
TrindiKit 2.0 Manual

- revised version -

Staffan Larsson Alexander Berman Johan Bos

Leif Grönqvist Peter Ljunglöf David Traum

Distribution: PUBLIC

RINDI

Task Oriented Instructional Dialogue
le4-8314

Deliverable D5.3 – Manual

October 30, 2000

le4-8314 trindi

Task Oriented Instructional Dialogue

Gothenburg University
Department of Linguistics

University of Edinburgh
Centre for Cognitive Science and Language Technology Group, Human Communica-
tion Research Centre

Universität des Saarlandes
Department of Computational Linguistics

SRI Cambridge

Xerox Research Centre Europe

For copies of reports, updates on project activities and other trindi-related information,
contact:

The trindi Project Administrator
Department of Linguistics
Göteborg University
Box 200
S-405 30 Gothenburg, Sweden
trindi@ling.gu.se

Copies of reports and other material can also be accessed from the project’s homepage,
http://www.ling.gu.se/research/projects/trindi.

c©1999, The Individual Authors

No part of this document may be reproduced or transmitted in any form, or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission from the copyright owner.

3

4

Responsibility for authorship is divided as follows. Staffan Larsson was the
overall editor and wrote chapters 1, 2, 3 and 4 and appendix A, except section
2.7.3 which was written by Alexander Bermann. Appendix B was written by
Staffan Larsson and Peter Ljunglöf. Appendix C was written by Alexander
Berman and Staffan Larsson. Appendix D was written by Leif Grönqvist.
Johan Bos and David Traum provided comments and suggestions.

The TrindiKit architecture was a collaborative result of the TRINDI Consor-
tium. TrindiKit 2.0 was implemented by Staffan Larsson, Alexander Berman,
Peter Ljunglöf, Johan Bos and Leif Grönqvist, with suggestions and advice from
Robin Cooper, Torbjörn Lager, Ian Lewin and David Traum.

5

Contents

1 Introduction 12

1.1 The TrindiKit architecture . 13

1.2 System requirements . 16

2 TrindiKit Concepts 17

2.1 Total Information State . 17

2.2 Information State . 17

2.3 Dialogue Moves . 18

2.4 Update rules . 18

2.5 Modules . 18

2.5.1 Update algorithms . 19

2.5.2 Module interface variables . 19

2.6 Dialogue Move Engine . 19

2.7 Controller . 20

2.7.1 Serial control . 20

2.7.2 Asynchronous control . 20

6

2.7.3 TrindiKit, AE, and OAA . 21

2.8 Resources and resource interfaces . 23

2.9 Flags . 23

2.9.1 Display flags . 24

2.9.2 Debugging flags . 24

2.9.3 Serial/concurrent flag . 25

3 TrindiKit functionality 26

3.1 Provided datatypes . 27

3.1.1 Datatypes . 27

3.1.2 General conditions and operations 28

3.2 Defining new datatypes . 29

3.2.1 Datatype definition syntax . 29

3.2.2 Defining conditions . 30

3.2.3 Defining operations . 30

3.2.4 A sample datatype definition . 31

3.2.5 Condition and operation macros . 31

3.2.6 Datatype printers . 32

3.3 Methods for accessing the TIS . 33

3.3.1 Basic check syntax . 33

3.3.2 Checks and First Order Logic . 34

3.3.3 Shorthand syntax for identity and unification checks 36

7

3.3.4 Query syntax . 37

3.3.5 Basic update syntax . 37

3.4 Rule definition format . 39

3.4.1 Backtracking and variable binding in rules 40

3.4.2 Rules are protected from asynchronous intervention 40

3.4.3 Preconditions and First Order Logic 41

3.5 The DME-ADL language . 41

3.5.1 Backtracking behaviour for checks, queries and updates in module
algorithms . 42

3.5.2 Rule calls in module algorithms . 43

3.6 Provided modules . 43

3.7 The Control-ADL language . 44

3.7.1 Serial control algorithm syntax . 44

3.7.2 Concurrent control algorithm syntax 45

3.7.3 Settings for concurrent systems . 48

3.8 Resources . 49

3.8.1 Resource objects and Resource Interface Variables 49

3.8.2 Resource definition syntax . 49

3.8.3 Running resources in module and standalone mode 50

3.9 The generic Web-demo . 52

3.10 Debugging facilities . 52

3.10.1 Serial mode . 52

8

3.10.2 Asynchronous mode . 53

4 How to implement a dialogue system using the TrindiKit 56

4.1 Specifying Total Information State . 56

4.1.1 Specifying information state type 57

4.1.2 Specifying module interface variables 57

4.1.3 Specifying resource interface variables 58

4.1.4 Defining macros . 58

4.2 Building modules . 58

4.2.1 Module name declaration . 59

4.2.2 Importing TIS access . 59

4.2.3 Load rules . 59

4.2.4 Load the DME-ADL interpreter . 59

4.2.5 The update algorithm . 60

4.2.6 Writing Prolog algorithms . 60

4.2.7 Module call predicate . 60

4.2.8 Writing update rules . 61

4.2.9 Access restrictions for non-DME modules 61

4.3 Building a controller . 61

4.3.1 Importing operators . 62

4.3.2 The control algorithm . 62

4.4 Building resources . 62

9

4.5 Building resource interfaces . 62

4.6 Adding user flags . 63

4.7 The system configuration file . 63

4.7.1 Selecting datatypes and macros . 64

4.7.2 Selecting modules . 64

4.7.3 Specifying the DME . 64

4.7.4 Loading and selecting resources . 65

4.7.5 Specifying initial TIS . 66

4.8 File search paths . 66

4.9 Additional concurrency settings . 67

4.9.1 Agent protocol . 67

4.9.2 Settings for agent windows . 67

4.9.3 Display type . 67

4.9.4 Resource type . 67

4.9.5 Agent language . 68

4.9.6 Showing agent communcations . 68

4.10 The start file . 68

4.10.1 Loading search paths and starter 68

4.10.2 Initialization . 69

4.10.3 Setting flags . 69

4.10.4 The run predicate . 69

4.11 Running your system . 70

10

4.12 Stopping your system . 70

A Datatype definitions 72

B Modules included in the TrindiKit package 78

B.1 Simple text input module . 78

B.2 Simple text output module . 78

B.3 A simple interpretation module . 79

B.4 A simple generation module . 80

B.5 The ”empty” interpretation and generation modules 81

C TrindiKit files 82

D The Web-demo extension 85

D.1 System requirements . 85

D.2 Installation . 85

D.2.1 Technical details . 86

D.3 Using the demo . 87

D.3.1 Stop the demo! . 87

11

Chapter 1

Introduction

This is a manual for the TrindiKit, a toolkit for building and experimenting with dialogue

move engines and information states, that has been developed in the TRINDI project. We
use the term information state to mean, roughly, the information stored internally by an
agent, in this case a dialogue system. A dialogue move engine, or DME, updates the
information state on the basis of observed dialogue moves and selects appropriate moves
to be performed.

Apart from proposing a general system architecture, the TrindiKit also specifies formats
for defining information states, update rules, dialogue moves, and associated algorithms. It
further provides a set of tools for experimenting with different formalizations of implemen-
tations of information states, rules, and algorithms. As from version 2.0, TrindiKit sup-
ports asynchronous (concurrent) control 1. To build a dialogue move engine, one needs to
provide definitions of update rules, moves and algorithms, as well as the internal structure
of the information state. One may also add inference engines, planners, plan recognizers,
dialogue grammars, dialogue game automata etc.. More information on information states
and related concepts is available in Traum et al. (1999).

The DME forms the core of a complete dialogue system. Simple interpretation, generation,
input and output modules are also provided by the TrindiKit, to simulate a end-to-end
dialogue system. Examples of theories and systems implemented using the TrindiKit
can be found in Traum et al. (1999) and Bos et al. (1999).

1In this document, we will use the terms “asynchronous” and “concurrent” interchangeably, to designate
systems where several algorithms can be executed independently as separate processes. We use the terms
“serial” or “synchronous” to designate systems which are not asynchronous. Note that we regard this
distinction as independent of how data flows in a system; for example, so-called pipeline systems can be
implemented either asynchronously or serially.

12

Note that TRINDI deliverable D5.3 is the actual TrindiKit implementation2, which
is available from the TRINDI web page www.ling.gu.se/research/projects/trindi/.
This manual is a supplementary documentation to the actual deliverable. It should be
noted that the TrindiKit, including the manual, is under development. Up-to-date ver-
sions of the TrindiKit and manual are available from the TRINDI web page.

1.1 The TrindiKit architecture

This toolkit implements an architecture based on the notion of an information state. A sys-
tem consists of a number of modules (including speech recognizer and synthesizer, natural
language interpretation and generation, and a Dialogue Move Engine) which can read from
and write to the information state using information state update rules. External resources
can be hooked up to the information state. A controller wires the modules together.

In this section, we give an overview of the TrindiKit architecture, mention some central
concepts, and discuss optional vs. obligatory components as well as toolkit provided vs.
user provided functionality.

The general architecture we are assuming is shown in Figure 1.1.

The standard components of the architecture are the

• the Total Information State (TIS), consisting of

– the Information State (IS) variable

– module interface variables

– resource interface variables

• modules, operating according to module algorithms

• the Dialogue Move Engine (DME), consisting of one or more modules; the DME is
responsible for updating the IS based on observed moves, and selecting moves to be
performed by the system.

• a controller, wiring together the other modules, either in sequence or through some
asynchronous mechanism.

• resources, such as databases etc.

2The current TrindiKit implementation is written in SICStus Prolog.

13

in
pu

t

Control

Input Output
(update)

(update)(update)

ou
tp

ut

Information State Interface

Resource Interface

Optional component

Obligatory component

IS : (Information State Type)

la
te

st
_m

ov
es

ne
xt

_m
ov

es

la
te

st
_s

pe
ak

er

database

plan library
...

pr
og

ra
m

_s
ta

te

T
IS

dialogue grammar

GenerationInterpretation
Dialogue Move Engine (DME)

Figure 1.1: Sketch of a sample setup of a system using the TrindiKit architecture

14

The TIS is accessed by modules through conditions and operations. The types of the
various components of the TIS determine which conditions and operations are available.

Some of the components are obligatory (i.e. all systems built using the TrindiKit must
have them), and others are optional. To build a system, one must minimally supply

• An Information State type declaration.

• At least one module, consisting of TIS update rules and a module algorithm

• A controller, operating according to a control algorithm

Any useful system is also likely to need

• Additional modules, e.g. for getting input from the user, interpreting this input,
generating system utterances, and providing output for the user.

• Interface variables for these modules, which are designated parts of the TIS where
the modules are allowed to read and write according to their associated TIS access
restrictions.

• Resources such as databases, plan libraries etc. The resources are accessible from
the modules through the resource interfaces, which define applicable conditions and
(optionally) operations on the resource.

One possible setup of non-DME modules, indicated by dashed lines in figure 1.1, is the
following:

• Input: Receives input utterances from the user and stores it in the input interface
variable.

• Interpretation: Takes utterances (stored in input) and gives interpretations in terms
of dialogue moves (including semantic content). The interpretation is stored in the
interface variable latest moves.

• Generation: Generates output moves based on the contents of next moves and passes
these on to the output interface variable.

• Output: Produces system utterances based on the contents of the output variable

Corresponding to these modules, one could have the following interface variables:

15

• input: the input utterance(s)

• latest moves: list of moves currently under consideration

• latest speaker: the speaker of the latest move

• next moves: list of moves for system’s next turn

• output: the system’s output utterance(s)

• program state: current state of the DME (used for control)

A possible setup of the DME is to divide it into two modules, one for updating the TIS
based on the latest move and one for selecting the next move:

• Update: Applies update rules to the DIS according to the update module algorithm
(also specified in SIS)

• Selection: Selects dialogue move(s) using the selection rules and the move selection
algorithm. The resulting moves are stored in next moves.

