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SE–412 96 Göteborg, Sweden
Telephone +46 (0) 31–772 1000

Printed at Chalmers, Göteborg, Sweden, 2004



Varje varelse, varje skapelse, varje dröm som människan n̊agonsin
drömt finns här. Ni formade dem i era drömmar och fabler och i era
böcker, ni gav dem form och substans och ni trodde p̊a dem och gav
dem makt att göra det och det ända tills de fick eget liv. Och sedan
övergav ni dem.

Lundwall (1974, p. 114)
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Abstract

This thesis investigates the expressive power and parsing complexity of the
grammatical framework (gf), a formalism originally designed for display-
ing formal propositions and proofs in natural language. This is done by relating
gf with two more well-known grammar formalisms; generalized context-
free grammar (gcfg), best seen as a framework for describing various gram-
mar formalisms; and parallel multiple context-free grammar (pmcfg),
an instance of gcfg.

Since gf is a fairly new theory, some questions about expressivity and parsing
complexity have until now not been answered; and these questions are the main
focus of this thesis. The main result is that the important subclass context-free
gf is equivalent to pmcfg, which has polynomial parsing complexity, and whose
expressive power is fairly well known.

Furthermore, we give a number of tabular parsing algorithms for pmcfg with
polynomial complexity, by extending existing algorithms for context-free gram-
mars. We suggest three possible extensions of gf/pmcfg, and discuss how the
expressive power and parsing complexity are influenced. Finally, we discuss the
parsing problem for unrestricted gf grammars, which is undecidable in gen-
eral. We nevertheless describe a procedure for parsing grammars containing
higher-order functions and dependent types.

Keywords: Grammatical Framework, generalized context-free grammar, multi-
ple context-free grammar, context-free rewriting systems, type theory, expressive
power, abstract syntax, linearization, parsing
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Notations

This is a list of the notations that are used in this thesis. Note that a sym-
bol/notation can occur in several places in this list if it is used with different
meanings.

N the set of natural numbers

Nn the finite set { 0, . . . , n− 1 }
i, j, k, n, m natural numbers

G a grammar

Σ a set of terminals

C a set of categories

A, B categories and types

C a basic category

S the starting category of a grammar

F a set of function symbols

f, g function symbols

a, b constants (functions without arguments)
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R a set of rules

R a grammar rule

δ an arity (the number of arguments of a rule)

T a set of trees

t an abstract term; a tree

C a chart

θ a chart item

L a language

s a string

w the input string

T a linearization type

φ, ψ linearizations

α, β, γ sequences in linearization rules

P a parameter type

p a parameter; a parameter pattern

π a parameter record

r, s record labels

σ a path (sequence of labels and parameters)

Σ a set of labels or paths

ρ a range

Γ a record (or a general datastructure) of ranges

σ a substitution

π a projection

θ a permutation
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In this thesis we refer to many different grammar formalisms, and use abbrevi-
ations whenever possible; the most common are listed below.

gf Grammatical Framework

cf -gf Context-free gf

cfg Context-free grammar

gcfg Generalized cfg

mcfg Multiple cfg

pmcfg Parallel mcfg

lmcfg Linear mcfg

lcfrs Linear context-free rewriting system

lmg Literal movement grammar

s-lmg Simple lmg

rcg Range concatenation grammar

poms-cfg Partially ordered multiset cfg

hg Head grammar

tag Tree adjoining grammar

(l)ig (Linear) indexed grammar

(c)cg (Combinatory) categorial grammar

hpsg Head-driven phrase structure grammar

lfg Lexical functional grammar
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Chapter 1

Introduction

This thesis investigates the expressive power and parsing complexity of the Gram-

matical Framework (GF; Ranta, 2004a), a formalism originally designed for display-
ing formal propositions and proofs in natural language. This is done by relating GF

with two more well-known grammar formalisms; generalized context-free grammar

(GCFG; Pollard, 1984), best seen as a framework for describing various grammar
formalisms; and parallel multiple context-free grammar (PMCFG; Seki et al., 1991),
an instance of GCFG.

This first chapter introduces the problem setting, and discusses some questions
about expressivity and parsing complexity which have until now not been answered,
and are the main focus of the thesis. The chapter also contains introductions to
the areas of expressivity and parsing complexity, and to the grammar formalisms GF

and GCFG. Finally, an overview of the thesis is given, in which the main results are
discussed.

Since GF is a fairly new theory, some questions about expressivity and parsing com-
plexity have until now not been answered; and these questions are the main focus
of this thesis. The main result is that the important subclass context-free GF is
equivalent to PMCFG, which has polynomial parsing complexity, and whose expres-
sive power is fairly well known. Furthermore, a number of parsing algorithms for
PMCFG are given; some possible extensions are studied; and the idea of using the
algorithms when parsing unrestricted GF grammars is discussed.

1



Chapter 1. Introduction

1.1 Motivation for this thesis

This thesis investigates the relations between the following grammar formalisms,
all sharing the idea of separating abstract and concrete syntax;

Grammatical framework (gf; Ranta, 2004a) is a formalism originally de-
signed for displaying formal propositions and proofs in natural language, but
has since then evolved into a formalism suited for describing both the semantics
and the syntax of natural languages. The representation of the abstract syn-
tax is intuitionistic type theory, and the concrete syntax is a restricted variant
of a functional programming language. gf is a very general formalism, since
the abstract syntax is a logical framework; it is e.g. possible to formulate an
undecidable proposition as an undecidable parsing problem inside gf.

Generalized context-free grammar (gcfg; Pollard, 1984) is also a very
general grammar formalism, originally designed to give a formal interpretation
for head grammar. The abstract syntax is a context-free grammar, whereas
the concrete syntax is only vaguely specified. Thus gcfg can be seen as a
framework for describing various grammar formalisms.

Parallel multiple context-free grammar (pmcfg; Seki et al., 1991) is
an instance of gcfg, where the concrete syntactical structures are tuples of
strings. It is known that pmcfg parsing is polynomial in the length of the input
string.

Since gf is a fairly new theory, some questions about expressivity and parsing
complexity have until now not been answered, especially for a very important
subclass called context-free gf (from now on written cf -gf);

(1) What is the expressive power of cf -gf; i.e. what language constructs can
the formalism express?

(2) What is the parsing complexity of cf -gf; i.e. are there efficient parsing
algorithms?

These two questions are the main focus of this thesis. The area of research can
therefore be narrowed to formal language theory and parsing algorithms, two
areas that have tight connections; if two formalisms are strongly equivalent, the
one can be used to parse grammars from the other.

The main result in this thesis is that cf -gf and pmcfg are equivalent for-
malisms. Since pmcfg has a polynomial parsing algorithm and its expressive
power is fairly well known, the result answers both question (1) and (2). As a
side-effect, new parsing algorithms for gf can be developed using the simpler
pmcfg formalism. As a further answer to question (2), a number of new parsing
algorithms for pmcfg are developed, all being polynomial in the length of the
input.

As mentioned above, the concrete syntax of gf is a restricted functional pro-
gramming language. A natural question then arises;

2



1.2. Expressivity and parsing complexity

(3) How can the concrete syntax be extended, e.g. by adding new operations?

(4) What happens to the expressive power and parsing complexity?

These two questions are partially answered by giving three possible extensions;
intersection, disjunction and interleave. Two of these (intersection and disjunc-
tion) are strict extensions in the sense that the new formalism can express a
wider range than previously. The parsing complexity is still polynomial for
intersection; in fact, it is shown that with this extension, cf -gf and pmcfg
describe exactly the class of languages recognizable in polynomial time.

Finally, the thesis addresses the parsing problem for full gf;

(5) Can the polynomial parsing algorithms for cf -gf be of use when parsing
unrestricted gf grammars?

The question is partially answered for a subclass of gf, which is larger than
cf -gf, but cannot handle all possibilities of a general logical framework.

1.2 Expressivity and parsing complexity

1.2.1 Expressive power

We use the standard definition of what constitutes a language. In short, a
language is a set of strings, where we write e.g. anbn for the set {anbn | n ≥ 0 }.

What context-free grammars cannot express

The following non-regular constructions can be expressed by context-free gram-
mars (see e.g. Hopcroft and Ullman, 1979);

• Nesting, exemplified by the language anbn;

• Reverse copying,1 exemplified by the language { w wR | w ∈ (a ∪ b)∗ }.

From the pumping lemma for context-free languages (see e.g. Hopcroft and Ullman,
1979), it is possible to show that the following constructions are not possible to
express with a context-free grammar;

• Multiple agreement, exemplified by the language anbncn;

• Crossed agreement, exemplified by the language anbmcndm;

1By the operation wR we mean the reverse of w.

3



Chapter 1. Introduction

• Duplication, exemplified by the language { w w | w ∈ (a ∪ b)∗ }.

However, there is linguistic evidence (Joshi, 1985; Shieber, 1985) that these three
constructions occur in natural languages. Partly for this reason, but mostly
because it simplifies grammar writing, more expressible grammar formalisms
have been suggested.

Mildly context-sensitive grammar formalisms

The next step after context-free grammars in the Chomsky hierarchy is context-
sensitive grammars (Chomsky, 1959). Unfortunately, this step is quite big;
context-sensitive grammars can express an unnecessary large class of languages,
with the drawback that parsing is no longer polynomial in the length of the
input. Joshi (1985) suggested therefore the notion of mild context-sensitivity to
capture the formal power needed for defining natural languages. A grammar
formalism is mildly context-sensitive if it has the following four properties;

• It can express any context-free language;

• It can be parsed in time polynomial in the length of the input;

• It can express multiple agreement, crossed agreement and duplication;

• It has the constant growth property.

Informally, the constant growth property states that if we order the sentences
of a language by increasing length, then the length of two consecutive strings
do not differ by more than a constant.

The grammar formalisms tree adjoining grammar (tag; Joshi et al., 1975;
Joshi and Schabes, 1997), head grammar (hg; Pollard, 1984), linear in-
dexed grammar (lig; Gazdar, 1987) and combinatory categorial gram-
mar (ccg; Steedman, 1985, 1986) were all developed independently of each
other, with the aim of overcoming the problems of cfg. They are all mildly
context-sensitive, and were shown equivalent by Vijay-Shanker and Weir (1994).

The non-context-free constructions above can all be generalized to more complex
forms;

• k-multiple agreement, an1 . . . a
n
k ;

• k-crossed agreement, an1

1 . . . ank

k bn1

1 . . . bnk

k ;

• k-duplication, { wk | w ∈ (a ∪ b)∗ };

4



1.2. Expressivity and parsing complexity

These (and similar) general languages can be used to give bounds on the expres-
sivity of grammar formalisms. For example, cfg can express at most 2-multiple
agreement, 1-crossed agreement and 1-duplication, whereas tag and equiva-
lent formalisms can express at most 4-multiple agreement, 2-crossed agreement
and 2-duplication. This can be extended to formalisms that can express these
properties for any given k. Two such formalism are linear context-free
rewriting systems (lcfrs; Vijay-Shanker et al., 1987) and linear multi-
ple context-free grammar (lmcfg; Seki et al., 1991), which are still mildly
context-sensitive in the sense above; where a k-lcfrs can express at most 2k-
multiple agreement, k-crossed agreement and k-duplication.

Limitations of mildly context-sensitive formalisms

However, there are limitations of a mildly context-sensitive formalism; e.g. it
cannot describe the exponentially growing language a2n

, simply because that
language is not constantly growing. The formalisms parallel multiple con-
text-free grammar (pmcfg; Seki et al., 1991), simple literal movement
grammar (s-lmg; Groenink, 1997a,b) and range concatenation grammar
(rcg; Boullier, 2000b,a) can describe that exponential grammar. But on the
other hand pmcfg cannot describe the language (a ∪ b)2n

.

This last language can be described by context-sensitive formalisms, such as
head-driven phrase structure grammar (hpsg; Pollard and Sag, 1994)
or lexical functional grammar (lfg; Bresnan and Kaplan, 1982); but then
there are other languages that these formalisms cannot describe, e.g. the set
of all valid propositions in first-order logic. Highest in the hierarchy are the
recursively enumerable languages, that can be described by Turing-complete
formalisms.

1.2.2 Complexity of parsing

The standard way of describing the theoretical efficiency of algorithms is to
calculate the worst-case time complexity, parameterized over the length of the
input string. For this purpose we use the ordo notation, where f(n) = O(g(n))
says that the function f grows at most as fast as g. For our purposes we only
need to note that nk = O(nk+1) and nk = O(an), but that nk+1 6= O(nk)
and an 6= O(nk). Or in other words, polynomial functions are better than
exponential, and the lower the degree the better.

Parsing of context-free grammars

Parsing of context-free grammars can be accomplished in time cubic in the
length of the input string, O(n3). Several different algorithms exist; the simple
cky algorithm (Kasami, 1965; Younger, 1967) has been extended by Earley

5



Chapter 1. Introduction

(1970), Graham et al. (1980) and Kilbury (1985), just to mention a few. These
and similar algorithms are called tabular or chart parsing algorithms (Kay, 1986;
Wirén, 1992).

Other algorithms compile the grammar into a push-down automaton. Knuth
(1965) introduced the lr parsing algorithm, which has been widely used for
parsing of deterministic grammars. The extension to non-deterministic gram-
mars, such as grammars for natural languages, was made by Lang (1974) and
Tomita (1986); later work has reformulated these as tabular algorithms (Lang,
1994; Nederhof and Satta, 1996).

Most context-free parsing algorithms can be given a formulation in a pars-
ing framework, such as parsing as deduction (Shieber et al., 1995) or parsing
schemata (Sikkel, 1997b).

Parsing of more expressive formalisms

The more expressive a formalism is, the higher is its parsing complexity. As
an example, tag parsing can be accomplished in time O(n6), as first shown
by Vijay-Shanker and Joshi (1985); and pmcfg parsing can be accomplished in
time O(ne), where e is a constant depending on the grammar (Seki et al., 1991).
s-lmg and rcg both characterize exactly the class of languages recognizable
in polynomial time (Groenink, 1997a,b; Boullier, 2000a,b). More expressive
formalisms might take exponential time O(en) or may even be undecidable.

