
GoDiS - An Accommodating Dialogue System

Staffan Larsson, Peter Ljunglöf, Robin Cooper, Elisabet Engdahl, Stina Ericsson
Department of linguistics, Göteborg University

Box 200-295, Humanisten, SE-405 30 Göteborg, Sweden
{sl,peb,cooper,engdahl,stinae}@ling.gu.se

Abstract

This paper accompanies a demo of the GoDiS sys-
tem. Work on this system was reported at IJCAI-
99 (Bohlin et al., 1999). GoDiS is a prototype
dialogue system for information-seeking dialogue,
capable of accommodating questions and tasks to
enable the user to present information in any de-
sired order, without explicitly naming the dialogue
task. GoDiS is implemented using the TRINDIKIT
software package, which enables implementation of
these behaviours in a compact and natural way.

1 Introduction

This paper accompanies a demo of the GoDiS1

system reported at IJCAI-99 (Bohlin et al.,
1999). GoDiS is a prototype dialogue system for
information-seeking dialogue, capable of accommo-
dating questions and tasks to enable the user to
present information in any desired order, without
explicitly naming the dialogue task. GoDiS is im-
plemented using the TRINDIKIT2 software package
developed in the TRINDI project. The TRINDIKIT
is a toolkit for building and experimenting with dia-
logue move engines and information states (IS), We
use the term information state to mean, roughly,
the information stored internally by an agent, in
this case a dialogue system. A dialogue move engine
(DME) updates the information state on the basis
of observed dialogue moves and selects appropriate
moves to be performed.

2 System Description

The overall structure of the GoDiS system is
illustrated below:

1Work on GoDiS has been supported by the TRINDI
(Task Oriented Instructional Dialogue), EC Project LE4-
8314, SDS (Swedish Dialogue Systems), NUTEK/HSFR Lan-
guage Technology Project F1472/1997, and INDI (Infor-
mation Exchange in Dialogue), Riksbankens Jubileumsfond
1997-0134, projects.

2www.ling.gu.se/research/projects/trindi/

ou
tp

ut

private:

shared:

plan:
agenda:

bel
qud

StackSet(Action)

Set(Prop)
Stack(Question)

Stack(Action)
tmp: ...

lm:...

IS :

la
te

st
_s

pe
ak

er

ne
xt

_m
ov

es

in
pu

t

la
te

st
_m

ov
es

pr
og

ra
m

_s
ta

te

input update selectinterpret generate output

database

domain

lexicon

control

database_traveldomain_travellexicon_travel
_english

database_
autoroute

domain_auto-
route

lexicon_travel
 _swedish

lexicon_auto-.
route_english

Dialogue Move Engine (DME)

Like any dialogue system built using the
TRINDIKIT, GoDiS consists of a number of mod-
ules, an information state, and a number of resources
hooked up to the information state.

In addition to the control module, which wires
together the other modules, there are six modules in
GoDiS: input, which receives input3from the user;
interpret, which interprets utterances as dialogue
moves with some content; generate, which gener-
ates natural language from dialogue moves; out-

put, which produces output to the user; update,
which updates the information state based on in-
terpreted moves; and select, which selects the next
move(s) to perform4. The last two are DME mod-
ules, which means that they together make up the

3GoDiS originally accepted written input only, but it is
currently being hooked up to a speech recogniser to accept
spoken input.

4This is done by updating the part of the information state
containing the moves to be performed.

DME in GoDiS. DME modules consist of a set of up-
date rules and (optionally) an update algorithm gov-
erning the order in which rules are applied. Update
rules are rules for updating the information state.
They consist of a rule name, a precondition list, and
an effect list. The preconditions are conditions on
the information state, and the effects are operations
on the information state. If the preconditions of a
rule are true for the information state, then the ef-
fects of that rule can be applied to the information
state.

