
Electronic Notes in Theoretical Computer Science 41 No. 1 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume41.html 14 pages

Typed Logical Variables in Haskell

Koen Claessen 1

Department of Computer Science
Chalmers University of Technology

Gothenburg, Sweden

Peter Ljunglöf 2

Department of Computer Science
Chalmers University of Technology

Gothenburg, Sweden

Abstract

We describe how to embed a simple typed functional logic programming language
in Haskell. The embedding is a natural extension of the Prolog embedding by Seres
and Spivey [16]. To get full static typing we need to use the Haskell extensions of
quantified types and the ST-monad.

1 Introduction

Over the last ten to twenty years, there have been many attempts to combine
the flavours of logic and functional programming [3]. Among these, the most
well-known ones are the programming languages Curry [4], Escher [13], and
Mercury [14].

Curry and Escher can be seen as variations on Haskell, where logic pro-
gramming features are added. Mercury can be seen as an improvement of
Prolog, where types and functional programming features are added. All
three are completely new and autonomous languages.

Defining a new programming language has as a drawback for the developer
to build a new compiler, and for the user to learn a new language. A different
approach which has gained a lot of popularity the last couple of years is to
embed a new language in another language, called the host language. Haskell
has been shown to be extremely well-suited for this purpose in various areas
[8,2,1].

1 Email: koen@cs.chalmers.se
2 Email: peb@cs.chalmers.se

c©2001 Published by Elsevier Science B. V.

Claessen and Ljunglöf

The embedding approach has an obvious other advantage. Programs in
the embedded language are first class citizens in the host language, and can
therefore be generated by a program in the host language.

Our aim is to embed logic programming features in Haskell. To this end,
several different approaches have been taken, noticably by Seres and Spivey,
who embed a language of predicates over terms in Haskell [16,17], and by
Hinze, who shows how to describe backtracking efficiently and elegantly [5,6].
Our approach combines these ideas and adds something new: the terms of the
embedded program are, in contrast to Seres’ and Spivey’s approach, typed.

The resulting embedded language has several limitations however. First
of all, there are some syntactic drawbacks in the sense that some predicate
definitions can not be as elegantly described in Haskell as in Prolog, because of
the special syntax that Prolog has for logical variables and unification pattern
matching. Second, real implementations of logical programming have many
specialised search strategies.

The rest of the paper is organized as follows. In section 2, we present a
summary of Seres’ and Spivey’s work on embedding Prolog in Haskell. In
Section 3, we generalize their work to use a monad. In Section 4, we show
how we can use the ST-monad to deal with user-defined datatypes in a typed
setting. In Section 5 we conclude.

2 Embedding Prolog in Haskell

Silvija Seres and Mike Spivey have embedded traditional logic programming
in a functional framework [16,17]. This section is essentially a summary of
their embedding.

2.1 Logical Variables

The embedding consists of a datatype Term for terms, a type Pred of predi-
cates, a unification predicate (

.
=), the connectives (∧,∨) and the existential

quantifier (∃):

(
.
=) :: Term → Term → Pred

(∧),(∨) :: Pred → Pred → Pred

(∃) :: (Term → Pred) → Pred

The type Term for terms could be anything, but must have the possibility of
being an uninstantiated variable. Here we use a type of binary trees, with Var

i being a reference to the variable with the unique identifier i:

data Term = Var Id | Atom String | Nil | Term ::: Term

In the embedding we use lists to simulate backtracking, but this is a rather
arbitrary choice — there are lots of other possibilities. So we define a type
Backtr, which in this case is equivalent to lists. One thing which we use, is

2

Claessen and Ljunglöf

that all the possible variants for this search type are monads, more specifically
monads with both a zero (written as mzero) and a plus (written as (+++)).

