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Chapter 1

Introduction

This document reports on a first evaluation of the dialogue move engine (DME) proposed in
the Trindi-project (the theory of information state change, see [CLM*99]) with respect to
restricted dialogue. The DME-model is implemented by the TrindiKit. For documentation
of the TrindiKit the reader is referred to [LBBT99].

Evaluation of dialogue move engines is, as is well known, a difficult task [BBL*99]. The
evaluation reported here addresses two issues:

1. Use of the TrindiKit

2. Evaluation against the “Tick-list”

The first issue is almost purely technical, and evaluates the use of the TrindiKit to build
new or adapt existing dialogue systems. Considered will be four implementations devel-
oped in the Trindi-project using the TrindiKit: Midas (Chapter 3), the SRI Autoroute
system (Chapter 4), an implementation of the Poesio-Traum-Theory of information states
(EDIS, Chapter 5), and GoDiS (Chapter 6). These implementations—all based around the
route planning scenario (or small extensions of it)—differ with respect to the level in which
they represent a complete dialogue system. Some of them still expose a fairly theoreti-
cal character (for instance the PTT model in EDIS, Chapter 5) and presuppose external
components for speech-analysis, whereas others more or less exhibit a full dialogue system
(e.g., the SRI Autoroute system).

The second issue covers the examination of the “Tick-list” developed in [BBL*99]. The

Tick-list is a set of yes-no questions that examiners attempt to answer by trying out certain
dialogues on systems. The goal of this enterprise is, primarily, to acquire knowledge about
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the systems under evaluation, and, secondarily, to extend the criteria on the Tick-list
itself—the Tick-list is not a fixed point. In this report, evaluation of the Tick-list is only
applied to those implementations that more or less resemble a practical system.

This report is outlined as follows. Chapter 2 describes the functionality of the TrindiKit

and introduces the Tick-list. The four implementation mentioned above will be discussed
in Chapters 3-6.
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Chapter 2

Dialogue Move Engines and
Information States

2.1 Information States and Updates

The Trindi Model presents itself as an Information State Update approach to dialogue.
Dialogue utterances are analysed as information state transformers. Information states
do not alter in arbitrary ways—they alter in ways determined, at least in part, by the
types of the dialogue utterances involved. These types are commonly called moves. The
way in which moves alter the information state is to be modelled by wupdate rules. In
order to participate in a dialogue, an agent must be able to understand the moves of his
partners and deliberate about and construct moves of his own. The model is an extremely
general one and, indeed, part of the interest in it lies in the extent to which, by casting
alternative dialogue theories in it, one might be able to compare and contrast, for example,
the different types of information state that they invoke. A brief outline of two different
dialogue models (finite state dialogue models and classical plan-based approaches) and how
they might be constructed within the Trindi model was outlined in [TBC*99].

2.2 The Dialogue Move Engine

A Dialogue Move Engine (DME) is that part of a dialogue system responsible for operations
on the system’s representation of the ongoing dialogue, or using Trindi terminology, the
information state. These operations typically consist of:
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1. updating the information state according to dialogue moves performed
by the participants of a dialogue;

2. generating appropriate moves to be performed by the system itself.

In the Trindi project, a software package for building and experimenting with dialogue
move engines has been developed (TrindiKit). Apart from proposing a general system
architecture, this toolkit also specifies formats for defining information states, update rules,
selection rules, dialogue moves and associated algorithms. It further provides a set of tools
for experimenting with different formalizations of implementations of information states,
rules, and algorithms.

To build a dialogue move engine, one needs to provide definitions of rules, moves and
(optionally) algorithms, as well as the internal structure of the information state. One
may also add inference engines, planners, plan recognizers, dialogue grammars, dialogue
game automata etc., which can then be used as resources by the DME.

The DME forms the core of a complete dialogue system. Simple interpretation, generation,
input and output modules are also provided by the TrindiKit, to simulate a end-to-end
dialogue system. The TrindiKit also stimulates to integrate the DME-technology into
existing dialogue systems (see Chapter 4 for an example).

Updating information states goes hand in hand with update rules, selection rules and
dialogue moves. Their definitions are repeated here for convenience:

e Update rule: a rule used by the update module to update the information state or
values of interface variables. The update rules are formulated in terms of conditions
and operations on the information state.

o Selection rule: a rule used by the selection algorithm to select a move to be performed
by the system. Formulated basically as a u-rule, but also specifies a (set of) dialogue
move(s).

e Dialogue move: a move or act performed by user or system, associated with an
utterance. Sometimes we use the term ’tacit move’, which is the act of applying
an update rule or selection rule to the information state, performing the operations
specified by the rule.

2.3 TrindiKit

Using the TrindiKit (and its architecture) obligates the developer to the following actions:
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providing a set of dialogue moves

providing a set of update and selection rules

selecting an update and control algorithm

specifying the information state according to the provided data-types

The general architecture TrindiKit is assuming is one where communication between the
modules is organized via interface variables. For a simple DME, the following interface-
variables are suggested:

input: the input utterance(s)
e latest_moves: list of moves currently under consideration (interpretation)

e next_moves: list of moves for system’s next turn

output: the system’s output utterance(s)

e program_state: current state of the DME (used for control)

The information state can be seen as an additional interface variable. Each module,
whether it be DME-external (such as parsers, generators, recognizers) or DME-internal
(update algorithms, selection algorithms) should specify which interface variables they
need to modify. In principle, each module can access any interface variable and the infor-
mation state. Only the update-module (see below) can change the information state.

The components (modules) in the architecture are the following:

e Input module (utterance recognition): Receives input utterances from the user and
stores it in the interface variable input.

e Interpretation module: Takes utterances (stored in input) and gives interpretations
in terms of d-moves (including semantic content). The interpretation is stored in the
interface variable latest_moves.

e Update module: Applies update rules to the information state according to the
update engine algorithm.

e Selection module: Selects dialogue move(s) using the selection rules and the move
selection algorithm chosen. The resulting moves are stored in the information state.
The update engine and the selection engine together form the core of the dialogue
move engine.
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e Generator: Generates output utterances (stored in the interface variable next moves)
based on the contents of the information state and passes these on to utterance
synthesis, via the interface variable output.

e Output (utterance synthesis): Produces system utterances.

e Control: wires together the other modules, either in sequence or through some asyn-
chronous mechanism.

2.4 The Trindi Tick-list

The Trindi wish list of desired dialogue behavior is specified as a list of yes-no questions.
The tick-list is expected to develop both in terms of the number and content of the questions
themselves and in the range of possible answers. The questions to be ticked or crossed are
listed below.

Currently the list is restricted to fifteen questions. There are a few additions to the previous

Tick-list as presented in [BBLT99]. The original question Qn 1 is split into items Qn 2
and Qn 3. The tick-list items Qn 14 — Qn 17 are new.

Qn 1 Is utterance interpretation sensitive to dialogue context?

Qn 2 Is utterance interpretation sensitive to deictic context?

Qn 3 Can the system deal with answers to questions that give more information than was
requested?

Qn 4 Can the system deal with answers to questions that give different information than
was actually requested?

Qn 5 Can the system deal with answers to questions that give less information than was
actually requested?

Qn 6 Can the system deal with ambiguous designators?

Qn 7 Can the system deal with negatively specified information?
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Qn 8 Can the system deal with no answer to a question at all?

Qn 9 Can the system deal with noisy input?

Qn 10 Can the system deal with ‘help’ sub-dialogues initiated by the user?

Qn 11 Can the system deal with ‘non-help’ sub-dialogues initiated by the user?

Qn 12 Does the system only ask appropriate follow-up questions?

Qn 13 Can the system deal with inconsistent information?

Qn 14 Can the system deal with belief revision?

Qn 15 Can the system deal with barge-in input?

Qn 16 Is it possible to get a system tutorial concerning the kind of information the system
can provide and what the constraints on input are?

Qn 17 Does the system check its understanding of the user’s utterances?

These questions can be answered with yes-no answers, conform to a ‘Black Box’ assessment
of a dialogue system. As the systems examined in this report are still under development,
we will try to use the Tick-list criteria in a ‘Glass Box’ fashion, that is, explain why a
criterion is fulfilled or why not.

16



Chapter 3

Midas

In this chapter we provide some evaluation of the TrindiKit model with respect to the
MIDAS system and of MIDAS itself with respect to the Trindi Tick-list.

3.1 System Description

Midas (Multiple Inference-based Dialogue Analysis System) is a prototype of a dialogue
system exploring semantic representation and first-order reasoning to model and plan the
ongoing dialogue.!

3.1.1 The lexicon, grammar, and parsing

The lexicon contains about 2700 inflected forms, divided into 502 nouns, 438 names, 81
adjectives, 312 intransitive verbs, 1096 transitive verbs, 32 ditransitive verbs, 57 prepo-
sitions, 25 determiners, and a bunch of miscellaneous categories. The entries are based
on the Autoroute corpus. For nouns, a subset of the WORDNET ontology of hyper- and
hyponyms [Mil95] is included in Midas’ lexicon . These are used to generate “isa” and
disjointness conditions upon the different objects. Cue-phrases contain dialogue-acts in
their lexical entries.

! Midas is developed (and actually still under development) by Johan Bos at the Department of Compu-
tational Linguistics, University of the Saarland. A web-interface is available at http://www.coli.uni-sb.
de/"bos/trindi/midas.html.
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A simple straightforward phrase structure rule grammar is used. Utterances can be (mul-
tiple) sentences, noun phrases, prepositional phrases, questions (yes-no and simple wh-
questions), or cue-phrases (such as greetings, “yes”, “no”). On the sentence level con-
ditionals and disjunctions are covered. There is a basic noun phrase coverage, including
modification of nouns by adjectives, prepositional phrases, or relative clauses. Further,
noun phrases cover proper names, mass nouns, pronouns, and possessives. Verb phrases
include auxiliaries (to be and to have), modals, and to-complement verbs. Coordination is
covered for basic categories such as nouns, adjectives, and verbs. Comparative construc-
tions are not covered. Ellipsis are only possible at the utterance level (noun phrases or
prepositional phrases).

For parsing a left-corner parser has been adopted, implemented in Prolog. The syn-
tactic structure produced is a tree which guides building the semantic representations.
Building semantic representations is done via proper lambda-abstraction and [-conversion
[BMM*94, Mus96]. The semantics fragment is not completely isomorphic with the syn-
tactic fragment. Phenomena like modal verbs are left-out in the semantics.

3.1.2 Semantic Construction and Inference

The semantic representations constructed are underspecified discourse representations [BB98|.
These are resolved (pronouns, presuppositions, quantifier and operator scope) producing
Discourse Representation Structures (DRSs) of Kamp’s Discourse Representation The-
ory [KR93]. The DRSs representing the dialogue’s information state are translated into
first-order predicate logic, along the lines of [BBKAN99]. Reasoning on these first-order
representation is done using the MATHWEB distributed inference engines services [FK99],
including the theorem provers BLIKSEM, FDPLL, and SPASS. Reasoning tasks cover con-
sistency and entailment checks used for ambiguity resolution [BB98], and dialogue move
selection. (The latter consists of checking whether questions on the system’s agenda are
relevant or not.)