A context-free id/lp grammar can be transformed to an equivalent cfg, thus
making it parsable in cubic time. But the grammar size can explode expo-
nentially, making the dependence on the grammar dominating. Shieber (1984)
has given a direct parsing algorithm for id/lp grammars, which reduces the
overhead of parsing.

In the last years there has been interest in linearization-based hpsg grammars.
When parsing these grammars, one uses bit vectors of length n to represent
the input string of length n (Reape, 1991; Daniels and Meurers, 2002). This
gives rise to 2n possibilities for the bit vectors, and thus the algorithms are
exponential, but on the other hand hpsg is in itself an exponential formalism.

Reducing to boolean matrix multiplication

Valiant (1975) has shown that it is possible to transform the cky algorithm
into the problem of boolean matrix multiplication (bmm), for which there are
sub-cubic algorithms. The best known complexity for bmm is approximately
O(n2.376), by Coppersmith and Winograd (1990).

For more expressive formalisms it is also sometimes possible to reduce the pars-
ing problem to bmm; e.g. tag parsing has been reduced by Rajasekaran and Yooseph
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(1995) to multiplying two n2×n2 boolean matrices, which gives a lower complex-
ity bound of O

(
(n2)2.376

)
= O(n4.752). Furthermore, Nakanishi et al. (1997,

1998) has extended the technique to give lower complexity bounds for parsing
of lcfrs, LMCFG and pmcfg.

However, these sub-cubic algorithms all involve large constants making them
inefficient in practice. And, since a bmm of size n can be reduced to context-
free parsing of length n (Lee, 2002), and similarly a size n2 bmm can be reduced
to length n tag parsing (Satta, 1994); there is not much hope in finding practical
parsing algorithms with better time complexity than O(n3) (or O(n6) for tag-
equivalent formalisms).

Practical parsing algorithms

Unfortunately, apart from the tag formalism (and the equivalent ones) and the
unification-based formalisms, almost all parsing algorithms are extensions of the
cky algorithm. This algorithm has a good theoretical worst-case complexity,
but performs badly in practice. The Earley algorithm and its relatives are often
better choices, which is shown by the fact that most formalisms that have been
used for practical purposes also have implementations of Earley-like parsers and
similar algorithms.

1.2.3 Storing parse results

A string recognized by a context-free grammar might have an exponential num-
ber (in the length of the string) of syntactical analyses, which are called parse
trees. A classical example is a grammar for mathematical expressions containing
the rule,

Exp → Exp ‘ + ’ Exp

In some pathological cases (i.e. when the grammar is cyclic), there might even
be an infinite number of trees. The polynomial parse time complexity comes
from the fact that all these parse trees can be compactly stored in polynomial
space, in a parse forest, also known as a chart.

Parsing as intersection

A parse forest can be represented as a context-free grammar, recognizing the
language consisting of only the input string. This is a consequence of the fact
that the class of context-free languages is closed under intersection with reg-
ular languages. Bar-Hillel et al. (1964) gave an algorithm for calculating the
intersection, thus also giving one of the first parsing algorithms for context-free
grammars. The resulting cfg directly represents all possible parse trees for the
given input. The forest can then be further investigated to remove useless nodes,
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increase sharing and reduce space complexity (Billot and Lang, 1989), and in
fact all chart parsing algorithms can be seen as variants of this idea.

More expressive formalisms

The idea of parsing as intersection has been extended to more expressive for-
malisms, such as tag and lig (Vijay-Shanker and Weir, 1990, 1993b,a) and even
very general formalisms such as lcfrs (Lang, 1994). An interesting consequence
of the idea is that for even more expressive formalisms “parsing” (i.e. construct-
ing the intersection) can be easier than “recognition” (i.e. deciding whether the
input is recognized); while the intersection with a regular set can be performed
efficiently resulting in a parse forest, checking the forest for whether the input
was recognized or extracting parse trees can be quite costly.

Still the idea can be helpful when implementing parsers for very expressive
formalisms; when parsing hpsg one often removes the daughters feature from
the elements in the chart, to reduce space complexity. This feature corresponds
to the parse tree of a cfg, and can always be deduced from the final chart when
necessary.

1.3 Separating abstract and concrete syntax

The grammar formalisms studied in this thesis all have one thing in common;
the separation of abstract and concrete syntax. The abstract part of a grammar
defines a set of abstract syntactic structures, called abstract terms or trees; and
the concrete part defines a relation between abstract structures and concrete
structures.

The distinction between abstract and concrete syntax has been made by several
authors since the late 1950’s; McCarthy (1963) and Landin (1966) made the
distinction in describing the syntax for programming languages; Chomsky (1957,
1965) made the distinction between (abstract) deep structure and (concrete)
surface structure, together with transformations between the structures; Curry
(1963) introduced the distinction under the headings of tectogrammatic and
phenogrammatic structure; and Montague (1974) viewed a grammar as a set
of rules linearizing logically interpreted (abstract) analysis trees into (concrete)
strings of a natural language.

A linearization perspective

The formalisms studied in this thesis all have a linearization perspective, where
the relation between abstract and concrete is viewed as a mapping from abstract
to concrete structures, called linearization terms. In some cases the mapping
can be partial or even many-valued.
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1.3.1 Linguistic advantages

Although not exploited in many well-known grammar formalisms, a clear sepa-
ration between abstract and concrete syntax gives some advantages.

Higher-level language descriptions

The grammar writer has a greater freedom in describing the syntax for a lan-
guage. When describing the abstract syntax he/she can choose not to take
certain language specific details into account, such as inflection and word order.
Abstracting away smaller details can make the grammars simpler, both to read
and understand, and to create and maintain.

Abstract linguistic description
Language specific details
(inflection, word order)

Multilingual and multimodal grammars

It is possible to define several different concrete syntax mappings for one particu-
lar abstract syntax. The abstract syntax could e.g. give a high-level description
of a family of similar languages, and each concrete mapping gives a specific
language instance.

Language 1

Abstract linguistic description · · ·

Language n

This kind of multilingual grammar can be used as a model for interlingua trans-
lation between languages. But we do not have to restrict ourselves to only
multilingual grammars; different concrete syntaxes can be given for different
modalities. As an example, consider a grammar for displaying time table infor-
mation. We can have one concrete syntax for writing the information as plain
text, but we could also present the information in the form of a table output
as a LATEX file or in excel format, and a third possibility is to output the
information in a format suitable for speech synthesis.

Syntax editing

It is possible to write documents by directly editing the abstract syntax, and
let the program display the resulting concrete syntax. This was done for pro-
gramming languages in e.g. the systems mentor (Donzeau-Gouge et al., 1975)
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and cornell program synthesizer (Teitelbaum and Reps, 1981); and has
been generalized to natural language grammars and even multilingual document
authoring (Dymetman et al., 2000; Khegai et al., 2003), where a document is
written simultaneously in several languages. One example of multilingual au-
thoring is when writing technical user manuals which should have exactly the
same interpretation in any language.

Several descriptional levels

In this thesis we only talk about formalisms with two descriptional levels; ab-
stract and concrete. But this can be generalized to as many levels as is wanted,
by equating the concrete syntax of one grammar level with the abstract syntax
of another level. As an example we could have a spoken dialogue system with
a semantical, a syntactical, a morphological and a phonological level. This sys-
tem has to define three mappings; i) a mapping from semantical descriptions
to syntax trees; ii) a mapping from syntax trees to sequences of lexical tokens;
and iii) a mapping from lexical tokens to lists of phonemes.

Semantics Syntax Morphology Phonology

This formulation makes grammars similar to transducers (Karttunen et al., 1996;
Mohri, 1997) which are mostly used in morphological analysis, but has been gen-
eralized to dialogue systems by Lager and Kronlid (2004).

Grammar composition

A multi-level grammar as described above, can be viewed as a “black box”,
where the intermediate levels are unknown to the user. Then we are back in
our first view as a grammar specifying an abstract and a concrete level together
with a mapping. In this way we can talk about grammar composition, where
the composition G2 ◦ G1 of two grammars is possible if the abstract syntax of
G2 is equal to the concrete syntax of G1. The result of the composition is the
grammar inheriting the abstract syntax from G1, the concrete syntax from G2,
and having the linearization mapping f2 ◦ f1, where f1, f2 are the linearization
mappings for G1, G2 respectively.

If the grammar formalism supports this, a composition of several grammars can
be pre-compiled into a compact and efficient grammar which doesn’t have to
mention the intermediate domains and structures. This is the case for e.g. finite
state transducers, but also for gf as has been shown by Ranta (2004b).
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Resource grammars

The possibility of separate compilation of grammar compositions, opens up for
writing resource grammars (Ranta, 2004b). A resource grammar is a fairly
complete linguistic description of a specific language. Many applications do
not need the full power of a language, but instead want to use a more well-
behaved subset, which is often called a controlled language. Now, if we already
have a resource grammar, we do not even have to write a concrete syntax for the
desired controlled language, but instead we can specify the language by mapping
structures in the controlled language into structures in the resource grammar.

Controlled syntax Resource syntax Object language

1.3.2 Comparison with some grammar formalisms

Here we compare some existing grammar formalisms from the perspective of
the ability to separate abstract and concrete syntax. We have no intention of
giving a full description of the formalisms, and the reader can safely skip any
part of this section. The main formalisms studied in this thesis, grammatical
framework and generalized context-free grammar, are presented in
the next two sections.

Context-free grammar (CFG)

A context-free grammar has no separation of abstract and concrete syntax what-
soever. There is only one level of syntax rules, defining both the abstract syntax
trees and the concrete language. The concrete syntax is not structured at all,
making it impossible, or at least very complicated, to have several descriptional
levels.

Head grammar (HG)

Head grammar (Pollard, 1984) in an extension of cfg, where the concrete
syntax is headed strings, which can be concatenated or wrapped inside another
headed string. There is not much structure in the concrete syntax, and the
abstract syntax is tightly connected to the concrete word order.

Categorial grammar (CG)
Combinatory categorial grammar (CCG)

Categorial grammar (Ajdukiewicz, 1935; Bar-Hillel, 1953; Lambek, 1958) is
equivalent to cfg, but instead of grammar rules it has complex functional cate-
gories, together with rules for function application. Combinatory categorial
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grammar (Steedman, 1985, 1986) also adds rules for function composition to
the framework, thus yielding an extension of cfg.

The notion corresponding to abstract syntax is the derivation trees, and they are
tightly bound to the order of the given words. There are extensions (e.g. type
logical grammar; Morrill, 1994) that add some word order freedom, but the
concrete syntax is nevertheless simple strings. This means that cg and relatives
are similar to cfg when it comes to separating abstract and concrete syntax.

Indexed grammar (IG)
Linear indexed grammar (LIG)

Indexed grammar (Aho, 1968) and linear indexed grammar(Gazdar, 1987)
are also extensions of cfg. In these formalisms the context-free categories are
augmented with a stack of indices. On each application of a rule, an index can
be pushed onto or popped from a stack. But the abstract syntax as represented
by the syntax tree is still tightly connected to the concrete syntax of strings.

Tree adjoining grammar (TAG)

Tree adjoining grammar (Joshi et al., 1975; Joshi and Schabes, 1997) is a
formalism based on trees and a tree rewriting operation called adjunction. It
shares the basic problem with cfg, that there is only one descriptional level;
syntax trees are directly correlated to the concrete word order.

Linear context-free rewriting systems (LCFRS)
Parallel multiple context-free grammar (PMCFG)

Linear context-free rewriting systems (Vijay-Shanker et al., 1987) and
parallel multiple context-free grammar (Seki et al., 1991) are defined
as instances of gcfg where the linguistic objects are tuples of strings. The
operations associated with syntax rules are only allowed to use tuple projec-
tion and string concatenation, and lcfrs has some extra restrictions on the
linearization functions to ensure mild context-sensitivity. Since they are defined
as gcfg, they share the same separation of abstract and concrete syntax. The
only drawback is that the concrete syntax is restricted to string tuples.

Literal movement grammar (LMG)
Range concatenation grammar (RCG)

These formalisms are very similar; a grammar is seen as a collection of Horn-like
clauses over predicates, just as in the programming language prolog. Groenink
(1997a,b) introduced literal movement grammar, where predicates range
over tuples of strings, making the formalism Turing-complete. There are also
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restricted variants called simple lmg (s-lmg) and range concatenation
grammar (Boullier, 2000a,b), which characterize the class of languages rec-
ognizable in polynomial time. lmg and rcg are similar to gcfg, and share the
same representation of abstract syntax. The drawbacks are that the concrete
syntax is restricted to strings, and that the abstract and concrete syntax are
defined simultaneously, making it difficult to use the same abstract syntax with
several concrete.

Lexical functional grammar (LFG)

Lexical functional grammar (Bresnan and Kaplan, 1982) has a clean divi-
sion between c-structures and f-structures; the former represents concrete syn-
tax as trees, and the latter represents the “functional” (or abstract) structure
as feature structures. Since the structures are clearly specified, it is difficult
to implement several levels of abstraction; apart from that, lfg inherits all
advantages of a clear separation between abstract and concrete syntax.

Dependency grammar (DG)

Dependency grammar consists of a large and diverse family of grammar for-
malisms, all sharing the assumption that syntactic structure consists of lexical
nodes linked by binary relations called dependencies (see e.g. Mel’cuk, 1988;
Hudson, 1990); meaning that dg do not have the idea of phrases. Because
of the diversity it is difficult to make general comments regarding the sepa-
ration of abstract and concrete syntax. There are formalisms (Hays, 1964;
Gaifman, 1965) having no separation at all; and there are more recent for-
malisms (Debusmann et al., 2004) where the concrete syntax is not even limited
to strings.

Head-driven phrase structure grammar (HPSG)

The syntactical structures in head-driven phrase structure grammar
(Pollard and Sag, 1994) are typed feature structures, similar to but more pow-
erful than records.

An hpsg grammar has several descriptional levels, for phonology, syntax, se-
mantics etc., but the separation is not always that clear. The different levels all
live together in one single feature structure, as different features. E.g. concrete
strings resides under the feature phon, whereas the syntactic structure is split
into several parts. This makes it difficult to generalize hpsg to multilingual
grammar, but also to perform compilation to remove intermediate levels.