The type Pred of predicates is a function that takes a computation state
and gives a stream of new states. A computation state State holds the current
values of the logical variables (called substitutions), and a stream of uninstan-
tiated variables.

type Backtr a = [a]
type Pred = State → Backtr State

type State = (Subst, [Term])

type Subst = [(Id, Term)]

The unification predicate (
.
=) uses a standard unification function unify ::

Term→ Term → Subst→ Backtr Subst, which takes two terms and a substi-
tution and returns either failure (represented by the zero of the backtracking
monad) or a new substitution (represented by the unit):

(
.
=) :: Term → Term → Pred

a
.
= b = λ(sub,vs) → do sub’ <- unify a b sub

return (sub’,vs)

The connective (∧) maps the second predicate onto the results of the first,
concatenating the resulting list of lists and (∨) is simply concatenation of
results:

(∧),(∨) :: Pred → Pred → Pred

p ∧ q = λst → p st �= q

p ∨ q = λst → p st +++ q st

Finally the quantifier (∃) applies the given function on a fresh variable, taken
from the state:

(∃) :: (Term → Pred) → Pred

∃p = λ(sub,v:vs) → p v (sub,vs)

We can also define the success predicate true and the failure predicate false

easily:

true, false :: Pred

true = λst → return st

false = λst → mzero

With these definitions we get the standard depth-first search behaviour of e.g.
Prolog. The definitions of Pred, (∧) and (∨) can also be changed to get other
search strategies, e.g. breadth-first search, as shown in [17].

3

Claessen and Ljunglöf

2.2 A Running Example

To get the feel of how to use this embedding, we give an example which we
will continue to develop during the course of the paper. The example problem
is to go from one node to another in a directed acyclic graph, returning the
path travelled.

In Prolog, the standard solution is as follows. If we suppose that the graph
is stored in the database as a predicate edge(X,Y) meaning that X→Y is an
edge in the graph, the predicate path(X,Y,Nodes) can be defined as:

path(X,X,[X]).

path(X,Z,X:Nodes) :- edge(X,Y), path(Y,Z,Nodes).

In our embedding, we must specifically declare the logical variables using (∃),
which makes the program more verbose, but the idea is the same:

path x z nodes =

x
.
= z ∧ nodes

.
= x ::: Nil

∨ ∃(λnodes’ → nodes
.
= x ::: nodes’

∧ ∃(λy → edge x y ∧ path y z nodes’))

Now we only need to know how to define a suitable graph, so here is an
example of a directed acyclic graph with the five nodes a–e and seven edges,
written in Prolog:

edge(a,b). edge(a,d). edge(b,c). edge(b,d).

edge(c,d). edge(c,e). edge(d,e).

The direct translation of this predicate into the embedding becomes very ver-
bose and unreadable:

edge :: Term → Term → Pred

edge x y = (x
.
= Atom "a" ∧ y

.
= Atom "b")

∨ (x
.
= Atom "a" ∧ y

.
= Atom "d")

∨ (x
.
= Atom "b" ∧ y

.
= Atom "c")

∨ (x
.
= Atom "b" ∧ y

.
= Atom "d")

∨ (x
.
= Atom "c" ∧ y

.
= Atom "d")

∨ (x
.
= Atom "c" ∧ y

.
= Atom "e")

∨ (x
.
= Atom "d" ∧ y

.
= Atom "e")

But since we are embedding this program, we can use Haskell to construct
this rather boring looking program, by making a translation from a list rep-
resentation of the graph to the edge predicate:

edge :: Term → Term → Pred

edge x y = foldr (∨) false

[x
.
= Atom a ∧ y

.
= Atom b | (a,b) ← graph]

graph = [("a","b"), ("a","d"), ("b","c"), ("b","d"), ...]

4

Claessen and Ljunglöf

3 A Monad for the Embedding

An observing reader may have noticed that the types and functions we have
defined so far fit nicely in a monadic framework. To be more precise, the Pred
type is isomorphic to an instance of the backtracking state monad BS:

newtype BS a = BS (State → Backtr (State,a))
type Pred = BS ()

This monad has the following definitions of bind (�=), return, zero and (+++): 3

instance Monad BS where

return a = BS (λst → return (st,a))

BS f �= k = BS (λst → do (st’,a) ← f st

let BS g = k a in g st’)

instance MonadPlus BS where

mzero = BS (λst → mzero)

BS f +++ BS g = BS (λst → f st +++ g st)

After some thought we can see that (∧), (∨), true and false, correspond to
(�), (+++), return () and mzero respectively. The unification (

.
=) is almost

the same as before, and the existential quantifier can easily be defined using
the auxiliary function free, which computes a new, unbound variable.