The framework of Discourse Representation Theory (DRT) offers direct means to model
discourse and context, and Midas exploit this feature by coding the information state
of the dialogue as a DRS. On top of this, Van der Sandt’s algorithm for anaphora and
presupposition resolution is used to resolve pronouns, proper names, definite descriptions,
and other presupposition triggers [VdS92]. The DRS contains also dialogue-act information
as proposed by Poesio & Traum [PT98], and therefore covers the task of keeping track of
a dialogue history as well. For the user and the system two distinguished predicates are
reserved. (So Midas assumes that there is exactly one user.)

18



3.1.3 Generation

In Midas, an independent module for generation is used, working on the basis of DRS input
and string output. This generation module uses the same lexicon as in the user utterance
analysis. Besides, there are some fixed expressions that are hardwired with specific dialogue
moves (such as basic answers to yes-no questions, greetings, apologizes).

The grammar for the generator focuses on questions. Most rules are duplicates of the
analysis grammar, but with direct encoding of the \-DRT-semantics, based on unification
of its A-arguments. (The analysis grammar assumes underspecified representations, and
uses proper (3-conversion rather than unification.) The rules for the generator are a subset
of those of the analysis module, so Midas understands constructions which it can’t generate.

A notorious problem for generators is dealing with the fact that the mapping from the
underlying representation to the output string is a one-to-many kind. In Midas’ generator
this is the case for noun phrases. Alternative readings are suppressed by disallowing the
use of pronouns (with the exception of first and second person pronouns), and producing
(in)definite description that contain a non-modified noun only. (Modification of nouns is
not possible, at present.)

The generator is implemented in Prolog. It has three input parameters: a dialogue act, an
utterance DRS, and a context DRS. The output parameter is a list of words or a string.
On the basis of the dialogue act the generator decides the basic utterance (e.g., whether
it will be a check-question, a yes-no-question or wh-question). It incrementally traverses
trough the DRS, and deletes information from it while applying the grammar and lexical
rules. Generation of a list of words succeeds when after applying the grammar rules the
utterance DRS arrives at an empty set of discourse referents and conditions.

The generator uses the context of the dialogue. Given the DRS of the total information
state of a point in the dialogue, the utterance DRS is the current discourse unit under
discussion, and the context DRS is the remaining DRS. The context DRS serves to generate
context-sensitive expressions such as proper names or definite descriptions, which appear

as free variables in the utterance DRSs, but are bound by discourse referents in the context
DRS.

3.1.4 Attentional State, Intentional Structure, Dialogue History

The topic of conversation is modelled by implementing “discourse units under discussion”,
as proposed in the model of Poesio & Traum. This is a stack of discourse referents for
DRSs, which abbreviate the basic utterances (made by the user and the system). Focussing
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within the sentence level is not implemented. Midas makes no use of linguistic markers that
signal topic shifts, neither does it do sub-task identification nor calculate topic prediction.

The task handled by the system is providing a route, in accordance to the application
domain (route planning). In order to get the information necessary for calculating this
route, the system asks the user for a destination, a departure, and a travel time. These
intentions are represented in a plan-DRS, loaded into the main-DRS as soon as it is clear
that there is a user that wants a route (the latter proposition can be seen as a presupposition
for loading this plan). The plan-DRS consists of a series of DRS that paraphrase either
questions or actions and intentions to ask or perform these.

Midas does not maintain a record of the surface form of the user utterances, although
this is proposed by the Poesio & Traum model to incorporate in the DRS. It does record
the underspecified semantic representation of the current question, and by the nature of
DRSs, also the entire dialogue structure (in an incremental way). The DRS coding the
information state also records the topics that have been addressed (as discourse units). No
records of the user’s performance are recorded.

3.2 TrindiKit Issues

The information state is specified using only part of the data-types provided by TrindiKit.
Midas’ natural language processing technology is centered around Discourse Representation
Theory, and hence an additional definition of Discourse Representation Structures (DRSs)
as TrindiKit-datatype was required, as well as defining (the non-standard) operations on
DRSs.

One of the deepest problems encountered here is dealing with ambiguities. The DRSs,
as part of the information state, represent the meaning of the dialogue. Regularly, utter-
ances of dialogue participant introduce multiple interpretations. So the actual dialogue is
modelled by a set of DRSs. Operations on a set of objects are difficult to handle: what if
pre-conditions for applying certain effects to the information state only hold for a subset of
the DRSs that are encoded? This issue relates to the discussion on choices of update rules
in the SRI system (see Section 4.2). Use of underspecification of representation might play
a role here [Poe00].

There are about 40 update rules used in the current version of Midas. There is no difference
made in update rules and selection rules, all the rules cover both updates and selections
of moves. Already 40 rules make it notoriously difficult to debug the system. To keep the
rules under control, they are annotated with a functional type that, when applied, moves
from one state to another state. Each state is connected to a set of update rules. Dividing
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the set of rules into different states increases tractability of the system enormously.

The TrindiKit control algorithm calls the different modules of the dialogue system in
sequence. There is a way to put more control in the update-rules, by declaring some
modules as ‘resources’ to information state updates. This has been carried out in Midas for
two reasons: some of the interface variables were of another type Midas was presupposing;
and some of the operations of modules directly affect the information state, and hence
could not be separated from the update rules (as only update rules are allowed to change
the content of the information state).

The first reason is not a serious obstacle for denying the architecture suggested by TrindiKit,
it is merely supported by practical circumstances. In fact, some of the ideas currently un-
der discussion in the Trindi-consortium to improve the architecture address the issue to
decorate the interface-variables with a flexible type, or even to regard them as modules
themselves (where these module take over the book-keeping of the data-types), not just as
registers in the overall system.

The second reason for not using one of the interface-variables is of theoretical nature.
One of the central ideas underlying Poesio & Traum’s theory of information state, upon
which Midas’ internal representations are based, is to integrate dialogue-acts into semantic
representation. Arguably, this makes the use of the interface-variables and ‘latest-moves’
and ‘next-moves’ superfluous.

3.3 System Evaluation

In the following the Trindi Tick-list criteria are applied to the current version of Midas
(Februar 2000).

Qn 1 Is utterance interpretation sensitive to dialogue context?

—Yes. Answers or assertions addressing a different topic than currently posed can resolve
questions to be addressed later. Example:

(3.1) S: Where would you like to go?
(3.2) U: T would like to go from Cambridge to London

(3.3) S: Where would you like to start?
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The reply (3.2) to the question (3.1) also answers the question (3.3). Midas has a set of
distinguished questions marked as “intend-to-ask”. A pre-condition for actually posing one
of these queries is that it contains informative information. The latter is determined with
first-order inference.

Qn 2 Is utterance interpretation sensitive to deictic context?

—No. Deictic expressions, such as ‘tomorrow’ or ‘next week’ are not dealt with in Midas,
because its semantic interpretation module has no access to system time.

Qn 3 Can the system deal with answers to questions that give more information than was
requested?

—Yes. See the example at Qn 1a for illustration. In Midas, answers are valid responses
to questions if they are more informative. If more information is given than was requested,
the answer is still informative.

Qn 4 Can the system deal with answers to questions that give different information than
was actually requested?

—Yes. Midas will treat the new information as an assertion, recognizing that the answer
was inappropriate, and re-ask the previous question.

Qn 5 Can the system deal with answers to questions that give less information than was
actually requested?

—No. At present, the interpretation of answers in Midas is carried out at the semantic
level. Consider the question:

(3.4) S: Where would you like to go?

Now, answers like

(3.5) U: I want to go to a nice place
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(3.6) U: I would like to go somewhere on monday

are recognized as appropriate answers, as they are informative. The appropriateness is
highly dependent on the domain of interest. Even in the route-planning domain there are
several possibilities: cities, bus-stops, airports, and so on. A pragmatic component, that
selects the correct domain in a given scenario, should take care of this task.

Qn 6 Can the system deal with ambiguous designators?

—No. That is, partly. Semantic analysis will generate multiple analyses when input is
ambiguous. It will choose the most likely reading (based on scores assigned by the various
resolution components), otherwise it makes a guess. An extension of the grounding strategy
in Midas could deal with this case, by keeping several analyses in store, and pose check-
question to the user to find the correct interpretation. Here is an example that illustrates
this:

(3.7) S: Where do you want to go?

(3.8) U: I want to go to London.

(3.9) S: Do you want to go to London-Stansted?
(3.10)  U: No.

(3.11)  S: Do you want to go to London-Heathrow?
(

3.12)  U: Yes.

Qn 7 Can the system deal with negatively specified information?

—Yes.

Qn 8 Can the system deal with no answer to a question at all?

—No. If Midas ask something, it will just waits until you hit the return key. It you hit the
return button without any input, it will repeat the question currently under discussion.

Qn 9 Can the system deal with noisy input?

23



—Perhaps. Simulating the input of noise to the system can be done by typing rubbish. If
there is no syntactic analysis, Midas will re-ask the question.

Qn 10 Can the system deal with ‘help’ sub-dialogues initiated by the user?

—No. Help-questions initiated by the user can only addressed if domain knowledge is
present. In Midas, technically it is possible for the user to ask questions. These are
answered with respect to the knowledge so far recorded in the dialogue. This holds also
for the ‘non-help’ sub-dialogues.

Qn 11 Can the system deal with ‘non-help’ sub-dialogues initiated by the user?

—Yes. Questions initiated by the user are answered by Midas with respect to background
knowledge and data so far recorded in the dialogue.

Qn 12 Does the system only ask appropriate follow-up questions?

—No. At present, Midas has a set of questions that it intends to ask. A precondition for
asking question is that the information it contains, should be informative with respect to
the current dialogue. There are no internal relations specified between these questions.
To fulfill this criterion, Midas has to be enriched with plan-DRSs that relate questions to
several domains and to other questions. This is currently under development.

Qn 13 Can the system deal with inconsistent information?

—Yes. The semantic component recognizes contradictions. Inconsistent interpretations
are not considered. If no interpretation is left, Midas will restart the dialogue.

Qn 14 Can the system deal with belief revision?

—No. Belief revision is required if inconsistent believes arise. In dialogues, these could
be triggered by a correction of one of the participants, or by a misunderstanding of the
system. Consider the following dialogue:
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S: Where do you want to go?
U: Eh, I want to go to Paris.
S: When do you want to go?

U: No, I don’t want to go to Paris. I want to start in Paris.

Midas will detect the inconsistency, and as a consequence, start a whole new dialogue,
thereby forgetting the information that the user wants to start in Paris.

Qn 15 Can the system deal with barge-in input?

—No. The present system architecture doesn’t allow this, and is based on ‘turns’.

