TRINDIKIT 1.0 Manual

Staffan Larsson, Peter Bohlin, Johan Bos, David Traum

Distribution: PUBLIC

Task Oriented Instructional Dialogue
LE4-8314

Deliverable D2.2 — Manual
November 1999

LE4-8314 TRINDI

Task Oriented Instructional Dialogue

Gothenburg University
Department of Linguistics

University of Edinburgh
Centre for Cognitive Science and Language Technology Group, Human Communica-
tion Research Centre

Universitat des Saarlandes
Department of Computational Linguistics

SRI Cambridge

Xerox Research Centre Europe

For copies of reports, updates on project activities and other TRINDI-related information,
contact:

The TRINDI Project Administrator
Department of Linguistics
Goteborg University

Box 200

S-405 30 Gothenburg, Sweden

trindi@ling.gu.se

Copies of reports and other material can also be accessed from the project’s homepage,
http://www.ling.gu.se/research/projects/trindi.

©1999, The Individual Authors

No part of this document may be reproduced or transmitted in any form, or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission from the copyright owner.

Contents

1 Introduction 9
1.1 The TRINDIKIT architecture 10
1.2 Toolkit provided functionality 13

2 TRINDIKIT Concepts 14
2.1 Imformation State Lo 14
2.2 Dialogue Moves e 14
2.3 Updaterules. e 15
2.4 Update and control algorithms o000, 15
25 Modules L 15

251 DMEmodules. 16
2.5.2 Non-DME modules 16
2.5.3 Module interfaceso 16
2.6 Resources and resource interfaceso 16
2.7 'Total Information State o o0 17
28 Flags e 17

3 Contents of the TRINDIKIT package 18

3.1 Modular structureo 18
3.2 Filestructure L 18
3.3 TRINDIKIT files e 21
3.4 Provided datatypes 21
3.4.1 Complex datatypes 22
3.4.2 Simpletypes. e e e 25
3.4.3 General conditions and operations 26

3.5 Provided moduleso 26
3.5.1 Simple text input module L. 26
3.5.2 Simple text output module, 27
3.5.3 A simple interpretation module 27
3.5.4 A simple generation moduleo 0oL 28

3.6 Accessing the Total Information State. 29
3.6.1 TIS condition syntax L. 29
3.6.2 TIS Operation syntax 31

3.7 The DME-ADL language i 32
3.8 The Control-ADL language 33
3.9 Imspecting the TIS 34
3.10 Imspecting flags Lo 34
4 How to implement a dialogue system using the TRINDIKIT 36

4.1

4.2

4.3

4.4

The system configuration file.o 0000, 36

4.1.1 Selecting datatypes and macros 36
4.1.2 Selecting modules Lo 37
4.1.3 Specifying the DME o000 37
4.1.4 Loading and selecting resources 38
4.1.5 Filesearch paths, 38
4.1.6 Loading the TRINDIKIT 39
4.1.7 The run predicate Lo 39
Specifying Total Information State 39
4.2.1 Specifying information state type 40
4.2.2 Specifying module interface variables 40
4.2.3 Resource interface definitions o000, 41
4.24 Macros e 42
Building DME modules Lo, 42
4.3.1 Module Declaration oo 43
4.3.2 Importing predicates from other modules 43
433 Loadruleso 43
4.3.4 Load the DME-ADL interpreter 43
4.3.5 The update algorithm 0 Lo 44
4.3.6 Module call predicate oL 44
4.3.7 Writingupdaterules 44
Building a Control moduleo 0 0oL 45

4.5

4.6

4.7

4.8

4.4.1 Module declaration 46

4.4.2 Importing predicates from other modules 46
4.4.3 TIS access restrictionso 46
4.4.4 Load the Control-ADL interpreter 46
4.4.5 'The control algorithmo Lo 46
Building non-DME modules 0 0oL, 48
4.5.1 Access restrictions for non-DME modules 48
Connecting resources to the TIS 48
Adding new datatypes 49
4.7.1 Complex datatypes 49
4.7.2 Simpletypes.o 50
User flags o e 50

Chapter 1

Introduction

This is a manual for the TRINDIKIT, a toolkit for building and experimenting with dia-
logue move engines and information states, that has been developed in the TRINDI project.
We use the term information state to mean, roughly, the information stored internally by
an agent, in this case a dialogue system. A dialogue move engine updates the informa-
tion state on the basis of observed dialogue moves and selects appropriate moves to be
performed.

Apart from proposing a general system architecture, the TRINDIKIT also specifies formats
for defining information states, update rules dialogue moves and associated algorithms. It
further provides a set of tools for experimenting with different formalizations of imple-
mentations of information states, rules, and algorithms. To build a dialogue move engine,
one needs to provide definitions of update rules, moves and algorithms, as well as the in-
ternal structure of the information state. One may also add inference engines, planners,
plan recognizers, dialogue grammars, dialogue game automata etc.. More information on
information states and related concepts is available in Traum et al. (1999).

The DME forms the core of a complete dialogue system. Simple interpretation, generation,
input and output modules are also provided by the TRINDIKIT, to simulate a end-to-end
dialogue system. Examples of theories and systems implemented using the TRINDIKIT
can be found in Traum et al. (1999) and Bos et al. (1999).

Note that TRINDI deliverable D2.2 is the actual TRINDIKIT implementation!, which
is available from the TRINDI web page www.ling.gu.se/research/projects/trindi/.
This manual is a supplementary documentation to the actual deliverable. It should be
noted that the TRINDIKIT, including the manual, is under development. Up-to-date

!The current TRINDIKIT implementation is written in SICSTUS prolog.

versions of the TRINDIKIT and manual are available from the TRINDI web page.

1.1 The TRINDIKIT architecture

In this section, we give an overview of the TRINDIKIT architecture, mention some central
concepts, and discuss optional vs. obligatory components as well as toolkit provided vs.
user provided functionality.

R - Control S T
T - T V”"'*-—\\V "\\‘_\
T = -~ o i \ - . e ST
e e B v S \

L : 3 . . e
Rl o RGN Dialogue Move Engine (DME) ¢ At NN
' Input : " Interpretation | i | / . ! Generation | , | Output !
| | | | B (update) ' ‘,’ | | [|
I | I I ___ ! % | I v I
| ! I ! I . VoA I ! (W !
- ; ! o (upate), 1! (update) | ! Y —
: T B : z 1 : Y :
\ ! \ ! .) "‘\ 1 | ! h !
S S=== N S B e i At i T i
- R L Lo . , -
S~ S , ’ P Pie /
*\\ N \\\ ’ // //’ /’,,’ ,/
BRI i - Y S
T T T T ; T T T T T T . \
Lot b -t . o ! !
I I I
B-UE-TENE T A T | |
p = I =k \%\ =y =k i |
Lo B P [l Lol R |
‘w: :gl I S: -y < | .
- TR el il [!
L= - ! !
\ |
0
'_ .
IS: (Information State Type)
database ‘*-—_
dialogue grammar °. o
. A} A
plan library o ‘ * ® Resource Interface
-7 e 1
- P '
U Pk K I Information State Interface
(/_”T\:) 7 ::/\:) (/”7/\;} .
[[[| :)
. L __ 1 Optiona component
| | | | | |
| | | | | |
L | L | L | |:| Obligatory component

Figure 1.1: The TRINDIKIT architecture

10

The general architecture we are assuming is shown in Figure 1.1.