Later work on linearization-based hpsg has separated the concrete word or-
der from the feature structures (Reape, 1991; Daniels and Meurers, 2002), thus
giving a better separation of concrete and abstract syntax.
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1.3.3 Generalized context-free grammar

Generalized context-free grammar (gcfg) was introduced by Pollard
(1984) as a mathematical framework for describing head grammar, an exten-
sion of context-free grammars. Although the main idea of Pollard was not the
separation of abstract and concrete syntax, gcfg can be seen as a very nice ex-
ample of this idea. Since gcfg is a very expressive grammar formalism involving
general (Turing-complete) partial functions, its main usage is as a framework
for specifying more restricted grammar formalisms.

A definition of a gcfg consists of a context-free grammar, where each n-ary
rule

A → f [A1, . . . , An]

is associated with an n-ary operation over (linguistic) objects,

f◦ ∈ On → O

The set O of linguistic objects is not further specified, and the n-ary operation
f◦ can be any partial mapping from On to O. The context-free grammar cor-
responds to the abstract syntax, and the operations together with the set of
linguist objects correspond to the concrete syntax.

Often it is more fruitful to view gcfg as a framework for describing formalisms,
rather than a specific formalism itself. The reason is that the definitions of what
constitutes an object or an operation are very vague. A grammar formalism is
an instance of gcfg if the structure of O is specified, and if it describes how
operations can be formed.

Instances of GCFG

The following is a list of some grammar formalisms that can be seen as relatively
direct instances of gcfg.

Context-free grammar The linguistic objects are strings, and the only al-
lowed operation is concatenation.

Head grammar The linguistic objects are strings with a distinguished head
element, and apart from concatenation, there is also a wrapping operation;

Indexed grammar The linguistic objects are pairs of strings and stacks, and
together with string concatenation, there are the usual stack operations;

Linear context-free rewriting systems The linguistic objects are string
tuples, and the allowed operations are concatenation on the elements of
the tuples;
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Parallel multiple context-free grammar Similar to lcfrs, but argu-
ment strings can be deleted and duplicated at will.

Other formalisms such as tag, ccg, lmg and rcg have slightly less intuitive
formulations as instances of gcfg.

1.3.4 Grammatical Framework

The abstract theory of grammatical framework (gf; Ranta, 2004a) is
a version of dependent type theory, similar to lf (Harper et al., 1993), alf
(Magnusson and Nordström, 1994) and coq (Coq, 1999). What gf adds to the
logical framework is a possibility to define concrete syntax, that is, notations
expressing formal concepts in user-readable ways. In this sense gf fits well into
the idea of separating abstract and concrete syntax.

The development of gf started as a notation for type-theoretical gram-
mar (Ranta, 1994), which use Martin-Löf’s type theory (1984) to express the
semantics of natural language. The development of gf as an authoring sys-
tem started as a plug-in to the proof editor alf, to permit natural-language
rendering of formal proofs (Hallgren and Ranta, 2000). The extension of the
scope outside mathematics was made in the Multilingual Document Authoring
project at xerox (Dymetman et al., 2000). In continued work, gf has been
used in areas like software specifications (Hähnle et al., 2002) and dialogue sys-
tems (Ranta and Cooper, 2004).

After the first publication (Mäenpää and Ranta, 1999), the expressiveness of
the concrete syntax has developed into a functional programming language. As
such it is similar to a restricted version of programming languages like haskell
(Peyton Jones, 2003) and ml (Milner et al., 1997). The language is restricted
enough to be possible to compile into an efficient canonical format, but ex-
pressive enough to incorporate modern programming language constructs such
as user-definable data types, higher-order functions, and a module system for
defining grammatical resources.

Type theory

The abstract syntax of a gf grammar is defined by declaring a number of basic
types (called categories), and a number of basic functions. A function is declared
by giving its typing,2

f : B1 × · · · ×Bδ → A

2Note that the notation for gf we use is different from the notation used in the actual GF
implementation and in other publications; the differences are spelled out in section 2.3.8.
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This declaration states that f is a function taking δ arguments of types B1, . . . ,
Bδ, resulting in a term of type A. A function with no arguments (δ = 0) is
called a constant, and is simply declared as,

c : A

In general we write t : T if the term t is of type T . By applying the basic
functions to each other, compound terms can be formed,

f(c1, . . . , cδ) : A

whenever each ci : Bi and f is declared as above.

Higher-order functions and dependent types

It is also possible to declare higher-order functions and dependent types in a gf
grammar. A higher-order function is a function where some of the arguments
are functions themselves; and a dependent type is declared to depend on (one
or more) terms of other types.

These features are more thoroughly described in section 2.3.1, but they are not
used until in chapter 6 of this thesis. Instead we concentrate on the very im-
portant subclass context-free gf, which does not contain higher-order functions
or dependent types.

Concrete linearizations

The novel thing about gf with respect to a logical framework, is that it adds
a mapping from abstract terms to concrete linearizations. To define a concrete
syntax of a grammar, we only need to do the following.

• For each basic category A defined in the abstract syntax, we define a
corresponding linearization type A◦.

• For each basic function f defined in the abstract syntax, we define a corre-
sponding linearization function f◦. If the original function f has a typing,

f : B1 × · · · ×Bδ → A

then the linearization function f◦ has the typing,

f◦ : Bo1 × · · · ×B◦
δ → A◦

The linearization of a term t : T can now be defined as [[t]] = f◦([[t1]], . . . , [[tδ]])
whenever t = f(t1, . . . , tδ). The constraints on the linearization definitions
assure that linearizations always have the correct type. Grammars are thus
compositional in the sense that a linearization is a function of the argument
linearizations, not of the arguments themselves.
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The module system

gf has a module system, inspired by ideas from programming languages. There
are three kinds of modules; abstract, concrete and resource modules.

• An abstract module defines an abstract theory, with categories and func-
tions.

• A concrete module defines the concrete syntax of an abstract theory, by
giving linearization types and linearization functions.

• A resource module defines parameter types, and operations that can be
used as helper functions in concrete modules.

Modules can extend other modules by adding new definitions, thus opening the
possibilities for modular grammar engineering. Another useful feature is that
a concrete module (together with the corresponding abstract module) can be
translated into a resource module. Since a resource module can be used by an-
other concrete module, this makes it possible to perform grammar compositions
as described in section 1.3.1.

1.3.5 An introductory example:
Transforming a context-free grammar into GF

In this section we give some examples of how to write grammars in gf, just to
get a feeling of the possibilities.

We start with a simple context-free grammar for a fragment of English. It
consists of the context-free categories S, NP, VP, D, N and V (standing for
Sentence, Noun Phrase, Verb Phrase, Determiner, Noun and Verb respectively),
and has the following rules;

S → NP VP

NP → D N

NP → N

VP → V NP

D → ‘a’

D → ‘many’

N → ‘lion’ | ‘lions ’

N → ‘fish’

V → ‘eats ’ | ‘eats ’
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The abstract syntax

To get a corresponding gf grammar, we start by giving the abstract syntax.
First we have to give a name to each of the cfg rules, and then we can introduce
the type declarations,

sp : NP × VP → S

npd : D × N → NP

npp : N → NP

vpt : V × NP → VP

da, dm : D

nc, nf : N

ve : V

The predication function sp forms a sentence out of a noun phrase and a verb
phrase. There are two ways of forming noun phrases; either by a determiner
and a noun (‘a lion’, ‘many lions ’), or just a plural noun (‘lions ’). We assume
that all verbs are transitive, so we only have the transitive verb phrase forming
function vpt. The determiners da, dm are singular and plural indefinites (‘a’
and ‘many’); nc, nf are the nouns ‘lion’ and ‘fish’; and ve is the verb ‘eat ’.

The concrete syntax

If we only want a gf grammar that is equivalent to the original cfg, we can
assign the same linearization type to each category, S◦ = NP◦ = · · · = {s : Str},
which is a record consisting of only one string.3 The concrete linearizations then
look like follows,4

s◦p (x, y) = { s = x.s · y.s }
np◦

d(x, y) = { s = x.s · y.s }
np◦

p(x) = { s = x.s }
vp◦
t (x, y) = { s = x.s · y.s }

d◦
a = { s = ‘a’ }

d◦
m = { s = ‘many’ }
n◦
c = { s = ‘lion’ | ‘lions ’ }

n◦
f = { s = ‘fish’ }

v◦
e = { s = ‘eats ’ | ‘eat ’ }

3The reason for using records and not just strings will become apparent later.
4The alert reader might notice that we abuse notation somewhat here, by using the non-

deterministic choice ( | ) which is an extension introduced in section 5.2, but the grammar will
anyway be improved upon later.
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A concrete syntax that takes care of agreement

If we want to change the grammar so that it also takes care of agreement, we
can do as follows. First we introduce the parameter type Num with the two
values or constructors Sg and Pl;

param Num = Sg | Pl

Then we make a decision that nouns, verbs and verb phrases are parameterized
over the number; whereas determiners and noun phrases have an inherent num-
ber.5 A phrase parameterized over P is stored as an inflection table P ⇒ Str;
and an inherited parameter is stored in a record together with the linearized
string,

N◦ = V◦ = VP◦ = { s : Num ⇒ Str }
D◦ = NP◦ = { s : Str ; n : Num }

To give the value of an inherent parameter, we simply form a record; and to
access the value of an inherent parameter, we use record projection (just as
we do to access the linearized string). An inflection table is formed by [ p1 ⇒
t1 ; . . . ; pn ⇒ tn ], where p1, . . . , pn are inflection patterns ; and to apply an
inflection table to a parameter, we use the selection operation ( ! ). Returning
to our example, we get the following concrete syntax for the English grammar
with number agreement between the subject and the verb,6

s◦p (x, y) = { s = x.s · y.s !x.n }
np◦

d(x, y) = { s = x.s · y.s !x.n ; n = x.n }
np◦

p(x) = { s = x.s ! Pl ; n = Pl }
vp◦
t (x, y) = { s = [ z ⇒ x.s ! z · y.s ] }

d◦
a = { s = ‘a’ ; n = Sg }

d◦
m = { s = ‘many’ ; n = Pl }
n◦
c = { s = [ Sg ⇒ ‘lion’ ; Pl ⇒ ‘lions ’ ] }

n◦
f = { s = [ ⇒ ‘fish’ ] }

v◦
e = { s = [ Sg ⇒ ‘eats ’ ; Pl ⇒ ‘eat ’ ] }

Note that the table in vp◦
t has only one pattern matching any parameter, binding

it to the variable z which can be used in the table body. Also note that the table
in n◦

f has an anonymous pattern, meaning that the value is ‘fish’ regardless of

5gf has a functional perspective on linearizations, meaning that parameters have to be
either parameterized over or inherited. The principal way of making parameters agree is to
apply a parameterized inflection table to an inherited parameter.

6A notational convention throughout this thesis is that record projection ( . ) binds harder
than table selection ( ! ), which in turn binds harder that concatenation ( · ).
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the inflection parameter. Both uses are examples of that tables can sometimes
be compacted.

Examples of phrases that are disallowed by this concrete syntax are i) noun
phrases consisting of just a singular noun; ii) noun phrases where the determiner
and noun does not agree; and iii) sentences where the subject noun phrase does
not agree with the following verb.

This English grammar will be used as the main example grammar in this thesis;
the grammar is also shown in figure 2.3 on page 49.

A concrete syntax for Swedish

Swedish has a more complex morphology than English; nouns do not only de-
pend on number, they also have an inherent gender (neuter and uter) associated
to them. Determiners, on the other hand, have number as an inherent feature
and depend on the gender of the noun. First we have to declare the correspond-
ing parameter type Gen;

param Gen = Neu | Utr

then the linearization types for nouns and determiners can be declared as,

N◦ = { s : Num ⇒ Str ; g : Gen }
D◦ = { s : Gen ⇒ Str ; n : Num }

Now we can define the linearizations for the determiners da, dm and the nouns
nc, nf ;

d◦
a = { s = [ Utr ⇒ ‘en’ ; Neu ⇒ ‘ett ’ ] ; n = Sg }

d◦
m = { s = [ ⇒ ‘m̊anga’ ] ; n = Pl }
n◦
c = { s = [ ⇒ ‘lejon’ ] ; g = Neu }

n◦
f = { s = [ Sg ⇒ ‘fisk ’ ; Pl ⇒ ‘fiskar ’ ] ; g = Utr }

Noun phrases, on the other hand, do not influence the inflection of verbs, which
means that they can have simple linearization types NP◦ = V◦ = { s : Str }.7
Now we are ready to give the linearization functions for noun phrase forming;

np◦
d(x, y) = { s = x.s ! y.g · y.s !x.n }
np◦

p(x) = { s = x.s ! Pl }

Finally, the word order of sentences depend on the context of the sentence. There
are three different word orders (direct, indirect and subordinate), introducing
yet another parameter type Order;

param Order = Dir | Indir | Sub

7This is a simplification; when adding pronouns and/or adjectives, Swedish noun phrases
can get quite complex.
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1.4. Overview and main results of the thesis

The indirect order (used e.g. in questions) puts the subject noun phrase inside
the verb phrase. The way to solve this in gf is to use discontinuous verb phrases.
The linearization of sentences and verb phrases will be,8

S◦ = { s : Order ⇒ Str }
VP◦ = { s1 : Str ; s2 : Str }

s◦p (x, y) = { s = [ Indir ⇒ y.s1 · x.s · y.s2 ; ⇒ x.s · y.s1 · y.s2 ] }
vp◦
t (x, y) = { s1 = x.s ; s2 = y.s }

A fourth possible word order could be topicalized, which is used when the ob-
ject is put in front of the sentence for focusing purposes; e.g. the sentence
‘fiskar äter m̊anga lejon’ (fish eat many lions) have the preferred reading (it
is fish that many lion eat). This can be solved by adding a new constructor Top
to the type Order, and a new row to the s◦p table, [ Top ⇒ y.s2 · x.s · y.s1 ].

1.4 Overview and main results of the thesis

Here we give an overview of the thesis, together with the main results. The
overview and results are presented chapter by chapter.

