Functional programming and NLP

Peter Ljunglof
January 1, 2002

Abstract

Most of today’s NLP software is developed using either a logic pro-
gramming language such as Prolog, or a low-level imperative language
such as C or C++. In this paper I will try to argue why the paradigm
of functional programming (as opposed to logic and imperative program-
ming) matters for natural language processing.

One reason for why functional programming hasn’t caught on among com-
putational linguists could be that the functions are often explained from a math-
ematical perspective, and that can scare away non-mathematicians such as lin-
guists.

Another reason could be that linguists often learn predicate logic as the basis
for NL semantics, and logic programming is closer to predicate logic than other
programming paradigms.

In this paper I will try to argue that functional programming is a good
paradigm for many natural lanugage tasks. In a way it is a version of John
Hughes’ influencing paper on why functional programming matters [3], but spe-
cialized for natural language processing.

1 Elements of functional programming languages

In a real functional programming language functions are first-class objects. This
is the main ingredient, and gives rise to higher-order functions and a very mod-
ular way of programming.

But programming with higher-order functions is very error-prone, and there-
fore most modern functional languages (such as ML and Haskell) has a static
polymorphic type system. Indeed many programming languages have type sys-
tems, but it’s almost only functional languages that have polymorphic types —
i.e. that a function can be applied to arguments of many different types.

A functional programming language can be strict or lazy. A strict language
(such as ML) evaluates the arguments of the functions before the function is
applied, but a lazy language (such as Haskell) doesn’t evaluate until the value
is really needed. Laziness can lead to great efficiency improvements, and it is
even possible to write perfectly functioning programs that will not terminate
under strict evaluation.

1.1 A minor introduction to Haskell

In this paper I will use Haskell syntax. Function application is written f ¢ and
not f(a); and application with two arguments is written f a b and not f(a,b).
To improve readability Haskell has operators like (), () and (:), and they are
just infix functions on two arguments; i.e. 3 + 4 is an application of (+) to the
arguments 3 and 4. An operator can be used as an ordinary function by putting
it inside parentheses; so (+) 3 4 is the same as 3 + 4.

Parentheses are used to disambiguate and change precedence; so (3+4) 5 is
not the same as 3+ (4%5), and f (g a) b, f (g a b) and f g a b are three different
things — the first is an application of the function f to the two arguments g a
and b; the second is f applied to the single argument ¢ a b; and the third is f
applied to the three arguments g, a and b.

Data structures are build by constructors, which are functions (or constants)
which are not evaluated. A list is either the empty list, [|; or the compound
list x : zs, where z is the head element and zs is the tail list.

Assume now that we want to write a function to square each element in a
list of numbers. We can do this by pattern matching on the argument list.

squares [] = []
squares (n:ns) = (n*n):squares ns

And here is an example run in the Haskell interpreter Hugs.!

> squares [1,2,3,4,5]
[1,4,9,16,25]

To translate a list of characters (also called a string) into lower case, we can
define the following function.

lowercase | | = 1]
lowercase (c:cs) = toLower c: lowercase cs

The function toLower is built-in and translates a character to lower case. And
an example run.?

> lowercase "Pelle and Lisa"
"pelle and lisa"

1.2 Functions as first-class objects

A functional programming language is of course built on functions. In fact,
functions are the only way to compute things in a functional language. But
what’s the issue with functions? It is possible to define functions in an impera-
tive language like C. The main difference is that in a real functional language,
the functions are first-class objects, which means that they can be given as
arguments to other functions, and be returned as results.

L As in most languages, the term [1, 2, 3, 4, 5] is just syntactic sugar for the list 1:2:3:4:5:[].
2The string "hej" is just a shorthand for the list of characters [’h’, ’e’, 7§’].

Higher-order functions

The example functions defined earlier are instances of a very general transforma-
tion on lists — to transform each element separately. This can be implemented
as a function that takes a function as argument.

map f [=[]
map f (x:xs) = fx:mapf xs

The map function takes as argument a function on the elements of a list and
returns a function on lists. We can use this function to define the previous
functions.

square r 0= T *ZX
squares = map square
lowercase = map toLower

A function on two arguments can also be seen as a function that, given an
argument, returns a function on one argument. This means that f z y is the
same as (f z) y, i.e. function application associates to the left.