Qn 16 Is it possible to get a system tutorial concerning the kind of information the system
can provide and what the constraints on input are?

—No. There are no such facilities.

Qn 17 Does the system check its understanding of the user’s utterances?

—Yes. The system works in three different modes concerning grounding of utterances. Op-
timistic grounding: utterances of the user are not checked on the system’s understanding.
Cautious grounding: utterances are only checked on the system’s understanding if they got
a low confidence score by the parser. Pessimistic grounding: utterances are always checked
on the system’s understanding,

3.4 Conclusion

It is interesting to interpret the evaluation results of the complete systems in the light
of the Trindi DME-architecture. That is, to answer the two questions how much is done
with the DME, and how much is system-dependent, i.e., depending on other modules than
provided by TrindiKit, or theory-dependent. This is difficult to say. It seems that most of
the Tick-list criteria concern DME-external components. This makes it a wrong instrument
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for evaluating the DME (and TrindiKit in particular), but not necessarily a bad instrument
for evaluating complete dialogue systems.

At least one issue, not under implementation at present, might be greatly affected by the
DME, namely dealing with discontinuous input. At the moment the DME works on the
basis of processing ‘turns’. One participant produces several utterances (together forming
the current turn), the other participant analyzes all the utterances, and responds in a next
turn, then the other participant analyzes the new turn, and so on. An asynchronous archi-
tecture, where different modules can access and change different parts of the information
state, seems to be a natural candidate.
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Chapter 4

SRI Autoroute Dialogue
Demonstrator

In this chapter we provide some evaluation of the SRI Autoroute Dialogue Demonstrator
and the TrindiKit model in which it is implemented. First, we provide a general description
of the demonstrator system, in particular focussing on parts other than ‘Conversational
Games Theory’ (CGT) which was described more fully in D2.1. Secondly, we discuss some
important conceptual and implementational issues that arise directly with respect to im-
plementation in the TrindiKit. That is, the evaluation we are here interested in is primarily
the value of the Trindi dialogue model perspective and the TrindiKit implementation. Fi-
nally, we re-visit the ‘tick-list’ of evaluation points (as used in the Trindi project’s initial
survey report D1.3) and re-apply it to our implemented system. The exercise is valuable
not just in throwing further light on the abilities and limitations of the current demon-
strator but also in raising important questions about how a CGT-based dialogue manager
ought to be further developed.

4.1 System Description

The TrindiKit implementation of CGT for Autoroute can be described under the following
headings: Parsing and Semantic Analysis, Dialogue Management and Generation. Dia-
logue Management in the SRI demonstrator has been extensively discussed in document
D2.1 and so it is given a rather more cursory treatment here. In the following sections,
we particularly highlight the role of inference and dialogue context where it influences the
operation of other system components.
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4.1.1 Parsing & Semantic Analysis

The parser for the CGT Autoroute demonstrator is a simple phrase-spotter. It employs a
top-down left-to-right algorithm in a search for a string of substrings which covers the total
input string. Each substring can either be a single token (which is ignored semantically)
or is a substring which contributes one or more propositions to the set of propositions that
constitutes the meaning of the input string. For example, the string I want the quickest
route to get me to cambridge by four p m is divided into substrings as follows

(I) (want) (the) (quickest) (route) (to) (get) (me) (to cambridge by four p m).

Of these substrings, quickest generates the proposition tripmode (quick), and to cambridge
by four p m generates two propositions endtime (16:0) and to(cambridge). All the other
substrings — I, want etc. — are semantically ignored. They contribute no information to
the propositional value of the input.

The algorithm is left-to-right in that it scans the input string from left-to-right looking for
an initial substring which generates a propositional contribution. If one is found, the algo-
rithm simply recurses on the remainder of the input string. If none is found, the first word
is discarded as semantically valueless and then the algorithm recurses on the remainder
of the input. The algorithm is top-down in that, when it looks for an initial substring, it
looks for more informative substrings first. For instance, one category of substring is sim-
ply clock-time and in our example four p m is a clock-time. Another category is place and
cambridge is a place. Each of these substrings can contribute propositional information.
In the absence of other information, places are assumed to be destinations and times are
assumed to be departure times. However, the covering substring to cambridge by four p m
does provide more information than the two smaller substrings because to and by indicate
that the destination is cambridge and that the arrival time is four p m. The amount of
“default” information required is smaller. Consequently, the algorithm searches for the
more informative substrings first.

The algorithm is also dialogue-sensitive in that it knows the current propositions under
discussion when it parses the next user input. This is to enable the parser to interpret
fragmentary input or elliptical input in the current dialogue context when a default infer-
ence is required. If the only available initial substring of the input string underdetermines
a proposition, as in a simple one-word utterance such as cambridge, then the dialogue
context can be used to fill in the proposition.

The following examples illustrate the parser’s operation.
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InputString Context Meaning

cambridge null to(cambridge)
cambridge Ib(x,from(x)) | from(cambridge)
cambridge to london | null from(cambridge) ,to(london)

cambridge to london | 1b(x,from(x)) | from(cambridge) ,to(london)

In the first two examples, the substring is insufficient to determine a full propositional
meaning and so, in the null context, cambridge is interpreted as a destination. If the
context includes the issue of journey start points, however, then from(cambridge) is pre-
ferred. In the second two examples, the substring is sufficient to determine itself the propo-
sitional meaning and so in both the null context and the non-null context, the meaning is
from(cambridge) ,to(london).

The parser has limitations, of course, notably in the following respects. First, although
it possesses some ability to ignore input that it cannot make use of, the input that it
can make use of must comprise a substring of the original input string. For example, the
input string cambridge thanks to london is not itself a meaningful substring. Consequently,
the parser considers the two substrings cambridge and to london but it considers them
in isolation from each other. Although thanks is discarded semantically, it still imposes
an interpretation barrier within the string. The parser does not, for instance, act just
as if the string were cambridge to london. Strings are broken up into substrings but no
inference is made concerning the relations between substrings. Of course, it appears to be a
substantive issue what interesting relations there might be to discover. If a string mentions
a destination and a time but there is no string covering both these concepts, then in what
circumstances is it reasonable to infer that the time is an arrival time? Does it depend
on the amount of uninterpretable intervening material or whether we know the system is
operating with imperfect speech recognition? What influence should the dialogue context
have in this circumstance? Although these are difficult questions, one relation that might
be very useful to discover is mutual exclusion.

The current parser attempts no such reasoning at all and consequently, if the dialogue con-
text concerns the issue of destinations, then cambridge will be interpreted as a destination
(using dialogue context) and so will to london (using the linguistic knowledge derived from
to). The parser cannot reason about the consistency of the interpretations it generates.
The parser cannot determine that to(cambridge) ,to(london) is inconsistent. Again, of
course, it is a substantive issue what one should do even if the inconsistency were discov-
ered. A method of weighing contributions would be required. In our current example, one
would need to be able to reason that cambridge was interpreted as a destination because
of the current dialogue context, whereas london was interpreted as a destination because
of explicit linguistic marking via to. In these circumstances, it appears the linguistically
marked case should take preference. However, the combination of all these factors makes
interpretation increasingly complex.
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possible rule Interpret cambridge as a starting place (destination) if it is dis-
coverably linguistically marked so, or if the dialogue context concerns starting
places (destinations); otherwise interpret it as a destination unless this gener-
ates an inconsistency in which case interpret it as a starting place

Furthermore, such a rule only covers one sort of immediately apparent inconsistency where
the evidential basis (dialogue context versus linguistic cues) differs and favours one inter-
pretation.

4.1.2 Dialogue Management

The Dialogue Management module of SRI Autoroute demonstrator has been described
elsewhere (D2.1). Here, we will confine ourselves to a very brief review.

The dialogue manager consists of two parts: a rational agent and a conversational games
player. The rational agent possess a limited amount of knowledge about the world and
this includes knowledge of what propositions have been agreed in the dialogue so far. The
agent also possesses knowledge about how to change the world. The means of changing
propositions agreed so far is to play conversational games. The agent has a goal (show the
user a route satisfying his parameters) and he reasons his way from the goal, his knowledge
of the way the world is and his knowledge of how to change it to a plan of action. The plan
will include playing certain conversational games. The agent plans to agree propositions
concerning the journey’s origin, destination, time, and mode (i.e. whether the quickest or
shortest route is required). Then he plans to consult a database of routes before informing
the user of the best route.

Conversational Game knowledge is encoded as simple grammars in the form of transition
networks. The networks define the valid moves that can be made at any point in the
game. Moves and games are categories that contain both a general type (e.g. question,
reply, acknowledgment) and a content (e.g. ‘whether the destination is london’, ‘that the
start time is 4 pm’). The Conversational Game player determines whose turn it is to say
something, and if it is the user’s, it obtains input from the user, analyzes which possible
dialogue moves it can constitute and chooses one according to a utility-based preference
mechanism. The turn then passes to the system. On the system’s turn, a list of possible
next moves is generated and again selected from via the same preference mechanism. The
move is then realized as an output utterance.

Although we do not discuss the issue further here, the game player maintains at all times

the set of possible game parses. If the currently most preferred parse cannot be extended
to cope with the new input (e.g. the user says something unexpected) then that parse can
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be discarded and another possible analysis of the dialogue so far is chosen.

The input to the dialogue manager is a representation of the meaning of a user utterance, for
example, to(cambridge). The first job of the dialogue manager is to compute the dialogue
mowve(s) that it represents. Some moves, e.g. acknowledgments, are decipherable purely
on account of their content. Others depend on a relation to the current propositions under
discussion. For example, an utterance meaning of to(cambridge) counts as a reply only
if the propositions under discussion take a certain form. Replies must answer questions.
Consequently, if the previous question was Where are you going from and the user utters
to Cambridge then this will not be analysed as a reply. However, there are other possible
analyses. It may be that the user is simply giving the system new information (and
ignoring the system question). In principle arbitrary inference can be used to determine
a dialogue move. In fact, only very small and highly specialized inferences are used. For
example, one inference relates the meaning of two propositions sharing the same function
(e.g. to(cambridge) and to(london)). In this way, if to(london) is under discussion (being
confirmed) and the next utterance is to(cambridge), then the latter can be interpreted as
a ‘reply-modifier’ move.

4.1.3 Generation

The language generator in the demonstrator program is a simple template filling approach.
For example, if a proposition of the form from(X) is to be confirmed, then an utterance of
the form "You are starting from X. Is that correct?’ is generated.

4.2 TrindiKit Issues

The Conversational Games Theory model of dialogue invoked in the SRI Autoroute demon-
strator is a two-level theory of dialogue. The theory invokes general rational agency notions
to explain macro-structure in dialogue but the idea of shared knowledge of conversational
game structure to explain micro-structure. It therefore represents a point in between the
two pictures mentioned in Chapter 2. In the classical plan-based picture individual utter-
ances are planned. In CGT, only conversational games (conventional types of sequences
of utterances) are planned. Within a game, utterances are subject to a state-transition
model. In the finite state dialogue models, the whole dialogue is subject to such a model.