Note that the illustrated module setup is just an example. The TrindiKit provides
methods for defining any number of both DME-modules and non-DME modules, with
associated interface variables.

1.2 System requirements

TrindiKit 2.0 requires SICStus Prolog3 version 3.84. Serial systems can run on any
platform where SICStus Prolog is installed. Asynchronous systems run on UNIX and
Linux platforms only, and require the AE package supplied with the TrindiKit, or OAA
version 2.12 or later (available from www.ai.sri.com/~oaa/).

The latest distribution of TrindiKit can be downloaded from the TrindiKit homepage,
www.ling.gu.se/research/projects/trindi/trindikit/.

3http://www.sics.se/sicstus
4Version 3.7 may also work; older versions are not recommended.

16

Chapter 2

TrindiKit Concepts

In this chapter, we review the central concepts in the TrindiKit architecture and relate
them to each other.

2.1 Total Information State

The Total Information State (TIS) consists of three components: the information state
variable (IS), the module interface variables (MIVs), and the resource interface variables
(RIVs). These variables go under the collective name TIS variables.

2.2 Information State

The information state (“the information state proper”) has the following basic character-
istics:

• It is an object of a certain type

• The type of the IS determines the conditions and operations which can be applied
to it

• It can be accessed (checked, queried and updated) by modules

17

2.3 Dialogue Moves

Dialogue moves are moves (or acts, or actions) associated with utterances. A single ut-
terance may be associated with several moves, simultaneous or ordered in time. In the
TRINDI approach, dialogue moves are also related to information state updates.

2.4 Update rules

Update rules are rules for updating the information state (or more generally, the TIS).
They consist of a rule name, a precondition list, and an effect list. The preconditions are
conditions on the TIS, and the effects are operations on the TIS. If the preconditions of a
rule are true for the TIS, then the effects of that rule can be applied to the TIS. Rule also
have a class. Rules may be ordered in class hierarchies.

2.5 Modules

Modules1 have the following basic characteristics:

• they execute update algorithms

• they can read and/or write to the total information state

• they are called by the controller, and can be run serially or asynchronously with other
modules

• they can not be called from update rules

Every module specifies one or more algorithms. The default is that each module specifies
a single algorithm which has the same name as the module itself.

1In this document, the term “module” refers to TrindiKit modules rather than e.g. Prolog modules,
which are referred to (unsurprisingly) as “Prolog modules”.

18

2.5.1 Update algorithms

Update algorithms are algorithms for updating the TIS. They include conditions on the
TIS and calls to apply (classes of) update rules. Update algorithms are executed by DME
modules, or other modules implemented using the TRINIDKIT facilities for specifying
update rules and algorithms.

A module contains one or more algorithms which it executes according to instructions from
the controller. The algorithm language contains the basic imperative constructions, and
allows calls to update rules and update rule classes as well as checks, queries and updates
to the TIS.

TrindiKit provides language for writing module algorithms, called DME-ADL (Dialogue
Move Engine Algorithm Definition Language2). It is also possible to implement modules
directly in Prolog3,

Non-DME modules have limited access to the TIS; each such module must explicitly de-
clare which parts of the TIS it is allowed to read and write. Non-DME modules can be
implemented in various ways, either using update rules and an algorithm or in other way,
as the user sees fit.

2.5.2 Module interface variables

Typically, non-DME modules can only access a certain number of designated TIS variables,
so-called module interface variables. The purpose of these variables is to enable non-DME
modules to interact with each other and with the DME modules. It is possible to allow
non-DME modules to access the IS, but this will significantly reduce the ability to use the
module in systems using other kinds of IS types.

2.6 Dialogue Move Engine

The term “Dialogue Move Engine” is used to designate the module or collection of modules
which updates the information state based on observed dialogue moves, and for selecting
moves to be performed. Abstractly, the DME can be seen as implementing a function

2While especially useful for writing DMEmodule algorithms, this language can be used for implementing
both DME and non-DME modules.

3Actually, modules can be implemented in any language which supports OAA, provided the TrindiKit
is run using OAA.

19

from a collection of input dialogue moves and an ingoing information state to a collection
of output dialogue moves and an outgoing state (see also Ljunglöf (2000). According to
the definition of a DME, many parts of a dialogue system are not part of the DME. For
example, modules which read or listen to input from the user, interpret utterances from
the user in terms of dialogue moves, generate utterances from dialogue move specifications,
or generate written or spoken output are not part of the DME.

The DME is not necessarily a separate agent, but often it is practical to implement it as
one.

2.7 Controller

The controller wires the modules together using a control algorithm. It can also access the
whole TIS. A TrindiKit system can be run either serially or asynchronously.

2.7.1 Serial control

In serial mode, the whole system is run as a single process and only one module at a time
can be active. In this case, the control algorithm decides when to call a module algorithm,
possibly based on the TIS. Only when the algorithm is finished executing can the controller
decide what module to call next.

2.7.2 Asynchronous control

Asynchronous systems, as opposed to serial systems, allow different parts to run in parallel
while still being interconnected. This is achieved by running (some of) the different parts
as separate processes, or “agents”. We will use ”TrindiKit agent” to mean “a part of the
TrindiKit running as an agent”.

In asynchronous (concurrent) mode, the control algorithm specifies several agents 4 , each
of which may contain one or more modules. Within each agent, the modules can be
called according to a control algorithm similar to those used by the controller in serial
mode. The control algorithm also includes triggers for each agent, which specifies under

4In the AE/OAA jargon (which we will adopt henceforth), an agent is a process interacting with other
agents; a collection of interacting agents form an agent community. See also section 2.7.3.

20

what conditions an algorithm defined in one of the modules in the agent should run (as
mentioned above, a module may specify more than one algorithm).

When run asynchronously, TrindiKit needs to run several components as agents. These
include the TIS and the print agent, which prints rules and information state according to
flag settings. Also, some components are used only when running asynchronously. These
are:

• A spy agent which prints out some of the important events taking place: when a
module algorithm is started and is complete, when and how the information state is
updated etc.

• A console agent, where the user can inspect and interfere with the system compo-
nents at runtime.

The behaviour of these agents can be customised by settings in the concurrent.pl file
(see 3.7.3).

2.7.3 TrindiKit, AE, and OAA

When running asynchronously, TrindiKit utilises an agent communication protocol,
which can be either the TrindiKit Agent Environment (AE) supplied with TrindiKit,
or SRI’s Open Agent Architecture (OAA). It is also possible to combine both environments
in one system, by running TrindiKit on top of AE and having one or several modules
simultaneously be OAA agents.

SRI’s Open Agent Architecture

OAA (Open Agent Architecture) Martin et al. (1999), developed by SRI international, is “a
framework for integrating a community of heterogeneous software agents in a distributed
environment.” 5 An agent is defined as

... any software process that meets the conventions of the OAA society. An
agent satisfies this requirement by registering the services it can provide in
an acceptable form, by being able to speak the Interagent Communication

5This quote is from the OAA web site, http://www.ai.sri.com/∼oaa/.

21

Language (ICL), and by sharing functionality common to all OAA agents, such
as the ability to install triggers, manage data in certain ways, etc. 6

The services provided by an agent are expressed as a list of so called solvables (or “capa-
bilities”). The solvable consists of three parts: the goal template, a list of permissions and
a list of parameters. The goal template, which is the only part of solvable that is used in
TrindiKit, describes (in ICL, which can be seen as a subset of Prolog) what kind of goal
that can be solved. E.g., if an agent wants to share its ability to append two lists it declares
a solvable with the goal template append(, ,). In OAA, solvables may be registered,
redeclared and removed at any time, even agents may register and disconnect from the
OAA community at any time. However in TrindiKit, solvables are declared only when
the system is started and are never withdrawn; all TrindiKit agents are started only
once and disconnected only once (TrindiKit agents may not ”enter the game” during
execution).

Agents are coordinated by the so called facilitator. When an agent issues an oaa Solve

command, the facilitator will try to find an agent which can solve the goal and will then
redirect the query to that agent. Additionally, requesting agents may choose to explicitly
specify to which agent the goal should be sent. In TrindiKit, this kind of explicit ad-
dressing is always used (execution of goals are never routed through the facilitator). The
primary reason is that this is usually more efficient. Explicit addressing is possible since
TrindiKit is designed in such a way that the requesting agent always knows which agent
to consult in a given situation.

TrindiKit Agent Environment

AE (Agent Environment) can be seen as a stripped-down version of OAA. It was developed
primarily for the TrindiKit.

AE has no facilitator. Instead, a so called AE starter is responsible for launching and
coordinating a community of agents. A specific starter has to be built and run separately
for each set of agents (as opposed to OAA, where the facilitator can coordinate any set of
agents). In OAA it’s possible to route goals through the facilitator, whereas in AE explicit
addressing is compulsory.

In OAA agents can be distributed over a network of machines, whereas in AE all agents
have to run on the same machine.

AE agents declare a set of services (using Prolog module-like notation, e.g. append/3).

6This quote is from the OAA website, http://www.ai.sri.com/∼oaa/.

22

Services can be registered at any time but can not be withdrawn.

2.8 Resources and resource interfaces

Resources have the following basic characteristics:

• They are knowledge sources which can be dynamic or static

• They are called from update rules vi conditions and operations

• They are attached to the TIS via resource interfaces, consisting of definitions of
conditions and operations on the resource

• They cannot read and write to the information state

The values of these variables are pointers to resources.

A note on the difference between modules and resources: Resources are declarative knowl-
edge sources, external to the information state, which are used in update rules and al-
gorithms. Modules, on the other hand, are agents which interact with the information
state and are called upon by the controller. Of course, there is a procedural element to
all kinds of information search, which means among other things that one must be careful
not to engage in extensive time-consuming searches. Conversely, modules can be defined
declaratively and thus have a declarative element. There is no sharp distinction dictat-
ing the choice between resource or module; for example, it is possible to have the parser
be a resource. However, it is important to consider the consequences of choosing to see
something as a resource or module.

2.9 Flags

The flags are static while the system is running. They can be read by all modules and
are set in the start file. There is a set of generic TrindiKit flags, but the user can add
additional flags. All flags have a default value.

23

2.9.1 Display flags

• format; values: text,latex,html
Output format for utterances, information states and rules.

• show state; values: all,is,no
Whether and how to display the information state.

– all: display the whole TIS

– is: display only the IS variable

– no: do not display the information state

• show rules; values: yes,no
Whether to display update rules.

2.9.2 Debugging flags

These flags are used to turn debugging facilities on and off. These facilites are further
described in section 3.10.

• access restrictions; values: on, off

Enforce restrictions on module access to TIS, as defined in modules (see 4.2.9). If an
access restriction is violated, an error message will be displayed.

• trace rules; values: off,on
Trace the rules applied to the TIS.

• console; values: yes,no
Run the console agent.

• trace; values: yes,no
Run step-wise (conrurrent mode only).

• spy; values: yes,no Activate spy agent.

• typecheck; values: yes,no
If set to yes, enforce typechecking7

7Not fully implemented in 2.0.

24

2.9.3 Serial/concurrent flag

This flags is set by the system according to the control algorithm. It should not be changed
by the user.

• architecture; values: serial,concurrent

25

Chapter 3

TrindiKit functionality

Apart from the general architecture defined in 1.1 above, the TrindiKit provides

• definitions of datatypes, for use in TIS variable definitions

• a format for defining new datatypes

• simple default modules for input, interpretation, generation and output

• methods (checks, queries and updates) for accessing the TIS

• a language for specifying TIS update rules

• an update algorithm language for modules

• a control algorithm language for the controller, including concurrent control

• use of external resources

• a generic web demo generator

• methods for interfacing TrindiKit modules with OAA

• debugging facilities, including methods for visually inspecting the TIS

In this section we will give an overview of the structure of the TrindiKit implementation
and any system implemented within the TrindiKit architecture.