Lambda abstraction

Another concept that follows with functions as first-class objects is lambda
abstraction. We can define anonymous functions by abstracting over the ar-
guments. With this feature we can define the squares function without any
auxiliary definition square

squares = map (Az — T * x)

We can also define functions local to another function — i.e. give a local name
to an anonymuos function.

squares = map square
where square z = zxz

1.3 Static typing

Since f (g a) b, f (g a b) and f g a b are three completely different things,
programming with functions could be very error-prone. This is the main rea-
son why most functional programming languages are typed, as opposed to e.g.
Prolog.

But to make use of the possibilities of higher-order functions, the type system
is more complex than the type system of C and Pascal. In functional program-
ming we can have polymorphic type, which means that a function works with
many different types. E.g. the map function has a very polymorphic type:

map i (a—f) = [a] = [f]

«a and [are called type variables, and what the type says is that it can be
applied to a function and a list, if the function can be applied to the elements
of the list. The resulting list has elements of the function’s argument type. Our
example functions then have the following types:

lowercase :: [Char] — [Char]

squares . [Integer] — [Integer]

In Haskell one can introduce new data types with the data declaration and tpye
synonyms (abbreviations for existing types) with the type declaration. As an
example, the String type is an abbreviation of lists of characters.

type String = [Char]

The types can be abstracted over one or several other types, such as in the
list type (there can be lists of characters or lists of integers etc). As another
example we can introduce general trees abstracted over the internal nodes and
the leaves.

data Treea § = Node a [Tree a 3]
| Leaf g8

1.4 Laziness

The third component of some functional languages is laziness. This means that
function applications are evaluated on demand only.

One effect of this is that we can work with infinite objects; such as the list
of all positive integers.

posints = 1:map next posints
where nextn = n+1

This is an infinite list of constantly increasing integers. But this leads to no
problem, as long as we only work with finite subparts of that list.

> take 20 posints
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

In a strict language such as ML or Prolog, this call would never terminate.
Another feature of lazy evaluation (or call-by-need as it is sometimes called) is
that it evaluates a given constant only once, even if it occurs in several places.
Because of this we will not end up doing the same computation several times.

An effect of lazy evaluation is that side-effects need some thought to in-
troduce — we cannot put a call to print (which prints a value to the screen)
anywhere in a program, since we cannot be sure when that part of the program
will be evaluated, in fact it may never be evaluated. Haskell uses a concept
from category theory called monads to incorporate side-effects, but this is not
the topic of this paper, so I leave it with this.

2 Case study: Parser combinators

Parser combinators are an example of an domain specific embedded language.
It is an language for describing parsers, or context-free grammars, embedded
in the host language Haskell. It’s domain specific because it regards only the
domain of parsers or grammars.

A parser is (in our setting) a type abstracted over the type of terminals and
the type of parse results.

type Parser sa =

We leave the definition of the type abstract, and leave it to the interested reader
to read more about different parser types in e.g. Wadler’s classical paper [7],
or some of the later writings [4, 5, 6]. Now we can introduce a small set of
combinators, with which we can describe any context-free grammar. So we need
combinators for sequencing, alternation and recognizing a sequence of terminal
symbols.

(<x>) = Parser s (oo —) — Parser s a — Parser s 3
(<t>) = Parser s a — Parser s a — Parser s «

(7>) i [s] = a — Parser s

zero = Parser s a

With these four combinators we can describe any context-free grammar. (<x>)
takes two parsers and combines them in sequence. The result of the first parser
has to be a function that can be applied to the result of the second parser,
and the result of the combined parser is the application of the function to the
argument. (<4>) combines two parsers in parallel, i.e. introduces a choice in the
grammar. ss 7> g is a parser that recognizes the sequence of terminal symbols
ss, returning the result a. The parser zero is there mostly for completeness,
it is a parser that always fails. It is a left and right unit for (<+>), and since
alternation is associative they form a monoid together.

Grammar writing can be much simplified by defining auxiliary combinators.
One important parser is succeed a, which recognizes the empty sequence, and
has a as parse result.

succeed > a — Parser s
succeed a = []7>a

Another one is the combinator (<$>), which takes a function and a parser, and
gives a parser which recognizes the same language as the given one, applying
the function on each result.?

(<$>) i (o — B) — Parser s a — Parser s
f<$>p = succeed f <x>p

3The alert reader may notice the similarity in the type signature with the map function
on lists. And indeed it is possible in Haskell to introduce a very polymorphic map function
which can be applied to both parsers and lists (and other types). This is done via the type
class system, which will not be discussed in this paper.