Chapter 2: Background

This chapter gives the theoretical background for the rest of the thesis. Gram-
matical framework (gf; Ranta, 2004a) is defined together with its important
subclass context-free gf (cf -gf). Generalized context-free grammar
(gcfg; Pollard, 1984) is introduced as a framework for describing other gram-
mar formalisms; one instance is parallel multiple context-free gram-
mar (pmcfg; Seki et al., 1991), which is known to have polynomial parsing
complexity.

Some direct consequences of the definitions are noted; cf -gf is an instance of
gcfg, and pmcfg is an instance of cf -gf.

For parsing purposes, the representation of syntactical terms is discussed. We
extend the notion of a shared forest for compactly representing a set of syn-
tactical analyses, to the gcfg formalism. We also discuss when a grammar
formalism, for which there are known parsing algorithms, can be used to parse
grammars in another formalism.

Chapter 3: Reducing context-free GF to PMCFG

This chapter shows that cf -gf is strongly equivalent to pmcfg. This equiva-
lence is shown by giving an algorithm converting cf -gf grammars into pmcfg

8The difference between direct and subordinate word order only shows up in the presence
of negation, which we don’t have in this example.
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grammars recognizing the same language; and by showing that parse results can
be converted back efficiently.

The conversion algorithm consists of enumerating all parameter instantiations
in a linearization, and then moving the instantiated parameters to the abstract
categories. Enumerating all instantiations may lead to an exponential increase
of the grammar size. Therefore two alternative conversion algorithms are given,
which do not enumerate all possible instantiations, but instead try to only in-
stantiate when it is necessary.

Chapter 4: Parsing algorithms for context-free GF and PMCFG

This chapter investigates a number of tabular parsing algorithms for cf -gf and
pmcfg, all with polynomial time complexity. Starting with a general passive
algorithm similar to the one given by Seki et al. (1991), several different modi-
fications are suggested.

The search space can be reduced by approximating the pmcfg grammar by an
over-generating cfg. Afterwards the context-free parse results can be translated
back into pmcfg parse results, which have to be checked for correctness since
the cfg is over-generating.

Another alternative is to use an active algorithm, in the spirit of the context-
free Earley (1970) algorithm. We give two active algorithms; one recognizing
the linearization rows of a rule in a fixed order, and another recognizing rows
incrementally according to the order in which they occur in the input. Both
top-down and bottom-up prediction strategies are investigated.

All suggested algorithms, except for the last incremental version, require that
the pmcfg grammar is nonerasing; therefore we give an algorithm for removing
erasingness from a grammar.

Chapter 5: Extensions of concrete syntax

This chapter describes four possible extensions of gf, cf -gf and pmcfg. Apart
from investigating the resulting expressive power and parsing complexity, we
also give active parsing algorithms for each of the extensions.

The intersection operation, borrowed from conjunctive grammar (Okhotin,
2001), make pmcfg equivalent to simple literal movement grammar (Groenink,
1997a,b) and range concatenation grammar (Boullier, 2000a,b). As a
corollary we get that conjunctive pmcfg describe exactly the class of languages
recognizable in polynomial time.

The disjunction operation can have two possible interpretations; one intensional
which does not change the descriptive power of cf -gf and pmcfg, and one
extensional which is conjectured to be a strict extension. With extensional
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disjunction it is possible to describe the language (a∪b)2n

, which is conjectured
cannot be described by cf -gf and pmcfg.

The third operation is the interleaving operation, which is borrowed from par-
tially ordered multiset context-free grammar (poms-cfg; Nederhof et al.,
2003) which in turn is a variant of the id/lp formalism (Shieber, 1984). This
operation can be reduced to a number of disjunctions, but this reduction can
lead to an exponential increase of the grammar size. We instead give a direct
parsing algorithm derived from a parsing algorithm for poms-cfg.

Chapter 6: Non-context-free abstract syntax

This final chapter discusses how to handle gf grammars containing higher-order
functions or dependent types.

We give an algorithm for converting higher-order functions into first-order func-
tions. The resulting cf -gf grammar is over-generating, since it cannot type-
check variable occurrences correctly. We therefore give a procedure for filtering
out non-well-formed terms during the conversion from first-order to higher-order
parse results.

In the presence of dependent types it is possible to describe undecidable lan-
guages (Ranta, 2004a), so the parsing problem is undecidable in general. We
nevertheless describe a two-step parsing process for such grammars; first we
translate into an overgenerating cf -gf grammar, and parse using that gram-
mar. The resulting parse items are then converted into a logic program, which
can be solved by any proof search procedure.
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Background

This chapter gives the theoretical background for the rest of the thesis. Grammati-

cal Framework (GF; Ranta, 2004a) is defined together with its important subclass
context-free GF. Generalized context-free grammar (GCFG; Pollard, 1984) is intro-
duced as a framework for describing other grammar formalisms; one instance is
parallel multiple context-free grammar (PMCFG; Seki et al., 1991), which is known
to have polynomial parsing complexity.

Some direct consequences of the definitions are noted; context-free GF is an instance
of GCFG, and PMCFG is an instance of context-free GF.

For parsing purposes, the representation of syntactical terms is discussed. We extend
the notion of a shared forest for compactly representing a set of syntactical analyses,
to the GCFG formalism. We also discuss when a grammar formalism, for which there
are known parsing algorithms, can be used to parse grammars in another formalism.
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2.1 Preliminary definitions

2.1.1 Sequences, languages and grammars

Sequences

A sequence x1 . . . xn over a set X is an element of X∗, whenever each xi ∈ X .
The empty sequence is written ε. Concatenation is an associative operation on
sequences defined as

x1 . . . xn · y1 . . . ym = x1 . . . xny1 . . . ym

Mathematically, concatenation and the empty sequence together form a monoid
over X∗. This means among other things that ε is a zero for concatenation, or
ε · ~x = ~x · ε = ~x. When no confusion can arise, we write the concatenation x · y
simply as xy. The repetition xn is defined as n successive concatenations of x,
where x0 = ε;

xn =

n times︷ ︸︸ ︷
x · · · · · x

Apart from writing a sequence as x1 . . . xn, it can also be written with small
Greek letters, α, β, . . .; or as a vector ~x. In the latter case we implicitly assume
that ~x = x1 . . . xn, meaning that we can use xi as a reference to the ith element
in the vector. We also use the term strings for sequences over an alphabet, where
the alphabet is a finite set usually written Σ.

As a shorthand for a sequence of applications of a given function or relation,
we often write R(~x, ~y, ~z) instead of R(x1, y1, z1), . . . , R(xn, yn, zn). Note that
this presupposes that the sequences ~x, ~y and ~z all have the same length.

Languages

A language is a set of strings over an alphabet. Concatenation and repetition
are lifted to languages is the standard way, AB = { xy | x ∈ A, y ∈ B } and
An = {xn | x ∈ A }. The Kleene star A∗ is the union of all possible repetitions;

A∗ =

∞⋃

0

Ai

When specifying a language we can identify a string s with the singleton lan-
guage { s }. All integer repetition variables are assumed to be universally quan-
tified over. This allows us to specify languages through a regular-expression-like
syntax; e.g.

anb∗anb∗ = { anbianbj | n, i, j ≥ 0 }
(a ∪ b)2n

= { w ∈ { a, b }∗ | |w| = 2n, n ≥ 0 }
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Context-free grammars

We finally give the standard definition of context-free grammars.

Definition 2.1 (CFG). A context-free grammar is a 4-tuple (C, S, Σ, R), where
C and Σ are finite sets of categories and terminals respectively, S ∈ C is the
starting category, and R ⊆ C × (C ∪ Σ)∗ is a finite set of context-free syntax
rules.

Instead of writing (B, β) ∈ R, we use the more readable B → β. The rewriting
relation ⇒ is defined on sequences of categories and terminals, as αBγ ⇒ αβγ
whenever B → β. The reflexive and transitive closure ⇒∗ is used to specify the
language associated with a category,

L(A) = { w ∈ Σ∗ | A⇒∗ w }

The language recognized by a grammar G is L(G) = L(S), where S is the
starting category of G.

2.1.2 Data types and elements

In this thesis we talk a lot about types. We use that term in two different ways,
separable by the context:

• As inductively defined types, as is used in dependent type theory. We will
only use this in the abstract syntax of gf grammars, where we often call
the types categories.

Defining a type in this way consists of giving inference rules saying when
something is a type and when something is a term of a given type. The
statement t : T is true when we can deduce from the inference rules that
T is a type and t is of type T .

• The second usage is simply as a set of terms. We do not present a partic-
ular set theory, since we will only use simple sets; the most complex sets
we use are enumerable. Defining a type in this way consists of giving the
corresponding set; the statement t : T is true when t ∈ T .

In the rest of this section we talk about types in the second sense.

Operations and computations

We can define operations on different types. An operation is defined by saying
what types the arguments and the result should be, and by giving a computation
rule of the operation. An operation can sometimes be partial, or even non-
deterministic, also called many-valued.
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Basic types

The type Str of strings is the set Σ∗ of sequences over a finite set of tokens,
where the token set Σ is defined in the context. Concatenation is an operation
on strings defined in the standard way. A concatenation of two strings is written
s1 · s2, or often simply s1 s2.

The type N of natural numbers consists of all integers ≥ 0. Addition is an
operation on natural numbers.

Finally, any finite set can be seen as a type. An example is the n-element type
Nn = { 0, . . . , n− 1 } of all natural numbers less than n.

Records

A label is an atomic symbol, not being a term or a type. If r1, . . . , rn are
distinct labels and T1, . . . , Tn are types, then

{ r1 : T1 ; . . . ; rn ; Tn }

is a record type consisting of all records,

{ r1 = φ1 ; . . . ; rn = φn }

such that φi : Ti for 1 ≤ i ≤ n. Note that the order between the rows in a record
is not significant; meaning that a record is equivalent to a set of label-value pairs.
Record projection is an operation taking a record and a label, defined as

{ . . . ; r = φ ; . . . }.r = φ

Two record types { r1 : T1 ; . . . ; rn : Tn } and { r′1 : T ′
1 ; . . . ; r′n : T ′

n } are
equivalent, if Ti is equivalent to T ′

i for each 1 ≤ i ≤ n, modulo permutations of
the rows.

A tuple can be seen as syntactic sugar for a record,

〈φ1, . . . , φn〉 ≡ { 1 = φ1 ; . . . ; n = φn }

where the tuple projection πi(φ) is syntactic sugar for φ.i. Then a record φ =
{r1 = φ1 ; . . . ; rn = φn} is equivalent to a tuple ψ = 〈φ1 ; . . . ; φn〉, by replacing
each record projection φ.ri by the corresponding tuple projection πi(ψ).

Tables

A pattern for a finite type P is a set of terms, or equivalently a subset of P .
The patterns p1, . . . , pn are exhaustive for P if p1 ∪ . . . ∪ pn = P . A pattern p
matches a term t if t ∈ p. When writing patterns of type P we often write for
the set of all possibilities, i.e. the full set P .
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If P is a finite type and T is a type, then P ⇒ T is a table type. The elements
are tables of the form

[ p1 ⇒ φ1 ; . . . ; pn ⇒ φn ]

where each pi, 1 ≤ i ≤ n, is a pattern for type P , and the patterns p1, . . . , pn
are exhaustive for P . Selection is an operation taking a table of type P ⇒ T
and a term of type P , returning a term of type T , defined as

[ . . . ; p⇒ φ ; . . . ] ! t = φ

if p is the first pattern in the table that matches t.

A pattern is constant or instantiated if it is a singleton set. If all patterns are
instantiated, then there are as many patterns as the size of P , and the table is
called instantiated.

Comparing records and instantiated tables

An instantiated table is very similar to a record. The difference does not lie
in the formation of tables and records, but in the associated projection and
selection operations. The main difference is that for records the labels are not
terms of some type. Tables on the other hand, take arguments which are of
a (finite) type. So, for a record projection it is always known at compile-time
which row in the record is meant, but a table can be selected by a variable and
thus is not known until the variable is bound to some value.

The similarity has the effect that if all table selections in a term are instantiated,
the term can be converted to another where tables are converted to records and
table selections are converted to record projections.

Record unification

Records can be unified, which is a partial operation defined as Γ1tΓ2 = Γ1∪Γ2

whenever there is no r such that Γ1.r 6= Γ2.r. Note that this definition is
very simplistic, and not as general as the standard definitions of unification
(Robinson, 1965); as an example, the definition is not recursive and thus does
not unify records recursively.

Records, subrecords and flattened records

A record { r1 = φ1 ; . . . ; rn = φn } is equivalent to a finite set of n pairs of
labels and terms. Therefore we sometimes view a record as a set, to be able to
form subrecords. E.g. given a record R and a predicate P on record labels, we
can form the subrecord of all rows matching P ,

{ r = φ ∈ R | P (r) } ⊆ R

29



Chapter 2. Background

Testing whether a record R is a subrecord of another record R′ amounts to
testing R ⊆ R′. Note that being a subrecord is the opposite of being a subtype;
the empty record is a subrecord of all records, but any record type is a subtype
of the empty record type.

A nested record can be flattened by repeated application of the following equiv-
alence,

{ . . . ; ri = { ri1 = φi1 ; . . . ; rin = φin } ; . . . }
≡ { . . . ; ri.ri1 = φi1 ; . . . ; ri.rin = φin ; . . . }

2.2 Parsing as deduction

Most parsing algorithms can be seen as a deductive process, with axioms, goals
and inference rules. In this thesis we use the framework called deductive parsing
by Shieber et al. (1995). Another wide-spread framework is parsing schemata
by Sikkel (1997b), which could be used instead.

According to Shieber et al. (1995), parsing is “a deductive process in which
rules of inference are used to derive statements about the grammatical status
of strings from other such statements”. The statements are called items, and
are represented by formulae in some formal language. The inference rules and
axioms are written in natural deduction style, and they can have side condi-
tions mentioning e.g. grammar rules. The inference rules and axioms are rule
schemata, meaning that they contain metavariables to be instantiated by ap-
propriate terms when the rule is invoked. The set of items built in the deductive
process is sometimes called a chart.