The two-level theory is easily implemented inside the Trindi Model. The information state

is essentially divided into two parts and there are two sets of update rules, each set updating
one part of the information state. Separation is ensured by specifying emptyRec (AGENDA)
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as a precondition in each of the ‘rational agency’ rules, i.e. if a game is currently underway,
then you cannot deliberate about other games to play or change one’s global plan. This is
sufficient to implement CGT as currently conceived. One potential advantage of the Trindi
Framework however is that it would not be a significant implementational task to undo
the separation. One could experiment with interactions between “within-game decision-
making” and “between-game decision-making”. Certainly, in the original implementation
of CGT supplied at the beginning of the project, such a re-working would have been difficult
without large amounts of re-implementational work elsewhere. The ‘flat’ nature of decision-
making in the Trindi model with a single set of update rules all operating on a single notion
of information state here provides some flexibility for model development. The possible
disadvantages include the fact that the different functionalities may be not be readily
decipherable by, for example, system maintainers who wish to understand the precise
functions of various parts of the flat structure. Also, from a strictly implementational
viewpoint, the update algorithm which operates upon the single set of update rules may
not be optimal for all the different functions which it is used to compute. That is, it
might very well be more efficient to have specialized representations and algorithms for
specialized pieces of work. However, in a research and educational tool of the nature of the
TrindiKit, this point has less significance than if it were directed at commercial systems
development.

The general Trindi model provides also for a set of rules to update an information state
given an input dialogue move (or moves). The model is however agnostic concerning the
precise point at which a choice is made concerning which move was made and whether
and how choices can be un-made or re-made. In one natural instantiation of the model,
the choice of which move was made by an utterance is taken prior to operation of the
update rules. The update rules then encode how to update the information state given a
particular choice of move. That is, one first recognizes an utterance as constituting, for
example, a question and then applies the update rule for questions (or, one of the rules for
questions, if the rules are also context sensitive) thereby updating the information state.
In this natural instantiation, there is a certain degree of early commitment implied in the
early choice. For how can the system undo or redo an update, if a problem arises later
which is caused by an earlier incorrect choice? In order to allow this, the information state
must carry around within it not just the new information generated by the early choice
but also information that might be required if the choice is to be un-made or re-made.

The point is particularly salient for the SRI CGT dialogue manager. CGT posits con-
versational games and conversational moves. Games are constructed out of moves and,
indeed, it is knowledge of this structure that is shared between dialogue participants. In
SRI’s development, these structures are formulated as fairly simple transition networks and
the discovery of the structure becomes a parsing problem. Choice of parse is not however
something that is committed to early. The best analysis of one dialogue move depends in
part on what the next dialogue move is analysed as. Some sort of backtracking is therefore
required. In order to accommodate this picture, the update rules in the CGT Trindi model
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encode the parsing process over conversational games. That is, the information states
that are maintained over a dialogue include the state of the current and possible states
of alternative parses and the update rules encode the search algorithm over that space.
The preconditions of the update rules determine how the search will be expanded and the
effects determine the results of the expansion. Each of the possible new parse states will
also encode an update effect resulting from an analysis of the latest dialogue move. For
example, there may be one parse which determines that the propositions under discussion
is a certain set X and another which determines that the set is actually Y. But the up-
dates which generate X and Y are not themselves encoded in Trindi update rules. They
are encoded elsewhere in a resource. Of course, in order to progress the dialogue one of the
options must indeed be chosen. Consequently, there is a utility-based preference routine
which subsequently sorts the set of choices generated by the update rules. Future action
is based on the top choice, but the alternatives are not thrown away. They will be further
developed along with the current choice in the light of new data. Later, one may find it has
become top choice after all. In fact, making the choice (i.e. sorting the set of possibilities)
is encoded in the update algorithm. It could equally be the subject of a further update
rule encoded in such a way that it only operates after the other updates rules have been
applied.

The general point to be made from the discussion is the substantive issue of the distribution
of labour amongst the Trindi components. In the very last case discussed — i.e. should
sorting the parsing possibilities be encoded as the last update rule to apply or as the last
part of the update algorithm? — nothing very much appears to depend on the answer. The
earlier case — should the update effects of individual dialogue acts be encoded in the update
rules as in the “natural instantiation” ? — the difference appears to be more significant.
We wish to avoid the idea of “early committment” to a particular analysis. Of course, it
may still be possible to encode the update effects directly in update rules. They might be
encoded in another sort of update rule. In this case, our earlier remark on the flatness of
the update rule formalism possibly masking quite different functionalities would again be
relevant.

4.3 System Evaluation

In this section we revisit the ‘ticklist’ of evaluation points (see Section 2.4) with regard to
the current CG'T demonstrator system.

Qn 1 Is utterance interpretation sensitive to dialogue context?
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—Yes. In the demonstrator system, there are two different types of interpretation. First,
a parser extracts a semantic representation of the content of the utterance. Secondly, the
conversational game player classifies the utterance as a dialogue move. The former process
is context sensitive in a simple way, as explained above (section 4.1.1). If a substring is
found, e.g. cambridge which is insufficient in itself to determine a propositional value, then
the context of the current propositions under discussion may be used to aid interpretation.
Of course, this sensitivity is only available within conversational games since only then
are there propositions under discussion. Dialogue move interpretation is also potentially
sensitive to context. For example, utterances which follow questions are only deemed to
be replies if their content suitably matches that of the question.

In an interesting way, the context is also sensitive to utterance interpretation in the CGT
framework. The conversational games player maintains a set of alternative parses of the
current dialogue. One of them is most preferred. The most preferred one determines, for
example, what the system next utters. However, if a new input cannot be interpreted
with respect to the most preferred parse (or even if it can, but the interpretation is not
considered likely), then an alternative context may be switched to.

Qn 2 Is utterance interpretation sensitive to deictic context?

—No. Deictic expressions are not currently handled by the Autoroute demonstrator.

Qn 3 Can the system deal with answers to questions that give more information than was
requested?

—Yes. The definition of a reply move in the current CGT implementation is an utter-
ance whose content at least answers the question. Therefore, if the propositions under
discussion after a question has been raised are 1b(x,to(x) and the next utterance con-
tent is to(cambridge) ,from(london), then this is deemed a reply whose move content is
to(cambridge) ,from(london).

Qn 4 Can the system deal with answers to questions that give different information than
was actually requested?

—Yes. The conversational games player can deal with such cases by treating them as
instances of an interruption game. An interruption game is defined as one player making
a move deemed to be of no importance and the other player starting an information-giving
game.
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If the system issues the question Where do you want to go? and the user replies I'm
leaving Cambridge at four, then the system finds that its hypothesis that a question game
was under way has become untenable. The alternative analysis, that an interruption game
is under way becomes preferred. On this analysis, the system’s own utterance is analysed
as being of no importance and the user’s utterance is deemed as beginning an information
game. The system will choose to complete this game by issuing an acknowledgement.

(In point of fact, there are several alternative hypotheses for the system to consider. One
possibility is that the user’s utterance should be deemed unimportant and that the system
itself should interrupt. The weights in the utility based preference mechanism are set to
disprefer this option strongly. Another option is simply that the user’s utterance was not
heard correctly. In this case a ‘pardon’ game is under way and the system should utter
‘pardon’. Again this is dispreferred because meaningful content was extracted from the
utterance).

Qn 5 Can the system deal with answers to questions that give less information than was
actually requested?

—No. The CGT-based dialogue manager has no explicit means to deal with such cases.
It is a matter of some interest how such cases should be dealt with. For instance, do such
utterances count as replies, or perhaps replies of a special sort? In this cases, one would
need to discover or devize a sequence of follow-up dialogue moves for completing the game.
Theoretically, such an account is probably not tenable since dialogue moves are intended to
be clearly publically recognizable as such and the structure of the games shared knowledge.
If a hearer categorized an utterance as a special sort of less-informative reply, is it clear
that the speaker does so too - either when he issues it or after hearing the next dialogue
contribution?

An alternative is to analyse the less informative utterance as a simple information giving
move which is not a continuation of the current question game. In this case, the move could
be acknowledged and the current game completed. Then the rational agent would have
to compute what its next best course of action should be: a relevant follow-up question.
However, no such facility is currently implemented.

Qn 6 Can the system deal with ambiguous designators?

—No. The CGT-based dialogue manager currently has no means to deal with such cases.
The parser delivers its best guess at a propositional value to the dialogue manager. The
best guess cannot currently be underspecified with regard to semantic content.
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Qn 7 Can the system deal with negatively specified information

—Sometimes. The CGT-based dialogue manager uses negative information at only one
point—in the confirmation routines within a question game. The parser itself merely notes
that an utterance contains a negation. Negation is therefore treated as a discourse marker
(in the same way as an acknowledgment) rather than as having semantic value with scope
over content.

Qn 8 Can the system deal with no answer to a question at all?

—No. The system currently always expects the user to answer questions.

Qn 9 Can the system deal with noisy input?

—Yes. The parser, albeit a fairly simple one, functions as a form of phrase-spotter. Con-
sequently, it is not crippled in the face of noisy input. Naturally, its degree of success
depends to a large extent on the degree of noise.

Qn 10 Can the system deal with ‘help’ sub-dialogues initiated by the user?

—No. The system has no such facility.

Qn 11 Can the system deal with ‘non-help’ sub-dialogues initiated by the user?

—Yes. The system can deal with such dialogues using the model of “interruption games”
explained above.

Qn 12 Does the system only ask appropriate follow-up questions?

—Yes. The system architecture is designed in order to facilitate dialogues which do only
ask appropriate follow-up questions.

Qn 13 Can the system deal with inconsistent information?
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—No. The system does not perform any such reasoning.

Qn 14 Can the system deal with belief revision?

—Yes. The theoretical motivation behind the Autoroute demonstrator system posits two
different levels of “belief representation”. Within a conversational game, there is a set of
propositions under discussion and these may be revised but only according to the moves
permitted by the rules of the game. The game can be considered as a rule-governed method
for revising the set of propositions under discussion. The point of the game is establish
certain propositions as agreed. Once a proposition has been agreed however, subsequent
revisions may still occur; but this will be at the level of game-playing itself and theory
simply posits a “rational agent” who will update agreed commitments in a rational way.
The current implementation only supports a simple “overwrite” revision at this level. No
inconsistency is detected. In the following example, the system and the user agree that
the destination is London but the user then immediately overturns the agreement. The
system does not detect any problem and simply updates its belief about the destination
with the new information. (That this is so is demonstrated by the final route provided).

1.Where do you want to go to?

2.london

3.You are going to london. Is that correct?
4.yes

5.0kay.

6.Where do you want to go from?

7.1 want to from cambridge to oxford

8.You are starting from cambridge. Is that correct?
9.yes

10.You are going to oxford. Is that correct?
11.yes
12.0kay.
13.When do you want to travel?

