
trie. Observe also that the pair trie doesn’t gain anything, since the grammar
is left-factorized.

The complex NL parser This is an extended version of the previous gram-
mar, which handles conjunctions as well as some other Swedish grammatical
constructs. It also works on tokenized and tagged data. The test data were
taken from a real corpus and each file consisted of 300–1000 lines of between 1
and 60 words. The ambiguities varied between 1 and 100 000 different results
for a sentence.
NLParser (Complex) Test 1 Test 2 Test 3
Standard 3.8s (6%) 0.1M 48.6s (12%) 3.1M 615.5s (17%) 210.9M
StdCont 1.7s (4%) 0.0M 26.1s (12%) 1.8M 444.9s (28%) 126.8M
StdStack 2.2s (3%) 0.0M 31.2s (11%) 1.8M 485.5s (24%) 128.1M
StdEndoCont 2.0s (2%) 0.0M 29.1s (19%) 1.9M 425.6s (30%) 123.9M
StdEndoStack 2.3s (5%) 0.0M 32.7s (19%) 2.0M 453.8s (27%) 122.5M
Stream 1.7s (4%) 0.0M 34.0s (30%) 5.0M 606.6s (44%) 342.0M
StreamCont 2.0s (9%) 0.0M 42.4s (49%) 12.2M > 1000s
StreamStack 2.2s (16%) 0.0M 47.9s (53%) 13.6M > 1000s
ExTrie 0.8s (48%) 2.7M 12.0s (49%) 22.5M 204.6s (47%) 103.8M
AmbExTrie 0.8s (41%) 2.8M 10.2s (49%) 25.6M 90.1s (19%) 57.6M
PairTrieStd 3.6s (25%) 3.5M 84.8s (26%) 32.2M > 1000s
PairTrieStdCont 2.5s (34%) 4.4M 56.3s (36%) 37.1M > 1000s
PairTrieStdStack 2.6s (30%) 3.3M 67.9s (45%) 33.0M > 1000s
PairTrieStdEndoCont 2.9s (31%) 4.5M 63.2s (32%) 34.2M > 1000s
PairTrieStdEndoStack 2.6s (31%) 3.2M 68.2s (45%) 33.1M > 1000s

Even in this version the ambiguous trie wins. Surprisingly the pairing tries are
terribly slow on this grammar, while the backtracking parsers and the stream
parsers are approximately as efficient. Once again the endomorphisms just
makes things worse, which also the continuations do for the stream parser.

138 B. TEST RESULTS

B.2 Parsing algorithms

We have tested the three different parsing algorithms in chapters 5, 6 and 7. The
implementations are all optimized according to the guidelines in the exercises.
Since the chapter on LR parsing describes three different versions – depth-first,
breadth-first and Tomita parsing – we have tested all three versions.

The test data was divided into three test files for each grammar (or two for the
Trivial grammar). The lengths of the sentences (which is roughly equivalent to
the complexity) increased from the first file to the last file.

The Trivial grammar This grammar is a very simple grammar (only 5 pro-
ductions) which is highly ambiguous. It was tested on ambiguous sentences of
increasing length.

S −→ NP VP

VP −→ Verb NP | VP PP

NP −→ NP PP

PP −→ Prep NP

The terminal categories are NP, Verb and Prep.

Trivial Test 1 Test 2

Chart Parser 8.8s (6%) 0.8M 33.0s (7%) 2.5M
CYK Parser 8.8s (8%) 0.9M 33.3s (8%) 2.9M
LR Parser (T) 17.3s (20%) 1.8M 65.0s (22%) 6.5M
LR Parser (BF) 21.9s (10%) 2.2M 79.4s (10%) 7.6M
LR Parser (DF) 23.9s (10%) 2.6M 86.0s (10%) 8.2M

As can be noted, the LR parsers are not as efficient as the chart parser and the
CYK parser. This is mainly because this simple grammar doesn’t win anything
on being compiled into an LR table, but also because the LR implementations
are not polynomial as a real Tomita parser would be.

B.2. PARSING ALGORITHMS 139

The Simple grammar This grammar is similar to the NL parser and consists
of 19 productions. It was tested on real test data from a corpus of Swedish
texts. The test data consisted of 2500 lines, each between 5 and 55 words long,
and with between 0 and 130 parse results per sentence.