26

3.1 Provided datatypes

The TrindiKit provides a number of datatypes definitions, to which the user may add
his/her own. We currently make a distinction between complex and simple datatypes,
where the definitions of the former include conditions and operations on objects of the
datatype but the latter does not. Often, the type definition for complex types is inductive
while those for simple types are non-inductive.

3.1.1 Datatypes

Datatypes provide a natural way of formalising information states. The TIS is specified
using abstract data types, each permitting a specific set of queries to inspect the type and
operations to change it.

Datatypes1 are used extensively in the TRINDI DME architecture, most importantly for
modeling the TIS.

A datatype definition includes the following:

1. Name

2. Operations, which modify objects

3. Conditions, which are true or false of objects

There should also be a definition of what it means to be an object of the type. This
definition can be used by a typechecker.2

The following datatypes definitions are included in TrindiKit 2.03 (for definitions see
Appendix A):

• assocset

• atom

• bool

1An alternative term is “datastructure”.
2Typechecking is not yet fully implemented.
3Some definitions may be incomplete in the current release.

27

• counter

• integer

• move

• participant

• program state

• queue

• real

• record

• set

• stack

• stackset

• string

To make use of a type definition, a type declaration is needed which declares a variable to
be of a certain type.

3.1.2 General conditions and operations

Apart from the type-specific conditions and operations, there are some conditions and
operations which apply to all types.

type: (any type T)

desc: conditions and operation which apply to objects of all types

cond:







































unify(Obj) : the object unifies with Obj

equal(Obj) : the object is identical to Obj

val(Obj) : the object unifies with Obj (identical to unify)
is set : the object is set (it is not nil)
is unset : the object is not set (it is nil)
empty object(PseudoType, V ar) : V ar is instantiated with an empty object of type

PseudoType4

op:















set(Obj) : the variable is set to Obj

unset : the variable is unset (set to nil)
clear : the value of the variable is set to be an empty

object of type T

28

3.2 Defining new datatypes

The library of datatypes in TrindiKit 2.0 is still limited, and when building a system it
may be necessary to define new datatypes, which may then be included in future releases
of TrindiKit and reused in other systems. This section explains how this is done.

3.2.1 Datatype definition syntax

A datatype definition may contain a specification of what the empty object of that type
is. If there is no such specification, the empty object is assumed to be nil.

Definitions of new datatypes can be implemented in any file or number of files. To use a
datatype, include the filename in the list specified by the selected datatypes/1 predicate
in the system configuration file (see Section 4.7). The TrindiKit will load the definitions
into the datatypes Prolog module.

The “functor” or “operator” of a datatype condition or operation may be overloaded, i.e.
several datatypes may have (syntactically) identical functors. For example, the functor
add is defined for both sets and stacksets.

To define an complex datatype T , one needs to declare

• That T is a type, using is type/1. This declaration can be conditional on the type
of the elements in the complex type, e.g. is type(set(Type)) :- is type(Type).

• What it means to be of type T , i.e. the requirements on objects of type T , using
of type/1. This definition may be inductive, i.e. the type of a complex type may
depend on the types of its embedded objects (see (1) for an example).

• What an empty object of the type is, using empty object/1

• Conditions and operations on objects of type T , using condition/3 and operation/4

Conditions and operations are optional, i.e. it is possible to define datatypes which have
no conditions or operations.

29

3.2.2 Defining conditions

Conditions are defined as applying to an object of a certain type. Conditions may also
have arguments. When calling the conditions from a rule or algorithm, the object can be
indicated either by a TIS variable (which is evaluated to an object) or an explicit object.
Conditions may also have arguments.

The format for condition definitions is shown in (1).

(1) condition(Type, Cond(Arg1, . . . , Argn), Obj):-Body

Obj is an object of type Type. Cond is the condition itself, e.g. fst, and Argx is an
argument. The optional Body is any Prolog code needed to define the condition.

3.2.3 Defining operations

As with conditions, operations apply to an object of a certain type and they may have
arguments. The difference is that an operation also specifies how the object changes as a
result of successfully applying the operation. This is done by specifying an output object.
This means that operations are defined relationally, i.e. as a relation between an input
object, an operation (possibly taking arguments) and an output object.

While the operation definition is relational, and thus non-destructive, the successful ap-
plication of an operation is destructive, i.e. it changes the information state. The de-
structivity consists in taking the input object and the operation, consulting the operation
definition, receiving an output object, and replacing the input object with the output
object.

The format for operation definitions is shown in (2).

(2) operation(Type, Oper(Arg1, . . . , Argn), ObjIn,

ObjOut):- Body

ObjIn and ObjOut are objects of type Type. Oper is the condition itself, e.g. push, and
Argx is an argument. The optional Body is any Prolog code needed to define the operation.

30

3.2.4 A sample datatype definition

As an example, the TrindiKit definition of a stack is shown in (3). Note that the
predicates used to define a datatype must be declared to be multifile.

(3) :- multifile is_type/1, of_type/2, empty_object/2, operation/4, condition/3.

is_type(stack(Type)) :- is_type(Type).

of_type(stack([]), stack(_)).

of_type(stack([Object|Stack]), stack(Type)) :-

of_type(Object, Type),

of_type(stack(Stack), stack(Type)).

empty_object(stack(_), stack([])).

condition(stack(_), empty, stack([])).

condition(stack(_), fst(Fst), stack([Fst|_])).

operation(stack(_), push(Fst), stack(Stack), stack([Fst|Stack])).

operation(stack(_), pop, stack([_|Stack]), stack(Stack)).

% extend_top(ArgStack): extend ObjStack by attaching ArgStack to the top

% of ObjStack

% ObjStack := ObjStack0+ArgStack

operation(stack(_), extend_top(ArgStack), StackIn, StackOut):-

ArgStack = stack(ArgList),

StackIn = stack(ListIn),

append(ArgList, ListIn, ListOut),

StackOut = stack(ListOut).

3.2.5 Condition and operation macros

In addition to the conditions and operations provided by the datatype definitions, it is also
possible to write macros. Macros define sequences of conditions (for condition macros)
or operations (for operation macros). Like conditions and operations (but unlike rules),
macros can take arguments.

Macros are defined by associating a macro with a list of TIS conditions or a list of TIS
operations. To specify a condition macro, macro cond/2 is used; for operation macros use
macro op/2.

• macro cond(Check, CheckList)

CheckList is a list of check calls; Check is true if all the checks in CheckList are

31

true.

• macro op(Update, UpdateList)

UpdateList is a list of updates and/or queries; to apply Update, apply all the updates
and queries in UpdateList.

A sample condition macro is shown in (4). It defines the condition macro not all integrated(Path)

which is true if there is some element in the association set at Path which is associated
with false.

(4) (in macro file:)

macro_cond(not_all_integrated(Path),

[in#rec(Path, M) and

(not assoc#rec(Path,M,true))

]).

A sample operation macro is shown in (5). It defines an operation pop to(Path1,Path2)

which pops the stack at Path1 and pushes the popped element to the stack at Path2.

(5) (in macro file:)

macro_op(pop_to(Path1, Path2),

[! fst#rec(Path1, X),

pop#rec(Path1),

push#rec(Path2,X)

]).

3.2.6 Datatype printers

Optionally, one may want to give formatting instructions for a datatype. These are used
for printing objects of that type in a given format. TrindiKit 2.0 includes facilities for
generating text, HTML, and LaTeX output5. For any file Dataype.pl defining a datatype,
TrindiKit will search for a file print textitdatatype.pl containing formatting instruc-
tions for that datatype.

If no printer is defined for a datatype in a certain format, the internal representation, e.g.
stack([a,b,c]) will be printed.

5Additional formats may be included in later releases.

32

3.3 Methods for accessing the TIS

The TIS can be accessed in three ways: checks, queries, and updates. Checking and
querying are ways to find out what the information state is like, and they can bind Prolog
variables. Updates change the information state, but can not bind Prolog variables. Check-
calls are true or false, whereas query and apply-calls fail or succeed.

When using DME-ADL or Control-ADL, TrindiKit will handle the TIS access. To build
a module which does not use ADL one needs to access the TIS using predicates exported
from the TIS handler. In Prolog, the TIS is read using the predicates check conditions/1,
whose argument is a list of checks on the TIS, or check condition/1 whose argument is
a single check. It is written to using apply operations/1, whose argument is a list of
queries and/or updates on the TIS, or apply operation/1.

3.3.1 Basic check syntax

Checks can use either condition or operation definitions. Checks on operations use the
result construction.

Checks using conditions

Given a condition Cond(Arg1, . . . , Argn) defined for objects of type Type, checks have the
following basic formats:

• (C1) Obj :: Cond(Arg1, . . . , Argn)

• (C2) Cond(Obj,Arg1, . . . , Argn)

At call time, i.e. when the check is being made, Obj can be either an object (a Prolog
term) or a TIS variable of type Type . In the latter case, TrindiKit will replace the TIS
variable with the object which is the value of the variable before consulting the condition
definition6.

6There is no explicit evaluation marker in TrindiKit 2.0, so any term which is identical to a TIS
variable will be evaluated as a TIS variable.

33

Checks using operations

It is possible to check the result of an operation. Given an operation Oper(Arg1, . . . , Argn)
defined for objects of type Type, checks can the following basic formats:

• (C3) result(InObj, OutObj) :: Oper(Arg1, . . . , Argn)

This syntax makes it possible to apply operations to objects which are not in the TIS
but are stored in a Prolog variable. Check-calls which use operations can backtrack if the
operation is nondeterministic7.

IS shortcut syntax

For checks on the IS there is a special shortcut syntax available.

• (C4) Cond(Arg1, . . . , Argn)

This is equivalent to is :: Cond(Arg1, . . . , Argn).

Using condition macros

Condition macros can be used in check calls. The syntax is the same as in the definition of
the macro, i.e. given a condition macro definition cond macro(CondMacro(Arg1, . . . , ArgN)),
the syntax for a check call to this condition is this:

• (CM) CondMacro(Obj,Arg1, . . . , Argn)

3.3.2 Checks and First Order Logic

Given check calls Check, Check1 and Check2, the following constructs are available as
check calls:

7As noted in 3.2.3, operations in TrindiKit are not “real” operations since they can be nondetermin-
istic, i.e. have several possible results

34

• Check1 and Check2

This is equivalent to Check1, Check2; and is right associative.

• Check1 or Check2

This is true if Check1 is true or Check2 is true. Check1 will be tested first, and only
if it is false will Check2 be tested.

• not Check

This is true if Check is false.

• forall(Check1, Check2)

This is equivalent to not (Cond1 and (not Cond2)).

In terms of First Order Logic (FOL), a precondition list can be seen as a conjunction of
propositions (which are true or false of the TIS), existensially quantified over all Prolog
variables occuring in the checks - except for variables occuring only within the scope of
negation or universal quantification.

An illustration is shown in (6) (C1(X), C2(X,Y) and C3(Y, Z) are check calls; X, Y and
Z are Prolog variables, and x, y and z are the corresponding FOL variables).

(6) (C1(X) and C2(X,Y) and C3(Y, Z)) ∼
∃x, y, z(C1(x) ∧ C2(x, y) ∧ C3(y, z))

Negation

When evaluating not Check, some Prolog variables appearing in Check may already have
become bound (when evaluating a previous check). Any previously bound variables ap-
pearing in Check will still be bound when evaluating not Check.