(
.
=) :: Term → Term → Pred

a
.
= b = BS (λ(sub,vs) → do sub’ ← unify a b sub

return ((sub’,vs),()))

free :: BS Term

free = BS (λ(sub,v:vs) → return ((sub,vs),v))

(∃) :: (Term → BS a) → BS a
∃p = do a ← free

p a

3.1 Revising the Example

Since the connectives, failure and the quantifier have the monadic counterparts
(�), mplus, fail and free, we can reprogram our example into a more
monadic form:

3 Observe that the return, (�=), mzero and (+++) on the right hand side of the definitions
apply to the Backtr monad, not the BS monad.

5

Claessen and Ljunglöf

path :: Term → Term → Term → Pred

path x z nodes = do x
.
= z

nodes
.
= x ::: Nil

∨ do nodes’ ← free

nodes
.
= x ::: nodes’

y ← free

edge x y

path y z nodes’

Now we can try this program on the problem to find a suitable path between
the nodes a and e: 4

Main> solve (path (Atom "a") (Atom "e") (Var "Xs"))

yes, Xs=a ::: b ::: c ::: d ::: e ::: Nil
yes, Xs=a ::: b ::: c ::: e ::: Nil
yes, Xs=a ::: b ::: d ::: e ::: Nil
yes, Xs=a ::: d ::: e ::: Nil
no (more) solutions

3.2 Functional Logic Programming

A monadic computation always returns a result, so why not use that in our
embedding? Then we have an embedding of a logic programming language
with results. Revising our example, we can view the path predicate as taking
only the two nodes as arguments, and returning the path. This simplifies the
definition somewhat:

path :: Term → Term → BS Term

path x z = do x
.
= z

return (x ::: Nil)
∨ do y ← neighbour x

nodes ← path y z

return (x ::: nodes)

This definition uses the predicate neighbour, which gives the neighbours of
the argument:

neighbour :: Term → BS Term

neighbour x = do y ← free

edge x y

return y

4 The solve function is a small interpreter around the BS monad which displays the results
in Prolog-style.

6

Claessen and Ljunglöf

If we now try our example we get the following:

Main> solve (path (Atom "a") (Atom "e"))

a ::: b ::: c ::: d ::: e ::: Nil
a ::: b ::: c ::: e ::: Nil
a ::: b ::: d ::: e ::: Nil
a ::: d ::: e ::: Nil
no (more) solutions

We can freely mix the predicate style, monadic style and functional logic style.
Note however that we have not established full functional logic programming.
This would for example require unification on function types, something we
have only been able to do using a simple, poor man’s, version. One could
argue however that the expressivity that we do provide is the most used and
the most interesting aspect of functional logic programming.

4 Typed Logical Variables

We have made an embedding of a simple functional logic programming lan-
guage in a pure functional language. Our aim is now to transfer Haskell’s
strong typing into the embedding, instead of using the universal type Term for
terms.

4.1 Polymorphic State

So far, the embedding uses an explicit state monad, using one type State,
holding substitutions. If we want to use several different term datatypes at
the same time, and it is unknown in advance which term datatypes we are
going to use, this is a problem.

The problem can be solved if we move out of Haskell 98, and use one of
the extensions available in GHC and Hugs: the ST-monad [12]. With the
ST-monad, one has the capability to safely create, read and update reference
cells of arbitrary type.

Another element in the embedding that is dependent on a certain term
datatype is unification. A simple solution is to overload the unification opera-
tion, so that every term datatype can represent its own unification algorithm.

To add non-determinism to the ST-monad, in the form of backtracking, we
can not simply use lists anymore. Instead, we introduce a backtracking monad
transformer. This is just a variant on the continuation monad transformer,
allowing for multiple answers instead of one.

newtype BacktrT m a = BTT (∀ans. (a → m [ans]) → m [ans])

A monad transformer allows lifting actions from the underlying monad in the
new monad. There is also an operation that takes a lifted action back to the
underlying monad.