14.T want the quickest journey at five

15.You want the quickest journey. Is that correct?
16.yes

17.You will start your journey at 5:0. Is that correct?
18.yes

19.0kay.

Time Distance Route
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00:07 3.1 A1307 -> A428

00:07 3.6 Cambridge-West 14 A428 -> Mi1
00:33 46.5 Shell S05-8922 Mil

00:46 69.2 M25-M11 M11 -> M25

00:50 74.9 Shell S05-1392 (5.1 km) B1393 M25
00:50 75.0 Shell S05-8820 (4.7 km) M25
00:02 94.9 M25-A1(M) M25

00:24 131.0 M25-M40 M25 -> M40

00:51 175.6 M40-A40 M40 -> A40

00:58 184.7 A40 -> A420

00:01 185.8 Shell S05-9526 A420 A420
00:09 189.2 0xford (GB)

(The above example illustrates the Autoroute system hooked up to a web-based route
planning service www.shell.com/euroshell/routeplanner provided by Shell UK)

Qn 15 Can the system deal with barge-in input?

—No. The user is not permitted to barge-in over system utterances.

Qn 16 Is it possible to get a system tutorial concerning the kind of information the system
can provide and what the constraints on input are?

—No. The system provides no such tutorial information

Qn 17 Does the system check its understanding of the user’s utterances?

—VYes. By default, the system does perform check its understanding of the user’s utterances
by asking a yes-no question concerning the content which it understood. If a user utterance
contains more than one proposition, then multiple checks may be required.

S.Where do you want to go from?

U.I want to from cambridge to oxford

S.You are starting from cambridge. Is that correct?
U.yes

S.You are going to oxford. Is that correct?

U.yes

S.0kay.
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4.4 Conclusions

Current demonstrator development has had two primary motivations: formal and imple-
mentational development of CGT itself; and “proof of concept” of the TrindiKit dialogue
model and development environment. Both of these motivations have been been largely
satisfied by the current development. Although, we currently have no future plans for
developing the CGT demonstrator further. There are of course many ways in which devel-
opment could be usefully pursued.

First, whilst the formal development of CGT may proceed usefully along the lines pursued
here, it becomes an increasingly urgent matter to ensure that the formal development is
empirically verifiable and verified.

The Tick-list evaluation points and the general TrindiKit issues raised earlier also raise
some important issues for future development.

First, how straightforward is it to define and identify dialogue moves and games in in-
creasingly conversational environments? The simplest human-computer dialogues are ones
where computers supply questions and humans either answer them in a fully satisfactory
way or they fail to do anything at all. Moves are questions or answers and games are
sequences of such. More flexible behaviour requires more interesting moves and games.
In the CGT development, either the set of moves and games itself can be extended or
the definitions of particular moves and games can be extended. In order to allow “more
information in answers than was requested” (ticklist point 2), the second strategy was fol-
lowed. A ‘reply’ is deemed to be anything that at least answers the question. For “different
information than requested” (ticklist point 3), the first strategy is adopted. For “less infor-
mation than requested”, no strategy is adopted although the second, as discussed earlier,
appears more plausible. The issue of “identifying the possible functions of utterances” is
of course one that arises for any dialogue theory. With regard to the current version of
CGT, there is in addition the issue of “identifying the single function of an utterance” (the
function may be arbitrarily complex but CGT only permits an utterance to be classified
one-way) and the issue of “discovering the shared known structure over moves”. As move-
classifications become increasingly complex, it may be that one is less willing to identify
clear known and shared game-structures over those moves. Such a development would not
invalidate CGT itself but it would mean that most of the more flexible behaviour would
have to be accounted for by the rational agency portion of the CGT model and that games
themselves would account for less and less.

The current instantiation of the theory also imposes some limits on the degree of flexibility
allowed, notably, that only one function per utterance is currently permitted (as noted
above), that the semantic input to the dialogue manager should be fully determinate
(ticklist point 5) and that a turn-taking model is employed (ticklist point 7). The first
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point is more of a conceptual one. In part, it derives from a picture of dialogue in which
participants continually try to identify what the point of other’s contributions are. CGT
is partly an attempt to move away from this picture. In annotating a game of chess, for
example, one can of course try to decide at each point the functions of each move. It
is also obvious that each move may have several functions. The move may threaten one
piece, defend another and suggest a whole line of attack. First, however one must identify
the move (“pawn to e4”). CGT is an attempt to identify moves at a higher level than
simply identifying the surface locution (“he said the following words ‘I want a route to
Cambridge”) or its meaning.

The second and third limits (determinate semantic input and turn-taking) are perhaps the
more significant ones. Should semantic input be determinate? Would it be sufficient for
the parser to deliver a set of possible interpretations, rather than a single best guess, to
the dialogue manager. The answer will clearly be ‘no determinism’ if there are cases where
the parser/semantic interpreter cannot make the right choice early. Unfortunately, it is
just not clear whether parsing and semantic interpretation are in principle restricted in
the information sources they can draw upon. In the general Trindi model, they can invoke
any information available also to later components. In the current CGT demonstrator,
the parser and semantic interpreter, as described earlier, has access to the ‘latest question’
asked but this is a somewhat arbitrary restriction. The more important consideration
appears to be that the decision should not be taken ‘early’ by any module. The best
response to an utterance which is unclear in some aspect is to clarify it - that is, the dialogue
manager should respond to the very unclarity. Consequently, merely passing on a set of
interpretations to a dialogue manager will not be sufficient unless the dialogue manager
can respond to the set as a whole and does not evaluate each member on its own. The
CGT dialogue manager, for example, already maintains a set of possible dialogue parses.
It would not be difficult to extend that set to include different resolutions of ambiguous
inputs. It would however be a significant effort to make it’s next action depend, not on
what it judges the best member of that set, but on relations between members of the set.

The third limit concerning strict turn-taking poses interesting questions for the current
demonstrator system. It ought to be possible to operate the parsing, generation and
dialogue interpretation modules in more of a “blackboard mode” of operation than they
do currently. Parsing could operate whenever and as soon as typed or spoken input was
added to the blackboard. Dialogue interpretation could operate whenever parsing posted
its results to the blackboard but it would also need to be able to restart (or at least
readjust) if it had not completed its operations and more input from the user was posted.
The resulting picture is a rather minimal one - the system is simply yielding the floor
whenever asked to. There are obvious dangers in such an approach — if the system always
yields the floor but always takes too long in its own deliberations, the user might never
receive any feedback and believe nothing is happening at all. Consequently, one might
wish the system to insist on holding the floor sometimes.
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The Trindi model and TrindiKit environment undoubtedly provide a unifying structure
within which such questions can be usefully pursued. It should be clear from the discus-
sion above that the general environment does not answer those questions. Even merely
separating out a ‘semantic interpretation module’ from a ‘dialogue move interpretation
module’ can become a contentious issue. Nevertheless, a more abstract level of description
of dialogue systems in terms of their information states and information flows is clearly a
move in the right direction for more readily understable and comparable systems.
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Chapter 5

EDIS

This is a description of version 1 EDIS, which implements a number of key aspects of
the Poesio-Traum Theory (PTT) of Information State (IS) and update rules, using the
TrindiKit. A description of the main points of version 2 can be found in [MTPO00].

For background information on the update rules, see [CLM*99]. The main contents (section
5.1) describe the model of IS, the update rules, and the associated update algorithm. It was
necessary to extend the DME in a number of (typically small) ways. Section 5.2 outlines
these additions.

5.1 System Description

The main aspects of PTT which have been implemented in EDIS concern the way discourse
obligations are handled and the manner in which dialogue participants (DPs) interact to
add information to the common ground. The following subsections look at the model of IS
which is assumed, the update rules used, and the update algorithm assumed by the rules.

5.1.1 Information States

The implemented structure of ISs is fairly close to the version in [CLM*99], with a number
of simplifying assumptions. The following is an example representing the relevant informa-
tion following the first utterance (how can I help) in the autoroute test dialogue we have
been working with :
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(5.1) T [OBL: <understandingAct(C,DU2) > 1]
DH: < >
GND:
SCP: < >
|OPT: < >
UbDUS: <DU2>
i [oBL: < >
DH: < >
TOGND:
PDU: SCP: < >
W:
| OPT: < >
ID: ?
i [OBL: <answer (C,CA2)>
DH: <CA2:info_request(W,howhelp) >
TOGND: c e ( P)
CDU: SCP: < >
| OPT: < >
| ID: DU2
INT: <> ]
| C. [INT: <getroute(W)>] |

The IS has two main parts, representing the information associated with the system (Wiz-
ard) and that associated with the user (Caller). Normally these sub-structures would be
identical; however, because in this case we are not attempting to model misunderstandings
arising from the dialogue participants having differing views on what has been grounded,
it is only necessary to preserve a separate INT field for C’s intentions.

The main part of the IS has information on the grounded material (GND), on the un-
grounded information (UDUS), and on W’s intentions (INT). EDIS assumes that contri-
butions to the dialogue are stored in the form of DISCOURSE UNITS (DUs); for each new
utterance, a new DU is created and added to the IS, and there is no independent limit to
the number of DUs which an IS can contain.

DUs and the GND field contain four elements, representing obligations (OBL), the dialogue
history (DH), social commitments (SCP) , and ‘options’ (OPT). The latter is really a marker
for future work and we shall ignore it here. The other attributes contain the immediately
relevant information; the obligations, the dialogue history, and a list of propositions to
which the participants have become committed during the dialogue.

The implementation differs from the full theory in that only two DUs are retained; the
current DU (CDU) and the previous DU (PDU). We keep the previous information around
when processing new input in order to retain the basic assumption that UNDERSTANDING
ACTS (acknowledgments, and suchlike) must be performed before the information in a
DU becomes grounded. In making the change from an unlimited number of DUs to just
two, we could also do without the explicit representation of the ungrounded information
(upus); however, in the analysis of more complicated dialogues it is necessary to preserve
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this information in order to return to previous DUs, so we maintain the field as a marker
for future work.

Looking again at (5.1), the values of the OBL and SCP attributes are lists of ‘dialogue action
types’, while elements in the dialogue history are ‘dialogue actions’. A dialogue action type
has three attributes: a PREDICATE, a DIALOGUE PARTICIPANT, and a list of ARGUMENTS.
In GND.OBL in (5.1), the predicate is understandingAct, the participant is C, and there
is just one argument, DU1, which identifies the information in CDU by referring to its ID.
In (5.1) the common ground contains the information that C has an obligation to answer
conversational act 1, and this points to the appropriate information request in the DH list
by means of the ID number. Note that the dialogue act in the dialogue history contains a
representation of the proposition which was the content of the original question as a simple
string.