(<*x>), (<$>) and (<+>) all associate to the left, which means that f <$>
p <x> g <x>r is equivalent to ((f <$> p) <x> q) <x>r. Also (<*>), (7>) and
(<$>) bind harder than (<+>), which means that p <x> ¢ <t> f <$> r is the
same as (p <x> q) <> (f <8>r).

2.1 Montague semantics

Already in [1], Frost and Launchbury showed how to implement a simple Montague-
style grammar in a functional language. In this section we show how to do this
in a simple manner.

First-order logic

First we need a data type for first order formulas. We skip the disjunction and
the negation, since we will have no use of these in our small language fragment.

data Formula = Pred Term [Term |

| And Formula Formula

| Implies Formula Formula
| Exists (Term — Formula)
|

Forall (Term — Formula)

The Pred constructor creates an atomic formula, a constant, a predicate or a
relation. The first argument is the name of the predicate and the second is a
list of its arguments. The quantifiers use a function from terms to formulas to
be able to make use of the built-in variable binding in a functional language.
The type of terms is simply strings.

type Term = String

To simplify things we introduce the type of predicates as a function from terms
to formulas.

type Predicate = Term — Formula

We also need a function to create a predicate from a term representing the name
of the predicate.

predicate 2 Term — Predicate
predicate p = Az — Pred p [z]

Furthermore we lift the binary connectives to work on the level of predicates
instead of just formulas.

andP i Predicate — Predicate — Predicate
andP p q = X —And(pz)(qx)

impliesP : Predicate — Predicate — Predicate
impliesP p ¢ = Az — Implies (p z) (¢ z)

In the same manner we introduce the type of binary relations as a function from
two terms to a formula, and the relation function to create a relation from its
name.

type Relation = Term — Term — Formula
relation ;2 Term — Relation
relation r = Azy— Predrz, y]

A Montague-style parser

Now we are ready to define a grammar. First we introduce the type of our
Montague-style parser, which is a parser that recognizes terms.

type MonParser « = Parser Term «

A sentence is a parser returning a first order formula. The result of the noun
phrase is applied to the result of the verb phrase.

sentence MonParser Formula
sentence = noun_phrase <x> verb_phrase

A verb phrase is a parser returning a predicate. It is either an intransitive verb
or a transitive verb, followed by a noun phrase.

verb_phrase i MonParser Predicate
verb_phrase = intrans_verb
<> flip (-) <$> trans_verb <x> noun_phrase

To compose the transitive verb with the noun phrase we apply flip (), which
are built-in Haskell functions. flip takes a function on two arguments and flips
them around, and (-) is standard function composition. This means that flip ()
takes two functions as arguments and composes the second with the first.

intrans_verb MonParser Predicate
intrans_verb = predicate <$> terminal ["arrives", "departs"]

An intransitive verb is a predicate, and here we make use of a helper function
terminal, which takes a list of terms and recognizes any of them, returning the
recognized term as result.

terminal i [Term] — MonParser Term
terminal [] = zero
terminal (t:ts) = words t 7>t

<> terminal ts

The words function is a built-in function for tokenizing a string into a list of
words. This is useful for multi-word terms such as the transitive verbs “leaves
for” and “flies to”.

trans_verb :: MonParser Relation
trans_verb = relation <$> terminal ["serves", "leaves for", "flies to"]

Since a verb phrase is a predicate, a noun phrase has to be a function taking
a predicate to a formula. It is either a person-name or a quantifier followed by
(and applied to) a noun.

noun_phrase MonParser (Predicate — Formula)
noun_phrase = person_name
<+> quantifier <x> nbar

A person-name simply takes a predicate and applies it to a given term. The
($) function is standard function application, and thus flip ($) takes first the
argument and then the function to be applied.

person_name :: MonParser (Predicate — Formula)
person_-name = flip ($) <$> terminal ["sas", "boston", "europe", "flight 714", "lunch" |

A noun is a predicate, and we can follow a noun with a prepositional phrase,
or have an adjective in front. Both the prep phrase and the adjective are also
predicates, so we can just apply the lifted conjunction andP.

nbar : MonParser Predicate

nbar = noun
<t+> andP <$> noun <x> prep_phrase
<> andP <$> adjective <x> nbar

Nouns and adjectives have the obvious definitions.

noun i MonParser Predicate

noun = predicate <$> terminal ["company", "city", "flight"]
adjective :: MonParser Predicate

adjective = predicate <$> terminal ["large", "green", "hijacked" |

A preposition is a relation, which means that if we follow it by a noun phrase we
have the same structure as for a transitive verb; so we use the flipped function
composition.