(7) (C1(X)and (not C2(X)) and C3(Y, Z)) ∼
∃x, y, z(C1(x)) ∧ ¬C2(x) ∧ C3(y, z)

Any previously unbound variables appearing in Check will not be bound by checking not

Check. They are interpreted as existensially quantified within the scope of the negation,
as illustrated in (8). Any occurrences of these variables occuring in following conditions
will be independent, i.e. they can be regarded as separate variables.

(8) (C1(X) and (not C2(X,Y)) and C3(Y, Z)] ∼
∃x, y, z(C1(x)) ∧ ¬∃y

′(C2(x, y′)) ∧ C3(y, z)

35

Universal quantification

The binding behaviour of Prolog variables inside the scope of forall is similar to that for
not, which is natural since forall is defined using not.

If X1, . . . , Xn are variables in Check1 which are not previously bound, and Y1, . . . , Ym are
variables in Check2 which are not previously bound and do not occur in Check1, the FOL
interpretation is as shown in (9).

(9) forall(Check1, Checkn) ∼
∀x1, . . . , xn(Cond1 → ∃y1, . . . , ym(Check2))

Any previously bound variables appearing in Check1 or Check2 will still be bound when
evaluating forall(Check1, Check2). Any previously unbound variables appearing in Check1

or Check2 will not be bound by checking forall(Check1, Check2). Any occurrences of
these variables occuring in following conditions will be independent, i.e. they can be re-
garded as separate variables.

3.3.3 Shorthand syntax for identity and unification checks

The general conditions unify and equal can be used to check if any two objects unify or
are identical, respectively. The basic syntax for unify and equal checks are

• Obj::unify(Arg)

• Obj::equal(Arg)

For cases where Obj is an explicit object Arg0 (rather than a TIS variable) the following
shorthand syntaxes are available:

• Arg0=Arg, equivalent to Arg0::unify(Arg)

• Arg0\=Arg, equivalent to (not Arg0::unify(Arg))

• Arg0==Arg, equivalent to Arg0::equal(Arg)

• Arg0\=Arg, equivalent to (not Arg0::equal(Arg))

36

For cases where Obj is a TIS variable V ar the following shorthand syntaxes are available:

• V ar$=Arg, equivalent to V ar::unify(Arg)

• V ar$==Arg, equivalent to V ar::equal(Arg)

3.3.4 Query syntax

Syntactically, queries are checks prepended by “!”. This operator transforms a condition
into a query. A query ! Check, where Check is a check call, will fail if Check is not true.
When a query fails, an error is reported. There is no backtracking over queries, i.e. if a
query fails it will not be tried again. This is the only difference between checks and queries.

This means that given a check call Check, a query call has the form

• (Q) !Check

3.3.5 Basic update syntax

Updates use operation definitions which have the general form Oper(Arg1, . . . , Argn).
Each update call modifies an object which is the value of a variable V ar in the TIS,
by evaulating V ar, passing it as the input object to the operation definition, together with
Arg1, . . . , Argn, and finally setting the value of V ar to be the output object.

Updates have the following basic formats:

• (O1) V ar :: Oper(Arg1, . . . , Argn)

• (O2) Oper(Obj,Arg1, . . . , Argn)

IS shortcut For updates to the IS there is a special shortcut syntax available.

• (O3) Oper(Arg1, . . . , Argn)

This is equivalent to is :: Oper(Arg1, . . . , Argn).

37

Using operation macros

Operation macros can be used in check calls. The syntax is the same as in the definition of
the macro, i.e. given a operation macro definition op macro(OpMacro(Arg1, . . . , ArgN)),
the syntax for an apply-call to this operation is this:

• (OM) OpMacro(Obj,Arg1, . . . , Argn)

The forall do construction

It is possible to apply an operation repeatedly using a single update call. This is done
using the syntax in (10), where Check is a check call and Update is an update call.

(10) forall do(Check, Update)

Let X1, . . . , Xn be all unbound Prolog variables of Check (i.e. those which are not bound
when the update is applied). Now, the interpretation of (10) goes as follows: “For all
bindings of X1, . . . , Xn which make Check true, apply Update.”

As an example, for all A such that A is in the set latest moves, (11) will add a pair
(A,false) to the set at shared^lu^moves.

(11) forall(in(latest_moves,A),add#rec(shared^lu^moves,(A,false)))

NOTE: Any unbound Prolog variables appearing in Check but not in Update must be
prefixed with a “ ”. Otherwise, Update will only be applied for the first solution of Check.

Prolog variables in the TIS

TrindiKit does not prohibit Prolog variables as part of the TIS, i.e. objects can contain
Prolog variables. This has the advantage that it is possible to have partially instantiated
objects (non-ground terms in Prolog terminology) which may become fully instantiated at
a later point.

However, this also makes it possible for checks and queries to temporarily change the
information state by unifying a partially instantiated objects in the TIS with a more specific

38

object. For example, if the value of the TIS variable latest_move is ask(happy(X)),
checking latest_move $= ask(happy(john))will have the effect that latest_move now
has the value ask(happy(john)).

If this check is part of the preconditions list of a rule, and a later precondition fails,
TrindiKit may backtrack which may result in X becoming unbound again. These bindings
“survive” within the scope of an update rule or a sequence of checks called using using
check_conditions. After the rule or sequence of checks is done, any Prolog variables in
the TIS will again be unbound.

3.4 Rule definition format

Update rules are rules for updating the TIS. They consist of a rule name, a precondition list,
and an effect list. Preconditions are check-calls, and effects can be queries or update-calls.

If the preconditions of a rule are true for the TIS, then the effects of that rule can be
applied to the TIS. Rule also have a class. Rules may be ordered in class hierarchies.

The rule definition format is shown in (12).

(12) rule(RuleName, PrecondList, EffectsList)

of class(RuleName, RuleClass)

Here, PrecondList is a list of check-calls8 (Section 3.3.1) and EffectsList is a list of
queries and apply-calls (Section 3.3.5). The RuleClass may be used in defining DME
algorithms (Section 3.5.

A sample update rule definition is shown in (13).

8TrindiKit 2.0 actually allows queries in rule preconditions. However, this is not encouraged since
it invalidates the interpretation of preconditions in terms of FOL. Future TrindiKit versions may not
support this.

39

(13) rule(integrateUserQuestion,

[val#rec(shared^lm^speaker, usr),

moveInRec(shared^lm^moves, ask(Q)),

valIntegrateFlag(ask(Q), false),

not in#rec(private^plan, respond(Q))

],

[push#rec(shared^qud, Q),

push#rec(private^agenda, respond(Q)),

setIntegrateFlag(ask(Q), true)

]

).

of_class(integrateUserQuestion, integrate)

3.4.1 Backtracking and variable binding in rules

When a rule is applied to the TIS, the preconditions will be evaluated in the order they
appear. Since conditions and operations may be nondeterministic, checks containing Prolog
variables may have several possible results. For example, checking member(X) on a set
set([a,b,c]) has X=a, X=b and X=c as possible results.

The first time this check is made, the first solution will be returned, i.e. X will become
bound to a. If a later precondition which uses X is not true for X=a, TrindiKit will use
Prolog’s backtracking facility to go back and get the second solution X=b. In this way, the
TrindiKit rule interpreter will try to find a way to bind the Prolog variables appearing
in the precondition list9 so that all the preconditions hold.

Once this has succeeded, the effects of the rule will be applied using the variable bindings
obtained when checking the preconditions. Continuing the example above, if all precon-
ditions succeed with X bound to a, this binding will “survive” to the effects and any
appearance of X in the effects will be equivalent to an appearance of a.

3.4.2 Rules are protected from asynchronous intervention

Rules can be seen as small algorithm parcels sent to the TIS handler, where they are
executed (applied). Since the TIS can only execute one rule at a time, rules are protected
from asynchronous interventions from other modules. This means that if the preconditions
of a rule are true when they are checked, they will still be true when the effects are applied.

9apart from those appearing in the scope of a negation or universal quantification, see 3.3.2 and 3.3.2
respectively

40

3.4.3 Preconditions and First Order Logic

The precondition list [Check1, . . . , Check2] in a rule is equivalent to a conjunction (Check1

and . . . and Checkn). In terms of First Order Logic (FOL), a precondition list can be
seen as a conjunction of check-calls (which are true or false), existensially quantified over
all Prolog variables occuring in the checks - except for variables occuring only within the
scope of negation or universal quantification. See also 3.3.2.

3.5 The DME-ADL language

DME-ADL (Dialogue Move Engine Algorithm Definition Language) is a language for writ-
ing algorithms for updating the TIS. Algorithms in DME-ADL are expressions of any of
the following kinds (C is a TIS check call; R, S and T are algorithms, Rule is the name of
an update rule, and RuleClass is a rule class):

1. Rule

apply the update rule Rule

2. RuleClass

apply an update rule of class RuleClass; rules are tried in the order they are declared

3. [R1, . . . , Rn]

execute R1, . . . , Rn in sequence

4. if C then S else T

If C is true of the TIS, execute S; otherwise, execute T

Example: if (latest speaker $== usr) then ([(repeat refill), (try database)

]) else store

5. while C do R

while C is true of the TIS, execute R repeatedly

6. repeat R until C

execute R repeatedly until C is true of the TIS

7. repeat R

execute R repeatedly until it fails; report no error when it fails
Example: repeat refill

8. repeat+ R

execute R repeatedly, but at least once, until it fails; report no error when it fails

41

9. try R

try to execute R; if it fails, report no error

10. R or S

Try to execute R; if it fails, report no error and execute S instead

11. test C

if C is true of the TIS, do nothing; otherwise, halt execution of the current algorithm

12. SubAlg

execute subalgorithm SubAlg

Subalgorithms are declared using ==>, which is preceded by the subalgorithm name and
followed by the algorithm, as in (14).

(14) main update ==> [grounding, repeat+ (integrate or

accommodate)].

A sample DME-ADL algorithm is shown in (15).

(15) if (latest_moves $== failed)

then (repeat refill)

else ([grounding,

repeat+ (integrate or accommodate),

(if (latest_speaker $== usr)

then ([(repeat refill),

(try database)])

else store

)

]).

3.5.1 Backtracking behaviour for checks, queries and updates in
module algorithms

In concurrent mode, checks calls in update algorithms do not backtrack 10.

In serial mode, conjunctions of check calls display the same backtracking behaviour as
conjunctions or sequences of check calls in update rules (see 3.4).

10In a future realease of TrindiKit we hope to make it possible for check calls to backtrack in concurrent
mode.

42

Update calls and rule calls can fail, which will result in an error message. If a rule class is
called, the intpreter will try to find a rule of that class which succeeds; if no such rule is
found, the call fails.

3.5.2 Rule calls in module algorithms

Module algorithms are executed locally by the ADL interpreter. Checks, queries, updates
and rule calls in the module algorithm are passed to the TIS where they are executed.
Rules can be seen as small algorithm parcels sent to the TIS. Since the TIS can only
execute one rule at a time, rules are protected from asynchronous interventions from other
modules.

3.6 Provided modules

The TrindiKit package includes a couple of simple modules which can be used to quickly
build prototype systems. Currently, four modules are included:

• input simpletext: a simple module which reads text input from the user and stores
it in the TIS

• output simpletext: a simple text output module

• intpret simple1: an interpretation module which uses a lexicon of key words and
phrases to interpret user utterances in terms of dialogue moves

• generate simple1: a generation module which uses a lexicon of mainly canned
sentences to generate system utterances from moves

The provided modules are further described in appendix B.

We hope to include modules for speech input and output in future TrindiKit releases.
We also encourage building modules which may be re-used in other systems and included
in future TrindiKit releases.

43

3.7 The Control-ADL language

The control algorithm specifies whether a system should be run in serial or asynchronously.
Serial algorithms are simpler than asynchronous ones, and the syntax used for asynchronous
algorithms subsumes the syntax for serial algorithms.