The general form of an inference rule is

θ1 . . . θn

θ






c1
. . .
cm

where θ, θ1, . . . , θn are items and c1, . . . , cm are side conditions.

2.2.1 Soundness and completeness of algorithms

We write items as syntactic terms (e.g. [R ; Γ•φ ; ~Γ]) and give an interpretation
to each term. The interpretation states whether an item is grammatical given
a certain input string.

Following Sikkel (1998), we prove correctness by first guessing a set of valid
items, and then proving soundness and completeness for all items in that set.

30



2.2. Parsing as deduction

Soundness A parsing system is sound if all derived items are grammatical
according to the interpretation. To show soundness we only have to prove
that each inference rule yields valid items whenever the antecedents are
valid items.

Completeness A parsing system is complete if all grammatical items are de-
rived, i.e. that we do not miss any interpretations. Completeness is often
more difficult to show than soundness; but often it amounts to associat-
ing each valid item θ with a natural number d(θ) such that there is some
instance of an inference rule,

θ1 . . . θk

θ

{
C

such that θ1, . . . , θk are valid items, the side condition C holds, and d(θi) <
d(θ) for 1 ≤ i ≤ k.

Sikkel (1998) calls the function d a deduction length function, while Shieber et al.
(1995) use the term rank for d(θ). Completeness of the inference rules follows
from induction on the ranks of the valid items.

2.2.2 Examples of context-free parsing algorithms

Here we give examples of some well-known parsing algorithms for context-free
grammars. First we give a very simplistic algorithm, and then two refine-
ments; the top-down algorithm of Earley (1970), and the bottom-up algorithm
of Kilbury (1985). The algorithms are slightly modified for presentation pur-
poses, but their essence are still the same. The first basic algorithm is also
proved to be sound and complete. When developing active parsing algorithms
for gf and pmcfg in sections 4.4 and 4.6 we do this by extending the algorithms
given here.

Parse items

In these algorithms we assume that the input string is,

w = w1 . . . wn

A substring wi+1 . . . wj is said to span the positions i − j, so the whole input
string w spans the positions 0 − n.

The parse items are of the form [ i− j ; A→ α • β ] where A→ αβ is a context-
free rule, and 0 ≤ i ≤ j ≤ n are positions in the input string. The meaning is
that α is recognized spanning i− j; i.e. α⇒∗ wi+1 . . . wj . If β is empty the item
is called passive. We write [ i− j ; A ] for any passive item [ i− j ; A→ α• ].

The goal of the parsing process is to deduce an item representing that the
starting category is found spanning the whole input string; such an item can be
written [ 0 − n ; S ] in our notation.
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A basic context-free chart parsing algorithm

Our first context-free chart parsing algorithm consists of three inference rules.
The first two, Combine and Scan, remain the same in all variants of chart
parsing (sometimes only slightly modified); while the third, Predict, is a very
simplistic variant, which will be improved upon later. The algorithm is also
presented by Sikkel (1997b,a, 1998), who calls it “bottom-up Earley”.

Combine
[ i− j ; A→ α •B β ] [ j − k ; B ]

[ i− k ; A→ α B • β ]
(2.1)

The basis for all chart parsing algorithms is the fundamental rule; saying
that if there is an active item looking for a category B spanning i− j, and
there is a passive item for B spanning j − k, then the dot in the active
item can be moved forward, and the new item will span the positions i−k.

Scan
[ i− j ; A→ α • wk β ]

[ i− k ; A→ α wk • β ]

{
k = j + 1 (2.2)

If the active item is looking for a terminal, then we can move the dot
forward whenever the terminal is the next input token.

Predict

[ i− i ; A→ • β ]

{
A→ β (2.3)

This rule takes care of introducing active items; each rule in the grammar
is added as an active item spanning i − i for any possible input position
0 ≤ i ≤ n.

Earley-style top-down parsing

The basic algorithm is very crude, it predicts all possible inference rules on each
possible position; if the grammar is large, the chart will become full of useless
items.

Earley (1970) introduced a parsing algorithm, where the parse items are aug-
mented with a lookahead of a number of input tokens. The algorithm with no
lookahead can be simplified to a parsing system using four inference rules, two of
which are the Complete and Scan rules from above. Earley prediction works
in a top-down fashion; a grammar rule is predicted only when there is an item
looking for the rule’s left-hand side.
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Combine and Scan remain as the inference rules 2.1 and 2.2.

Predict
[ i− j ; C → γ •A α ]

[ j − j ; A→ • β ]

{
A→ β (2.4)

If there is an item looking for an A and ending in position j, and there
is a grammar rule for A, add that rule as an active item spanning the
positions j − j.

Initial prediction

[ 0 − 0 ; S → • α ]

{
S → α (2.5)

Now prediction also needs an active item to be triggered, so we need some
way of starting the inference process. This is done by adding an active
item for each rule of the starting category S, spanning the positions 0−0.

Kilbury-style bottom-up parsing

Kilbury (1985) did a variant of Earley’s algorithm, where the prediction was
changed from looking top-down to bottom-up. Kilbury’s algorithm is also called
left-corner parsing in the literature (see e.g. Carroll, 2003). The basic idea is
that we predict a grammar rule only when the rule looks for a category which
is already found.

Combine and Scan remain as the inference rules 2.1 and 2.2.

Predict+Combine

[ i− j ; B ]

[ i− j ; A→ B • β ]

{
A→ B β (2.6)

If there is a passive item for B spanning i − j, and there is a rule look-
ing for B, then we can add the rule as an active item. And since B is
already found, we can apply the Combine rule immediately to move the
dot forward one step.

Predict+Scan

[ i− j ; A→ wj • β ]

{
A→ wj β
j = i+ 1

(2.7)

If the rule looks for a terminal, which happens to span i− j, then we can
add that rule as an item where that terminal is found.

Note that this algorithm does not work for grammars with ε-rules; there is no
way an empty rule can be predicted. There are two possible solutions to this;
i) either convert the grammar to an equivalent grammar without ε-rules; or
ii) add extra inference rules to handle ε-rules. We do not dwell further upon
this issue, since this thesis is not about context-free parsing anyway.
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Further modifications of the algorithms

There are several ways these basic algorithms can be optimized; e.g. by adding
(top-down or bottom-up) filtering to the predictions. For the simple case of
grammars without ε-rules, the left-corner relation is defined as,

X . Y ≡ X → Y α

and the reflexive and transitive closure .∗ is used to filter out predictions that
do not match the input string or the starting category. The relation .∗ is also
known as the first set in lr parsing algorithms (see e.g. Aho et al., 1986).

More information about filtering and other optimizations to chart parsing algo-
rithms can be found in e.g. Wirén (1992), Sikkel (1997b, 1998) or Nederhof and Satta
(2004).

Soundness and completeness of the basic algorithm

To prove correctness we first specify the set of valid items to contain all items
[ i − j ; A → α • β ] such that α ⇒∗ wi+1 . . . wj . If the item is passive, then
A⇒ α and the interpretation is equivalent to A⇒∗ wi+1 . . . wj .

Soundness is easy to show, since the inference rules are quite intuitive.

Lemma 2.2. The inference rules 2.1–2.3 are sound.

Proof. For each inference rule we have to prove that the consequent is valid
whenever the antecedents are valid;

Predict The item [i−i ; A→ •β ] is trivially valid, since ε⇒∗ wi+1 . . . wi = ε;

Scan The consequent [i−k ;A→ α wk•β] is valid if αwk ⇒∗ wi+1 . . . wjwk; but
this is equivalent to α ⇒∗ wi+1 . . . wj which is true since the antecedent
[ i− j ; A→ α • wj+1 β ] is valid;

Combine The consequent [ i− k ; A→ α B • β ] is valid if α B ⇒∗ wi+1 . . . wk;
but since the first antecedent says that α ⇒∗ wi+1 . . . wj , and the second
antecedent says that B ⇒∗ wj+1 . . . wk, we get that,

α B ⇒∗ wi+1 . . . wjwj+1 . . . wk = wi+1 . . . wk

�

To prove completeness it is enough to give a deduction length function, assigning
a natural number rank to each valid item. We define the function as,

d([ i− k ; A→ α • β ]) = min{ µ+ |i− k| | α⇒µ wi+1 . . . wk }
where µ is the number of deduction steps. We take the minimum in case there
are different ways to recognize an item. Completeness follows directly from the
following lemma, by induction on the rank of valid items.
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Lemma 2.3. Each valid item [ i− k ; A→ α • β ] with rank d, is a consequence
of some inference rule, where the ranks of all antecedent items are less than d.

Proof. There are three possibilities for the item; α can be empty, or it can
either end with a terminal or a category;

• If α = ε, then i = j and the item is inferred by prediction;

• If α = α′ wk, then the only way the item can be inferred is by scanning the
item [i−j ; A→ α′•wk β ] for j = k−1. Note that the antecedent item has
smaller rank since |i− j| < |i− k|; and the derivations α ⇒∗ wi+1 . . . wk
and α′ ⇒∗ wi+1 . . . wj have the same deduction lengths;

• If α = α′ B, then α′ ⇒µ1 wi+1 . . . wj and B ⇒ γ ⇒µ2 wj+1 . . . wk for
some i ≤ j ≤ k and some B → γ. The item can only be inferred by
completion of the items [ i − j ; A → α′ • B β ] and [ j − k ; B ]. The
rank of the consequent is d = µ1 + µ2 + 1 + |i− k|; and the ranks of the
antecedents are µ1 + |i− j| and µ2 + |j − k| respectively, which are both
less than d.

�

2.2.3 Possible implementations

Here are two examples of how to implement the deduction engine. If it is
possible to associate each parse item with a natural number rank such that all
antecedents always are less than the consequent in an inference rule,1 then there
is a very simple implementation of a parsing system. This implementation is a
generalization of the ideas of the cky parsing algorithm (Kasami, 1965; Younger,
1967), where we use a parse array indexed by starting and ending positions in
the input string.

Algorithm 2.4 (generalized CKY).

First create a parse array indexed by the ranks of the parse items, initialized
with empty sets.

Then loop through each possible rank, and each possible item having that rank,
adding the item to the parse matrix if some inference rule holds.

N

Often though, there is no immediate way of associating ranks to items. In that
case, we have to implement an inference engine for the given parsing system.
Apart from the chart containing all items found so far, we also need an agenda
containing the items that have not yet processed.

1Note that the rank may only refer to the item, not e.g. the deduction length as is done
when proving completeness.
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Algorithm 2.5 (agenda-driven chart parsing).

Initialize the chart to the empty set, and the agenda to all items generated by
inference rules without antecedents. Then repeat the following until the agenda
is empty:

• Remove one item from the agenda and add it to the chart. Apply any
inference rule for which i) the item matches one of the antecedents, and
ii) there are items in the chart matching the rest of the antecedents. Add
all possible consequences not already in the chart to the agenda.

N

The two algorithms can sometimes be combined; e.g. Earley (1970) uses item
sets, one for each input token. The item sets can be created one at the time
(using a generalized cky engine), but each set is created using the agenda-driven
method.

The reader is referred to e.g. Shieber et al. (1995) for more information about
actual implementations.

2.2.4 Space and time complexity

The space complexity of the algorithm is (the size of the chart) times (the size
of one item). For the algorithms discussed in this thesis, the size of items does
not depend on the length of the input, which means that the space complexity
is in the order of the number of items in the chart.

The time complexity is (the size of the chart) times (the time to infer one
item). To calculate the time to infer one item, we can inspect the inference
rules. The time complexity for an inference rule depends on the number of
ways to instantiate the metavariables in the rule, assuming that the consequent
is known. There are O(

∏ |xi|) possibilities for instantiating a rule, where xi
is any metavariable occurring in an antecedent or a side condition, but not in
the consequent since all metavariables in the consequent are known. Here we
use |xi| for the total range of a variable; e.g. if xi ∈ Nn, then |xi| = O(n).
Often the variables range over positions in the input string w, in which case
|xi| = O(|w|); or pairs of positions (representing substrings of the input), in
which case |xi| = O(|w|2).
Example 2.6.

For the context-free algorithms in section 2.2.2, we get the following space and
time complexities. We are only interested in complexity in the length n of the
input; therefore the only variables we need to consider are those that depend
on n.

An item is of the form [ i − j ; A → α • β ], where 0 ≤ i ≤ j ≤ n and A → αβ
is a grammar rule. The only variables that depend on n are i and j; therefore
the space complexity is O(n2).
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The most complex inference rule is the Combine rule 2.1;

[ i− j ; A→ α •B β ] [ j − k ; B ]

[ i− k ; A→ α B • β ]

There is only one input-dependent variable (j) which does not occur in the
consequent; so the time complexity for the Combine rule is O(n). Since this
rule is the most complex, the total time complexity of the algorithm becomes
O(n3).

N

That the argument for time complexity is correct is obvious for parsing sys-
tems which can be implemented by the generalized cky algorithm 2.4; the
algorithm loops through all possible parse items (the size of the chart), and for
each item it tries all possible antecedents (the time to infer one item). For the
dynamic agenda-driven algorithm 2.5, the argument is a bit more complicated,
but amounts to the same result (provided that there are efficient lookups for
items in the chart).

2.3 Grammatical Framework

This section describes the grammatical framework (gf). It is an adaption
of the descriptions in Ranta (2004a,b).

A gf grammar consists of a number of judgements, divided into three kinds of
modules : abstract, concrete and resource modules.