7

Claessen and Ljunglöf

lift :: Monad m ⇒ m a → BacktrT m a
lift m = BTT (λk → do a ← m

k a)

lower :: Monad m ⇒ BacktrT m a → m [a]
lower (BTT f) = f (λa → return [a])

So finally, the definition of the new monad LP, for Logic Programming, allowing
multiple term datatypes, is:

type LP s = BacktrT (ST s)

For efficiency reasons, we actually use Hinze’s backtracking monad transformer
[6], but we believe that the current definition is easier to understand.

4.2 Reading and Writing in the LP-monad

The logical variables used in a predicate are now implemented using the ref-
erences of the ST-monad.

type LPRef = STRef

To unify and create uninstantiated variables we have to be able to read, write
and create new references in the LP-monad. The reading and creating of
references is just lifting of the corresponding functions in the ST-monad:

newLPRef :: a → LP s (LPRef s a)
newLPRef = lift ◦ newSTRef

readLPRef :: LPRef s a → LP s a
readLPRef = lift ◦ readSTRef

For writing references, we cannot simply lift the corresponding writing action
in the ST-monad, since we have to take care of the backtracking as well.
Writing a value to a reference has to be undone when we backtrack.

writeLPRef :: LPRef s a → a → LP s ()

writeLPRef ref a = BTT (λk → do a’ ← readSTRef ref

writeSTRef ref a

ans ← k ()

writeSTRef ref a’

return ans)

Before we write the new value, we read the old value, which we restore after
the branch k of the backtracking tree is done.

8

Claessen and Ljunglöf

4.3 Logical Variables as References

A logical variable is either uninstantiated or it has a value of some kind. This
sounds much like the Maybe type, and we use that to define variables:

type Var s a = LPRef s (Maybe a)

Now we define some types, for example atoms and lists:

data Atom s = VarA (Var s (Atom s))
| Atom String

data List s a = VarL (Var s (List s a))
| Nil

| a ::: List s a

Note that we need to use different constructors for the variables of each type, 5

so we cannot define a general form of the free predicate anymore. Therefore
we declare the type class Free as:

class Free s a | a→ s where

free :: LP s a

Note that we use the non-standard Haskell extension of multiple parameter
type classes with functional dependencies here [11]. This is possible because
all instantiations of a will contain an s. With this we can define the free

predicate for each of our types:

instance Free s (Atom s) where

free = VarA ‘liftM‘ newLPRef Nothing

instance Free s (List s a) where

free = VarL ‘liftM‘ newLPRef Nothing

Overloading free has the extra advantage that we can create free pairs, triples,
etc. as well:

instance (Free s a, Free s b) ⇒ Free s (a,b) where

free = liftM2 (,) free free

4.4 Unification

Unifying two instances of a term datatype poses the same problem as with
free, so we simply take the same solution; we overload unification. 6

To minimize the work everytime a new datatype is declared, we split the
work the unification algorithm has to do into two parts: variables and con-

5 This could be much simplified if we had subtyping as in the language O’Haskell [15].
6 There exist a general polytypic solution to this problem [9,10], which takes a similar
approach.

9

Claessen and Ljunglöf

structors. Therefore, we introduce a type class Unify containing two opera-
tors, isVar, used to check if a term happens to be a variable, and unify, used
to unify two terms which are both not variables.

class Unify s a | a→ s where

isVar :: a → Maybe (Var s a)
unify :: a → a → LP s ()

The unification operator (
.
=) is defined in terms of these operations. Before

we define it however, we introduce a helper function unifyVar, which unifies
a variable and a constructor:

unifyVar :: Unify s a ⇒ Var s a → a → LP s ()

unifyVar ref a = do mb ← readLPRef ref

case mb of

Nothing → writeLPRef ref (Just a)

Just b → a
.
= b

The unification algorithm can now be implemented as follows.