3.7.1 Serial control algorithm syntax

The serial Control-ADL language is identical to the DME-ADL language, except that it
calls module algorithms instead of rules, and it can include the print state instruction.
Each algorithm has a name, and each module may define one or more algorithms.

The available modules are specified by the selected modules predicate in the system
configuration file (see Section 4.7).

Serial control algorithms are expressions of any of the following kinds (C is a TIS condition;
R, S and T are serial control algorithms, Module is a module, and Alg is an update
algorithm):

1. Module:Alg

Call algorithm Alg in module Module; This requires that Module exports and defines
Alg/0

2. Module

Equivalent to Module:Module

3. [R1, . . . , Rn]

execute R1, . . . , Rn in sequence

4. if C then S else T

If C is true of the TIS, execute S; otherwise, execute T

Example: if (latest speaker $== usr) then ([(repeat refill), (try database)

]) else store

5. while C do R

while C is true of the TIS, execute R repeatedly

6. repeat R until C

execute R repeatedly until C is true of the TIS

44

7. repeat R

execute R repeatedly until it fails; report no error when it fails
Example: repeat refill

8. repeat+ R

execute R repeatedly, but at least once, until it fails; report no error when it fails

9. try R

try to execute R; if it fails, report no error

10. R or S

Try to execute R; if it fails, report no error and execute S instead

11. test C

if C is true of the TIS, do nothing; otherwise, halt execution of the current algorithm

12. SubAlg

execute subalgorithm SubAlg

13. print state

Print the TIS or IS, provided the value of the show state is all or is, respectively

Subalgorithms are declared using ==>, which is preceded by the subalgorithm name and
followed by the algorithm.

A sample serial Control-ADL algorithm is shown in (16).

(16) [reset,

repeat ([select,

generate ,

output,

update,

print_state,

test(program_state $== run),

input,

interpret,

print_state,

update,

print_state

])

]

3.7.2 Concurrent control algorithm syntax

A concurrent (asynchronous) control algorithm in Control-ADL specifies a number of up-
date agents. Each update agent uses one or several modules, each specifying one or more

45

update algorithms. The update agent may either call these algorithms directly, or it may
specify a serial control algorithm (actually, the former is a special case of the latter where
the serial control algorithm is just a call to a module algorithm). The concurrent control
algorithm must also specify one or several triggers, specifying the conditions under which
to run an update algorithm in a module or a serial control algorithm.

It may also include module importation calls. By default, a module is not imported into
an agent until an algorithm in that module is triggered. However, it is possible to import
a module into an agent at startup, using import Module.

A concurrent control algorithm has the following general format (Agenti is an agent name):

(17) control algorithm((Agent1 | Agent2 | . . . | Agentn))

Run Agent 1 to n asynchronously

An agent declaration has the following form, where SerialAlgorithmj are serial control
algorithms:

(18) AgentName: { import Module1,

. . .
import Modulep,

Trigger1 => SerialAlgorithm1,

. . .

T riggerm => SerialAlgorithmm }.
When Triggerj is true, run SerialAlgorithmj.
(1 ≤ j ≤ m).

AgentName is a unique label for that agent - two agents may not have the same name.
There must be at least one trigger and one algorithm call (i.e. 1 ≤ m) but there may be
zero or more module importations (i.e. 0 ≤ p). The serial control algorithms are defined
using Control-ADL, as described in 3.7.1. As mentioned in 3.7.1, calls to algorithms can
be made in two different ways: Module:Algorithm or just Module, which is interpreted
as Module:Module.

Warning: Be careful when using repeat statements in update algorithms or serial control
algorithms called from an asynchronous control algorithm, since they will never leave the
loop and will therefore never trigger more than once.

A trigger Triggerj can have any of the following formats:

• condition(C)

46

C is a trigger condition, which has any of the following formats (where V ar is a TIS
variable):

– val(V ar, V al)

V ar becomes set to V al.

– is set(V ar)

Var changes value.

– is unset(V ar)

V ar becomes unset (i.e. V ar becomes set to nil).

– empty(V ar)

V ar becomes empty (i.e. V ar becomes set to nil.

– not val(V ar, V al)

The value of V ar becomes set to some value other than V al.

– not empty(V ar)

V ar becomes set to some value other than nil.

• init

This trigger is activated at start-up.

• new data(Stream)

The Prolog stream Stream (e.g. user input) has new readable data.

A sample concurrent control algorithm is shown in (19).

47

(19) control_algorithm((

input: {

init => input:display_prompt,

new_data(user_input) => input

} |

interpretation: {

import interpret,

condition(is_set(input)) =>

[interpret, print_state]

} |

dme: {

import update,

import select,

init => [select],

condition(not empty(latest_moves)) =>

[

update,

if val(latest_speaker,usr) then

select

else

[]

]

} |

generation: {

condition(is_set(next_moves)) =>

generate

} |

output: {

condition(is_set(output)) =>

output

}

)).

3.7.3 Settings for concurrent systems

When running a concurrent TrindiKit system, certain settings must be specified in the
file concurrent.pl. These are:

• Choice of agent communication protocal. TrindiKit can use either AE (Agent

48

Environment) or SRI’s OAA (open Agent Architecture) as agent communication
protocol.

• Appearance settings for agent windows

• Settings for the spy agent, determining what interactions to print

• Resource modes for each resource, i.e. tis, module or standalone (see 3.8.3)

3.8 Resources

It is often necessary to use external resources, such as databases, domain knowledge, lexica
etc. in a dialogue system. TrindiKit’s reosurce interface definitions makes it possible to
hook up resources to the TIS and access them in the same way as any other object in the
TIS.

3.8.1 Resource objects and Resource Interface Variables

In TrindiKit, resources are viewed as objects of certain type. A resource interface def-
inition specifies the type of the interface object by defining conditions and operations on
objects of that type. Resources can be called directly, if the resource call explicitly states a
resource object, or via a resource intervace variable (RIV) which is part of the information
state. The latter method makes it possible to switch resources by changing the value of
the RIV.

While this may require some additional work, it has the advantage that the TIS as a whole
can be regraded as a typed object. Also, it gives the user the possibility to define resources
as static (if the resource interface definition only specifies conditions) or dynamic (if it also
specifies operations).

It is very important to make sure that resources do not try to access the TIS, including
other resources. Otherwise, deadlocks may result. Also, running modules in module or
standalone will not work.

3.8.2 Resource definition syntax

There may be several resources of each type; for example, there may be lexica for several
languages which all are of the type lexiconT. To declare that some resource object has a

49

certain type, of type/2 is used.

As an example, the interface definition for the GoDiS lexicon is shown in (20).

(20) (in resource interfaces.pl:)

:- module(resource_interfaces, [

resource_variable_of_type/2,

is_resource_type/1,

resource_condition/2,

resource_operation/2

]).

is_resource_type(lexiconT).

of_type(lexicon_travel_english, lexiconT).

of_type(lexicon_autoroute_english, lexiconT).

of_type(lexicon_travel_swedish, lexiconT).

resource_variable_of_type(lexicon, lexiconT).

resource_condition(lexiconT, input_form(Phrase, Move), Lexicon) :-

Lexicon : input_form(Phrase, Move).

resource_condition(lexiconT, output_form(Phrase, Move), Lexicon) :-

Lexicon : output_form(Phrase, Move).

resource_condition(lexiconT, yn_answer(A), Lexicon) :-

Lexicon : yn_answer(A).

Here, the lexicon TIS variable has type lexiconT and there are two objects of the
lexiconT type: lexicon travel swedish and lexicon travel english, corresponding
to the Swedish and English travel domain lexicons, respectively. To select a lexicon, the
lexicon variable in the TIS is set to the appropriate value. If no resource variable is
defined, the resources have to be named explicitly in the resource calls.

The resource filename should be the same as the resource name. To use a resource in a
system, the resource name must be included in the selected resources declaration in
the system specification file.

3.8.3 Running resources in module and standalone mode

If a resource variable is used in a resource call, the TIS handler evaluates the interface
variable in question, and passes the condition/operation on the selected resource object

50

which the value of the resource interface variable. This enables dynamic switching between
resources during dialogue, e.g. to move to a new domain or change language.

When a system is run asynchronously, resources can be accessed via the TIS handler in the
same way as when running serially; the only difference is that each agent will have its own
TIS handler which communicates with the central TIS. In some cases, there may be a lot of
data traffic to the central TIS, resulting in a slow system. To help avoid this, TrindiKit
makes it possible to hook up resources directly to modules, or to run the resource as a
standalone process.

How a resource is handled is specified in the user-supplied file concurrency.pl. Here, any
resource can be defined to run in mode tis, module or standalone using resource mode/2:

• resource mode(Resource, tis): Resource is accessed via the central TIS.

• resource mode(Resource, module): Resource is accessed directly from the module.
In this mode, the resource will automatically be imported into all modules which use
it.

• resource mode(Resource, standalone): Resource is run as a separate process,
and can thus be called from several modules.

If a resource is static, there is no reason to run it in standalone mode; instead, it should be
run in module mode if TIS data traffic is a problem. Since the resource cannot be changed,
there is no harm in letting each module make its own copy of the resource. However, if a
dynamic module is to be used by several modules running in different processes, it should
not be run in module mode, as this might result in there being several copies of a resource
which are not mutually consistent.

Since all update rules are executed by TIS, resource calls in rules will always be routed
to the central TIS. This means that there is no efficiency gain for resource calls in update
rules; only resouce calls made in module algorithms benefit from declaring a module as
being of type module or standalone.

Warning 1: resource calls which are made directly from a module algorithm (i.e. not from
a rule) should not use resource interface variables, since these must always be evaluated by
the central TIS. When calling a resource running in module or standalone mode from a
module, the resource object should therefore be stated explicitly. If one wants to be able to
switch between such resources by changing the value of an RIV, some special tricks must
be employed. For example, the module could have an small piece of Prolog code which is
triggered every time the relevant RIV is changed, and asserts the new value of the RIV
internally. Before every call to the resource, this internal asserted clause would have to be

51

consulted to find the current value of the RIV. This amounts to the module “subscribing”
to an RIV. We plan to include support for this in future verisions of TrindiKit.

Warning 2: Check calls to standalone resources will not backtrack. Instead, the same result
will be returned repeatedly.

Resource names and resource variable values

In some cases, one may want to put together the value of the resource variable in runtime,
e.g. depending on the value of flags. To make this easier, all occurances of “-” in the value
of a resource variable will be replaced by “ ”. The latter symbol can appear in filenames
and module names, whereas the former cannot; the former can be used to connect Prolog
terms, whereas the latter cannot.

3.9 The generic Web-demo

The TrindiKit generic web-demo generator will generate CGI-scripts etc., enabling in-
teraction with the system via a webpage. The Web-demo is described in Appendix D.

3.10 Debugging facilities

Since different debugging facilities are available in serial and asynchronous modes, these
will be described in separate sections.

3.10.1 Serial mode

In serial mode, all interaction with the system takes place in a single window. The TIS and
the operations applied to it will be printed according to the settings of the print rule and
print state flags (see section 2.9). When the system is halted, it is possible to inspect
and alter the TIS and flags.

52

Accessing the TIS

In serial mode, there are a couple of predicates for inspecting the TIS from the Prolog shell
(the user Prolog module).

• tis/0: prints the TIS

• is/0: prints the IS

• ivs/0: prints the module interface variables

• rvs/0: prints the resource interface variables

Also, TIS variables can be set using set(+V ar, +V al) and their value can be checked
using val(+V ar, -V al).

Accessing flags

Before the system is started, or if it has been halted, the predicate flags/0 prints all flags,
their current values and a short description of each flag. The value of a flag is changed by
setflag(Flag, V alue).