The component of the architecture are the

e the Total Information State (TIS), consisting of

— the Information State (IS)
— module interface variables

— resource interfaces
e the Dialogue Move Engine, consisting of one or more DME modules
e non-DME modules

e a control module, wiring together the other modules, either in sequence or through
some asynchronous mechanism.

Some of the components are obligatory, and others are optional or user-defined. To build
a system, one must minimally supply

e An information state type.
e At least one DME module, consisting of TIS update rules and an algorithm.

e A control module, operating according to a control algorithm

Any useful system is also likely to need

e Additional modules, e.g. for getting input from the user, interpreting this input,
generating system utterances, and providing output for the user.

e Interface variables for these modules, which are designated parts of the TIS where
the modules are allowed to read and write according to their associated TIS access
restrictions.

e Resources such as databases, plan libraries etc. The resources are accessible from
the modules through the resource interfaces, which define applicable conditions and
(optionally) operations on the resource.

One possible setup of non-DME modules, indicated by dashed lines in figure 1.1, is the
following:

11

e Input: Receives input utterances from the user and stores it in the input interface
variable.

e Interpretation: Takes utterances (stored in input) and gives interpretations in terms
of dialogue moves (including semantic content). The interpretation is stored in the
interface variable latest_moves.

e Generation: Generates output moves based on the contents of next_moves and passes
these on to the output interface variable.

e Output: Produces system utterances based on the contents of the output variable

Corresponding to these modules, one could have the following interface variables:

e input: the input utterance(s)

e latest_moves: list of moves currently under consideration
e latest_speaker: the speaker of the latest move

e next_moves: list of moves for system’s next turn

e output: the system’s output utterance(s)

e program state: current state of the DME (used for control)

A possible setup of the DME is to divide it into two modules, one for updating the TIS
based on the latest move and one for selecting the next move:

e Update: Applies update rules to the DIS according to the update engine algorithm
(also specified in SIS)

e Selection: Selects dialogue move(s) using the selection rules and the move selection
algorithm. The resulting moves are stored in next_moves.

Note that the illustrated module setup is just an example. The TRINDIKIT provides
methods for defining any number of both DME-modules and non-DME modules, with
associated interface variables.

12

1.2 Toolkit provided functionality
Apart from the general architecture defined above, the TRINDIKIT provides

e definitions of datatypes, for use in TIS variable definitions

e a language and format for specifying TIS update rules

e methods for accessing the TIS

e an algorithm definition language for DME and control modules
e default modules for input, interpretation, generation and output
e methods for converting items from one type to another

e methods for visually inspecting the TIS

e debugging facilities

13

Chapter 2

TRINDIKIT Concepts

In this chapter, we review the central concepts in the TRINDIKIT architecture and relate
them to each other.

2.1 Information State
The IS has the following basic characteristics:

e It is an object of a certain type

e The type of the IS determines the conditions and operations which can be applied
to it

e It can be accessed (read from and written to) by modules

2.2 Dialogue Moves

Dialogue moves are moves (or acts, or actions) associated with utterances. A single ut-
terance may be associated with several moves, simultaneous or ordered in time. In the
TRINDI approach, dialogue moves are also related to information state updates.

14

2.3 Update rules

Update rules are rules for updating the information state (or more generally, the TIS).
They consist of a rule name, a precondition list, and an effect list. The preconditions are
conditions on the TIS, and the effects are operations on the TIS. If the preconditions of a
rule are true for the TIS, then the effects of that rule can be applied to the TIS. Rule also
have a class. Rules may be ordered in class hierarchies.

2.4 Update and control algorithms

Update algorithms are algorithms for updating the TIS. They include conditions on the
TIS and calls to apply (classes of) update rules. Update algorithms are executed by DME
modules, or other modules implemented using the TRINIDKIT facilities for specifying
update rules and algorithms.

Control algorithms are similar to update algorithms, but instead of calling rule classes they
call modules. The control algorithm is executed by the control module.

2.5 Modules

Modules have the following basic characteristics:

e they are processes
e they can read and/or write to the total information state

e they are called by the control module!, and can thus be run asynchronously with
other modules

e they can not be called from update rules

LOf course, this does not apply to the control module itself.

15

2.5.1 DME modules

DME modules are responsible for updating the information state based on observed moves,
and for selecting moves. They consist of a set of update rules and an algorithm. All DME
modules have access to the whole TIS.

A note on the difference between modules and resources: Resources are declarative knowl-
edge sources, external to the information state, which are used in update rules and algo-
rithms. Modules, on the other hand, are processes which interact with the information
state and are called upon by the control module. Of course, there is a procedural element
to all kinds of information search, which means among other things that one must be
careful not to engage in extensive time-consuming searches. Conversely, modules can be
defined declaratively and thus have a declarative element. There is no sharp distinction
dictating the choice between resource or module; for example, it is possible to have the
parser be a resource. However, it is important to consider the consequences of choosing to
see something as a resource or module.

2.5.2 Non-DME modules

Non-DME modules have limited access to the TIS; each such module must explicitly de-
clare which parts of the TIS it is allowed to read and write. Non-DME modules can be
implemented in various ways, either using update rules and an algorithm or in other way,
as the user sees fit.

2.5.3 Module interfaces

Usually, non-DME modules can only access a certain number of designated TIS variables,
so-called module interface variables. The purpose of these variables is to enable non-DME
modules to interact with each other and with the DME modules. It is possible to allow
non-DME modules to access the IS, but this will significantly reduce the ability to use the
module in systems using other kinds of IS types.

2.6 Resources and resource interfaces

Resources have the following basic characteristics:

16

They are knowledge sources which can be dynamic or static

They are called from update rules vi conditions and operations

They are attached to the TIS via resource interfaces, consisting of definitions of
conditions and operations on the resource

They cannot read and write to the information state

The values of these variables are pointers to resources.

2.7 Total Information State

The Total Information State (TIS) consists of three components: the information state
variable, the module interface variables, and the resource interface variables. These vari-
ables are also called TIS variables.

2.8 Flags

The flags are static while the system is running. They can be read by all modules but
cannot be written to except by the user or in the system configuration file. There is a set
of generic TRINDIKIT flags, but the user can add additional flags. All flags have a default
value.

17

Chapter 3

Contents of the TRINDIKIT package

In this section we will give an overview of the structure of the TRINDIKIT implementation
and any system implemented within the TRINDIKIT architecture. The figures presented
here may look extremely complex and terrifying, but we hope that (1) they will make
the relation between the implementation and the general TRINDIKIT architecture visible,
and (2) they will provide a reference and overview useful for understanding the rest of this
chapter.

3.1 Modular structure

The current TRINDIKIT is implemented in SICSTUS prolog, and uses the “module”
facility which allows dividing an implementation into modules which export and import
predicates to and from other modules. Any dialogue system built using the TRINDIKIT
will have a modular structure similar to that in Figure 3.1.