S −→ S1 | S1 S

S1 −→ NP VP

VP −→ Verb | VP NP | VP PP

NP −→ N1 | Noun | AP Noun
| Det Noun | Det AP Noun
| NP PP | NP RP

N1 −→ Name | Pron

AP −→ Adj | Adj AP

PP −→ Prep NP

RP −→ Relpro VP

The terminal categories are Adj, Det, Name, Noun, Prep, Pron, Relpro and Verb.

Simple Test 1 Test 2 Test 3

Chart Parser 3.1s (6%) 0.5M 4.3s (12%) 0.7M 1.3s (8%) 0.2M
LR Parser (T) 1.2s (3%) 0.4M 1.6s (8%) 0.6M 0.4s (8%) 0.0M
LR Parser (BF) 1.2s (10%) 0.4M 1.9s (11%) 0.8M 0.7s (2%) 0.0M
LR Parser (DF) 1.3s (8%) 0.4M 2.2s (7%) 0.8M 0.8s (8%) 0.0M

The Simple grammar in CNF The grammar was also translated to Chomsky
Normal Form, to be able to measure the performance of the CYK algorithm.
The number of productions decreased from 19 to 14, but instead more categories
became terminal.
Simple (CNF) Test 1 Test 2 Test 3

Chart Parser 3.3s (7%) 0.5M 4.6s (9%) 0.8M 1.4s (7%) 0.2M
CYK Parser 2.2s (6%) 0.6M 3.6s (5%) 0.7M 1.3s (5%) 0.0M
LR Parser (T) 1.1s (7%) 0.4M 1.5s (7%) 0.6M 0.4s (4%) 0.0M
LR Parser (BF) 1.1s (10%) 0.4M 1.8s (9%) 0.8M 0.6s (6%) 0.0M
LR Parser (DF) 1.3s (7%) 0.4M 2.2s (6%) 0.8M 0.8s (4%) 0.0M

The LR parsers are quite a lot faster than the other algorithms, which is a
bit surprising, since the implementations are exponential in the length of the
input. But this grammar is apparently very well suited for compilation into
an LR table. The CYK parser is faster than the chart parser, which probably
is because of its very simple and straightforward implementation that doesn’t
introduce any overhead.

140 B. TEST RESULTS

The Complex grammar The Complex grammar is an extended version of
the previous grammar, with 31 productions. This grammar recognizes more
sentences, but is also much more ambiguous. The grammar was tested on the
same corpus as before (but with more complex sentences). The sentences were
between 0 and 60 words in length, and had between 0 and 30 000 parse results
per sentence.

S1 −→ . . . | NP | VP | S1 Conj S1

VP −→ . . . | VP Subj S1 | VP IP | VP Conj VP

Verb −→ Verb Part

NP −→ . . . | NP Conj NP

N1 −→ . . . | Name N1 | Pron N1 | Number N1

IP −→ Inf VP

AP −→ . . .

PP −→ . . .

RP −→ . . .

The grammar also consists of the productions from the Simple grammar. The
new terminal categories are Conj, Inf, Part and Subj.

Complex Test 1 Test 2 Test 3

Chart Parser 4.1s (7%) 0.2M 19.4s (8%) 0.9M 187.5s (3%) 21.7M
LR Parser (T) 2.9s (2%) 0.3M 26.6s (8%) 1.4M > 1000s
LR Parser (BF) 4.0s (3%) 0.3M 60.6s (6%) 2.2M > 1000s
LR Parser (DF) 4.5s (4%) 0.3M 68.4s (5%) 3.4M > 1000s

The Complex grammar in CNF The Chomsky Normal Form version of
the Complex grammar has 63 productions, which means that the timings are
different from the original version.

Complex (CNF) Test 1 Test 2 Test 3

Chart Parser 6.8s (6%) 0.3M 25.5s (12%) 0.9M 147.9s (5%) 26.8M
CYK Parser 2.5s (2%) 0.0M 15.5s (5%) 0.9M 141.4s (4%) 18.3M
LR Parser (T) 3.5s (4%) 0.3M 24.4s (11%) 1.4M > 1000s
LR Parser (BF) 4.9s (3%) 0.2M 66.1s (4%) 1.9M > 1000s
LR Parser (DF) 6.3s (3%) 0.3M 88.6s (4%) 2.7M > 1000s

Once again the CYK parser outperforms the chart parser, at least on the simple
input. We can see that the approximation of the Tomita parser is faster than
the chart parser on simple input – i.e. input without much ambiguities. But as
soon as the sentences become more ambiguous, the LR algorithms slows down.
This is of course because of their exponential complexity.