3.10.2 Asynchronous mode

In asynchronous mode, interaction with the system takes place in several windows at once.
Each agent may have its own window, but only some allow direct interaction with the user.
There are three agents providing functions which are useful for debugging: the console,
print and print agents.

The console agent

The following functionalities are available in the console agent:

• Send commands to agents using the form Agent::Command where Command can
be

53

– do(Query): Query is sent to the agent for execution. This is a non-blocking
call, i.e. the console agent does not expect any answer from the agent

– solve(Query): Query is sent to the agent, and the response is displayed in
the console agent window.

• List agent information:

– info - gives a list of all agents and their services

– info(Agent) - show information about a specific agent, including the services
it offers

Inspecting the TIS using the print agent

In asynchronous mode, the TIS and operations applied to it aredisplayed in the print

agent according to the settings of the print rule and print state flags (see section 2.9).

The print agent can also be controlled directly from the console agent using the following
command:

• print :: do(print state): print the TIS according to the setting of the show state

flag.

Manually checking and updating the TIS

TIS variables can be set and evaluated in the console agent window using the follwing
constructions, respectively:

• tis::solve(apply_operation(set(+V ar, +V al))).

• tis::solve(check_condition(val(+V ar, -V al))).

Accessing flags

In asynchronous mode, flags can only be accessed before the system is run. As in serial
mode, the predicate flags/0 prints all flags, their current values and a short description
of each flag. The value of a flag is changed by setflag(Flag, V alue).

54

The spy agent

If the spy flag is set to yes, the spy agent window will appear when running the system.
The spy agent displays triggers and operations applied to the TIS, and indicates which
module is responsible for each operation.

Running step by step

In the asynchronous mode, it is possible to run a system one step at a time. To switch
this option on, set the trace flag to yes before running the system.

55

Chapter 4

How to implement a dialogue system
using the TrindiKit

In this chapter, we will try to show how one goes about building a dialogue system using
the TrindiKit. Of course, building a dialogue system requires a lot more than knowing
how to use the TrindiKit; most importantly, it requires some theory of dialogue moves,
information states and information state updates. Most examples in this chapter are from
the GoDiS system.

4.1 Specifying Total Information State

The Total Information State (TIS) consists of the Information State (IS) variable, module
interface variables and resource interface variables. It is accessed using conditions and
operations. The TIS is specified by giving type declarations for the TIS variables, thereby
specifying which conditions and operations are available.

Type declarations state that a TIS variable has a certain type. Objects are possible values
of a variable. If a variable has type T it can take as values objects of type T . The fact that
the information state object has a certain type is specified using infostate of type/2.

56

4.1.1 Specifying information state type

The user-defined component infostate, implemented in the file infostate.pl exports the
predicate infostate variable of type/2 to the TIS. This predicate declares the type of
the IS variable.

(21) (in infostate.pl:)

:- module(infostate, [infostate_variable_of_type/2]).

infostate_variable_of_type(is, ISType) :-

ISType = record([private:Private,

shared:Shared]),

LM = record([speaker:speaker,

moves:assocSet(dmoverec)]),

Shared = record([bel:set(proposition),

qud:stackset(question),

lm:LM]),

Private = record([agenda:stack(action),

plan:stackset(action),

bel:set(proposition),

tmp:Shared]).

It is in principle possible to have more than one infostate variable. If there is only one and
its name is is, it is possible to use the shorthand format for conditions and operations,
where the is can be left out.

4.1.2 Specifying module interface variables

The user-defined component module interfaces, implemented in the file module interfaces.pl

exports the predicate interface variable of type/2 to the TIS. This predicate declares
the type of the interface variables.

(22) (in module interfaces.pl:)

:- module(interface_variables, [interface_variable_of_type/2]).

interface_variable_of_type(input, string).

interface_variable_of_type(output, string).

interface_variable_of_type(latest_speaker, speaker).

interface_variable_of_type(latest_moves, set(move)).

interface_variable_of_type(next_moves, set(move)).

interface_variable_of_type(program_state, program_state).

57

4.1.3 Specifying resource interface variables

The user-defined component resource interfaces, implemented in the file
resource interfaces.pl exports the predicate resource variable of type/2 to the
TIS. This predicate declares the type of the resource interface variables.

4.1.4 Defining macros

Macros are implemented using the syntax described in 3.2.5. To specify which file contains
the macros, use selected macro file/1, as in (23).

(23) (in system configuration file:)

selected macro file(FileName).

Given this declaration, TrindiKit will load the macros in FileName.pl.

4.2 Building modules

A module consists of a set of rules and and algorithm. The algorithm can either use DME-
ADL or be written in Prolog. If it uses the DME-ADL, the interpreter must be imported
into the DME module. DME modules have unlimited access to the TIS.

A module consists of the following parts:

• a module name declaration

• importation of tis access

• loading of rules

• (optionally) loading of the DME-ADL interpreter

• the module algorithm or algorithms

• the algorithm predicate or predicates

• access restrictions (in the case of non-DME modules)

58

The Prolog file which defines a TrindiKit module can have any name. The link be-
tween a TrindiKit module and the file where it is implemented is declared in the system
specification file by the selected modules/1 predicate.

4.2.1 Module name declaration

The module is declared as a Prolog module which exports the predicates used to call the
algorithms specified by the module (see Section 4.2.7). The name given to the Prolog

module will also be the name of the TrindiKit module which the file implements. This
is also the name used in the control algorithm to refer to the TrindiKit module, and in
selected modules/1 in the system specification file.

(24) :- module(interpret,[interpret/0]).

4.2.2 Importing TIS access

Every TrindiKit module must load tis access to be able to access to TIS.

(25) :- use_module(library(tis_access)).

4.2.3 Load rules

The rules are loaded using :- ensure loaded(library(RuleF ile)), where RuleF ile is
the file containing the rule definitions for the module in question. An example is seen in
(26).

(26) :- ensure_loaded(library(update_rules)).

4.2.4 Load the DME-ADL interpreter

To use the DME-ADL interpreter, it must be loaded into the module using the clause in
(27).

(27) :- ensure_loaded(library(dme_adl)).

59

4.2.5 The update algorithm

For instructions how to write update algorithms, consult 3.5.

A sample algorithm which uses DME-ADL is shown in (28).

(28) update_algorithm(

if (latest_moves $== failed)

then (repeat refill)

else

(! [grounding,

repeat+ (integrate or accommodate),

(if (latest_speaker $== usr)

then ([(repeat refill),

(try database)])

else store

)

])).

4.2.6 Writing Prolog algorithms

Modules can either use the DME-ADL interpreter, or be written in plain Prolog. In
the latter case, no special restrictions apply. Check calls to the TIS are made using
the check condition/1 predicate. Queries and updates to the TIS are applied using
apply operation/1. Rules are applied using apply rule/1.

4.2.7 Module call predicate

The module call predicate is simple the predicate used to call the module. It is a 0-ary
predicate which is exported by the module. To use the DME-ADL interpreter, pass the
specified algorithm as the argument to adl exec/1.

(29) update :-

update_algorithm(Algorithm),

adl_exec(Algorithm).

60

4.2.8 Writing update rules

If a module makes uses rule calls, it requires a file (Prolog module) where the update rules
are specified. This file should define a Prolog module which exports the predicates rule/3
and rule class/2. To be able to handle the TIS condition and operation syntax, it also
needs to define some operators as seen in (30).

(30) :- module(update_rules, [rule/3, rule_class/2]).

:- op(800, fx, [’!’, not]).

:- op(850, xfx, [’$=’, ’$==’, and, or]).

The syntax for update rule definitions is explained in 3.4

4.2.9 Access restrictions for non-DME modules

DME modules (those listed in the system configuration file using dme modules/1) have
access to the whole TIS. Non-DME modules have limited access to the TIS, and are ofthen
only allowed to read and write to dedicated interface variables. The arguments of the
predicates read access/1 and write access/1 are lists of TIS variables that the module
is allowed to read from and write to, respectively.

For example, if the input module contains the lines in (31), this module can read and write
only to the input variable.

(31) write_access([input]).

read_access([input]).

4.3 Building a controller

The controller contains the control algorithm, written using Control-ADL1. It can inspect
specified parts of the TIS. The control module access to the whole TIS. (see Section 4.2.9).

A controller specification consists of the following parts:

• importation of operators

1Control-ADL will be loaded automatically into the controller.

61

• the control algorithm itself

The controller should be defined in the file control.pl.

4.3.1 Importing operators

The predicates in (32) must be imported into the control module.

(32) :- use_module(library(control_operators)).

:- use_module(library(tis_operators)).

4.3.2 The control algorithm

The Control-ADL language which is used to define the control algorithm is explained in
3.7.

4.4 Building resources

The file which defines the resource must include a module declaration, as in (33). The mod-
ule declaration must list all predicates that are to be exported and used in TIS conditions
and operations.

(33) :- module(lexicon_travel_english, [output_form/2, input_form/2, yn_answer/1]).

The Prolog file defining a resource should have the same name as the resource.

4.5 Building resource interfaces

Resources must be be connected to the TIS via a resource interface definition. The syntax
for resource interface definitions is explained in 3.8.2).

62

Apart from specifying resource interface variables, the file resource interfaces.pl also
exports the predicates resource condition/3, resource operation/4 and is resource type/2

to the datatypes component.

The resource (a Prolog module) must export the predicates needed for giving a type dec-
laration of the corresponding resource interface variable.

4.6 Adding user flags

User flag definitions should be placed in a file called user flags.pl, which will be automat-
ically loaded by the TrindiKit. User flags are specified using two predicates: flagValue/2
and flagInfo/3, which both must be declared to be multifile and dynamic. The former
assigns default values to the flags, and the latter associates each flag to a list of possible
values and a free-text description of the flag. As an example, the flags specified by GoDiS
are shown in (34).

(34) (in user flags.pl:)

:- multifile flagValue/2, flagInfo/3.

:- dynamic flagValue/2, flagInfo/3.

flagValue(output_prompt, ’\n$S> ’).

flagValue(input_prompt, ’\n$U> ’).

flagValue(language, english).

flagValue(domain, travel).

flagInfo(output_prompt, [’\\n$S> ’,’\\n$U> ’], ’The output prompt’).

flagInfo(input_prompt, [’\\n$S> ’,’\\n$U> ’], ’The input prompt’).

flagInfo(language, [english, swedish], ’Language’).

flagInfo(domain, [travel, autoroute], ’Domain’).

4.7 The system configuration file

The system configuration file specifies how the system is constructed. It specifies what
datatypes, modules, resources and macros are used, and defines the the predicate which
runs the system. It may also include flag settings.

In this section, we will review the contents of the configuration file. For a sample config-
uration file, see GoDiS/godis.pl. A template configuration file mySystem/ mySystem.pl

is also available.

63

4.7.1 Selecting datatypes and macros

Datatypes are selected using selected datatypes/1, where the argument is a list of
datatypes to be loaded. Each item DataType in the list corresponds to a file DataType.pl
in the search path.

(35) (in system configuration file:)
selected datatypes([standard, record, set, stack,

stackset, assocSet, godis datatypes]).

Optionally, macros may be used to access the TIS. Macros are selected by defining the
predicate selected macro files/1, whose argument is a list of files in the search path
which contain macro definitions.

(36) (in system configuration file:)
selected macro file(godis macros).

4.7.2 Selecting modules

Modules are selected using selected modules/1, where the argument is a list of TrindiKit
modules to be loaded. Each module spec has the form Predicate:FileName, where Pred-
icate is the 0-ary predicate used to call the module, and FileName.pl is the a file in the
search path containing the module specification.

(37) (in system configuration file:)

selected_modules([control: control,

input : input_simpletext,

interpret : interpret_simple1,

update : update,

select : select,

generate : generate_simple1,

output : output_simpletext,

reset : reset

]).