Note that the prolog notion of modules has nothing to do with the TRINDIKIT notion of
modules.

3.2 File structure

Any module may consist of one or several files. In Figure 3.2 the relation between the files
of a TRINDIKIT dialogue system is shown.

18

[
]
'

checkwcondition/1
apply_opetation/1

dme_adl

ol/0

variable_of_type/2 check] cond/1 ’

interface variable of_type/2 check_congitio

resource~variable of_type/2 apply_opeyation/1 apply_opergion/1

is set/1 of_typef . S L ______

error is unset/1 val/2 nil/1
error/1

condition/3
operation/4
is_type/l

resource_condition/3
~ ~resource_operation/4
i resource_type/l

’
resource_variable of_type
/

! .
1 resource_interfaces ‘
|
I A
;

’
’
’
’
’
’
——fo -

I
i (resource) !
I

\

””” - -7 \

I
1 (resource) !
I

N

I
! (resource) !

* Note that DME modules can have any name; "update” is an example
** There may be any range of DME-external modules; thisis an example

*** The DME consists of one or several DME module, or "update modules'.
It isnot a separate file.

infostate ‘ module_interfaces

—= useasmodule
[] ovligatory & Provided

|| obligatory; User Defined / Provided

1]
|

Optiona & Provided

|- = =
| |
Lo

Optional; User Defined / Provided

Figure 3.1: The TRINIDKIT module structure

19

portray/1 /@

trindikit.pl

system configuration
file

e e ' input_....pl**, }' interpret_...pl** | ey
! print_stack.pl | e S ’ e
- =
ot ' checkwcondition/1 : -SI :
i recodp g

L 2o

variable_of_type/2
interface_variable of_type/2
surce variable of_type/2

contf

. check] ¢

ol/0

s Qutput/0

~

P e R

r
,output_....pl** !

apply-Operation/1

tispl

condition/3

operation/4 ,
is_type/l L,/
resource_condition/3 .
~ ~resource_operation/4 7
. T A iss Tesource_type/1 e
: record pl \: standard .pI : N resource_variablé of_type infostate \variable_of_type/2
N ' N ’ init_infostate/1
hbeceemfpel adeeeee! Daccemeaa N N , ’
Tl Vv gkl v " /
v setpl |} stackpl v | N .
| . -
EEEEEE 4 Emmmmme- it ! ! resource_interfaces.pl | ‘ infostate.pl ‘ ‘ module_interfaces.pl
S S
_ /
- / N
- K \ —— load
- \

i o ,/ N —= useasmodule

1 (resource) ! / TN

| ————ra 1 . .

********** | (resource) ! ! (resource) I:I Obligatory & Provided

| [

* Note that DME modules can have any name; "update” is an example
** There may be any range of DME-external modules; thisis an example

*** The DME consists of one or several DME module, or "update modules'.
Itisnot aseparatefile.

|| onligatory; User Defined / Provided

1+ Optional & Provided

]
]
[SR

| Optional; User Defined / Provided

Figure 3.2: The TRINDIKIT file structure

20

3.3 TRINDIKIT files

The TRINDIKIT is implemented by a number of prolog files, marked as “provided” in
Figure 3.2.

e trindikit.pl: Loads the toolkit according to the specifications in the system con-
figuration file (see Section 4.1)

e tis.pl: Implements the application of operations and conditions on the TIS; see
Section 3.6.

e datatypes.pl: Defines general conditions and operations (see Section 3.4); Loads
datatypes according to the system configuration file (see Section 4.1).

° Datatypes/{drs, record, set, stack, stackset, queue, assocSet}.plz Pro-
vided datatypes!. See Section 3.4.

e Modules/{input_simpletext, interpret_inputform, generate_outputform,
output_simpletext}.pl: Provided modules; see Section 3.5

e dme_adl.pl: Interpreter for the DME-ADL language; see Section 3.7.
e control_adl.pl: Interpreter for the Control-ADL language; see Section 3.8.

e flags.pl: Implementation of system flags and commands for checking and setting
them; see Section 3.10.

e inoutput.pl: Basic input/output predicates (as for now, only to terminal and to
shell scripts); facilities for inspecting TIS na flags, and for printing rules.

e error.pl: Error reporting functionality

3.4 Provided datatypes

The TRINDIKIT provides a number of datatypes definitions, to which the user may add
his/her own. We currently make a distinction between complex and simple datatypes,
where the definitions of the former include conditions and operations on objects of the
datatype but the latter does not. Often, the type definition for complex types is inductive
while those for simple types are non-inductive.

INot all are completely implemented yet, e.g. the DRS library.

21

3.4.1 Complex datatypes

Complex datatypes? are used extensively in the TRINDI DME architecture, most impor-
tantly for modeling the TIS.

The definition of a complex datatype includes of the following:

1. Name
2. Operations

3. Conditions

There should also be a definition of what it means to be an object of the type. This
definition can be used by a typechecker.?

To make use of a type definition, a type declaration is needed which declares a variable to
be of a certain type. Resources (including the dynamic information state) are introduced
by giving a type definition and declaring a variable to be of that type. When a resource
is declared to be of type T, this means that all the conditions and operations available to
that type will be available for the resource.

So far, only a limited number of complex datatypes have been defined. Also, the definitions
are incomplete in the sense that they don’t specify all possible operations and conditions;
for example, the operation of forming the union of two sets. Consult the implementation
documentation (the README file) for details. Below is a selection of datatypes® which
are either included in the TRINDIKIT or will be included in future releases. Things which
are not implemented in version 1.0 are marked with ",

Set

TYPE: SET(T)
DESC: unordered set of elements of type T

2An alternative term is “datastructure”.

3Typechecking is not yet fully implemented.

4 Actually, they are datatype schematas since the type of the included objects is not determined. For
example, SET(T) is a datatype schemata but SET(MOVE) is a datatype.

22

in(E) : E is unifiable with an element in the set
member(E) : same as in(E)
strict_member(E) : E is identical to an element in the set
empty : the set is empty
(add(F) : add FE to the set unless it’s already a member
del(E) : delete an element unifiable with E from the set
*del_all(E) : delete all elements unifiable with E from the set
*del_strict(E) : delete the element identical with E from the set
replace(E1,E2) : replace an element unifiable with E1 with E2;
equivalent to del(E1) if E2 is already in the set
*replace_all(E1,E2) : replace all elements unifiable with E1 with E2;
OP: < equivalent to del_all(E1) if E2 is already in the
set
*replace_strict(F1,E2) : replace the elements identical to E1 with E2;
equivalent to del_strict(E1) if E2 is already in
the set
forall(El,NewEl) : produce a set resulting from replacing all elements
unifying with El with NewEl
extend(S) : extend the set with another set S

COND:

Stack

TYPE: STACK(T)
DESC: simple stack of elements of type T
fst(E) : E is the topmost element on the stack
empty : the stack is empty
push(E) : pushes E on top of the stack
OP:
pop : pops the topmost element off the stack

COND: {

Stackset

TYPE: STACKSET(T')