There are three resources in GoDiS: a lexicon, a
database and a domain resource containing (among
other things) domain-specific dialogue plans. Cur-
rently, there are GoDiS resources for a travel agency
domain and the autoroute domain. Also, for each
of these domains there are lexicons in both English
and Swedish.

The question about what should be included in
the information state is central to any theory of dia-
logue management. The notion of information state
we are putting forward here is basically a simplified
version of the dialogue game board which has been
proposed by Ginzburg. We are attempting to use as
simple a version as possible in order to have a more
or less practical system to experiment with.

The main division in the information state is be-
tween information which is private to the agent and
that which is (assumed to be) shared between the
dialogue participants. What we mean by shared in-
formation here is that which has been established
(i.e. grounded) during the conversation, akin to
what Lewis in (Lewis, 1979) called the “conversa-
tional scoreboard”. We represent information states
of a dialogue participant as a record of the type
shown in figure 1.

The private part of the information state includes
a set of beliefs and a dialogue plan, i.e. is a list
of dialogue actions that the agent wishes to carry
out. The plan can be changed during the course
of the conversation. For example, if a travel agent
discovers that his customer wishes to get information
about a flight he will adopt a plan to ask her where
she wants to go, when she wants to go, what price
class she wants and so on. The agenda, on the other
hand, contains the short term goals or obligations
that the agent has, i.e. what the agent is going to do
next. For example, if the other dialogue participant
raises a question, then the agent will normally put
an action on the agenda to respond to the question.
This action may or may not be in the agent’s plan.

The private part of the IS also includes “tem-
porary” shared information that saves the previ-
ously shared information until the latest utterance is
grounded, i.e. confirmed as having been understood

by the other dialogue participant5. In this way it
is easy to retract the “optimistic” assumption that
the information was understood if it should turn out
that the other dialogue participant does not under-
stand or accept it. If the agent pursues a cautious
rather than an optimistic strategy then information
will at first only be placed in the “temporary” slot
until it has been acknowledged by the other dialogue
participant whereupon it can be moved to the appro-
priate shared field.

The (supposedly) shared part of the IS consists
of three subparts. One is a set of propositions
which the agent assumes for the sake of the conversa-
tion and which are established during the dialogue.
The second is a stack of questions under discussion
(qud). These are questions that have been raised
and are currently under discussion in the dialogue.
The third contains information about the latest ut-
terance (speaker, moves and integration status).

3 Accommodation in GoDiS

Dialogue participants can address questions that
have not been explicitly raised in the dialogue. How-
ever, it is important that a question be available to
the agent who is to interpret it because the utter-
ance may be elliptical. Here is an example from a
travel agency dialogue6:

$J: what month do you want to go

$P: well around 3rd 4th april / some time

there

$P: as cheap as possible

The strategy we adopt for interpreting elliptical
utterances is to think of them as short answers (in
the sense of Ginzburg (Ginzburg, 1998)) to questions
on QUD. A suitable question here is What kind of
price does P want for the ticket? . This question
is not under discussion at the point when P says
“as cheap as possible”. But it can be figured out
since J knows that this is a relevant question. In
fact it will be a question which J has as an action
in his plan to raise. On our analysis it is this fact
which enables A to interpret the ellipsis. He finds
the matching question on his plan, accommodates
by placing it on QUD and then continues with the
integration of the information expressed by as cheap
as possible as normal. Note that if such a question is
not available then the ellipsis cannot be interpreted
as in the dialogue below.

A. What time are you coming to pick up Maria?

B. Around 6 p.m. As cheap as possible.

5In discussing grounding we will assume that there is just
one other dialogue participant.

6This dialogue has been collected by the University of
Lund as part of the SDS project. We quote a translation
of the transcription done in Göteborg as part of the same
project.