(
.
=) :: Unify s a ⇒ a → a → LP s ()

a
.
= b = case (isVar a, isVar b) of

(Just var1, Just var2)

| var1 == var2 → true

(Just var , _) → unifyVar var b

(_ , Just var) → unifyVar var a

_ → unify a b

It first deals with the special cases where at least one argument is a variable,
and hands the other cases over to the user-defined operation unify. The
instances for Unify of atoms and lists look like this:

instance Unify s (Atom s) where

isVar (VarA var) = Just var

isVar _ = Nothing

unify (Atom s1) (Atom s2) | s1 == s2 = true

unify _ _ = false

instance Unify s a ⇒ Unify s (List s a) where

isVar (VarL var) = Just var

isVar _ = Nothing

unify Nil Nil = true

unify (a ::: as) (b ::: bs) = a
.
= b ∧ as

.
= bs

unify _ _ = false

Note that the definitions of isVar almost look identical.

10

Claessen and Ljunglöf

4.5 Getting out of the LP-Monad

To be able to extract a result from the LP-monad we have to define a run
function that simply calls the run function of the ST-monad:

runLP :: (∀s. LP s a) → [a]
runLP m = runST (lower m)

This function can only be used when a does not depend on s. Both the Atom

and the List types (as well as any type for logical variables) depend highly on
s, because they can contain a variable constructor in the term. So, we define
a conversion that takes away all variables from a term. To do this, we define a
helper function which converts the contents of a variable. This only succeeds
if the variable is actually instantiated.

variable :: (a → LP s b) → Var s a → LP s b
variable convert var = do Just a ← readLPRef var

convert a

Here is how we can convert atoms and lists. The list conversion function takes
as a parameter the conversion functions of its elements.

atom :: Atom s → LP s (Atom ())

atom (Atom s) = return s

atom (VarA var) = variable atom var

list :: (a → LP s b) → List s a → LP s (List () b)
list elt Nil = return Nil

list elt (a ::: as) = liftM2 (:::) (elt a) (list elt as)

list elt (VarL var) = variable (list elt) var

Note that the result types use () as the state type, to indicate that these
datatypes do not contain any variables.

We might be tempted to overload these functions, but we do not do this
because it is not clear that we always want to convert the datatypes to their
variable-less counter parts. For example, Haskell already has a perfectly fine
list datatype, and here is how we could convert to it:

list’ :: (a → LP s b) → List s a → LP s [b]
list’ elt Nil = return []

list’ elt (a ::: as) = liftM2 (:) (elt a) (list’ elt as)

list’ elt (VarL var) = variable (list’ elt) var

Similarly, we might convert atoms directly to strings.

11

Claessen and Ljunglöf

4.6 The Return of the Example

The only thing that we need to change in our standard example is the types
for the predicates. The code is exactly the same as in Section 3.2, but the
predicates now have the following types:

path :: Atom s → Atom s → LP s (List s (Atom s))
neighbour :: Atom s → LP s (Atom s)

We get a type error if we try to evaluate the predicate path (Atom "a")

(Atom "b" ::: Nil), whereas without the ST-monad the call would just fail.

We can try to find the paths between a and e by using an adapted solve

function, which is now implemented using runLP.

Main> solve (path (Atom "a") (Atom "e") �= list atom)

a ::: b ::: c ::: d ::: e ::: Nil
a ::: b ::: c ::: e ::: Nil
a ::: b ::: d ::: e ::: Nil
a ::: d ::: e ::: Nil
no (more) solutions

Main> solve (path (Atom "a") (Atom "e") �= list’ atom)

[a,b,c,d,e]

[a,b,c,e]

[a,b,d,e]

[a,d,e]

no (more) solutions

5 Conclusions and Future Work

We have succeeded in embedding a simple typed functional logic language in
Haskell, without extending the language with other than already well-accepted
features, such as multiple parameter type classes (without overlapping in-
stances), local universal quantification in types, and the ST-monad.

It takes some work to add a datatype to be used in the embedding. Some
of this has to do with the fact that every datatype has to contain a spe-
cial constructor for variables. One way of solving this is to define recursive
datatypes using explicit fixpoints. This takes away some of the work when
implementing a new datatype. However, the types get a lot more complicated
and become unmanageable when dealing with more complicated types than
regular datatypes. Another solution would be using a polytypic programming
tool [9,7].