DESC: open stack of elements of type T - allows member check
fst(E) : FE is the topmost element on the stack
in(E) : E is unifiable with an element in the stack
COND: member(E) : same as in(E)
strict_member(E) : FE is identical to an element in the stackset
empty : the stack is empty
push(E) : pushes E on top of the stack
pop : pops the topmost element off the stack
OP: del(E) : delete an element unifiable with E from the set
*del_all(E) : delete all elements unifiable with E from the set
*del_strict(E) : delete the element identical with E from the set

23

Record

TYPE: RECORD(RT)
DESC: record of type RT
C#trec(Path, Argi,...,Arg,) : C(Argi,...,Arg,) holds of the object which is
COND: the value of path Path
valRecInSetInRec(Pathl,Path2,Val2,Path3,Val3) :
(O#rec(Path, Argy,...,Argy) : applies O(Argy, ..., Arg,) to the object which is
the value of path Path
copyRec(Pathl,Path2) : copies the value of Pathl to Path2
addFieldRec(Label,Val) : add a field Label = Val to the record
clearAllFieldsRec(P) :
op: ¢ recursiveClearAllFieldsRec(P) :
peRec(Path,Paths) :
peRec(Rec) :
extendRec(PathA,PathB) :
setRecInSetInRec(Pathl,Path2,Val2,Path3,Val3) :
setRecinFstRecInStack(Pathl,Path2,Val) :

Queue

TYPE: QUEUE

DESC: LIFO queue

conND: { empty : the queue is empty
push(El) : push El onto the queue

last(El) :
OP: extend(Q) : extend the queue with another queue @) by adjoin-
ing the first element of () with the last element of
the queue

Association set

TYPE: ASSOCSET(EIT,AT)

DESC: association set®
assoc(El,A) : El is associated with A

COND: in(El,A) : the pair (El,A) is unifiable with an pair in the set
empty : the set is empty

5An association set is a set of pairs of type (EIT,AT) where the first element of each pair is said to be
associated with the second element of the pair.

24

add(El,A) : add the pair (El,A) to the set unless it’s already

a member
op: del(El,A) : delete an element unifiable with (El,A) from the
) set
extend(S) : extend the association set with another associa-
tion set S
Counter

TYPE: COUNTER
DESC: counter

COND: {

increase : increase the counter by 1
OP:

decrease : decrease the counter by 1

3.4.2 Simple types

For the simple types listed below, type definitions are provided by the toolkit. Type
declarations are provided for all these types except MOVE; the designer must provide this
declaration, thus specifying the set of dialogue moves available for interpretation, selection
and generation. For types which have a small set of objects, these objects are listed.

There are no special conditions or operations for objects of simple types; however, they
can be accessed through the general conditions and operations which apply to objects of
all types.

TYPE: MOVE
DESC: dialogue moves
oBJECTS: { (user defined)

TYPE: PARTICIPANT
DESC: dialogue participant markers
usr

sys

OBJECTS:

TYPE: PROGRAM_STATE
DESC: the state of the system
run

OBJECTS: { .
quit

25

3.4.3 General conditions and operations

Apart from the type-specific conditions and operations, there are some conditions and
operations which apply to all types, including simple types.

TYPE: (ANY TYPE T)
DESC: conditions and operation which apply to objects of all types
COND: unify (Obj) : the object unifies with Obj

' equal(Obj) : the object is identical to Obj

op: {

TYPE: (ANY TYPE T)

DESC: conditions and operation which apply to variables of all types
unify (Obj) : the value of the variable unifies with Obj
equal(Obj) : the value of the variable is identical to Obj

COND: val(Obj) : the value of the variable is Obj

is_set : the variable is set (it is not nil)
is_unset : the variable is not set (it is nil)

set(Obj) : the variable is set to Obj

unset : the variable is unset (set to nil)

clear : the value of the variable is set to be an empty

object of type T

OP:

A datatype definition may contain a specification of what the empty object of that type
is. If there is no such specification, the empty object is assumed to be nil.

3.5 Provided modules

3.5.1 Simple text input module

The input module simply Modules/input_simpletext.pl reads a string (until new-line)
from the keyboard, preceded by the printing of an input prompt. The system variable
input is then set to be the value read.

(1) input :-
check_condition(input $= _),
flag(input_prompt, Prompt),
prompt (01dPrompt, Prompt),
read_string(Str),
prompt(_, 0l1dPrompt),
apply_operation(set(input, Str)).

26

3.5.2 Simple text output module

The output module Modules/output_simpletext.pl takes the string in the system vari-
able output and prints it on the computer screen, preceeded by the printing of an output
prompt. The contents of the output variable is then deleted. The module also moves the
contents of the system variable next_moves to the system variable latest_moves. Finally it
sets the system variable latest_speaker to be the system.

(2) output :-
check_condition(is_set(output)),
check_condition(output $= Str),
flag(output_prompt, Prompt),
name(StrN, Str),
write(Prompt), print(StrN), nl,
check_condition(next_moves $= Moves),
apply_operation(unset(next_moves)),
apply_operation(set(latest_moves, Moves)),
apply_operation(set(latest_speaker, sys)),
apply_operation(unset(output)).

3.5.3 A simple interpretation module

The interpretation module Modules/interpret_inputform.pl takes a string of text, turns
it into a sequence of words (a “sentence”) and produces a set of moves. The “grammar”
consists of pairings between lists whose elements are words or semantically constrained
variables. Semantic constraints are implemented by a set of semantic categories (location,
month, task, means_of transport etc.) and synonomy sets. A synonomy set is a set of
word which all are regarded as having the same meaning.

The simplest kind of lexical entry is one without variables. For example, the word “hello”
is assumed to realise a greet move.:

input_form([hello], greet).

The following rule says that a phrase consisting of the word “to” followed by a phrase S
consitutes an answer move with content to=C' provided that the lexical semantics of S is
C, and C' is a location. The lexical semantics of a word is implemented by a coupling
between a synset and a meaning; the lexical semantics of S is C, provided that S is a

member of a synonomy set of words with the meaning C.

input_form([to|S], answer(to=C)):-lexsem(S, C), location(C).

27

To put it simply, the parser tries to divide the sentence into a sequence of phrases (found
in the lexicon), covering as many words as possible.

(3) /-

wordlist2moves([, []).

wordlist2moves(Sentence, [Move|Moves]) :-
append(Phrase, Rest, Sentence),
condition(lexicon: input_form(Phrase,Move)),
wordlist2moves(Rest, Moves).

wordlist2moves([Word|Sentence], Moves) :-
\+ condition(lexicon: input_form([Word]l,_)),
wordlist2moves(Sentence, Moves).

First, if the sentence is empty, there are no moves. Second, if Sentence begins with a
Phrase, for which there is some Move definied in the lexicon, then it also tries to find the
Moves for the Rest of the Sentence. Third, if the first Word is not defined as a phrase in
the lexicon, it just skips that Word.

3.5.4 A simple generation module

The generation module Modules/generate_outputform.pl takes a sequence (list) of moves
and outputs a string. The generation grammar/lexicon is a list of pairs of move templates
and strings.

output_form(greet, "Welcome to the travel agency!").