2.3.1 Abstract syntax: dependent type theory

The abstract syntax of gf is based on type theory, or to be more specific, on
Martin-Löf’s intuitionistic type theory (Martin-Löf, 1984). An abstract gram-
mar is defined by giving a number of abstract judgements, which can be of the
following forms:

cat C [Γ] C is a category depending on the context Γ
fun f : A f is a function of type A
data C = f1 | . . . | fn C has the constructors f1, . . . , fn
def a = b a is defined as b

Categories and types

A type declaration a : A says that a is an object of type A, and presupposes
that A is a type according to the type rules. A context Γ is a sequence of
variable declarations x1 : A1, . . . , xn : An, where each Ai is a type whenever
x1 : A1, . . . , xi−1 : Ai−1. The are two rules for forming types, also shown in
figure 2.1;
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Basic type formation

cat C [x1 : A1, . . . , xn : An]
a1 : A1 . . . an : An[x1/a1, . . . , xn−1/an−1]

C a1 . . . an Type

Function type formation

A Type B Type [x : A]

(x : A) → B Type

Basic object formation
fun f : A

f : A

Function application and abstraction

f : (x : A) → B a : A

f a : B[x/a]

b : B [x : A]

λx. b : (x : A) → B

β and η conversion

(λx. b) a = b[x/a]

c : (x : A) → B

c = λx. (c x)

Figure 2.1: Rules for types and objects in abstract syntax.
N

• The category definition

cat C [x1 : A1, x2 : A2, . . . , xn : An]

says that C a1 . . . an is a type, whenever a1 : A1, a2 : A2[x1/a1], . . . ,
an : An[x1/a1, . . . , xn−1/an−1].

• There is also a rule that creates the function type (x : A) → B, if A is a
type and if B is a type whenever x : A.

As a syntactic sugar we write A → B for the type (x : A) → B whenever B
does not depend on x.

Functions and objects

There are three rules for forming objects, also shown in figure 2.1;
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• The function type definition fun f : A presupposes that A is a type, and
says that f is an object of type A, or f : A.

• If we have a function f : (x : A) → B, and an object a : A, we can apply
the function to the object as f a : B[x/a].

• If we have an object b : B whenever x : A, we can form the function
λx. b : (x : A) → B.

Higher-order functions and dependent types

Given a function,

f : (x1 : B1) → · · · → (xδ : Bδ) → A

where A is not not a function type, we can informally define the notions of
higher-order functions and dependent types;

• f is a higher-order function if any of the argument types Bi is a function
type;

• A type Bi (or A) is dependent if any of the variables x1, . . . , xi−1 occur
in Bi (or any of x1, . . . , xδ occur in A).

If a function is not higher-order and does not have dependent types, it is said
to have a context-free backbone; this will be further discussed in section 2.3.2.

Example 2.7.

The function,

f : (x : A→ B) → (y : C x) → D

is higher-order since the first argument is a function, and has dependent types
since C x depends on x.

N

Normal forms

The type of any defined function fun f has the form

(x1 : A1) → · · · → (xδ : Aδ) → A

where Ai are the argument types and A = C t1 . . . tn is the value type of f . The
category C is the value category of the function. The full application of f has
the form f a1 . . . aδ with type A[x1/a1, . . . , xδ/aδ].

A term is in βη-normal form if it is of the form λz1 → · · ·λzδ → b, where b is
a variable or an application of a constant, and all arguments of the application
are in βη-normal form. The β and η conversion rules in figure 2.1 can be used
to bring any well-typed term into this form. Note that a function f alone is in
normal form only if its type is a basic type; in general the normal form of f is
of the form λz1 → · · · → λzδ → f z1 . . . zδ.
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Curried vs. uncurried functions

We often write function applications in uncurried form, f(a1, . . . , aδ). When
we do this we also write the function type as the type of an uncurried function.

f : A1 × · · · ×Aδ → A ≡ f : A1 → · · · → Aδ → A

f(a1, . . . , aδ) ≡ f a1 . . . aδ

The natural restriction is that A is a base type.

Data constructors and function definitions

There are some extra rules for declaring data constructors and giving function
definitions. We do not go into details about these subjects, since they will not
be further explored in this thesis.

Constructor declarations

data C = f1 | . . . | fn

presuppose that C is a category and that f1, . . . , fn are fun functions,
all with value types formed by C. The judgement says that each fi is a
constructor that can be used in patterns in function definitions.

Function definitions

def f p1 . . . pδ = t

presuppose that f is a fun function, t is an object of the value type of
f , and each pi is a pattern of the corresponding argument type of f . A
pattern is a term formed from variables and constructors only. There
is a computation rule, saying that an object f a1 . . . aδ is equal to t[σ],
whenever each ai = pi[σ], where σ is a substitution, for the first matching
function definition. This implies that function definitions are ordered.

Functions that are neither constructors nor defined implicitly are primitive no-
tions. The lexical rules of gf make no distinction between constructors, defined
functions and primitive notions.

2.3.2 The context-free backbone

Most chapter of this thesis only considers a restricted variant of the abstract
syntax, called the context-free backbone. It is not until chapter 6 that we return
to higher-order functions and dependent types.
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Definition 2.8 (context-free backbone). A basic function f has a context-free
backbone if it has the type

f : C1 × · · · × Cδ → C

where C and all Ci are categories, without dependencies.

A grammar has a context-free backbone if all basic functions have. Another way
of saying this is that there are no dependent types and no lambda abstractions
in the grammar, i.e. all category declarations have empty context and there are
no higher-order functions. By context-free gf we mean all possible gf grammars
with context-free backbone.

Note that the notions of basic types and categories coincide when we talk about
grammars with context-free backbones. In these cases we use the notion cate-
gory, to distinguish from the linearization types of the concrete syntax. In all
chapters except for chapter 6, we only talk about grammars with a context-free
backbone.

The definition of t : A in figure 2.1 becomes very simple for grammars with
context-free backbone;

f(t1, . . . , tδ) : C iff t1 : C1, . . . , tδ : Cδ

whenever f has the definition given above.

Example 2.9.

We repeat our main example from section 1.3.5; a simple grammar for a fragment
of English sentences. It consists of the context-free categories S, NP, VP, D, N
and V (standing for Sentence, Noun Phrase, Verb Phrase, Determiner, Noun and
Verb respectively), and has the following functions;

sp : NP × VP → S

npd : D × N → NP

npp : N → NP

vpt : V × NP → VP

da, dm : D

nc, nf : N

ve : V

The predication function sp forms a sentence out of a noun phrase and a verb
phrase. There are two ways of forming noun phrases; either by a determiner
and a noun (‘a lion’, ‘many lions ’), or just a plural noun (‘lions ’). We assume
that all verbs are transitive, so we only have the transitive verb phrase forming
function vpt. The determiners da, dm are singular and plural indefinites (‘a’
and ‘many’); nc, nf are the nouns ‘lion’ and ‘fish’; and ve is the verb ‘eat ’.

N
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Stripping off dependencies

Given an arbitrary gf grammar G without higher-order functions, we can strip
off all dependencies from that grammar to get the context-free backbone of G.
This is possible since each first-order function type can be written on the form

(x1 : A1) → · · · → (xδ : Aδ) → C t1 . . . tn

where each Ai is of the form Ci ti,1 . . . ti,ni
. Each typing of the given form is

then translated to C1 × · · · × Cδ → C.

The resulting grammar will be over-generating, meaning that all type-correct
terms will still be accepted by the context-free backbone, but terms that are
not type-correct might also be accepted. Another way of saying this is that the
translation is complete (i.e. all correct terms are still accepted), but not sound
(i.e. incorrect terms are also accepted).

Higher-order functions

If there are higher-order functions in a grammar, we can still apply the same
transformation. We only have to note that the argument types Ai above can
be functions themselves. We then apply the transformation recursively on the
argument types. However, the resulting grammar will not have a context-
free backbone. Higher-order functions will remain higher-order, even when all
dependencies are stripped off. The final function types will be of the form
A1 × · · · ×Aδ → C, where each Ai is also of the same form.

2.3.3 Concrete syntax

The concrete syntax of an abstract grammar is specified by giving a number of
concrete judgements of the following three forms:

lincat C = L C has the linearization type L
lin f x1 . . . xδ = t f has the linearization function λx1 . . . xδ. t
lindef C x = t C has the default linearization λx. t

Strings and tokens

The type of strings, Str, consists of sequences of tokens, where a token is an
abstract entity. The only thing we need to know is that the set of tokens is
finite and written in this thesis as Σ. In our examples, tokens are words, but
they could be e.g. morphological analyses of input words.

There is one operation on strings, concatenation of two strings. In this thesis
we write s1 · s2 for the concatenation of two strings, or often even s1 s2 when
no confusion can arise. The empty string is written ε.
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In gf it is also possible to concatenate tokens, called the agglutination t1 + t2 of
two tokens which is also a token. This presupposes that tokens are strings, or
more generally, that the set of tokens forms a monoid. The type system of gf
ensures that the set Σ of tokens that is used by a specific grammar is still finite.
Since agglutination can be eliminated, we will make no use of agglutination in
this thesis; so we simply assume that there is a finite set of tokens.

Linearization types

A linearization type can be of the following forms,2

• The type of strings, Str, is a linearization type;

• If T1, . . . , Tn are linearization types or parameter types, and at least one of
them is a linearization type, then { r1 : T1 ; . . . ; rn : Tn } is a linearization
type;

• If T is a linearization type and P is a parameter type, then P ⇒ T is a
linearization type.

This means that a linearization type contains the type Str somewhere. Param-
eter types are defined in section 2.3.4; for now it is enough to know that they
are always finite.

Each categoryC defined in the abstract grammar, must be given a corresponding
linearization type C◦, which is done by the judgement lincatC = L. For context-
free backbones, the judgement simply says that C◦ = L. For arbitrary types,
linearization types are defined inductively as follows,3

(C a1 . . . an)
◦ = L, if lincatC = L

((x1 : A1) → · · · → (xn : An) → A)◦ = Strn ×A◦

The second line in the definition is only used when the grammar has higher-
order functions. In that case the definition specifies how a functional argument
is linearized. This will be discussed further in section 6.1.

Example 2.10.

The example grammar has the following linearization types for English, where
Num is a parameter type containing parameters for singular and plural;

S◦ = { s : Str }
D◦, NP◦ = { s : Str ; n : Num }

N◦, V◦, VP◦ = { s : Num ⇒ Str }
2The definition we use here is more general than the one used by Ranta (2004a), which

includes some implementation-specific restrictions.
3Recall that a tuple like Str

n × A◦ is just syntactic sugar for a record.
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The reason for these linearization types is that nouns are inflected by determin-
ers and that verbs are inflected by the subject noun phrase. Other languages
might have other linearization types; e.g. in Swedish and German, there is an
extra inflection parameter for gender, making the linearization types more com-
plicated.

N

Linearization functions

To each function typing in the abstract syntax,

fun f : (x1 : A1) → · · · → (xδ : Aδ) → A

a corresponding linearization rule should be specified, which is done by a judge-
ment of the form

lin f x1 . . . xδ = φ

This presupposes that φ : A◦ whenever xi : A◦
i for 1 ≤ i ≤ δ. The judgement

defines a linearization function f◦ = λx1 . . . xδ. φ.

Evaluating linearizations

The linearization of a compound term t = f t1 . . . tδ is defined as

[[f t1 . . . tδ]] = f◦ [[t1]] . . . [[tδ]]

= φ[x1/[[t1]], . . . , xδ/[[tδ]]]

whenever the linearization rule is specified as lin f x1 . . . xδ = φ.

Default linearizations

The third possible judgement in a concrete module is a default linearization
lindef C x = φ. Each basic category C can have a default linearization, which
is a function from strings to C◦. The default linearization is only used when
linearizing bound variables in higher-order functions. This is discussed further
in section 6.1.

2.3.4 Resource syntax

The concrete syntax of gf has developed into a functional programming lan-
guage, with data type definitions and local and global function definitions. In
gf, data types are called parameter types and global functions are called oper-
ations, and they are specified by the following two judgements:
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param P = C1Γ1 | . . . | CnΓn P is a parameter type
with constructors C1, . . . , Cn

oper h : T = t h is an operation of type T
defined as t

The parameter contexts Γi are sequences of parameter types Pi,1 . . . Pi,ni
. Both

these judgements specify resources which can be used by concrete linearization
types and linearization rules.

Parameter types

A parameter type can be of the following forms,

• If there is a parameter type declaration for P , then P is a parameter type;

• If P1, . . . , Pn are parameter types, then the record type,

{ r1 : P1 ; . . . ; rn : Pn }

is a parameter type.

A parameter type declaration is of the form,

param P = C1 Γ1 | . . . | Cn Γn

and defines a series of constructors C1, . . . , Cn which can be used as functions
from their parameter contexts to P . I.e. if Γi = Pi,1 . . . Pi,ni

, then the construc-
tor Ci is a function,

Ci : Pi,1 → · · · → Pi,ni
→ P

Parameter type declarations may not be recursive; neither direct, indirect nor
mutually. This ensures that every parameter type P is finite, and we can form
the set of all parameter values of type P ,

VP = { 1P , 2P , . . . , nP }

Example 2.11.

For the simple English grammar we only need to declare one parameter type for
number,

param Num = Sg | Pl

but for more complicated grammars we also need a Person parameter type, for
distinguishing first, second and third person,

param Person = First | Second | Third
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Other languages might need other parameter types, e.g. German whose nouns
and verbs also are inflected by gender and case,

param Gen = Masc | Fem | Neu

param Case = Nom | Acc | Det | Gen

If there are several inflection parameters which often come together, it is possible
to define a combined parameter type,

param Infl = Infl(Num, Gen, Case)

This type contains 2 × 3 × 4 = 24 different parameters.
N

Operations

An operation is a global definition of a helper function that can be used in
linearizations. An operation is defined by judgements of the form

oper h : T = t

where T is any type (in the sense of concrete syntax) and t : T .

The type system of concrete syntax consists of linearization types augmented
with function types. A simple example of an operation definition is ss, creating
a record from a string,

oper ss : Str → { s : Str } = λx. { s = x }

There is also a designated type Type for describing linearization types. This
designated type is needed to be able to define functions that can be applied on
different kinds of types. An example is a generalized version of the previous
operation, creating a record from an object of any type,

oper rr : (a : Type) → a→ { r : a } = λa x. { r = x }

Note that we use dependent types in this definition.

Grammar composition

Any gf grammar with a context-free backbone can be transformed into a re-
source module by the following simple translation:

• Each category C with its linearization type C◦ is transformed into the
operation

oper C : Type = C◦
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• Each basic function f : A with its linearization function f◦ is transformed
into the operation

oper f : A = f◦

This resource module can then be used by another gf grammar, giving a way
of performing grammar composition as mentioned in sections 1.3.1 and 1.3.4.