prep_phrase MonParser Predicate

prep_phrase = flip (-) <8> prep <x> noun_phrase

prep : MonParser Relation

prep = relation <$> terminal ["in", "at", "with"]

A quantifier finally is a function over two predicates, and therefore we can make
use of the lifted connectives.

quantifier MonParser (Predicate — Predicate — Formula)
quantifier = ["every"]?> (A\p ¢ — Forall (impliesP p q))
<> ["some"] 7> (Ap ¢ — Exists (andP p q))

Example run

Now assume that we have a parse function, which takes a parser and a list of
terms, and prints out the results in a nice way, we can show an example run
here. (Recall that the words function tokenizes a string).

> parse sentence (words "sas serves lunch")
serves (sas,lunch)

> parse sentence (words "sas serves every city")
forall x (city(x) => serves(sas,x))

> parse sentence (words "sas serves every city in europe")
forall x (city(x) & in(x,europe) => serves(sas,x))

> parse sentence (words "some company serves every city in europe")
exists x (company(x) & forall y (city(y) & in(y,europe) => serves(x,y)))

3 Discussion

In our case study we have showed that at least some parts of natural language
processing fit nicely in a functional framework. We have made use of all three
ingredients of a lazy functional programming language that was mentioned in
sections 1.2 — 1.4.

Functions as first-class objects

A nice abstraction was to introduce the types of predicates and relations, which
are functions from terms to formulas. The lifted functions andP and impliesP
then became higher-order functions, taking functions as arguments. But we can
use them as any other function. The flip and the (-) functions are standard
higher-order functions. Also the abstract type of parsers has to be higher-order,
since the results can be of any type, including functions.

Static typing

Since the example grammar is typed, the compiler will not let us combine
phrases in the wrong way. If we try to apply just the (-) function and not
flip () in the prepositional phrase, the type-checker will report a type error
there. In an untyped language we wouldn’t notice that we made an error until
we really tried to parse a prep phrase. And for a large grammar this can be im-
portant — it can take quite a while until some type error in some small subpart
of the grammar is noticed.

Laziness

Laziness is not used in a directly obvious way, except that we know that only
the work that is needed will be done. If we only want to know if something
is a sentence, the parse result will not be calculated. And if we want to know
whether a sentence is ambiguous or not, there is no need for more than two
interpretations.

Also, some implementations of the parser type needs a lazy programming
language to not fall into infinite recursion.

3.1 Other examples

Of course there are other examples of NLP where functional programming is a
good tool, and here is a short list.

e Functional morphology. Higher-order functions, statis typing and laziness
can be a good basic framework for writing morphological specifications for
different languages. One simply tries to find a good set of combinators
in the same manner as above, to describe certain morphological data in a
language.

e Morphological and syntactic tagging. One can define combinators with
which one can describe very general rule templates, and then learn rules
from a corpus.

e Parsing and semantics. The example before is of course simple, but also
more elaborate grammars and semantics can be defined. Parsing algo-
rithms often get very short and simple when writing them functionally.

Functional programming lets us separate things in a clear way — we can define
combinators for what we want to do, and not be diverted by the underlying
implementation. In this way we embed a small special-purpose language in a
general-purpose language — we don’t have to write compilers etcetera for the
small language. This is called “domain specific embedded languages” [2].

References

[1] R. Frost and John Launchbury. Constructing natural language interpreters
in a lazy functional language. The Computer Journal, 32(2):108-121, 1989.

[2] Paul Hudak. Modular domain specific languages and tools. In Fifth Inter-
national Conference on Software Reuse, pages 134142, Victoria, Canada,
June 1998.

[3] John Hughes. Why functional programming matters. The Computer Jour-
nal, 32(2):98-107, 1989.

[4] Graham Hutton. Higher-order functions for parsing. Journal of Functional
Programming, 2(3):323— 343, July 1992.

10

[5] Peter Ljunglof. Functional parsing. Licenciate thesis, Gothenburg Univer-
sity, Gothenburg, Sweden, 2002. To appear.

[6] Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting com-
binator parsers. In John Launchbury, Erik Meijer, and Tim Sheard, edi-
tors, Advanced Functional Programming, volume 1129 of LNCS, pages 1-17.
Springer-Verlag, 1996.

[7] Philip Wadler. How to replace failure by a list of successes. In Second Int.
Conf. on Functional Programming Languages and Computer Architecture,
Nancy, France, September 1985. Springer-Verlag.

11