In some cases, the move template contains some variable which is assumed to be instan-
tiated when the lexicon is consulted. The lexicon will then find a string corresponding to
the instantiated variable and insert it into the output string.

(4) output_form(answer (X" (price=X),price=Price), Str) :-
number (Price), number_chars(Price, PriceStr),
append("It will cost ", PriceStr, Strl),

append(Strl, " crowns", Str).

To realize a list of Moves, the generator looks, for each move, in the lexicon for the cor-
responding output form (as a string), and then appends all these strings together. The
output strings is appended in the same order as the moves.

28

3.6 Accessing the Total Information State

The TIS is read using the predicates check_conditions/1, whose argument is a list of
conditions on the TIS, or check_condition/1 whose argument is a single condition. It is
written to using apply_operations/1, whose argument is a list of operations on the TIS,
or apply operation/1. In the following two sections, the syntax of TIS conditions and
operations is described.

3.6.1 TIS condition syntax

Var is a TIS variable. T'erm is a prolog term.

e C (Var , Arg, , ..., Arg,)
There is a condition C, taking arguments Argsy, ... Args,, defined for the type that
Var is of.

Example: in(latest_moves,answer(dest(london))) — uses the condition in/1
defined for e.g. sets®

e C (Arg,, ..., Arg,)
Same as C' (is , Arg; , ..., Arg,). This is a shortcut for writing conditions on
the IS variable’.
Example: push#rec(shared.qud,Q) —equivalent to push#rec(is,shared.qud,Q)

e ! Cond
Cond holds; if not, report error
Example: ! in(latest_moves,answer (dest(london)))

e Cond; and Conds
Cond; and Conds both hold
Example: in(Moves, answer(A)) and lexicon::yn_answer(A)

e Cond; or Cond,
Cond; or Condsy holds
Example: (Move=answer(_,_)) or (Move=thank)

e not Cond;
Cond; does not hold
Example: not in#rec(private.plan, respond(Q))

6This condition should more properly be called contains due to the order of its arguments.

"To resolve possible ambiguities in the meaning of conditions caused by this shortcut, the condition
interpreter checks the number of arguments of the condition to see if the shortcut interpretation applies.
This requires that the condition does not have two separate definitions with differing arity of one argument.

29

e Term; = Termy
Term, and Termsy unify
Example: Move=ask(_)

e Termy \= Terms
Term, and Terms do not unify

e Term; == Terms
Term, and Terms are identical

e Termy \== Termy
Term, and Terms are not identical
Example: 01dTask \==NewTask

o Var $=Term
The value of Var unifies with Term
Example: latest_moves$=Moves

o Var $==Term
The value of Var is identical to Term
Example: latest_speaker$=sys

e result(O (Source , Arg,...Arg,) , Result)
Result is the result of applying the operation O to Source, with arguments Arg; ... Arg,.
In conditions, Result must be a prolog variable which gets instantiated.
Example: result(add(MoveSet1,Move) ,MoveSet2) — MoveSet2 is the result of
adding Move to MoveSet1

e Macro
The list of conditions corresponding macros Macro which all hold
Example: setIntegrateFlag(ask(Q), true)

o C#Type (Var, Path, Arg, ... Arg,)
C (Var, Arg; ... Arg,) holds for an object embedded in an object of type Type at
Path 8.
Example: in#trec(shared.bel, A)

e Var :: C (Arg,...Arg,)
same as C (Var , Arg,...Arg,)
Example: latest_moves :: in(answer(dest(london)))

e result(Source , Result) :: O (Arg,...Arg,)
Same as result(O (Source , Arg,...Arg,) , Result)
Example: result(MoveSetl,MoveSet2): :add(Move)

80nly works for some datatypes, e.g. records.

30

3.6.2 TIS Operation syntax

Source is either a TIS variable or a prolog term. Store is either a TIS variable or a prolog
variable.

O (Source , Arg, , ..., Arg,)

There is an operation O, taking arguments Argsi, ... Args,, defined for the type that
Source is of. The result of applying the operation to Source is stored in Source itself.
Example: add(latest_moves,answer(dest(london))) —uses the condition add/1
defined for e.g. sets

O (Arg, , ..., Arg,)

Same as O (is , Arg; , ..., Arg,). This is a shortcut for writing conditions on
the IS variable®.

Example: push#rec(shared.qud,Q) —equivalent to push#rec(is,shared.qud,Q)

result(O (Source , Arg,...Arg,) , Store)

There is an operation O defined for the type that both Source and Store are of. Store
the result of applying the operation O to Source, with arguments Arg, ... Arg,, in
Store. If Store is a TIS variable, it gets set to the result; if Store is a prolog variable,
it becomes instantiated with the result.

Example: result(add(latest_moves,Move),MoveSet2) — MoveSet2 is the result
of adding Move to the value of latest_moves

! Cond

Cond holds; if not, report error

Example: ! (database :: consultDB(Q, SharedBel, R))
Macro

Apply the list of operations corresponding to macro Macro
Example: setIntegrateFlag(ask(Q), true)

create_empty(Pseudolype, Var)

Var is instantiated with an empty object of type PseudoType, where PseudoType
is e.g. SET rather than SET(MOVE)

Example: create_empty(record, MRecO) — instantiates MRecO to record([])

Source :: O (Arg,...Arg,)
same as O (Source , Arg,...Arg,)
Example: latest moves :: add(answer(dest(london)))

9To resolve possible ambiguities in the meaning of operations caused by this shortcut, the operation
interpreter checks the number of arguments of the condition to see if the shortcut interpretation applies.
This requires that the operation does not have two separate definitions with differing arity of one argument.

31

e result(Source , Store) :: O (Arg,...Arg,)
Same as result(O (Source , Arg,...Arg,) , Store)
Example: result(latest_moves,MoveSet2) : :add (Move)

3.7 The DME-ADL language

DME-ADL (Dialogue Move Engine Algorithm Definition Language) is a language for writ-
ing algorithms for updating the TIS. Algorithms in DME-ADL are expressions of any of
the following kinds (C is a TIS condition; R, S and T are algorithms, and RC is a rule
class):

1. RC

apply an update rule of class RC; rules are tried in order
2. [Ry,...,R,]

execute Ry,..., R, in sequence

3. if C then S else T
If C is true of the TIS, execute S; otherwise, execute T’
Example: if (latest_speaker $== usr) then ([(repeat refill), (try database)
1) else store

4. while C do R
while C' is true of the TIS, execute R repeatedly

5. repeat R until C
execute R repeatedly until C is true of the TIS

6. repeat R
execute R repeatedly until it fails; report no error when it fails
Example: repeat refill

7. repeat+ R
execute R repeatedly, but at least once, until it fails; report no error when it fails

8. try R
try to execute R; if it fails, report no error

9. Ror S
Try to execute R; if it fails, report no error and execute S instead

10. test C
if C' is true of the TIS, do nothing; otherwise, halt execution of the current algorithm

32

11. SubAlg
execute subalgorithm SubAlg

Subalgorithms are declared using ==>, which is preceded by the subalgorithm name and
followed by the algorithm, as in (5).

(5) main update ==> [grounding, repeat+ (integrate or

accommodate) J.