2.3.5 Linearization terms

The possible linearization terms in concrete syntax is defined inductively as in
figure 2.2. Most of the definitions are straightforward. The only thing needing
further explanation is the definition for table formation.

Table formation

To explain the rule for forming tables, we have to give a definition of patterns.
Informally, a pattern is an incomplete term, where variables can occur in place of
subterms. A pattern p matches a term t if there is some substitution σ such that
t = p[σ], i.e. all variables in the pattern can be instantiated to get an equivalent
term. A sequence of patterns p1, . . . , pn is exhaustive if every possible term is
matched by some pattern. We write t : T [p : P ] if t : T whenever all variables
in p is assumed to be of type such that p : P .

Example 2.12.

The linearization terms of the example grammar in section 1.3.5 are repeated
here.

s◦p(x, y) = { s = x.s · y.s !x.n }
np◦

d(x, y) = { s = x.s · y.s !x.n ; n = x.n }
np◦

p(x) = { s = x.s ! Pl ; n = Pl }
vp◦
t (x, y) = { s = [ z ⇒ x.s ! z · y.s ] }

d◦a = { s = ‘a’ ; n = Sg }
d◦m = { s = ‘many’ ; n = Pl }
n◦
c = { s = [ Sg ⇒ ‘lion’ ; Pl ⇒ ‘lions ’ ] }

n◦
f = { s = [ ⇒ ‘fish’ ] }
v◦e = { s = [ Sg ⇒ ‘eats ’ ; Pl ⇒ ‘eat ’ ] }

The full gf grammar, including the abstract syntax and the linearization types,
is shown in figure 2.3.

N

47



Chapter 2. Background

Strings

‘string’ : Str ε : Str
s, t : Str

s · t : Str

Parameter constructors

param P = . . . | C P1 . . . Pn | . . .
C : P1 → · · · → Pn → P

Functions
b : B[x : A]

λx. b : A→ B

f : A→ B a : A

f a : B

Records

t1 : T1 . . . tn : Tn

{ r1 = t1 ; . . . ; rn = tn } : { r1 : T1 ; . . . ; rn : Tn }

c : { . . . ; r : T ; . . . }
c.r : T

Tables
t1 : T [p1 : P ] . . . tn : T [pn : P ]

[ p1 ⇒ t1 ; . . . ; pn ⇒ tn ] : P ⇒ T

{
p1, . . . , pn

exhaustive

c : P ⇒ T p : P

c ! p : T

Local definitions
t : T e : E[x : T ]

(let x : T = t in e) : E

Global definitions
oper h : T = t

h : T

Figure 2.2: The types and objects in concrete syntax.
N
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Categories
cat S, NP, VP, D, N, V

Parameter types

param Num = Sg | Pl

Linearization types

S◦ = { s : Str }
D◦, NP◦ = { s : Str ; n : Num }

N◦, V◦, VP◦ = { s : Num ⇒ Str }

Functions

sp : NP × VP → S

npd : D × N → NP

npp : N → NP

vpt : V × NP → VP

da, dm : D

nc, nf : N

ve : V

Linearization functions

s◦p(x, y) = { s = x.s · y.s !x.n }
np◦

d(x, y) = { s = x.s · y.s !x.n ; n = x.n }
np◦

p(x) = { s = x.s ! Pl ; n = Pl }
vp◦
t (x, y) = { s = [ z ⇒ x.s ! z · y.s ] }

d◦a = { s = ‘a’ ; n = Sg }
d◦m = { s = ‘many’ ; n = Pl }
n◦
c = { s = [ Sg ⇒ ‘lion’ ; Pl ⇒ ‘lions ’ ] }

n◦
f = { s = [ ⇒ ‘fish’ ] }
v◦e = { s = [ Sg ⇒ ‘eats ’ ; Pl ⇒ ‘eat ’ ] }

Figure 2.3: Example grammar for a small fragment of English.
N
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Computation rules

There are straightforward computation rules for string concatenation, local and
global definitions, function application, record projection and table selection.

s1 · s2 = s1s2

let x : T = t in e = e[x/t]

h = t (oper h : T = t)

(λx. t) a = t[x/a]

{ . . . ; r = t ; . . . }.r = t

[ . . . ; p⇒ t ; . . . ] ! s = t[p/s] (p matches s first)

The restriction for the last rule means that p must be the first pattern in the
table that matches s. This together with the fact that the patterns in a table
are exhaustive, ensures that table selection is a deterministic function. By [p/s]
we mean that we apply the unique substitution σ such that s = p[σ].

2.3.6 The module system

Here we note some remarks about the module system in gf. Ranta (2004b)
gives a more detailed description of these things.

Interface modules

There are actually four kinds of modules; the fourth being interface modules.
An interface module is like a restricted resource module, where only the types
of operations are declared, not the implementations, and only the names of
parameter types are declared. This gives an analogy between abstract and
concrete on the top level and interface and instance on the resource level.

Extension and inheritance

Any module can extend one or more modules of the same kind. The new module
then inherits all definitions from the underlying module. A module can extend
another (unrelated) module, and it can also be extended by any number of
(unrelated) modules. In this way we can form a hierarchy of modules.

Example 2.13.

Assume that we have an abstract module Logic defining propositions and the
logical connectives. We can have several concrete syntaxes for this module,
LogicDan, LogicSwe and LogicLatex for linearizing to Danish, Swedish and LATEX.
Now we can extend the Logic module by another abstract module Arithm for
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arithmetic. The concrete syntaxes ArithmDan, ArithmSwe and ArithmLatex, can
be implemented as extensions of the corresponding concrete logic modules.

This example can be further extended by extending Logic in another direc-
tion, such as Geom for geometry, together with corresponding concrete syntaxes.
Then a final abstract module GeoAri can be declared as the extension of both
Geom and Arithm, and the corresponding concrete syntaxes can be specified in
the same way.

Finally, we can add a resource module hierarchy which is used be the con-
crete modules, e.g. LatexRes containing LATEX features, ScanRes containing com-
mon features for the Scandinavian languages, together with DanRes and SweRes
which are both extensions of ScanRes and contains language-specific features.
The concrete module XY (for X=Logic, Arithm, Geom, GeoAri; and Y=Dan,
Swe, Latex) can then make use of the resource module Y Res.

N

2.3.7 Canonical linearizations

The concrete syntax of any gf grammar can be partially evaluated to a gram-
mar in canonical form, as shown in Ranta (2004a). In canonical form, all local
and global definitions disappear, as well as function applications; furthermore,
all tables are instantiated, meaning that all patterns are variable-free. Hierar-
chical parameters can be flattened; thus we can assume that the parameters are
declared by giving a finite set Par of parameter types, each P ∈ Par being a
set of parameters p1, . . . , pn. The resulting possible linearization functions and
terms are defined by the following.

Linearization functions

A linearization function for f : B1×· · ·×Bδ → A in canonical gf is of the form,

f◦(x1, . . . , xδ) = φ

where φ is a canonical linearization term.

Linearization terms

Definition 2.14 (canonical linearization). A canonical linearization term is of
the following form:

• A string constant is of type Str; and a concatenation s1 · s2 : Str, whenever
s1, s2 : Str.

• A constant parameter p : P , whenever p ∈ P .
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• A record { r1 = φ1 ; . . . ; rn = φn } is of type T = { r1 : T1 ; . . . ; rn : Tn },
whenever each φi : Ti.

• A record projection φ.ri : Ti, whenever φ is of the record type T above.

• A table [ p1 ⇒ φ1 ; . . . ; pn ⇒ φn ] is of type P ⇒ T , whenever P =
{ p1, . . . , pn }, and each φi : T .

• A table selection φ !ψ : T , whenever φ : P ⇒ T and ψ : P .

• An argument variable xi : B◦
i .

Example 2.15.

The example grammar in figure 2.3 is not entirely in canonical form. The
linearization of vpt contains a non-expanded table [ z ⇒ x.s ! z · y.s ], whose
canonical form is [ Sg ⇒ x.s ! Sg · y.s ; Pl ⇒ x.s ! Pl · y.s ]; and the linearization
of nf contains an anonymous table [ ⇒ ‘fish’ ], whose canonical form is [ Sg ⇒
‘fish’ ; Pl ⇒ ‘fish’ ]. The full grammar in canonical form is shown in figure 2.4.

N

Computation rules

Together with this there are computation rules for string concatenation, record
projection and table selection. Since all tables are instantiated, table selection
becomes as simple as record projection.

s1 · s2 = s1s2

{ . . . ; r = t ; . . . }.r = t

[ . . . ; p = t ; . . . ] ! p = t

2.3.8 A note on the syntax of GF grammars

There are some differences between the notation for GF used in this thesis, and
the notation used in the actual implementation (GF, 2004); the main differences
are shown in figure 2.5.

2.4 Generalized context-free grammar

Generalized context-free grammar (gcfg) was introduced by Pollard in
the 80’s as a way of formally describing head grammar (Pollard, 1984). In
later work people have used gcfg as a framework for describing many other for-
malisms, such as linear context-free rewriting systems (Vijay-Shanker et al.,
1987) and parallel multiple context-free grammar (Seki et al., 1991);
and here we will use it to describe gf with a context-free backbone.
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Categories
cat S, NP, VP, D, N, V

Parameter types

param Num = Sg | Pl

Linearization types

S◦ = { s : Str }
D◦, NP◦ = { s : Str ; n : Num }

N◦, V◦, VP◦ = { s : Num ⇒ Str }

Functions

sp : NP × VP → S

npd : D × N → NP

npp : N → NP

vpt : V × NP → VP

da, dm : D

nc, nf : N

ve : V

Linearization functions

s◦p(x, y) = { s = x.s · y.s !x.n }
np◦

d(x, y) = { s = x.s · y.s !x.n ; n = x.n }
np◦

p(x) = { s = x.s ! Pl ; n = Pl }
np◦

t (x, y) = { s = [ Sg ⇒ x.s ! Sg · y.s ; Pl ⇒ x.s ! Pl · y.s ] }
d◦a = { s = ‘a’ ; n = Sg }
d◦m = { s = ‘many’ ; n = Pl }
n◦
c = { s = [ Sg ⇒ ‘lion’ ; Pl ⇒ ‘lions ’ ] }

n◦
f = { s = [ Sg ⇒ ‘fish’ ; Pl ⇒ ‘fish’ ] }
v◦e = { s = [ Sg ⇒ ‘eats ’ ; Pl ⇒ ‘eat ’ ] }

Figure 2.4: Example grammar in canonical form.
N
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Notion In this thesis In the implementation

Function type B1 × · · · ×Bn → A B1 -> ... -> Bn -> A

Function application f(φ, . . . , ψ) f phi ... psi

λ-abstraction λx. φ \x -> phi

String token ‘token’ "token"

Concatenation φ · ψ phi ++ psi

Empty string ε []

Table [ p⇒ φ ; q ⇒ ψ ] table {p => phi; q => psi}

Figure 2.5: Notational differences between this thesis and the implementation.
N

There are several definitions of gcfg in the literature; Seki et al. (1991) use a
definition similar to Pollard’s original, while others (Weir, 1988; Becker, 1994;
Chiang, 2001) more cleanly separates between abstract and concrete syntax.
However, the latter definitions use the term gcfg for only the abstract part of
the grammar, and the term context-free rewriting system for the gcfg
together with the concrete interpretation function. While Pollard imposed no
restriction on the concrete linearization type, other definitions restrict them to
be tuples of strings. In this thesis we stick to the original definition as much as
possible, but separate the abstract and concrete syntax in a manner similar to
the definitions of context-free rewriting systems.

2.4.1 Abstract grammar

The abstract grammar is a tuple (C, S,F ,R), where C and F are finite sets of
categories and function symbols respectively, S ∈ C is the starting category, and
R ⊆ C × F × C∗ is a finite set of context-free syntax rules. For each function
symbol f ∈ F there is an associated context-free syntax rule;

A → f [B1, . . . , Bδ]

The arity of the rule is δ, and in general we write δf for the arity of the rule
f . The tree rewriting relation t : A is defined as f(t1, . . . , tδ) : A whenever
t1 : B1, . . . , tδ : Bδ. We say that a tree t is valid (for a given category A) if
t : A.
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Example 2.16.

The abstract syntax of the example grammar (figure 2.3, 2.4), becomes as follows
in gcfg format;

S → sp[NP, VP]

NP → npd[D, N]

NP → npp[N]

VP → vpt[V, NP]

D → da[]

D → dm[]

N → nc[]

N → nf []

V → ve[]

N

2.4.2 Concrete interpretation

To each category A is associated a linearization type A◦, which is not further
specified. To each function symbol f is associated a partial linearization function
f◦, taking as many arguments as the abstract syntax rule specifies.

f◦ ∈ B◦
1 × · · · ×B◦

δ → A◦

The linearization of a syntax tree is defined as,

[[f(t1, . . . , tδ)]] = f◦([[t1]], . . . , [[tδ]])

if the application is defined. Note that the definition imposes no restrictions on
the linearization types or the linearization functions; this is left to the actual
grammar formalism. For our purposes it is enough to view a linearization type
as the set of all possible linearization values. This means that the type Str of
strings is equal to Σ∗ (where Σ is the string alphabet). With this view we can
say that a linearization type is finite when it is a finite set.

In section 5.2, we extend the definition to also contain many-valued linearization
functions. Then the linearization of a tree becomes a many-valued function,

[[f(t1, . . . , tδ)]] = f◦(φ1, . . . , φδ)

whenever there are φ1, . . . , φδ such that φ1 = [[t1]], . . . , φδ = [[tδ]].

2.4.3 Variable-free notation for linearizations

In some cases it is more convenient to describe the abstract syntax and the
concrete linearization at the same time, without using any variable bindings.
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The rule A → f [A1, . . . , Aδ], with its linearization f◦(x1, . . . , xδ) = φ, can be
written as

A→ f [A1, . . . , Aδ] := φ̂

where each occurrence of the variable xi in φ is replaced by the term Ai in
φ̂, representing the argument number and the argument category. This means
that the basic operations of the linearization type also must have an explicit
representation in φ̂. If more than one argument have the same category, we use
superscripts to separate between them.

Example 2.17.