IS :

private :

plan : StackSet(Action)
agenda : Stack(Action)
bel : Set(Prop)

tmp :

bel : Set(Prop)
qud : Stack(Question)

lu :

[

speaker : Participant
moves : assocSet(Move,Bool)

]

shared :

bel : Set(Prop)
qud : StackSet(Question)

lu :

[

speaker : Participant
moves : assocSet(Move,Bool)

]

Figure 1: The type of information state we are assuming

This dialogue is incoherent if what is being dis-
cussed is when the child Maria is going to be picked
up from her friend’s house (at least under standard
dialogue plans that we might have for such a con-
versation).

Question accommodation has been implemented
in GoDiS using a single information state update
rule accommodateQuestion, seen below. When
interpreting the latest utterance by the other par-
ticipant, the system makes the assumption that it
was a reply move with content A. This assump-
tion requires accommodating some question Q such
that A is a relevant answer to Q. The check operator
“answer-to(A, Q)” is true if A is a relevant answer to
Q given the current information state, according to
a (domain-dependent) definition of question-answer
relevance.

rule: accommodateQuestion

class: accommodate

pre:

val(shared.lu.speaker, usr)
in(shared.lu.moves, answer(A))
not (lexicon :: yn answer(A))
assoc(shared.lu.moves, answer(A), false)
in(private.plan, raise(Q))
domain :: relevant answer(Q, A)

eff:

{

del(private.plan, raise(Q))
push(shared.qud, Q)

After an initial exchange for establishing contact
the first thing that P says to the travel agent in our
dialogue is “flights to paris”. This is again an el-
lipsis which on our analysis has to be interpreted as
the answer to a question (two questions, actually)
in order to be understandable and relevant. As no
questions have been raised yet in the dialogue (apart
from whether the participants have each other’s at-
tention) the travel agent cannot find the appropriate
question on his plan. Furthermore, as this is the first
indication of what the customer wants, the travel
agent cannot have a plan with detailed questions.
We assume that the travel agent has various plan
types in his domain knowledge determining what
kind of conversations he is able to have. Each plan
is associated with a task. E.g. he is able to book
trips by various modes of travel, he is able to han-
dle complaints, book hotels, rental cars etc. What

he needs to do is take the customer’s utterance and
try to match it against questions in his plan types
in his domain knowledge. When he finds a suitable
match he will accommodate the corresponding task,
thereby providing a plan to ask relevant question
for flights, e.g. when to travel?, what date? etc.
Once he has accommodated this task and retrieved
the plan he can proceed as in the previous example.
That is, he can accommodate the QUD with the rel-
evant question and proceed with the interpretation
of ellipsis in the normal fashion.

This example is interesting for a couple of reasons.
It provides us with an example of “recursive” accom-
modation. The QUD needs to be accommodated,
but in order to do this the dialogue task needs to be
accommodated and the plan retrieved. The other
interesting aspect of this is that accommodating the
dialogue task in this way actually serves to drive the
dialogue forward. That is, the mechanism by which
the agent interprets this ellipsis, gives him a plan for
a substantial part of the rest of the dialogue. This is
a way of capturing the intuition that saying flights to
Paris to a travel agent immediately makes a number
of questions become relevant.

Task accommodation and retrieval of the relevant
plan has been implemented in GoDiS by two infor-
mation state update rules.

4 Sample dialogues

We will give some examples of GoDiS dialogues in
the English travel agency domain. One of the fea-
tures of the TRINDIKIT is that it provides methods
for inspecting the information state at any stage of
a dialogue, and also to see which rules are applied.
Unfortunately, because of space limitations, we are
not able to include examples of this in this paper;
however, it is an integral part of our demo.

The first dialogue shows the typical behaviour of
dialogue systems for information-seeking: each ques-
tion is answered in turn, and the user always gives
exactly the information requested.

$S> Welcome to the travel agency!

$U> hello

$S> What can I do for you?

$U> I want price information on a trip

please

$S> How do you want to travel?

$U> by plane

$S> What city do you want to go to?

$U> gothenburg

$S> What city do you want to go from?

$U> london

$S> Do you want a return ticket?