5.1.2 Update Rules

The structure of ISs in the P-T model was outlined in the previous section. Now we are
in a position to look at the update mechanisms which serve to map particular ISs into
new ones. To make this discussion concrete, we shall use the test dialogue from the SRI
Autoroute corpus which is used to introduce the Trindi annotation schemes in [CLM™99].
The dialogue in question has been ‘cleaned up’ to some extent for use in this context, and
we assume it goes like this:
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(5.2) WJ1]:  How can I help?
C[2]: A route please
W[3]:  Where would you like to start?

C[4]:  Malvern

W[5]:  Starting in Great Malvern?

C[6]:  Yes

W[7]:  Where do you want to go?
C[8]:  Edwinstowe
W[9]:  Edwinstowe?

C[10]:  Yes

W][11]: Edwinstowe in Nottingham?

C[12]:  Yes

WI[13]: When do you want to leave?

C[14]: 6 p.m.

W][15]: Leaving at 6 p.m.?

C[16]:  Yes
WJ17]: Do you want the quickest or the shortest route?
C[18]:  Quickest

WJ[19]: Please wait while your route is calculated

The current system can automatically process this dialogue. To get this to work, we assume
that before the dialogue starts W has the intention to ask C what kind of help is required,
and also that C has the intention to find a route. The initial IS is therefore as shown below:

(5.3)

[OBL: < > 1]
DH: < >
GND:
SCP. < >
| OPT: < >
ubusS:. < >
[ [oBL: < >]]
DH: < >
TOGND:
PDU: SCP: < >
| OPT: < >
| ID: ? ]
[ [oBL: < >]]
DH: < >
TOGND:
CDuU: SCP: < >
| OPT: < >|
L ID: ? ]
|INT:  <info_request(W,howhelp) > |
. [INT: <getroute(C)>] ]
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We also assume that W has the turn, which means that a sequence of actions are performed,
beginning with the selection process, which employs one of three selection rules and the
default algorithm. The inforeq selection rule fires in the presence of the first intention
and triggers an utterance directly.! The actual srule is:

srule(select(ask), _,
[ fstRec(w~int, INT),
INT:valRec(pred,inforeq)],
[ popRec(w"int) ],
[ INT ]

This just checks to see if the first intention is an inforeq, and if so, it pops the intention and
sets next_moves to be the relevant question. The next action associated with the system
turn is to generate a stored string which expresses the element in next_moves. This string
is then written to the screen by the output module, which also sets latest_moves to be
whatever was in next_moves.

In the current implementation, two more stages have been added to this select, generate,
and output cycle to constitute a full ‘system turn’. The first is an acknowledge step
following output; this allows an implicit acknowledgment of a previous utterance to be
included in the moves associated with an utterance. EDIS assumes that acknowledgments
(Understanding Acts) are necessary for an utterance to be grounded, and so, for example,
the utterance by W of Where would you like to start? in (5.2) contains the necessary
implicit acknowledgment of C’s utterance [2]. When running the system’s turn, then, it is
necessary to include the information about which previous utterance is being acknowledged
(if any). The final step in the turn runs the update rules to produce the next IS, and so
the full macro for ‘system turn’ is:

st (ACT) :-
select,
generate,
output,
acknowledge (ACT),
update.

If ACT is instantiated, latest_moves will contain the appropriate acknowledgement as well
as a representation of the core acts in the utterance. So, running the system turn produces

!The production of utterances in the full PTT model is a good deal more complicated, relying on
various kinds of deliberation.
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the utterance How can I help?, sets latest_moves, and maps the IS in (5.3) into (5.1). In
this case, as the utterance is the first in the dialogue, there is nothing to acknowledge, and
latest_moves will just contain the information request:

stackset ([record([pred=inforeq,
dp=w,
args=stackset ([record([item=howhelp])1)1)1)

An account of the update algorithm used in the implementation is provided in section 5.1.3
below. In the deliverable, there are four stages to the updating process which can be
summarised as:

(5.4)

—_

Create a new DU (CDU) and push it on top of UDUs.

2. If a backwards grounding act is observed, merge CDU and ground, update
UDUS, and record the act in ground

3. If any other type of act is observed, record it in the dialogue history in CDU
and deal with it as specified by the particular rule which handles the act in
question.

4. Apply update rules to all parts of the IS which contain newly added acts.

Note that the final step refers to DRSs; here this means the appropriate parts of the record
structure representing the IS. The process of dealing with the specific acts handled by steps
2 and 3 is described below with respect to particular update rules; the main point here is
that the four steps above suggest an algorithm for dealing with updates which has been
implemented fairly closely in the current system. Clearly, the suggestion is that the steps
must be carried out in sequence.? Firstly, creating a new DU is interpreted as copying the
contents of CDU to PDU and incrementing the ID number in CDU. The second and third
stages deal explicitly with the contents of latest_moves, as discussed below, and the fourth
cycles through the updating process in case recently added acts have further implications.
Before looking at the update algorithm, we shall discuss the actual update rules which
map (5.3) into (5.1), beginning with the rules which create a new DU as suggested in step
1in (5.4).

urule( makeNewDUandCopyCDU, ruletypel,
[ valRec(w~cdu,CDU) ],

2This means that the default DME update algorithm cannot be used as it assumes that the first, and
only the first, rule which matches is used. The current implementation therefore uses a more complicated
updating cycle, as we shall see is section 5.1.3.
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[ setRec(w pdu,CDU),

incr_set (next_du_id,DU),

setRec(w”cdu, record([tognd=record([scp=stackset([]),
obl=stackset ([]),
dh=stackset ([]1),
opt=stack([1)1),

id=pu])),
pushRec (w udus,DU) ]

The conditions just retrieve the value of CDU, and the first effect copies this value to PDU.
The next effect is a new operation (specific to the EDIS implementation at the moment)
which increments the value of a global variable representing the DU number, sets the
global to be the new value, and actually sets its second argument to be the ‘IS internal’
representation of this value (DU2, DU3, and so on). The next effect sets up an empty CDU
with the new ID, and finally the ID number of CDU is also pushed into UDUs. CDU is
now ready to be filled with the contents of the utterance as represented in latest_moves,
and the urule which fires in this context is:

urule( doInfoReqW, ruletype3,

[ latest_speaker: val(w),
latest_moves: in(Move),
Move:valRec(pred,inforeq) 1],

[ incr_set(update_cycles,_),
incr_set (next_dh_id,HID),
next_du_name (ID),
pushRec (w"cdu~tognd~dh,record([atype=Move,

id=HID 1)),
pushRec (w"cdu~tognd~obl,record([pred=answer,
dp=c,

args=stackset ([record([item=HID])1)1)),
pushRec (w"gnd~obl,record([pred=uact,
dp=c,
args=stackset ([record([item=ID])1)]1)) ]

Based on the template rules in [CLM™99] (p.36), the conditions state that the latest speaker
should be W, and that there should be a move in 1atest_moves whose predicate is inforeq.
The first three operations handle bookkeeping of the system variables which deal with IDs
and update cycles, and so the rule has three main effects; the dialogue history in CDU
is updated to contain a representation of the inforeq, the fact that C has an obligation
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to answer the question is pushed into OBL in CDU, and C’s obligation to perform an
understanding act is pushed directly into ground.

Note that one of the bookkeeping operations carried out by the urules in steps 2 and 3 is
to increment the global variable update_cycles every time a rule pushes new information
into the IS. This global is subsequently used to see whether there is new information in
the IS which needs to be checked (as part of the implementation of step 4 in (5.4). See
section 5.1.3 below for a full account of how the implementation uses this information.

To recap, given some initial intentions, we have shown how the system produces the first
utterance in (5.2), and how the update rules produce the IS which results from this utter-
ance. We can now look at the Caller’s response:

(5.5) W][1]: How can I help?
C[2]: A route please

Although the intention to get a route is present in the ISs we have been using, this is
really just for completeness as it is not actually used to produce the next utterance. It
is necessary to explicitly set latest_moves and run the update cycle, and some simple
macros have been written to do this. The relevant one at this point represents the caller’s
‘getroute’ move:

grmove :-
set(latest_moves,stackset ([
record([pred=ack,
dp=c,
args=stackset ([record([item="DU2’]1)1)1),
record([pred=answer,
dp=c,
args=stackset ([record([item=>CA2°]),
record([item=giveroute])])]),
record([pred=direct,
dp=c,
args=stackset ([record([item=giveroute])1)1)1)),
set(latest_speaker,c),
operation(popRec(c”int)),
update.

There is a version of this macro which prints the string representing the utterance, but
the important issues concern the IS alterations. Note that the utterance of 2] in (5.5) is
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assumed to constitute three moves; an acknowledgement, an answer, and a directive. The
acknowledgement of the previous utterance is implicit, of course, but the caller is obliged
to provide it. Also implicit, in some sense, is the fact that utterance [2] provides an answer
to utterance [1]; it should be possible to derive this information automatically (perhaps
along the lines suggested by Jorn Kreutel), but for the moment we explicitly include it.
Finally, we assume that the core act is a directive.

As shown, the ‘getroute’ macro runs the update cycle, and this will map (5.3) into (5.6):

(5.6) OBL: under standingAct(W,DU3)
answer (C,CA2)
] ./ CA3: acknowledge(C,DU2)
GND: | DH: <CA2:info_request(W,howheIp)
SCP. < >
| OPT: < > |
UDUS: <DU3>
[ [OBL: <answer (C,CA2)>
DH: < inf est(W,howhelp) >
TOGND: CA2: info_request(W,howhelp)
PDU: SCP: < >
W:
| OPT: < >
|ID: DU2
[ i opL: { ccept > obliged (W,CA5 giveroute) N
"\ address(W,CA5)
) . CAZS: direct(C,giveroute)
CDU: TOGND: | DH: <CA4: answer (C,CA2,giveroute)
SCP: <scp(C.giveroute) >
| OPT: <address(W,CA5)> ]
1D DU3 ]
LINT: <> ]
| C: [INT: <>]

In all, six update rules have applied in the mapping. Firstly, as before, the rule for creating
a new DU has operated, copying CDU to PDU in the process. Next, as the first element
in latest _moves is the acknowledge act, step 2 in (5.4) is implemented using the following
update rule:

urule( doBGActsUsr, ruletype2,

[ latest_speaker:val(c),
latest_moves: in(Move),
Move:valRec(pred,ack),
valRec(w"pdu~id,PID) ],

[ incr_set(next_dh_id,ID),

20



incr_set (update_cycles,_),
pePathRec(w"gnd,w"pdu~tognd) ,
pushRec (w"gnd"dh,
record([atype=Move,
id=1ID1)),
delRec (w~udus,PID)]

Apart from the bookkeeping, this rule is just checking to see whether latest_moves con-
tains an acknowledgement by C, and if there is, it first merges PDU with the common
ground using pePathRec. Next the acknowledgment is recorded in ground, and the ID of
PDU is removed from UDUS as the information is now, of course, grounded.