4.7.3 Specifying the DME

The DME modules are specified using dme modules/1, whose argument is the list of DME
modules. These modules have unlimited acccess to the TIS.

64

(38) (in system configuration file:)

dme_modules([update, select]).

4.7.4 Loading and selecting resources

The predicate selected resources/1 is specifies a list of resources that should avail-
able for hookup to the TIS. Each item ResourceF ile in the list corresponds to a a file
ResourceF ile.pl in the search path. The file defines a resource object with the same
name as the file, implemented as a Prolog module.

(39) (in system configuration file:)

selected_resources([database_travel,

database_autoroute,

lexicon_travel_english,

lexicon_travel_svenska,

lexicon_autoroute_english,

domain_travel,

domain_autoroute]).

The resources are selected by setting the resource variables to the appropriate values. Each
resource R corresponds to a file F.pl which defines a Prolog module F .

For example, assume we have three resource variables lexicon, database and domain, and
three resources lexicon travel english, database travel and domain travel, respec-
tively. The predicate defined in (40) will select these resources by setting the resource
variables to the appropriate values.

(40) (in system configuration file:)

set_resource_variables:-

set(lexicon, lexicon_travel_english),

set(database, database_travel),

set(domain, domain_travel).

The resource interface variables are part of the TIS and can thus change values during
system runtime.

65

4.7.5 Specifying initial TIS

When the reset predicate is called, all TIS variables are unset (i.e. they are set to
NIL), and the TIS variable is set to an empty object of the specified TIS type (see
Sectionsec:specifying-tis). To set the TIS to its appropriate intial state, the reset pred-
icate executes a list of TIS operations specified by the predicate reset operations/1,
whose argument is a set of TIS operations. This predicate must be specified in the system
configuration file. An example is show in (41).

(41) (in system configuration file:)

reset_operations([set(program_state, run),

set(database, database_travel),

set(domain, domain_travel),

pushRec(private^agenda,raise(X^(task=X))),

pushRec(private^agenda,greet)])

The reset operations usually include operations to set the resource variables, thereby con-
necting the appropriate resources to the TIS.

4.8 File search paths

The search paths.pl file must specify the file search path where the TrindiKit and the
system itself is found. This is done using using the assertz/1 predicate.

(42) (in search paths.pl in the system directory:)

:- assertz(user:file_search_path(home, ’$HOME’)).

:- assertz(user:library_directory(home(’<trindikitpath>’))).

:- assertz(user:library_directory(home(’<trindikitpath>/Datatypes’))).

:- assertz(user:library_directory(home(’<trindikitpath>/Modules’))).

:- assertz(user:library_directory(home(’<trindikitpath>/Printers’))).

:- assertz(user:library_directory(home(’<systempath>’))).

Note that the TrindiKit distribution also contains a file called search paths.pl which
defines search paths for TrindiKit, AE and OAA. The installation instructions on the
TrindiKit website2 contains information about the TrindiKit search paths file and
how to edit it.

2www.ling.gu.se/research/projects/trindi/trindikit/

66

4.9 Additional concurrency settings

When running a system asynchronously, additional specifications must be provided by in
the file concurrent.pl.

4.9.1 Agent protocol

agent protocol(P)

P is either ae or oaa. This defines which agent communciation protocol to use.

4.9.2 Settings for agent windows

• columns(N)

N is an integer detemining the number of columns of agent windows on the screen.
2 or 3 is recommended.

• window dimension pixels(Width, Height)

Width and Height are integers determining the dimensions of agents windows in
pixels.

• window dimension chars(Width, Height)Width and Height are integers deter-
mining the dimensions of agents windows in characters.

4.9.3 Display type

display type(?Agent, +Type)

Specifies whether a certain agent should run in a separate window (Type=window) or in
the background (Type=background). Agent is eithertis, console, spy, print, resource
or control.

4.9.4 Resource type

resource type(?Resource, +Type)

67

Specifies whether a resource Resource should be loaded into the TIS (Type=tis), loaded
into each module that uses it (Type=modules) or run as an agent of its own (Type=standalone).

4.9.5 Agent language

lang(Agent, Language)

Specifies the programming language of an agent Agent. Language is either sicstus (SIC-
Stus Prolog) or java3.

4.9.6 Showing agent communcations

show com(Agent, Y esOrNo)

Specify whether communication to and from agents should be output.

4.10 The start file

The start file contains flag settings and defines the run/0 predicate. It also loads search
paths and imports the TrindiKit starter Prolog module, and intialises the system.

4.10.1 Loading search paths and starter

The starter Prolog module exports the predicate start/1 which takes the system speci-
fication filename (minus the .pl affix) as argument.

(43) (first in start.pl):

:- ensure_loaded(search_paths).

:- use_module(library(starter)).

3OAA agents can be written in Java. Consult the OAA literature for further information.

68

4.10.2 Initialization

To initialise a system according to the settings in the system configuration file (SystemName.pl),
init(SystemName) is called. For example, the for a system godis the start file would
contain the initialization call in (44).

(44) (second in start.pl):

:- init(godis).

4.10.3 Setting flags

To set the flags to values other than the default values, setflag/2 is used. This can only
be done after the TrindiKit has been loaded.

(45) (third in start.pl:)

:- setflag(version,standalone).

:- setflag(show_rules,yes).

:- setflag(show_state,all).

Note: In serial mode, it is possible to halt a system, reset a flag, and start the system
from the top. In concurrent mode, this is not advisable as it may cause TrindiKit to
malfunction.

4.10.4 The run predicate

It may be convenient (though not necessary) to define a run predicate which may set flags
before calling start trindikit.

(46) (in system configuration file:)

run(Domain-Language):-

setflag(domain, Domain),

setflag(language, Language),

start_trindikit.

69

4.11 Running your system

To run a system, consult the start.pl file and call start trindikit/1 or run/0 if it is
defined. For example, to run the GoDiS system, consult the file GoDiS2.0/start.pl and
type run(travel-english) to run GoDiS using the travel agency domain and English
lexicon.

(47) enterprise> sicstus

SICStus 3.8.4 (sparc-solaris-5.7): Mon Jun 12 18:41:59 MET DST 2000

Licensed to ling.gu.se

| ?- [start].

{consulting /users/ling/sl/Jobb/TRINDI/GoDiS/GoDiS2.0/start.pl...}

...

yes

| ?- run(travel-english).

4.12 Stopping your system

In serial mode, the system is stopped by pressing Ctrl-C and choosing (a)bort.

In asynchronous mode, the system is stopped by typing stop in the console window.

70

Bibliography

Bos, J., Bohlin, P., Larsson, S., Lewin, I., and Matheson, C. (1999). Dialogue dynamics in
restricted dialogue systems. Technical Report Deliverable D3.2, Trindi.

Ljunglöf, P. (2000). Formalizing the dialogue move engine. In Proceedings of Götalog 2000

workshop on semantics and pragma tics of dialogue.

Martin, D. L., Cheyer, A. J., and Moran, D. B. (1999). The open agent architecture:
A framework for building distributed softwar e systems. Applied Artificial Intelligence,
13(1-2), 91–128.

Traum, D., Bos, J., Cooper, R., Larsson, S., Lewin, I., Matheson, C., and Poesio, M.
(1999). A model of dialogue moves and information state revision. Technical Report
Deliverable D2.1, Trindi.

71

Appendix A

Datatype definitions

So far, only a limited number of complex datatypes have been defined. Also, the definitions
are incomplete in the sense that they don’t specify all possible operations and conditions.
Below is a selection of datatypes1 which are either included in the TrindiKit or will be
included in future releases. Things which are not implemented in version 2.0 are marked
with ’*’.

In the definitions, X will refer to the object to which the condition or operation is applied.
For example, in the definition of the operation add(El) for sets, X is the set to which El

is added. In operation definitions, X can be thought of as a mutable object.

Association set

type: assocSet(ElT ,AT)

desc: association set

cond:























assoc(El,A) : El is associated with A

in(El) : El is a member of the set X, i.e. (El,A) is unifi-
able with an pair in X, for some A

contains(El) : same as in(El)
empty : X is empty

op:























add(El,A) : Add El to X and associate it with A; if El is
already a member, do nothing

set assoc(El, A) : associate El with A; if El is not in X, do nothing
del(El,A) : delete an element unifiable with (El,A) from X

extend(S) : extend X with another association set S

1Actually, they are datatype schematas since the type of the included objects is not determined. For
example, set(T) is a datatype schemata but set(move) is a datatype.

72

An association set of type assoc(T1, T2) is a set where each element of type T1 is associated
with some other object of type T2. Each element can be associated with only one object.
Association sets are implemented as sets of pairs of type (T1,T2) where the first element of
each pair is said to be associated with the second element of the pair.

Atom

type: atom

desc: Prolog atom

cond: {

op: {

Bool

Objects: true and false.

type: bool

desc: Boolean vale

cond: {

op:
{

toggle : if X is true, set to false; if X is false, set to true

Counter

type: counter

desc: an integer counter

cond: {

op:







increase : increase X by 1
decrease : decrease X by 1
reset : set X to 0

Integer

type: integer

desc: integer

73

cond:























==(B) : X is identical to B

<(B) : X is less than B

>(B) : X is greater than B

=<(B) : X is less than or equal to B

>=(B) : X is greater than or equal to B

op:















+(B) : add B to X

-(B) : subtract B from X

*(B) : multiply X by B

/(B) : divide X by B

In calls, the relational conditions and operations can optionally be written as infixes, e.g.
A < B instead of < (A,B) or A: <(B).

Move

type: move

desc: dialogue move

cond: {

op: {

This definition does not specify any conditions, operations or objects for the move type;
this is left to the user.

Participant

type: participant

desc: dialogue participant

cond: {

op: {

Predefined objects: usr, sys.

Program state

type: program state

desc: program state

cond: {

op: {

74

Predefined objects: run, quit.

Queue

type: queue

desc: LIFO queue

cond:
{

empty : X is empty

op:























push(El) : push El onto X

last(El) : if El unifies with the last element of X, remove it
and instantiate El

extend(Q) : extend X with another queue Q by adjoining the
first element of Q with the last element of X

Real

type: real

desc: real number

cond:























==(B) : X is identical to B

<(B) : X is less than B

>(B) : X is greater than B

=<(B) : X is less than or equal to B

>=(B) : X is greater than or equal to B

op:















+(B) : add B to X

-(B) : subtract B from X

*(B) : multiply X by B

/(B) : divide X by B

In calls, the relational conditions and operations can optionally be written as infixes, e.g.
A < B instead of < (A,B) or A: <(B).

Record

type: record(RT)

desc: record of type RT

cond:







C#rec(Path, Arg1, . . . , Argn) : C(Arg1, . . . , Argn) holds of the object which is
the value of path Path

valRecInSetInRec(Path1,Path2,V al2,Path3,V al3) :

75

op:























































O#rec(Path, Arg1, . . . , Argn) : applies O(Arg1, . . . , Argn) to the object which is
the value of path Path

copyRec(Path1,Path2) : copies the value of Path1 to Path2
addFieldRec(Label,V al) : add a field Label = V al to the record
clearAllFieldsRec(P) :
recursiveClearAllFieldsRec(P) :
peRec(Path1,Path2) :
peRec(Rec) :
extendRec(PathA,PathB) :

For records, which can embed other complex data structures, the condition or operation
“functor” C may be extended with a “pseudo-type” marker prepended by “#”, e.g. in#rec
where the functor is in and the psudo-type marker is rec, indicating a record2. In this
case, the first argument will be a path in leading to the embedded complex data structure
which is checked by the condition. For example, in#rec(shared.bel, P) will check that
P is in the set found at the end of the path shared.bel in the IS.3.