$U> yes

$S> What month do you want to leave?

$U> april

$S> What class did you have in mind?

$U> as cheap as possible

$S> It will cost 50 crowns

$U> thanks, bye!

$S> Thank you for your visit!

In contrast, the second dialogue (below) shows
how GoDiS is able to accommodate the task and in-
tegrate information in the order that the user gives
it.

$S> Welcome to the travel agency!

$U> flights to paris

$S> What city do you want to go from?

$U> gothenburg, in april, as cheap as

possible

$S> Do you want a return ticket?

$U> no

$S> It will cost 50 crowns

$U> thanks, bye!

$S> Thank you for your visit!

5 Limitations

GoDiS is a small-scale prototype and as such it suf-
fers from the familiar drawbacks of many experi-
mental systems: its lexicons and databases are very
small, and the domain knowledge is limited. The di-
alogue plans cover only a small (but important) part
of the kind of dialogues that can take place in the
travel agency and autoroute domains. We hope to
be able to extend both the number of domains and
the scale of each domain in the future.

Also, the focus in the development of GoDiS has
been on the dialogue management, i.e. the dialogue
move engine and the information state. Less effort
has been put into the interpretation and generation
modules, which currently use (a slightly extended
version of) keyword spotting and partially canned
text, respectively. We hope to replace these by plug-
ging in existing interpretation and generation tech-
nology to GoDiS.

For the tasks that GoDiS currently is able to han-
dle, full-blown semantics is not needed. We use a
very limited semantics where propositions are essen-
tially feature-value pairs. As a consequence, GoDiS

is e.g. not able to handle dialogue with more than
one referent; for this, the information state would
have to be amended with a set of referents, and
propositions would have to include referent informa-
tion. This is an area where we hope to improve
GoDiS in the near future.

Speech recognition and synthesis is currently be-
ing added to GoDiS, but at the time of writing only
written input and output is available.

6 Contributions

Currently, the main contribution of GoDiS is per-
haps to show how an extended notion of accommo-
dation can serve to make dialogue systems easier to
interact with, by letting the user decide how and
in what order to present information to the system.
Also, the fact that accommodation can be imple-
mented simply by adding three update rules indi-
cates that information state update rules provide a
natural and compact way of implementing dialogue
strategies. An important issue for future research
is the relation of question and task accommodation
to plan recognition approaches to dialogue (Sidner,
1985).

GoDiS also features a simple grounding strategy
which is nevertheless sufficient in many cases. The
grounding mechanism is implemented by three up-
date rules. It is possible to switch resources in mid-
dialogue, e.g. to change language. Also, GoDiS
is easily reconfigurable to new information-seeking
domains. To adapt GoDiS to a new domain, one
needs to supply a database, a lexicon and domain
knowledge, including a set of dialogue plans. The
GoDiS modules or information state don’t need to
be changed in any way.

In general, as an example of a dialogue system im-
plemented using the TRINDIKIT package, GoDiS
shows how the information state approach is use-
ful for clarifying and comparing theories of dialogue,
and for exploring new solutions.

References

P. Bohlin, R. Cooper, E. Engdahl, and S. Lars-
son. 1999. Information states and dialogue move
engines. In J. Alexandersson, editor, IJCAI-99
Workshop on Knowledge and Reasoning in Prac-
tical Dialogue Systems.

J. Ginzburg. 1998. Clarifying utterances. In J. Hul-
stijn and A. Niholt, editors, Proc. of the Twente
Workshop on the Formal Semantics and Pragmat-
ics of Dialogues, pages 11–30, Enschede. Univer-
siteit Twente, Faculteit Informatica.

D. K. Lewis. 1979. Scorekeeping in a language
game. Journal of Philosophical Logic, 8:339–359.

C. L. Sidner. 1985. Plan parsing for intended re-
sponse recognition in discourse. Computational
Intelligence, 1(1):1–10, February.