Step 3 (dealing with acts other than grounding acts) now applies, and the update rule
which handles answers is:

urule( doAnswerC, ruletype3,
[ latest_speaker: val(c),
latest_moves: in(Move),
Move:valRec (pred,answer),
Move:valRec (args,stackset ([record([item=_]),
record([item=ANS])1)) 1,
[ incr_set(update_cycles,_),
incr_set (next_dh_id,HID),
next_du_name (ID),
pushRec (w"cdu~tognd~dh,record([atype=Move,
id=HID 1)),
pushRec (w"cdu~tognd~scp,record([pred=scp,
dp=c,
args=stackset ([record([item=ANS])1)1)),
pushRec (w"gnd~obl,record([pred=uact,
dp=w,
args=stackset ([record([item=ID])1)1)) ]

This basically says that, if the first thing in latest_moves is an answer act by C, record
the act in CDU and also record the fact that there is a potential commitment to the
proposition expressed in the answer. Finally, as usual, the need for the other participant
(W in this case) to perform an understanding act is pushed into the common ground.

The rule which handles the direct act is:
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urule( doDirectC, ruletype3,
[ latest_speaker: val(c),
latest_moves: in(Move),
Move:valRec(pred,direct),
Move:valRec(args,stackset([record([item=PROP])]1)) 1,
[ incr_set(update_cycles,_),
incr_set (next_dh_id,HID),
next_du_name (ID),
pushRec (w"cdu”tognd~dh,record([atype=Move,
id=HID 1)),
pushRec (w"cdu"tognd~obl,record( [pred=address,
dp=w,
args=stackset ([record([item=HID])]1)1)),
pushRec (w"cdu~tognd~obl,record([pred=accept_obl,
dp=w,
args=stackset ([record([item=HID]),
record([item=PROP])1)1)),
pushRec (w"cdu~tognd~opt ,record( [pred=address,
dp=w,
args=stackset ([record([item=HID])]1)1)),
pushRec (w"gnd~obl,record([pred=uact,
dp=w,
args=stackset ([record([item=ID])]1)1)) ]

This looks to see if the first thing in 1atest_moves is a directive, and if so, it records the act
in DH in CDU. It also pushes two obligations into CDU; the first is for the other participant
to address the directive, and the second records the implication that accepting the contents
of the directive will result in an obligation to perform the proposition it expresses. The
fact that W has an option to address the directive is also recorded in CDU, and finally the
obligation to perform an understanding act is pushed into common ground.

Step 4 now applies, effectively cycling through the updating process. However, the only
update rules which are relevant deal with different kinds of updating processes, namely
those to do with resolving obligations and implicational acts. Thus the algorithm actually
only cycles through the last two rule types, which deal with obligation and implication
resolution. The suggestion is that the update rules themselves will not give rise directly
to dialogue acts, but that the information which they push into the IS must be checked to
see whether it resolves any obligations or implications.

The first type of urule which is checked deals with obligation resolution, which is basically
fairly simple; if there is an obligation to perform an act and a suitable act is present in the
dialogue history, remove the obligation. The following rule has therefore been included in
the cycle:
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urule( obligationRes, ruletype4,

[ inRec(w"gnd~obl,ATYPE),
inRec(w"gnd~dh,ACTION),
ACTION: valRec(atype,ATYPE2),
checkATypes (ATYPE,ATYPE2) 1],

[ delRec(w"gnd~obl,ATYPE) ]

).

This works more or less as suggested above. The only real complication is that it is neces-
sary to check the type of the predicates to see whether action types match; so, for instance,
the presence of an acknowledgment in the dialogue history constitutes an understanding
act as suggested by the taxonomy in [CLM™99] (p.37). So, the rule says that if there’s an
action type in OBL and a dialogue action in DH whose action type matches, remove the
obligation. This rule is responsible for removing the first obligation on C to acknowledge
W’s first utterance.

The operations for dealing with the rest of the dialogue in (5.2) are very much the same
as the machinery we have seen. However, one point to note is that there is another step
in the cycle which deals with implicational acts such as that introduced by directives.
Before looking more closely at the update algorithm, for completeness we can conclude
this subsection with a description of the implication resolution update rules and of one
refinement to the obligation resolution rule.

Taking the implication resolution rules first, the following is an example:

urule( acceptObl, ruletypeb,
[ inRec(w"gnd~obl,record([pred=accept_obl,
dp=DP,
args=stackset ([record([item=HID]),
record([item=0BL])1)1)),
inRec(w"gnd"dh,record([atype=record([pred=accept,
dp=DP,
args=stackset ([record([item=HID])])]),
id=_1))1,
[ incr_set(update_cycles,_),
pushRec (w“gnd~obl,record([pred=obliged,
dp=DP,
args=stackset ([record([item=0BL])]1)1)),
delRec(w"gnd~obl,record([pred=accept_obl,
dp=DP,
args=stackset ([record([item=HID]),
record([item=0BL])]1)1)) ]
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This rule handles the kind of implicational act introduced by directives. Its conditions are
looking for the appropriate act type in OBL and for a suitable accept act in the DH. If such
a match is found, the obligation representing the consequent is pushed into ground and the
implicational act itself is removed from OBL. Note that the presence of an accept act is
required; this involves an adaption of PTT as suggested in [CLM99]. There, the theory
does not represent accept acts directly in ground. In order to discharge the implication,
it is necessary to have something suitable in the IS, and so it is assumed here that the
intention to accept gives rise directly to an accept act in the IS (cf. the annotation in
[CLM™99] (p.107) in which the intention to accept the directive appears).

The complication to the obligation resolution rule deals with the final statement in [CLM*99]
(p.37). This suggests that a check act with an accompanying agree have the type of an
answer; at the moment, this is handled using another obligation resolution urule:

urule( checkAgree, ruletype4,
[ inRec(w"gnd~obl,record([pred=answer,
dp=DP,
args=stackset ([record([item=ACT])]1)]1)),
inRec(w"gnd~dh,record([atype=record([pred=agree,
dp=DP,
args=stackset ([record([item=ACT]1)1)1),

id=_1)),
inRec(w"gnd"dh,record([atype=record([pred=check,
dp=_,
args=_]),

id=ACT1)) 1,
[ delRec(w"gnd“obl,record([pred=answer,
dp=DP,
args=stackset ([record([item=ACT])]1)]1)) 1

The conditions here are looking for an obligation to answer and for a suitable agree and
check in DH. If the conditions are met, the obligation is discharged.

5.1.3 The Update Algorithm

The update algorithm is based directly on the four-step process suggested in (5.4) above, as
we have noted, although the fourth step is actually an indication that the process should
cycle. However, as we also noted, it was necessary to include two extra steps, and the
current cycle therefore actually has five separate ‘stages’, which are implemented using the
‘rule type’ slot. The update engine used for the P-T model is:
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update :-
urule_engine([ruletypel,ruletype2,ruletype3]),
print_state, !.

This is the same as the default except for the addition of the rule type specifications as an
argument to update. The definition of urule_engine is:

urule_engine([]) :- val(update_cycles,UD),
update_cycle(UD).

urule_engine([Type|Types]) :-
apply_all_rules_of_type(Type),
urule_engine (Types) .

Each rule type is tried in turn, and all rules of each type are checked. The end check, when
all the types have been tried, calls the update_cycle predicate which checks the last two
rule types, as we shall see. The apply_all rules_of_type is actually quite close to the
original urule_engine definition:

apply_all_rules_of_type(Type) :-
urule(Rule, Type, Preconds, Effects ),
check_preconds( Preconds ),
print_rule( Rule, Effects ),
apply_effects( Effects ), fail.
apply_all_rules_of _type(_).

The significant change is the forced failure which ensures that every rule is tried.

The update cycle decrements the update_cycles variable, trying the obligation and im-
plication resolution rule types:

update_cycle(0).

update_cycle(Num) :- Num2 is Num - 1,
set (update_cycles,Num2),
urule_engine([ruletype4,ruletype5]).
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5.2 TrindiKit Issues

The EDIS implementation required a number of (small) extensions to the DME machinery.
Apart from a few bookkeeping global variables, the following were added:

operation(incr_set (next_dh_id,Name)) :-
val (next_dh_id, V1),
Val is V1 + 1,
set (next_dh_id,Val),
number_chars(Val,NChars),
append([67,65] ,NChars,Chars),
atom_chars (Name,Chars) .

This allows counters to be incremented. A typical use of such a counter is in providing an
ID number for an element in the dialogue history. Another new definition is:

operation(next_du_name (Name)) :-
val (next_du_id,Num),
number_chars (Num,NChars) ,
append([68,85] ,NChars,Chars),
atom_chars (Name,Chars) .

Rather than set the name of the new DU, this operation just retrieves it. We also use a
new condition (used when checking that dialogue acts match) which checks the type of
predicates:

condition(predType (PRED,PREDTYPE)) :-
ptype (PRED,PREDTYPE) .

ptype (ack,uact) .
ptype (accept,address) .
ptype (Type,Type) .

The predType condition associates dialogue act predicates with their types as specified in
[CLM™99] on page 37. Thus, for instance, an acknowledgment is defined to be of type
uact (an understanding act). One place where this information is crucial is in resolving
obligations, in which case the presence of an acknowledgement in the dialogue history can
be used to discharge the obligation to perform an understanding act.
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Finally, we include the checkATypes condition, used in the obligation resolution urule,
below:

condition(_,checkATypes(Recordl,Record2),_) :-
infostate_access:condition(Record2: valRec(pred,PRED)),
infostate_access:condition(predType (PRED,PREDTYPE)),
infostate_access:condition(Recordl: valRec(pred,PREDTYPE)),
infostate_access:condition(Recordl: valRec(dp,DP)),
infostate_access:condition(Record2: valRec(dp,DP)),
infostate_access:condition(Recordl: fstRec(args,ARG1)),
infostate_access:condition(Record2: fstRec(args,ARG1)).

This condition is used to check whether two action types are compatible. It calls the
predType condition discussed above to see if the types of the predicates match, and then
just checks that the dialogue participant and relevant argument are identical.
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Chapter 6

GoDiS

In this section we present the GoDiS system. For a more in-depth presentation of GoDiS,
see [TBC'99]. GoDiS is an experimental dialogue system built using the TrindiKit. It
uses fairly simple algorithms for the control, update and selection modules, keyword-based
interpretation and template-based generation. GoDiS is currently able to handle simple
grounding phenomena as well as question accommodation, allowing users to answer unasked
but salient questions.

6.1 System Description

6.1.1 Information state

GoDiS uses an information state type based on the “dialogue gameboard” introduced by
Ginzburg [Gin98], including the notion of QUD (Questions Under Discussion). The main
division in the information state is between information which is private to the agent
and that which is shared between the dialogue participants. What we mean by shared
information here is that which has been explicitly established during the conversation
(akin to what Lewis in [Lew79] called the “conversational scoreboard”).