The resulting language is rather naive in several ways. First of all, the
syntax of the programs is often more clumsy than the way you could write it
in a dedicated logic programming language. This could be solved by adding

12

Claessen and Ljunglöf

some syntactic sugar.

Second, the search strategies are not as fancy as the ones one can find in
some implementations of logic programming. Some of these could be imple-
mented in our embedding, such as breadth-first searching and some features
which make it possible to unify more cyclic structures. Others require a meta-
level view of the program, such as indexing in most Prolog implementations.

Third, common implementations of Prolog have some interesting and prac-
tically useful extensions. Some of these are assert/retract in most Prolog
implementations, and bb get/bb put in Sicstus Prolog, which are used to
handle global variables that survive a failure. None of these are part of our
embedding today, but we believe that most of them are not too hard to add.

Efficiency is often not the first aim of an embedding, but is sometimes
desirable. Hinze’s implementation of backtracking is quite fast [5], but the
unification algorithm we implemented could probably be done better. For
example, we could use optimizations in the spirit of the well-known union-find
algorithm.

The techniques we used have been shown quite useful in implementing
embeddings of other domains as well. For example, in ongoing unrelated
work, we have used the ST-monad to implement an embedded language for
describing state transition diagrams over variables of arbitary types using a
similar method as the one we describe here.

For future work, we want to implement many of these proposed improve-
ments and extensions. By doing this, we hope to find a good basis for a
nice semantics for logic programming and its well-known extensions. Also, we
would like to investigate how we can make the embedding more practical, by
using it in more realistic programs.

References

[1] Claessen, Koen. An embedded language approach to hardware description and
verification. Licentiate thesis, Chalmers University of Technology, Gothenburg,
Sweden, September 2000.

[2] Eliott, Conal. An embedded modeling language approach to interactive 3d and
multimedia animation. IEEE Transactions on Software Engineering, 25(3):
291–308, June 1999.

[3] Hanus, Michael. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19&20: 583–628, 1994.

[4] Hanus, Michael (editor). Curry: An integrated functional logic language. June
2000. URL: http://www.informatik.uni-kiel.de/~mh/curry/report.html.

[5] Hinze, Ralf. Prological features in a functional setting – axioms and
implementations. Third Fuji Int. Symp. on Functional and Logic Programming,
Kyoto University, Japan, 98–122, April 1998.

13

Claessen and Ljunglöf

[6] Hinze, Ralf. Deriving monad transformers. Technical Report IAI-TR-99-1,
Institut für Informatik III, Universität Bonn, January 1999.

[7] Hinze, Ralf. Polytypic functions over nested datatypes. Discrete Mathematics
and Theoretical Computer Science, 3(4): 159–180, 1999.

[8] Hudak, Paul. Building domain-specific embedded languages. ACM Computing
Surveys, 28(4): 196, December 1996.

[9] Jansson, Patrik. Functional Polytypic Programming. PhD thesis, Chalmers
Univerisity of Technology, Gothenburg, June 2000.

[10] Jansson, Patrik and Johan Jeuring. Polytypic unification. Journal of
Functional Programming, 8(5): 527–536, September 1998.

[11] Jones, Mark P. Type classes with functional dependencies. 9th European
Symposium on Programming, Springer-Verlag LNCS 1782, Berlin, Germany,
March 2000.

[12] Launchbury, John and Simon Peyton Jones. Lazy functional state threads.
SIGPLAN Symposium on Programming Language Design and Implementation,
Orlando, 24–35, June 1994.

[13] Lloyd, John W. Programming in an integrated functional and logic
programming language. Journal of Functional and Logic Programming, 3,
March 1999.

[14] The Mercury project official website. URL: http://www.cs.mu.oz.au/
research/mercury/.

[15] Nordlander, Johan. Reactive Objects and Functional Programming. PhD thesis,
Chalmers University of Technology, June 1999.

[16] Seres, Silvija and Michael Spivey. Embedding Prolog in Haskell. 3rd Haskell
Workshop, Paris, France, September 1999.

[17] Seres, Silvija, Michael Spivey, and Tony Hoare. Algebra of logic programming.
16th International Conference on Logic Programming, Las Cruces, New Mexico,
November 1999.

14