A sample DME-ADL algorithm is shown in (6).

(6) if (latest_moves $== failed)
then (repeat refill)
else (! [grounding,
repeat+ (integrate or accommodate),
(if (latest_speaker $== usr)
then ([(repeat refill),
(try database)])
else store

3.8 The Control-ADL language

The Control-ADL language is identical to the DME-ADL language, except that it calls
modules instead of rule classes, and it can include the print_state instruction. Mod-
ules are called by a 0-ary predicate associated with the module, as specified by the
selected modules predicate in the system configuration file (see Section 4.1).

The syntax for the Control-ADL language is the same as for DME-ADL, except for the
first expression, which is replace by that in (7), and the print_state expression described
in (8).

(7) Module
Call ModulePred, where ModulePred is a 0-ary predi-
cate for running a module

(8) print_state
Print the TIS or IS, provided the value of the show_state
is all or is, respectively

33

A sample Control-ADL algorithm is shown in (9).

(9) [reset,

repeat ([select,
generate ,
output,
update,
print_state,
test(program_state $== run),
input,
interpret,
print_state,
update,
print_state

1)

3.9 Inspecting the TIS

There are a couple of predicates for inspecting the TIS from the prolog shell (the user
prolog module).

e tis/0: prints the TIS
e is/0: prints the IS
e ivs/0: prints the module interface variables

e rvs/0: prints the resource interface variables

Also, TIS variables can be set using set (+Var,+Val) and their value can be checked using
val (+Var,-Val).

3.10 Inspecting flags

To change the value of a flag, use setflag(+Flag,+Value), as in (10).

(10) setflag(access_restrictions,off).

34

The predicate flags/0 prints all flags, their current values and a short description of each

flag.

Flag Possible Values
output_prompt [\n$s> ,\n3$0>]
input_prompt [\n$s> ,\n$0>]

language [english,swedish]
domain [travel,autoroute]
typecheck [yes,no]

format [text,shell,latex,html]
show_state [all,is,no]
show_rules [yes,no]
output_stream [user]

version [web,standalone]
access_restrictions [on,off]

Current Value
\n$sS>
\n$U>
english
travel

no

text

all

yes

user
standalone
on

35

Description
The output prompt
The input prompt
Language
Domain
Type checking
The output format
Show the information state variables
Show the update/select rules
The output stream
Demo type
Restrictions on module access to TIS

Chapter 4

How to implement a dialogue system
using the TRINDIKIT

In this chapter, we will try to show how one goes about building a dialogue system using
the TRINDIKIT. Of course, building a dialogue system requires a lot more than knowing
how to use the TRINDIKIT; most importantly, it requires some theory of dialogue moves,
information states and information state updates. Most examples in this chapter are from
the GoDiS system. A template system mySystem is included in the TRINDIKIT package.

4.1 The system configuration file

The system configuration file specifies how the system is constructed. It specifies what
datatypes, modules, resources and macros are used, and defines the the predicate which
runs the system. It may also include flag settings.

In this section, we will review the contents of the configuration file. For a sample config-
uration file, see GoDiS/godis.pl. A template configuration file mySystem/ mySystem.pl
is also available.

4.1.1 Selecting datatypes and macros

Datatypes are selected using selected_datatypes/1, where the argument is a list of
datatypes to be loaded. Each item DataType in the list corresponds to a file DataType.pl

36

in the search path.

(11) (in system configuration file:)
selected datatypes([standard, record, set, stack,

stackset, assocSet, godis_datatypes]).

Optionally, macros may be used to access the TIS. Macros are selected by defining the
predicate selected macro_files/1, whose argument is a list of files in the search path
which contain macro definitions.

(12) (in system configuration file:)

selected macro file(godis macros).

4.1.2 Selecting modules

Modules are selected using selected modules/1, where the argument is a list of TRINDIKIT
modules to be loaded. Each module spec has the form Predicate: FileName, where Pred-
icate is the 0O-ary predicate used to call the module, and FileName.pl is the a file in the
search path containing the module specification.

(13) (in system configuration file:)

selected_modules([control: control,
input : input_simpletext,
interpret : interpret_simplel,
update : update,
select : select,
generate : generate_simplel,
output : output_simpletext,
reset : reset

D.

4.1.3 Specifying the DME

The DME modules are specified using dme_modules/1, whose argument is the list of DME
modules. These modules have unlimited acccess to the TIS.

(14) (in system configuration file:)

dme_modules ([update, select]).

37

4.1.4 Loading and selecting resources

The predicate load_resources/1 is called to load the resources that should available for
hookup to the TIS. Its argument is a list of resource filenames, as in (15),

(15) (in system configuration file:)

:- load_resources([lexicon_travel_english,
lexicon_travel_swedish, lexicon_autoroue_english, domain_travel,
domain_autoroute, database_travel, database_autoroute]).

The resources are selected by setting the resource variables to the appropriate values. Each
resource R corresponds to a file F'.pl which defines a prolog module F'. The only difference
between R and F is that each “” in R is replaced by a “” in F'.

For example, assume we have three resource variables lexicon, database and domain, and
three resources lexicon travel_english, database_travel and domain travel, respec-
tively. The predicate defined in (16) will select these resources by setting the resource
variables to the appropriate values.

(16) (in system configuration file:)

set_resource_variables:-
set(lexicon, lexicon-travel-english),
set(database, database-travel),
set(domain, domain-travel).

The resource interface variables are part of the TIS and can thus change values during
system runtime.

4.1.5 File search paths

It must also specify the file search path where the TRINDIKIT and the system itself is
found. Currently, this is done using using the assertz/1 predicate.

I This is done for easier processing of the resource filename in prolog.

38

(17) (in system configuration file:)

:- assertz(user:file_search_path(home, *$HOME’)).

:- assertz(user:library_directory(home(’<trindikitpath>’))).

:— assertz(user:library_directory(home(’<trindikitpath>/Datatypes’))).
:- assertz(user:library_directory(home(’<trindikitpath>/Modules’))).
:- assertz(user:library_directory(home(’<systempath>’))).

:- assertz(user:library_directory(home(’<systempath>/Datatypes’))).

:- assertz(user:library_directory(home(’<systempath>/Modules’))).

4.1.6 Loading the TRINDIKIT

The configuration file must also contain the line in (18). This line must come after the
abovementioned definitions.

(18) (in system configuration file:)

:- ensure_ loaded(library(trindikit)).

4.1.7 The run predicate

In its simplest form, the run predicate simply calls the control module. This requires that
all resources variables have been set. However, one may want to set variables and flags in
runtime before calling the control module.

4.2 Specifying Total Information State

The Total Information State (TIS) consists of the Information State (IS) variable, module
interface variables and resource interface variables. It is accessed using conditions and
operations. The TIS is specified by giving type declarations for the TIS variables, thereby
specifying which conditions and operations are available.

Type declarations state that a TIS variable has a certain type. Objects are possible values

of a variable. If a variable has type T it can take as values objects of type T'. The fact
that an object has a certain type is specified using of _type/2.

39

4.2.1 Specifying information state type

The user-defined component is_type, implemented in the file is_type.pl exports the
predicate infostate_variable_of_type/2 to the TIS. This predicate declares the type of
the IS variable.