Set

type: set(T)

desc: unordered set of elements of type T

cond:















in(E) : E is unifiable with an element in the set
member(E) : same as in(E)
strict member(E) : E is identical to an element in the set
empty : the set is empty

op:







































































































add(E) : add E to the set unless it’s already a member
del(E) : delete an element unifiable with E from the set
del all(E) : delete all elements unifiable with E from the set
del strict(E) : delete the element identical with E from the set
replace(E1,E2) : replace an element unifiable with E1 with E2;

equivalent to del(E1) if E2 is already in the set
replace all(E1,E2) : replace all elements unifiable with E1 with E2;

equivalent to del all(E1) if E2 is already in the
set

replace strict(E1,E2) : replace the elements identical to E1 with E2;
equivalent to del strict(E1) if E2 is already in
the set

extend(S) : extend the set with another set S

intersect(S) : intersect the set with S

subtract(S) : subtract S from the set

2A proper record type must include types for all its values, whereas the “pseudo-type” rec merely
indicates a record of any record type.

3TrindiKit 2.0 also supports the format where C#Type is replaced by CType, e.g. inRec(shared.bel,
A). However, future versions may not support this format.

76

Stack

type: stack(T)

desc: simple stack of elements of type T

cond:

{

fst(E) : E is the topmost element on the stack
empty : the stack is empty

op:







push(E) : pushes E on top of the stack
pop : pops the topmost element off the stack
extend(Stack) : extends the stack by putting Stack on top of it

Stackset

type: stackset(T)

desc: open stack of elements of type T - allows member check

cond:























fst(E) : E is the topmost element on the stack
in(E) : E is unifiable with an element in the stack
member(E) : same as in(E)
strict member(E) : E is identical to an element in the stackset
empty : the stack is empty

op:































push(E) : pushes E on top of the stack
pop : pops the topmost element off the stack
del(E) : delete an element unifiable with E from the set
extend(StackSet) : extends the stackset by putting StackSet on top

of it
*del all(E) : delete all elements unifiable with E from the set

*del strict(E) : delete the element identical with E from the set

A stackset is a stack with some set-like porperties. Elements which are not on top of a
stackset can be accessed (deleted or checked for membership). Stackset could also be called
“open stacks”.

String

type: string

desc: Prolog string

cond: {

op:
{

append(String) : appends String to the end of X

77

Appendix B

Modules included in the TrindiKit
package

B.1 Simple text input module

The input module simply Modules/input simpletext.pl reads a string (until new-line)
from the keyboard, preceded by the printing of an input prompt. The system variable
input is then set to be the value read.

(48) input :-

check_condition(input $= _),

flag(input_prompt, Prompt),

prompt(OldPrompt, Prompt),

read_string(Str),

prompt(_, OldPrompt),

apply_operation(set(input, Str)).

B.2 Simple text output module

The output module Modules/output simpletext.pl takes the string in the system vari-
able output and prints it on the computer screen, preceeded by the printing of an output
prompt. The contents of the output variable is then deleted. The module also moves the
contents of the system variable next moves to the system variable latest moves. Finally it
sets the system variable latest speaker to be the system.

78

(49) output :-

check_condition(is_set(output)),

check_condition(output $= Str),

flag(output_prompt, Prompt),

name(StrN, Str),

write(Prompt), print(StrN), nl,

check_condition(next_moves $= Moves),

apply_operation(unset(next_moves)),

apply_operation(set(latest_moves, Moves)),

apply_operation(set(latest_speaker, sys)),

apply_operation(unset(output)).

B.3 A simple interpretation module

The interpretation module Modules/interpret simple1.pl takes a string of text, turns
it into a sequence of words (a “sentence”) and produces a set of moves. The “grammar”
consists of pairings between lists whose elements are words or semantically constrained
variables. Semantic constraints are implemented by a set of semantic categories (location,
month, task, means of transport etc.) and synonomy sets. A synonomy set is a set of
word which all are regarded as having the same meaning.

The simplest kind of lexical entry is one without variables. For example, the word “hello”
is assumed to realise a greet move.:

input form([hello], greet).

The following rule says that a phrase consisting of the word “to” followed by a phrase S

consitutes an answer move with content to=C provided that the lexical semantics of S is
C, and C is a location. The lexical semantics of a word is implemented by a coupling
between a synset and a meaning; the lexical semantics of S is C, provided that S is a
member of a synonomy set of words with the meaning C.

input form([to|S], answer(to=C)):-lexsem(S, C), location(C).

To put it simply, the parser tries to divide the sentence into a sequence of phrases (found
in the lexicon), covering as many words as possible.

79

(50) /*--

wordlist2moves(+AtomList, -MoveList)

--*/

wordlist2moves([], []).

wordlist2moves(Sentence, [Move|Moves]) :-

append(Phrase, Rest, Sentence),

condition(lexicon: input_form(Phrase,Move)),

wordlist2moves(Rest, Moves).

wordlist2moves([Word|Sentence], Moves) :-

\+ condition(lexicon: input_form([Word],_)),

wordlist2moves(Sentence, Moves).

First, if the sentence is empty, there are no moves. Second, if Sentence begins with a
phrase, for which there is some move definied in the lexicon, then it also tries to find the
moves for the rest of the sentence. Third, if the first word is not defined as a phrase in the
lexicon, it just skips that word.

B.4 A simple generation module

The generation module Modules/generate outputform.pl takes a sequence (list) of moves
and outputs a string. The generation grammar/lexicon is a list of pairs of move templates
and strings.

output form(greet, "Welcome to the travel agency!").

In some cases, the move template contains some variable which is assumed to be instan-
tiated when the lexicon is consulted. The lexicon will then find a string corresponding to
the instantiated variable and insert it into the output string.

(51) output_form(answer(X^(price=X),price=Price), Str) :-

number(Price), number_chars(Price, PriceStr),

append("It will cost ", PriceStr, Str1),

append(Str1, " crowns", Str).

To realize a list of Moves, the generator looks, for each move, in the lexicon for the cor-
responding output form (as a string), and then appends all these strings together. The
output strings is appended in the same order as the moves.

80

B.5 The ”empty” interpretation and generation mod-

ules

It is possible to run TrindiKit systems without any grammar or lexicon, by typing lists of
dialogue moves directly. To do this, you need to select the modules interpret empty and
generate empty. This may be helpful for debugging before starting work on the lexicon.
A sample conversation using these modules in GoDiS adapted for the mobile phone domain
is shown in (52).

(52) | ?- run.

$S> [greet]

$U> [greet].

$S> [ask([task(phonebook),task(messages)])]

$U> [answer(task(phonebook))].

$S> [ask([task(search_phonebook),task(add_new_number)])]

$U> [answer(task(search_phonebook))].

$S> [ask(_192560^name(_192560))]

$U> [answer(name(pelle))].

$S> [ask(call)]

$U> [answer(yes)].

$S> [inform(call_name(pelle))]

$U> [acknowledge].

$S> [ask([task(search_phonebook),task(add_new_number)])]

$U>

81

Appendix C

TrindiKit files

The TrindiKit is implemented by a number of Prolog files, which are listed below with
short descriptions1.

• Agents: agents used in asynchronous mode

– Agents/control.pl: Control agent (runs sub-algorithms)

– Agents/tis.pl: TIS agent

– Agents/print.pl: Print agent (outputs rules and states)

– Agents/resource.pl Resource agent (for stand-alone resources)

– Agents/spy.pl Spy agent (for debugging)

– Agents/console.pl Console agent (for debugging and quitting)

• Datatypes: directory of datatype definitions

• Modules: directory of provided module definitions

• Printers: directory of printer format definitions for datatypes

• agent.pl: TrindiKit agent library

• agent ae.pl: AE specific TrindiKit agent library

• agent oaa.pl:: OAA specific TrindiKit agent library

• control adl parallel.pl: Control ADL interpreter for parallel mode (used by the
control agent)

1This list is incomplete.

82

• control adl serial.pl: the Control-ADL interpreter

• control operators.pl: operators used in Control-ADL

• datatypes.pl: loads datatypes

• dme adl.pl: the DME-ADL interpreter

• error.pl: error reporting functionality

• find file.pl: library for locating files

• flags.pl: definitions of flags

• infix basic.pl: defined operators

• inoutput.pl: basic input/output predicates

• oaag.pl: an experimental implementation of a resource accessing the OAA facilitator

• search paths.pl: search paths for TrindiKit, TrindiKit modules, TrindiKit
datatypes, TrindiKit printers, AE libraries (optional), OAA libraries (optional)

• starter.pl: TrindiKit starter library

• start serial.pl: serial starter library

• start parallel.pl: concurrent starter library

• start parallel ae.pl: AE-specific concurrent starter library

• start parallel oaa.pl: OAA-specific concurrent starter library

• tis.pl: implements check, query and update syntax

• tis access.pl: Access to the TIS (used by modules)

• tis access parallel.pl: TIS access, concurrent version

• tis access serial.pl: TIS access, serial version

• tis operators.pl: operators used in checks, queries and updates

• trindikit.pl: load trindikit

83

AE files

• ae/ae Agent.pl: AE agent library

• ae/ae AgentStarter.pl: AE agent starter library

• ae/ae.pl: AE library (used by both AE agent and AE agent starter)

• ae/ae Com.pl: AE interprocess communication library

84

Appendix D

The Web-demo extension

In this section, we will show how to make a Web-demo for a dialogue system implemented
with the TrindiKit.

D.1 System requirements

We have tested this on a SUN Solaris system with a Roxen webserver. With some changes
(minor or major) it will probably work on other UNIX-platforms running other webservers.
The client works best with Internet Explorer - the foldin/foldout features will not work in
Netscape. The demo server uses CGI-scripts written in Gawk and Perl.

D.2 Installation

The gzipped tar-archive consists of the files:

• idemo.dat: The installation script

• install.txt: Short installation description

• Makefile: The makefile is used by make

• paths.txt: A file with information about paths

85

• flags.txt: The flags that should be visible in the demo interface. The format is the
same as the output from ”flags.” in TrindiKit.

• allt.dat: The data file with all scripts and html-files included in the demo

The first thing to do is to edit the file ”paths.txt”. It has to contain these six fields:

• www-server Webb address for the webbserver

• name Name of the demo

• www-home Path for the html-files

• cgi-home Path for the cgi-scripts

• temp Path for temporary files. It has to be writable and readable for the webbserver

• system Complete path for the Prolog file starting the dialogue system

Lines starting with # are comment lines.

Edit the flags.txt file. It may be empty.

Run the installer with make

The installer will prompt the user for a lot of paths. Just press Enter/Return if the
suggested value is ok, otherwise type the correct one. It will also inform about all created
files and executed commands.

D.2.1 Technical details

The installer package consists of one gawk-script (idemo.dat) started by the makefile.
This script will look for a lot of things in the system and build all files needed from the
file allt.dat. The expert may edit these files to get it working on other platforms with
other webservers.

86

D.3 Using the demo

When the user clicks on the Start-button a CGI-script will start a Prolog server running
the demo in the background and then other CGI-scripts will update the dialogue window
for each utterance and create the html-files for each information state.

As mentioned before the demo works best with Internet Explorer. The screenshot shows the
dialogue system GoDiS 1.2 after a few utterances. The user has clicked on the last State
in the right window and this information state is viewed in the lower left window. The
user may click on the underlined labels in the information state to hide the corresponding
parts (tmp and lu are hidden in the example). The rules in the right window are hidden
as a default but a click on the Rules tags will show (or hide) the set of rules.

D.3.1 Stop the demo!

Always use the stop-button after running the demo. Otherwise the server process will run
on the server until someone kills it. If this happens, there is a checkbox: Stop old demos

which will kill all processes started by the demo - even other sessions than current.

87