Bibliography

[1] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers – Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[2] William H Burge. Recursive Programming Techniques. Addison-Wesley,
1975.

[3] Magnus Carlsson and Thomas Hallgren. Fudgets – Purely Functional Pro-
cesses with applications to Graphical User Interfaces. PhD thesis, Chalmers
University of Technology, Göteborg, Sweden, 1998.

[4] Manuel Chakravarty. Lazy lexing is fast. In A Middeldorp and T Sato,
editors, Fourth Fuji International Symposium on Functional and Logic Pro-
gramming, volume 1722 of LNCS, pages 68–84. Springer Verlag, 1999.

[5] Koen Claessen. Parsek – fast and space-efficient monadic parser combina-
tors, 2001. Available from the Chalmers Multi Library:
http://www.cs.chalmers.se/Cs/Research/Functional/MultiLib

[6] Koen Claessen and David Sands. Observable sharing for functional circuit
description. In ASIAN Computer Science Proceedings, Phuket, Thailand,
1999. ACM SIGPlan.

[7] Byron Cook and John Launchbury. Disposable memo functions. In ACM
SIGPLAN Haskell Workshop, June 1997.

[8] Jay Earley. An efficient context-free parsing algorithm. Communications
of the ACM, 13(2):94–102, 1970.

[9] The GHC User’s Guide, 2001. Available from the Haskell web site:
http://www.haskell.org/ghc

[10] Andy Gill, John Launchbury, and Simon Peyton Jones. A short cut to
deforestation. In Functional Programming Languages and Computer Ar-
chitecture, pages 223–232, Copenhagen, Denmark, 1993.

[11] Susan Graham, Michael Harrison, and Walter Ruzzo. An improved context-
free recognizer. ACM Transactions on Programming Languages and Sys-
tems, 2(3):415–462, 1980.

141

142 BIBLIOGRAPHY

[12] Jörgen Gustavsson. Space-Safe Transformations and Usage Analysis for
Call-by-Need Languages. PhD thesis, Göteborg University, 2001.

[13] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[14] Paul Hudak. Modular domain specific languages and tools. In Fifth Inter-
national Conference on Software Reuse, pages 134–142, Victoria, Canada,
June 1998.

[15] Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduction to
Haskell 98. Technical report, Yale University, October 1999. Available from
the Haskell web site:
http://www.haskell.org/tutorial

[16] Graham Hutton. Higher-order functions for parsing. Journal of Functional
Programming, 2(3):323– 343, July 1992.

[17] Graham Hutton and Erik Meijer. Monadic parser combinators. Journal of
Functional Programming, 8(4):437–444, July 1998.

[18] Mark Jones. Type classes with functional dependencies. In 9th Euro-
pean Symposium on Programming, Berlin, Germany, 2000. Springer-Verlag
LNCS 1782.

[19] Tadao Kasami. An efficient recognition and syntax algorithm for context-
free languages. Technical report, Air Force Cambridge Research Labora-
tory, Bedford, MA, 1965.

[20] Martin Kay. Algorithm schemata and data structures in syntactic process-
ing. In Barbara Grosz, Karen Jones, and Bonnie Webber, editors, Readings
in Natural Language Processing, pages 35–70. Morgan Kaufman Publishers,
Los Altos, CA, 1986.

[21] James Kilbury. Chart parsing and the Earley algorithm. In Ursula
Klenk, editor, Kontextfreie Syntaxen und wervandte Systeme. Niemeyer,
Tübingen, Germany, 1985.

[22] Donald Knuth. On the translation of languages from left to right. Infor-
mation and Control, 8:607–639, 1965.

[23] Pieter Koopman and Rinus Plasmeijer. Efficient combinator parsers. In A J
T Davie K Hammond and C Clack, editors, Implementation of Functional
Languages, volume 1595 of LNCS, pages 122–138. Springer Verlag, 1998.