(19) (in is_type.pl:)

:- module(is_type, [infostate_variable_of_type/2]).

infostate_variable_of_type(is, ISType) :-—

ISType = record([private:Private,
shared:Shared]),

LM = record([speaker:speaker,

moves:assocSet (dmoverec)]),

Shared = record([bel:set(proposition),

qud:stackset(question),
Im:ILM 1),

Private = record([agenda:stack(action),
plan:stackset(action),
bel:set(proposition),
tmp:Shared]).

It is in principle possible to have more than one infostate variable. If there is only one and
its name is is, it is possible to use the shorthand format for conditions and operations,
where the is can be left out.

4.2.2 Specifying module interface variables

The user-defined component module_interfaces, implemented in the file module_interfaces.pl
exports the predicate interface_variable_of_type/2 to the TIS. This predicate declares
the type of the interface variables.

(20) (in module_interfaces.pl:)

:- module(interface_variables, [interface_variable_of_type/2]).

interface_variable_of_type(input, string).
interface_variable_of_type(output, string).
interface_variable_of_type(latest_speaker, speaker).
interface_variable_of_type(latest_moves, set(move)).
interface_variable_of_type(next_moves, set(move)).
interface_variable_of_type(program_state, program_state).

40

4.2.3 Resource interface definitions

The user-defined component resource_interfaces, implemented in the file
resource_interfaces.pl exports the predicate interface_variable_of_type/2 to the
TIS. This predicate declares the type of the resource variables. It also exports the pred-
icates resource_condition/3, resource_operation/4 and is_resource_type/2 to the
datatypes component.

Each resource is accessed through a variable of a datatype with associated conditions and
(in some cases) operations. There may be several objects of each type, corresponding to
instantiations of the resource. As an example, the interface definition for the GoDiS lexicon
is shown in (21).

(21) (in resource_interfaces.pl:)

:— module(resource_interfaces, [
resourCe_variable_of_type/2,
is_resource_type/1,
resource_condition/2,
resource_operation/2

D.
is_resource_type(lexicon).
of _type(lexicon-travel-english, lexicon).
of _type(lexicon-autoroute-english, lexicon).
of _type(lexicon-travel-swedish, lexicon).

resource_variable_of_type(lexicon, lexicon).

resource_condition(lexicon, input_form(Phrase, Move), Lexicon) :-
Lexicon : input_form(Phrase, Move).

resource_condition(lexicon, output_form(Phrase, Move), Lexicon) :-
Lexicon : output_form(Phrase, Move).

resource_condition(lexicon, yn_answer (A), Lexicon) :-
Lexicon : yn_answer(A).

Here, the lexicon variable has type lexicon (perhaps somewhat confusing) and there are
two objects of the lexicon type: travel-swedish and travel-english, corresponding
to the swedish and english travel domain lexicons, respectively. To select a lexicon, the
lexicon variable is set to the appropriate value.

Resource conditions and operations check the current value of the interface variable in
question, and passes the condition/operation on the selected resource. This enables dy-

41

namic switching between resources during dialogue, e.g. to move to a new domain or
change language.

Technically, this is implemented using prolog modules. Each resource object is a module
(stored in a file with the same name as the module, which is also the name of the object).

Depending on the value of the resource variable, the resource interface inspects different
prolog modules, i.e. different resource objects.

4.2.4 Macros

Macros are defined by associating a macro with a list of TIS conditions or a list of TIS
operations. To specify a condition macro, macro_cond/2 is used; for operation macros use
macro_op/2. A sample precondition macro is shown in (22).

(22) (in macro file:)

macro_cond(movesInRec(Path, Moves),
[valRec(Path, MoveRecs),
result (
forall(MoveRecs, record([move=Move|_]), Move),
Moves)

1).

To specify which file contains the macros, use selected_macro_file/1, as in (23).

(23) (in system configuration file:)

selected macro file(godis macros).

4.3 Building DME modules

A DME module consists of a set of rules and and algorithm. The algorithm can either
use DME-ADL or be written in prolog. If it uses the DME-ADL, the interpreter must be
imported into the DME module. DME modules have unlimited access to the TIS.

A DME module consists of the following parts:

e 3 module declaration

42

importation of predicates from other modules

loading of rules

(optionally) loading of the DME-ADL interpreter

the DME algorithm itself

the module call predicate

4.3.1 Module Declaration

The module is declared as a prolog module which exports the module call predicate (see
Section 4.3.6).

(24) :- module(update, [update/0]).

4.3.2 Importing predicates from other modules

Usually, at least the predicates in (25) must be imported into the control module.

(25) :— use_module(library(tis), [check_condition/1,check_conditions/1,
apply_operations/1, apply_operation/1]).
:- use_module(library(inoutput), [print_rule/1]).
:- use_module(library(error), [error/1]).

4.3.3 Load rules

The rules are loaded using :- ensure_loaded(library(RuleFile)), where RuleF'ile is
the file containing the rule definitions for the module in question. An example is seen in
(26).

(26) :- ensure_loaded(library(update_rules)).

4.3.4 Load the DME-ADL interpreter

(27) :— ensure_loaded(library(dme_adl)).

43

4.3.5 The update algorithm

A sample algorithm which uses DME-ADL is shown in (28).

(28) update_algorithm(
if (latest_moves $== failed)
then (repeat refill)
else
(! [grounding,
repeat+ (integrate or accommodate),
(if (latest_speaker $== usr)
then ([(repeat refill),
(try database)])
else store

N~

4.3.6 Module call predicate

The module call predicate is simple the predicate used to call the module. It is a 0-ary
predicate which is exported by the module. To use the DME-ADL interpreter, pass the
specified algorithm as the argument to adl_exec/1.

(29) update :-
update_algorithm(Algorithm),
adl_exec(Algorithm).

4.3.7 Writing update rules

Each DME module requires a file (prolog module) with update rules. This file should define
a prolog module which exports the predicates rule/3 and rule_class/2. To be able to
handle the TIS condition and operation syntax, it also needs to define some operators as
seen in (30).

(30) :- module(update_rules, [rule/3, rule_class/2]).

:- op(800, fx, [’!’, not]).
:- op(850, xfx, [’$=’, ’$==’, and, or]).

The syntax for update rule definitions is shown in (31).

44

(31) rule(RuleName, PrecondList, EffectsList) of_class(
RuleName, RuleClass)

Here, PrecondList is a list of TIS conditions (Section 3.6.1) and EffectsList is a list of
TIS operations (Section 3.6.2). The RuleClass may be used in defining DME algorithms
(Section 3.7.

A sample update rule definition is shown in (32).

(32) urule(integrateUserQuestion,

integrate,

[val#rec(shared”1lm”speaker, usr),
moveInRec(shared"1m"moves, ask(Q)),
valIntegrateFlag(ask(Q), false),
not in#rec(private~plan, respond(Q))

]’

[push#rec(shared"qud, Q),
push#rec(private“agenda, respond(Q)),
setIntegrateFlag(ask(Q), true)

]

).

of_class(integrateUserQuestion, integrate)

4.4 Building a Control module

The control module determines the order in which the other modules are called?. It can
inspect specified parts of the TTS. The control module must include specifications of access
restrictions, as for other non-DME modules (see Section 4.5.1).