The private BEL field contains propositions that the system holds to be true. The AGENDA
field contains the short term goals or obligations that the agent has, i.e. what the agent is
going to do next. For example, if the other dialogue participant raises a question, then the
agent will normally put an action on the agenda to respond to the question. The SHARED
field is divided into three subfields. One subfield is a set of propositions which the agent
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assumes for the sake of the conversation. The second subfield is for a stack of questions
under discussion (QUD). These are questions that have been raised and are currently
under discussion in the dialogue. In real human-human dialogues, dialogue participants
can address questions that have not been explicitly raised in the dialogue. However, it
is important that a question be available to the agent who is to interpret it because the
utterance may be elliptical. An example from a travel agency dialogue' is shown in (6.1).

(6.1) J: what month do you want to go
P: well around 3rd 4th april / some time there

P: as cheap as possible

The strategy we adopt for interpreting elliptical utterances is to think of them as short
answers (in the sense of Ginzburg [Gin96a, Gin96b, Gin98|) to questions on QUD. A
suitable question here is What kind of price does C want for the ticket?. This question is
not under discussion at the point when the customer says “as cheap as possible”, but it
can be figured out since J knows that “as cheap as possible” this is a relevant question. In
fact it will be a question which J has as an action in his plan to raise. On our analysis it
is this fact which enables J to interpret the ellipsis. He finds the matching question on his
plan, accommodates by placing it on QUD and then continues with the integration of the
information expressed by as cheap as possible as normal. The final SHARED field contains
information about the latest move (speaker, move type and content).

The PLAN field is a list of dialogue actions that the agent wishes to carry out. The plan can
be changed during the course of the conversation. For example, if a travel agent discovers
that his customer wishes to get information about a flight he will adopt a plan to ask her
where she wants to go, when she wants to go, what price class she wants and so on. In
cases where the customer does not state her errand explicitly, but rather answers some
question(s) (e.g. about destination and means of transport), the agent must infer what
the task is. We call this process task accommodation, and it is closely related to question
accommodation.

We have also included a field TMP that mirrors the shared fields. This field keeps track
of shared information that has not yet been grounded, i.e. confirmed as having been
understood by the other dialogue participant. In this way it is easy to delete information
which the agent has optimistically assumed to have become shared if it should turn out
that the other dialogue participant does not understand or accept it. A variant of the
system (with a few different update rules) allows a system to pursue a cautious rather than
optimistic strategy with respect to grounding. In this version, information will at first

! This dialogue has been translated from Swedish. It was collected by the University of Lund.
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only be placed on T™MP until it has been acknowledged by the other dialogue participant
whereupon it can be moved from TMP to the appropriate shared field.

A sample information state, resulting from the dialogue in (6.2), is shown in (6.3).
(6.2) Sys: Welcome to the travel agency!

Usr: flights to paris
Sys: What city do you want to go from?

BEL = {}
AGENDA = ()
RAISE(R"(RETURN=R)),
PRIVATE = PLAN _ RAISE(M:(MONTHZM)),
(6.3) RAISE(C"(cLAss=C)),
RESPOND(P"(PRICE=P))
TMP = (same as SHARED) |
[ BEL = {(TO=PARIS),(HOW=PLANE)}
SHARED = Qup = (X"(FrOM=X))
i | LM = ASK(SYS,Y"(FROM=Y)) ] ]

The user utterance is seen as answering two questions; however, no task or plan has yet
been established and no questions have been raised. To be able to integrate the utterance,
the system must find a task associated with a plan which includes the raising of questions
which match the answers given. Once the task (in this case getting price information about
a trip) has been accommodated and the plan entered into the PLAN field, the questions
can be accommodated and the answers integrated. As a consequence of this process, the
information state now contains a plan which guides the system behavior.

6.1.2 Dialogue moves, update rules, and modules

GoDiS is implemented using 7 dialogue move types (ask, answer, request-repeat, repeat,
greet, quit and thank) and 40 update rules, whereof 31 are used by the update module and
9 by the selection module. These two modules form the GoDIS DME. There are currently
8 rule classes in GoDiS: grounding, integrate, database, accommodate, manage_plan, refill,
store and select.

Given the kind of information state illustrated described above, we can provide update rules

which accommodate questions. A formalization of the accommodate_question move is
given in (6.4). When interpreting the latest utterance by the other participant, the system
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makes the assumption that it was a reply move with content A. This assumption requires
accommodating some question () such that A is a relevant answer to (). The check operator
“answer-to( A, @ )” is true if A is a relevant answer to @) given the current information state,
according to some (possibly domain-dependent) definition of question-answer relevance.

U-RULE: accommodateQuestion(Q), A)
valRec(SHARED.LM, answer(usr,A)),
(6.4) PRE: inRec(PRIVATE.PLAN, raise(Q))
) answer-to( A, Q)
EFE- { delRec(PRIVATE.PLAN, raise(Q))
pushRec(SHARED.QUD, Q)

6.1.3 Resources

There are three types of resource in GoDiS: lexicon, database and domain knowledge. The
database and domain resources are language independent, while the lexicon is noth domain
and language dependent. GoDiS has prototype resource packages for two domains (travel
agency and autoroute) and two languages (swedish and english).

6.1.4 Parsing, generation, lexicon and semantics

The interpretation module in GoDiS takes a string of text, turns it into a sequence of
words (a “sentence”) and produces a set of moves. The “grammar” consists of pairings
between lists whose elements are words or semantically constrained variables. Seman-
tic constraints are implemented by a set of semantic categories (location, month, task,
means_of transport etc.) and synonomy sets. A synonomy set is a set of words which all
are regarded as having the same meaning.

To put it simply, the parser tries to divide the sentence into a sequence of phrases (found
in the lexicon), covering as many words as possible.

The GoDiS generation module takes a sequence (list) of moves and outputs a string. The
generation grammar/lexicon is a list of pairs of move templates and strings. In some cases,
the move template contains some variable which is assumed to be instantiated when the
lexicon is consulted. The lexicon will then find a string corresponding to the instantiated
variable and insert it into the output string.
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6.2 TrindiKit Issues

GoDiS 1.0 uses the official TrindiKit version 1.1. Since GoDiS and TrindiKit were developed
in parallell by the same people, they have been adapted for each other and thus there has
not been any significant problems in using the TrindiKit. As an example, the GoDiS
update rules could be simplified significantly by the introduction of association sets in
TrindiKit. In a previous version, the latest moves were repesented as a set of records with
one field describing the move and one containing a flag indicating whether the move had
been integrated or not. To change the value of the flag, complicated operations had to
be performed (finding the correct record in the set of records, setting the value of the
integration flag, and replacing the old record with the new one). In the current version
this is solved by representing the latest moves as an association set where each move is
associated with a boolean value. To change the value, the set_assoc/2 operation is used
to set the polarity of the boolean associated with any specified move.

The update module algorithm uses the TrindiKit DME-ADL interpreter (introduced in
TrindiKit 1.0) to impose a sufficient amount of order on the triggering of rules to avoid
looping. Also, the general operation forall(Cond, Op) introduced in TrindiKit 1.1 is
used extensively in GoDiS to simplify update rules.

6.3 System Evaluation

An evaluation of GoDiS, January 2000, in line with the Trindi tick-list developed in deliv-
erable D1.3 reveals the following (Qn 1 has been split into two subquestions):

Qn 1 Is utterance interpretation sensitive to dialogue context?

—Yes. Interpretation of an utterance is performed in the context of previous utterances. As
an example, the easiest way for the user to specify a city of departure or a destination is by
using the prepositions “from” and “to” — this can be done anywhere in the dialogue. A user
answer simply stating “Paris” is then ambiguous between a departure and a destination
reading, but the system shows dialogue context sensitivity by keeping track of what is
being asked of the user.

Qn 2 Is utterance interpretation sensitive to deictic context?

—No. The system has no knowledge of the current date, and temporal deixis has therefore
not been implemented.
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Qn 3 Can the system deal with answers to questions that give more information than was
requested?

—Yes. The user can perfectly well say something like:

(6.5) U: I would like to go from London to Paris in April by plane

GoDiS will recognise the subphrases “from London”, “to Paris”, “in April”, and “plane”,
and extract the appropriate information, just as if the same answers were given one by one
to specific questions posed by the system.

Qn 4 Can the system deal with answers to questions that give less information than was
actually requested?

—Yes. The information actually provided by the user will be integrated by the system,
just as in the case of the user supplying more information than was requested. GoDiS will
then repeat the question that was not answered.

Qn 5 Can the system deal with answers to questions that give less information than was
actually requested?

—No. Different levels of specificity are not implemented in the ontology.

Qn 6 Can the system deal with ambiguous designators?

—No. That is, it is not possible to make use of ambiguous designators.

Qn 7 Can the system deal with negatively specified information

—No. Negation is not, yet, part of GoDiS. If a user replies “Not, by boat” to the question
“How do you want to travel?”, GoDiS recognises the subphrase “boat”, and assumes that
the journey in question is to be undertaken by boat.

Qn 8 Can the system deal with no answer to a question at all?
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—7 GoDiS waits until the user has typed an answer and hit the enter key. If enter is
pressed without anything having been typed, GoDiS repeats its question.

Qn 9 Can the system deal with noisy input?

—Yes. If a nonsense phrase is given by the user, GoDiS replies: “I didn’t understand that.
Please rephrase”. It can also be noted in this context that GoDiS makes a distinction
between understanding and relevance. If the user types something that GoDiS is able to
understand but does not consider relevant, GoDiS instead asks: “What do you mean by
that?”.

Qn 10 Can the system deal with ‘help’ sub-dialogues initiated by the user?

—No.

Qn 11 Can the system deal with ‘non-help’ sub-dialogues initiated by the user?

—Yes, to a very limited extent. At any time during the dialogue the user can ask if a visa
is needed, as in for example:

(6.6) S: What city do you want to go to?
(6.7) U: Do I need a visa for the USA?

(6.8) S: You don’t need any visa there

Qn 12 Does the system only ask appropriate follow-up questions?

—7Yes, but it should be added that the various scenarios permitted by the system all involve
the same kind and amount of information; for example, journeys by plane, train, and boat
all involve a choice of class.

Qn 13 Can the system deal with inconsistent information?
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—Yes. That is, the system detects inconsistencies, but is not able to do any belief revision
based on contradictory information. An example is the following where a user tries to
re-answer a question which has already been given a valid answer:

6.9) U: I'd like to go from Paris

(
(6.10)  S: How do you want to travel?
(6.11)  U: From London

(

6.12)  S: What do you mean by that?

Qn 14 Can the system deal with belief revision?
—No, the system does not provide such facilities.
Qn 15 Can the system deal with barge-in input?
—No, the system does not provide such facilities.

Qn 16 Is it possible to get a system tutorial concerning the kind of information the system
can provide and what the constraints on input are?

—No, not in the current version.
Qn 17 Does the system check its understanding of the user’s utterances?

—No, since GoDiS currently uses text input this is not needed. It will however be necessary
when using speech.
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