[24] Bernard Lang. Deterministic techniques for efficient non-deterministic
parsers. In J Loeckx, editor, Proceedings of the 2nd Colloquium on Au-
tomata, Languages and Programming, pages 255–269. Springer-Verlag,
1974.

BIBLIOGRAPHY 143

[25] Konstantin Läufer. Polymorphic Type Inference and Abstract Data Types.
PhD thesis, New York University, 1992.

[26] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combi-
nators for the real world. Technical Report UU-CS-2001-35, Departement
of Computer Science, Universiteit Utrecht, Netherlands, 2001.

[27] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modu-
lar interpreters. In Conference Record of POPL’95, San Fransisco, January
1995. ACM.

[28] Simon Marlow and Andy Gill. Happy User Guide, 2001. Available from
the Haskell web site:
http://www.haskell.org/happy

[29] Ben Medlock. A tool for generalised LR parsing in Haskell. Master’s thesis,
Department of Computer Science, University of Durham, UK, To appear
2002. Contact Paul Callaghan, p.c.callaghan@durham.ac.uk

[30] Mark-Jan Nederhof and Janos Sarbo. Increasing the applicability of LR
parsing. In Harry Bunt and Masaru Tomita, editors, Recent Advances in
Parsing Technology, pages 35–58. Kluwer Academic Publishers, 1996.

[31] Rohman Nozohoor-Farshi. Handling of ill-designed grammars in Tomita’s
parsing algorithm. In International Workshop on Parsing Technologies,
pages 182–192, Pittsburgh, PA, 1989. Carnegie Mellon University.

[32] Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[33] Nigel Perry. The Implementation of Practical Functional Programming
Languages. PhD thesis, Imperial College, London, 1990.

[34] Simon Peyton Jones. Tackling the awkward squad. Technical report, Mi-
crosoft Research, Cambridge, February 2001. Presented at the 2000 Mark-
toberdorf Summer School.

[35] Simon Peyton Jones (editor). Report on the programming language Haskell
98, a non-strict purely functional language. Technical report, Yale Univer-
sity, February 1999. Available from the Haskell web site:
http://www.haskell.org/definition

[36] Niklas Röjemo. Garbage Collection and Memory Efficiency in Lazy
Functional Languages. PhD thesis, Chalmers University of Technology,
Göteborg, Sweden, 1995.

[37] Stuart Shieber, Yves Schabes, and Fernando Pereira. Principles and im-
plementation of deductive parsing. Journal of Logic Programming, 24(1–
2):3–36, 1995.

144 BIBLIOGRAPHY

[38] Klaas Sikkel. Parsing Schemata. Springer Verlag, 1997.

[39] Doaitse Swierstra. Combinator parsers: From toys to tools. In Graham
Hutton, editor, Haskell Workshop, pages 46–57, September 2000.

[40] Doaitse Swierstra and Pablo Azero Alcocer. Fast, error correcting parser
combinators. In J Pavella, G Tel, and M Bartosek, editors, SOFSEM99
Theory and Practice of Informatics, volume 1725 of LNCS, pages 111–129.
Springer-Verlag, November 1999.

[41] Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting
combinator parsers. In John Launchbury, Erik Meijer, and Tim Sheard,
editors, Advanced Functional Programming, volume 1129 of LNCS, pages
1–17. Springer-Verlag, 1996.

[42] Masaru Tomita. Efficient Parsing for Natural Language. Kluwer Academic
Press, 1986.

[43] Leslie Valiant. General context-free recognition in less than cubic time.
Journal of Computer and Systems Sciences, 10(2):308–315, April 1975.

[44] Philip Wadler. How to replace failure by a list of successes. In Second Int.
Conf. on Functional Programming Languages and Computer Architecture,
Nancy, France, September 1985. Springer-Verlag.

[45] Philip Wadler. Monads for functional programming. In Marktoberdorf
Summer School on Program Design Calculi, volume 118 of NATO ASI
Series F: Computer and Systems Sciences. Springer-Verlag, August 1992.

[46] Mats Wirén. Studies in Incremental Natural-Language Analysis. PhD the-
sis, Linköping University, Linköping, Sweden, 1992.

[47] Daniel H Younger. Recognition of context-free languages in time n3. In-
formation and Control, 10(2):189–208, 1967.