A control module consists of the following parts:

a module declaration

importation of predicates from other modules

specification of TIS access restrictions

(optionally) loading of the Control-ADL interpreter

the control algorithm itself

2Tn the current version, it is not possible to run modules asynchronously; however, we intend to include
this facility in a future version.

45

4.4.1 Module declaration

(33) :— module(control, [control/0]).

4.4.2 Importing predicates from other modules

Usually, at least the predicates in (34) must be imported into the control module.

(34) :- use_module(library(flags), [flag/2]).
:- use_module(library(tis), [check_condition/1]).
:- use_module(library(error), [error/1]).
:- use_module(library(inoutput), [print_state/0]).

4.4.3 TIS access restrictions

The control module has limited access to the TIS. The arguments of the predicates read_access/1
and write_access/1 are lists of TIS variables that the module is allowed to read from and
write to, respectively.

For example, if the input module contains the lines in nexteg, this module can only read
the program_state interface variable.

(35) read_access([program_state]).
write_access([]).

4.4.4 Load the Control-ADL interpreter

(36) :- ensure_loaded(library(control_adl)).

4.4.5 The control algorithm

A sample control algorithm which uses Control-ADL is shown in (37).

46

(37) control_algorithm([reset,

repeat ([select,
generate ,
output,
update,
print_state,
test(program_state $== run),
input,
interpret,
update,
print_state

1)
1).

If Control-ADL is not used, modules are called using the appropriate predicates as spec-
ified in the system configuration file. Conditions on the TIS are implemented using the
check condition/1 predicate, whose argument is a TIS condition. The algorithm in (38)
works the same way as that in (37), but does not utilize Control-ADL.

(38) control :-

reset,
select,
generate,
output,
update,
print_state,
control_loop.

control_loop :-
check_condition(program_state $== run),
input,
interpret,
update,
print_state,
select,
generate,
output,
update,
print_state,
control_loop.

control_loop :-
val(program_state, quit).

47

4.5 Building non-DME modules

Non-DME modules can either use the DME-ADL interpreter, or be written in plain prolog?.
In the former case, the non-DME module is built the same way a DME module is, apart
for the fact that the non-DME modules must specify TIS access restrictions (see below,
Section 4.5.1). In the latter case, no special restrictions apply (apart from the access
restriction specification). Conditions on the TIS are checked using the check_condition/1
predicate, whose argument is a TIS condition. Operations on the TIS are applied using
apply_operation/1, whose argument is a TIS operation.

4.5.1 Access restrictions for non-DME modules

Non-DME modules have limited access to the TIS, and should preferably only be al-
lowed to read and write to dedicated interface variables. The arguments of the predicates
read_access/1 and write_access/1 are lists of TIS variables that the module is allowed
to read from and write to, respectively.

For example, if the input module contains the lines in (39), this module can read and write
only to the input variable.

(39) write_access([input]).
read_access([input]).

4.6 Connecting resources to the TIS

Resources must be connected to the TIS via a resource interface definition (see Section
4.2.3). That is, the resource interface (a prolog module) must export the predicates needed
for giving a type declaration of the corresponding resource interface variable.

The file which defines the resource must include a module declaration, as in (40). Note

that no predicates need to be exported; the resource interface accesses the resource by
“peeking” inside the resource module.

(40) :- module(lexicon_travel_english).

3The current TRINIDKIT implementation supports prolog only; future versions may support other
languages as well.

48

4.7 Adding new datatypes

Definitions of new datatypes can be implemented in any file or number of files. To use a
datatype, include the filename in the list specified by the selected datatypes/1 predicate
in the system configuration file (see Section 4.1). The TRINDIKIT will load the definitions
into the datatypes prolog module.

4.7.1 Complex datatypes

To define an complex datatype 7" one needs to declare

e That T is a type, using is_type/1. This declaration can be conditional on the type
of the elements in the complex type, e.g. is_type(set(Type)) :- is_type(Type).

e What it means to be of type T, i.e. the requirements on objects of type 7', using
of type/1. This definition may be inductive, i.e. the type of a complex type may
depend on the types of its embedded objects (see (41) for an example).

e What an empty object of the type is, using empty_object/1

e Conditions and operations on objects of type 7', using condition/3 and operation/4

As an example, the TRINDIKIT definition of a stack is shown in (41). Note that the
predicates used to define a datatype must be declared to be multifile.

49

(41) :- multifile is_type/1, of_type/2, empty_object/2, operation/4, condition/3.
is_type(stack(Type)) :- is_type(Type).

of _type(stack([]), stack(.)).

of _type(stack([0Object|Stack]), stack(Type)) :-
of_type(Object, Type),
of _type(stack(Stack), stack(Type)).

empty_object (stack(_), stack([])).

condition(stack(_), empty, stack([])).
condition(stack(_), fst(Fst), stack([Fst|_])).

operation(stack(_), push(Fst), stack(Stack), stack([Fst|Stack])).
operation(stack(_), pop, stack([_|Stack]), stack(Stack)).
operation(stack(_), extend(StackA), StackB, StackBA):-

StackA = stack(A),

StackB = stack(B),

append(B, A, BA),

StackBA = stack(BA).

4.7.2 Simple types

Simple types are defined using is_type/1 and the objects are defined using of_type/2.

(42) is_type(action).

of _type(quit, actiomn).

of _type(greet, action).

of _type(respond(Q), action) :-
of_type(Q, question).

of _type(raise(Q), action) :-
of _type(Q, question).

4.8 User flags

User flag definitions should be placed in a file called user_flags.pl, which will be au-
tomatically loaded by the TRINDIKIT. User flags are specified using two predicates:
flagValue/2 and flagInfo/3, which both must be declared to bemultifile and dynamic.
The former assigns default values to the flags, and the latter associates each flag to a list
of possible values and a free-text description of the flag. As an example, the flags specified
by GoDiS are shown in (43).

a0

(43)

(in user_flags.pl:)

:- multifile flagValue/2, flagInfo/3.
:— dynamic flagValue/2, flagInfo/3.

flagValue(output_prompt, ’\n$S> ’).
flagValue(input_prompt, ’\n$U> ’).
flagValue(language, english).
flagValue(domain, travel).

flagInfo(output_prompt, [’\\n$S> ’,’\\n$U> ’], ’The output prompt’).
flagInfo(input_prompt, [’\\n$S> ’,’\\n$U> ’], ’The input prompt’).
flagInfo(language, [english, swedish], ’Language’).

flagInfo(domain, [travel, autoroute], ’Domain’).

51

Bibliography

Bos, J., Bohlin, P., Larsson, S., Lewin, I., and Matheson, C. (1999). Dialogue dynamics in
restricted dialogue systems. Technical Report Deliverable D3.2, Trindi.

Traum, D., Bos, J., Cooper, R., Larsson, S., Lewin, 1., Matheson, C., and Poesio, M.
(1999). A model of dialogue moves and information state revision. Technical Report
Deliverable D2.1, Trindi.

52