The following is an artificial rule in variable-free form (where the linearization
types for A, B are strings):

A→ f [B1, A, B3] := ‘a’ B1 A ‘b’ B3

This rule is another way of writing the linearization function

f◦(x, y, z) = ‘a’ x y ‘b’ z

Which in turn is a gcfg version of the context-free rule A→ ‘a’ B A ‘a’ B.
N

2.4.4 Subclasses of GCFG

When defining subclasses of gcfg, we use a notion of “a part of x”, which can
be defined in terms of projection functions as follows.

• If there is a bijective function π : T → P1 × · · · × Pn, we say that π forms
a partition of T .

• Given a term t : T , we say that a projected term pk : Pk is a part of t if
there is some partition π of T such that pk = πk(π(t)).

Note that it is important that the partition is bijective, i.e. one-to-one and onto;
i) one-to-one ensures that it is possible to reconstruct terms from the image of
the partition; and ii) onto ensures that there is no overlapping information in
the image.

Definition 2.18. Given a gcfg rule A → f [B1, . . . , Bδ] with its linearization
f(x1, . . . , xδ) = φ. We say that the rule is

parallel or nonlinear if some part of xi is mentioned twice in φ, for some
1 ≤ i ≤ δ;

linear if no part of xi is mentioned twice in φ, for all 1 ≤ i ≤ δ;

erasing if some part of xi is not mentioned at all in φ, for some 1 ≤ i ≤ δ;
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nonerasing if all parts of xi are mentioned in φ, for all 1 ≤ i ≤ δ;

suppressing if xi is not mentioned at all in φ, for some 1 ≤ i ≤ δ.

Note that linear and parallel are opposites of each other, as are erasing and
nonerasing.

Example 2.19.

A record type T = { r1 : T1 ; . . . ; rn : Tn } has a natural projection function
π : T → T1 × · · · × Tn:

π({ r1 = t1 ; . . . ; rn = tn }) = 〈t1, . . . , tn〉

N

2.4.5 GF with a context-free backbone

Grammatical framework with a context-free backbone is an instance of
gcfg, where the abstract gf rule,

f : B1 → · · · → Bδ → A

is just another way of writing the abstract gcfg rule,

A → f [B1, . . . , Bδ]

We also see that the gf definition of t : A in section 2.3.2 is equivalent to the
gcfg definition of t : A in section 2.4.1; and that the gf definition of [[t]] in
section 2.3.3 is exactly the same as the corresponding gcfg definition in section
2.4.2.

2.5 Parallel multiple context-free grammar

Parallel multiple context-free grammar (pmcfg; Kasami et al., 1988;
Seki et al., 1991) were introduced in the late 80’s as a very expressive formalism,
incorporating linear context-free rewriting systems and other mildly
context-sensitive formalisms, but still with a polynomial parsing algorithm. pm-
cfg is an instance of gcfg, with the following restrictions on linearizations:

• Linearization types are restricted to tuples of strings:

Each pmcfg grammar defines a linearization arity d(C) for each category

C; the linearization types can then be defined as C◦ = Strd(C).
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• The only allowed operations in linearization functions are tuple projections
and string concatenations:

Each pmcfg linearization function is of the form

f◦ (〈x1,1, . . . , x1,d1〉 , . . . , 〈xδ,1, . . . , xδ,dδ
〉) = 〈α1, . . . , αd〉

where each αi is a sequence of variables xj,k or constant strings.

Since records can be seen as syntactic sugar for tuples, we can use records in
this thesis without changing the definition of pmcfg. The linearization function
above will then be written

f◦(x1, . . . , xδ) = { 1 = α̂1 ; . . . ; d = α̂d }

where each variable xj,k in αi is replaced by the projection xj .k in α̂i.

2.5.1 Variable-free notation for PMCFG grammars

When writing a pmcfg grammar in variable-free notation, we often write the lin-
earization record as a sequence of rows; in other words we leave out the opening
and closing braces and replace semicolon by comma. With this simplification,
the following rule for f ,

A → f [B1, . . . , Bδ]

f◦(x1, . . . , xδ) = { r1 = α1 ; . . . ; rn = αn }

can equivalently be written,

A→ f [B1, . . . , Bδ] := r1 = α̂1, . . . , rn = α̂n

where each each occurrence of variable xi in any αk is replaced by Bi in α̂k.

Example 2.20.

Figure 2.6 shows a pmcfg version of the example grammar in figure 2.3, recog-
nizing the same strings. Since pmcfg linearizations cannot contain information
about inflection, we have to move that information into the categories instead.

N

2.5.2 Comparison with GF

Written in record notation, pmcfg becomes a trivial instance of context-free
gf, without using tables and table selections. For the reverse direction, we
see that any gf grammar with a context-free backbone fulfilling the following
restrictions can be trivially converted to an equivalent pmcfg:
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S → sp1[NP1, VP] := s = NP1.s · VP.s1

S → sp2[NP2, VP] := s = NP2.s · VP.s2

NP1 → npd1[D1, N] := s = D1.s · N.s1

NP2 → npd2[D2, N] := s = D2.s · N.s2

NP2 → npp[N] := s = N.s2

VP → vpt1[V, NP1] := s1 = V.s1 · NP1.s, s2 = V.s2 · NP1.s

VP → vpt2[V, NP2] := s1 = V.s1 · NP2.s, s2 = V.s2 · NP2.s

D1 → da[] := s = ‘a’

D2 → dm[] := s = ‘many’

N → nc[] := s1 = ‘lion’, s2 = ‘lions ’

N → nf [] := s1 = ‘fish’, s2 = ‘fish’

V → ve[] := s1 = ‘eats ’, s2 = ‘eat ’

Figure 2.6: pmcfg version of the example grammar.
N

• Records containing parameters are not allowed;

• All tables and all table selections must be instantiated.

The fact that gf can have nested records constitutes no problem – all nestings
can be flattened. Also, an expanded table,

[ p1 ⇒ φ1 ; . . . ; pn ⇒ φn ] : P ⇒ T

is equivalent to a record,

{ p1 = φ1 ; . . . ; pn = φn } : { p1 : T ; . . . ; pn : T }

and an instantiated selection φ ! pi is equivalent to a record projection φ.pi.

Why GF is not obviously equivalent to PMCFG

When the gf grammar contains parameters in some record, or when some ta-
ble is not instantiated, or when some table selection is not instantiated, the
equivalence is not trivial.

• There is a table in the grammar which is not fully instantiated, e.g.

nof = { s = [ ⇒ ‘fish’ ] }
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• There is a table selection where the selector is not an instantiated param-
eter, e.g.

s◦p = { s = x.s · y.s !x.n }

• There is a record in the grammar that contains a parameter, e.g.

d◦m = { s = ‘many’ ; n = Pl }

The case of non-instantiated tables can be solved by compiling the grammar
into canonical form (see section 2.3.7), where all tables are instantiated.

The remaining cases are discussed in chapter 3, where it is shown that gf and
pmcfg are equivalent.

2.5.3 Linearity and nonerasingness

The name parallel mcfg (pmcfg) comes from the possibility of writing parallel
grammars. If the grammar is linear as defined in 2.4.4 it is called a linear mcfg
(lmcfg). If the grammar is also nonerasing, it is called a linear context-
free rewriting system (lcfrs).

Theorem 2.21 (Seki et al., 1991). For each erasing pmcfg ( lmcfg) there is
an equivalent nonerasing pmcfg ( lmcfg).

This implies that lmcfg and lcfrs are equivalent formalisms.

2.6 Representations of syntactical information

2.6.1 Syntax trees or abstract terms

A syntax tree for a gcfg grammar is also known as an abstract term. The
following is a repetition of the tree rewriting relation defined in figure 2.1 (for
gf) and section 2.4.1 (for gcfg).

Definition 2.22 (syntax tree). Given a gcfg grammar, the tree t = f(~t) is a

legal syntax tree of category A, written t : A, iff A→ f [ ~A] and ~t : ~A.4

Note that the definition is equivalent to the definition of the abstract syntax
of gf in figure 2.1 on page 38, restricted to context-free categories. By the
statement t : A ⇒ φ we mean both t : A and that [[t]] = φ, and by A ⇒ φ we
mean t : A⇒ φ for some tree t.

4Note that we write ~t : ~A instead of t1 : A1, . . . , tδ : Aδ, as discussed in section 2.1.1.
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The set of all syntax trees in a grammar G for a category A linearizing to φ is
defined as

TG(A, φ) = { t | t : A⇒ φ }
The set of all syntax trees for a category A is written TG(A) =

⋃
φ TG(A, φ),

and the set of all syntax trees for the grammar is TG =
⋃
A TG(A). Note that

TG consists of all syntax trees of any category, not just the starting category. If
G is understood from the context we can safely skip the subscript.

The size of a tree t = f(~t) is equal to the number of function symbols in the
tree;

|t| = 1 + |~t| = 1 +
δ∑

i=1

|ti|

Example 2.23.

If we want to list all possible trees for category NP in the example grammar, we
can proceed as follows. First we see that there are only two ways to build an
NP, and that is from the functions npd and npp; the former having 4 possibilities
and the latter 2 possibilities;

npd(da, nc) npd(da, nf )

npd(dm, nc) npd(dm, nf )

npp(nc) npp(nf )

An example linearization can be,

npd(dm, nc) : NP ⇒ ‘many lions ’

N

Open and incomplete trees

In chapter 4, we will make use of open trees. These are trees where some nodes
consist of metavariables, which are variables representing an as yet unknown
tree of the correct category. We write metavariables as ?.

Definition 2.24 (open tree). A tree t : A is open if it is either a metavariable

t = ?; or if it is of the form t = f(~t), for the rule A→ f [ ~B], where each ti : Bi is
an open tree. A tree is incomplete or uninstantiated if it contains metavariables,
otherwise it is called complete or instantiated.

The linearization of a metavariable ? is the identity [[?]] = ?. In some cases
we use argument variables as metavariables; then we can say that given a rule
A → f [ ~B] with linearization function f◦(~x) = φ, the uninstantiated tree f(~x)
has linearization [[f(~x)]] = φ.

When calculating the size of an open tree, we say that a metavariable has size
0; i.e. |f(~t)| = 1 + |~t| and |?| = 0.
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2.6.2 Syntax forests or charts

If S is the starting category of a gcfg grammar, the set T (S, w) consists of all
syntax trees linearizing to the input string w. For context-free grammars it is
possible to represent T (S, w) by another cfg with precisely these syntax trees
(up to renaming of non-terminals), generating the singleton language { w }.5
This new grammar is called a parse forest, and each tree in T (S, w) can be
extracted in turn by a simple procedure.

This idea was introduced by Lang and Billot (Lang, 1974; Billot and Lang,
1989), and has been extended other formalisms (Vijay-Shanker and Weir, 1990,
1993b; Lang, 1994). In fact the idea works even when the input is a regular
language (Lang, 1991), e.g. an incomplete sentence or output from a speech
recognizer. The result is based on the construction of the intersection between
a context-free grammar and a regular set by Bar-Hillel et al. (1964). The parse
forest can be stored in polynomial space, even if it represents an exponential
number of trees (or even an infinite number of trees in pathological cases).

In this section we extend the notion of parse forests to gcfg; where a forest can
be seen as the abstract part of some gcfg grammar.

Definition 2.25 (item). An item is of the form [ A → f [ ~B] ; φ ; ~ψ ], where

A→ f [ ~B] is a rule in the grammar and φ = f◦(~ψ).

An item θ = [ A→ f [ ~B] ; φ ; ~ψ ] can be viewed as an abstract gcfg rule,

Aφ → fθ[B
ψ1

1 , . . . , Bψδ

δ ]

All definitions and results in this section can be reformulated to work on these
kinds of abstract rules instead of items.

The set [ A ; φ ] contains all items [ A → f [ ~B] ; φ ; ~ψ ] such that ~B ⇒ ~ψ. Note
that A⇒ φ is a consequence of any such item; since there are trees ~t such that
~t : ~B ⇒ ~ψ, we see that f(~t) : A and [[f(~t)]] = f◦([[~t]]) = f◦(~ψ) = φ; hence
f(~t) : A ⇒ φ. The reverse direction also holds; all items such that A ⇒ φ are
contained in [ A ; φ ]. This is because the only way to build trees t : A is by
application of some rule, by which we get an item that is contained in [A ; φ ].

We say that an item [A→ f [ ~B] ; φ ; ~ψ ] represents a tree t = f(~t) iff ~t : ~B ⇒ ~ψ.
Note that there can be items that do not represent any tree. However, all items
in [ A ; φ ] represent at least one tree. We also say that a tree t is represented
by [ A ; φ ] iff it contains an item representing t. Finally we note that [ A ; φ ]
represents a tree t iff t : A ⇒ φ; this is because [ A ; φ ] contains exactly the
items such that A⇒ φ.

5If w is not recognized by G, the new cfg generates the empty language.
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Example 2.26.

[ S → sp[NP, VP] ;

{ s = ‘many lions eat fish’ } ;

{ s = ‘many lions ’ ; n = Pl },
{ s = [ Sg ⇒ ‘eats fish’ ; Pl ⇒ ‘eat fish’ ] } ]

is an item for the example gf grammar in figure 2.4, representing the tree,

sp(npd(dm, nc), vpt(ve, npp(nf )))

The corresponding item for the pmcfg version of the grammar in figure 2.6
looks like,

[ S → sp2[NP2, VP] ;

s = ‘many lions eat fish’ ;

s = ‘many lions ’ ;

s1 = ‘eats fish’, s2 = ‘eat fish’ ]

N

Definition 2.27 (syntax forest, chart). A syntax forest, or chart, is a (possibly
infinite) set of items.

We say that a chart C represents a tree t = f(~t) iff there is an item,

[ A→ f [ ~B] ; φ ; ~ψ ] ∈ C

such that [[t]] = φ and the subtrees ~t are represented by the chart. By induction
on the size of the tree we see that a chart can only represent legal syntax trees.6

Example 2.28.

The tree from the previous example,

sp(npd(dm, nc), vpt(ve, npp(nf )))

can be represented by the following chart,

[ S → sp[NP, VP] ; φs ; φnp1, φvp ] [ D → dm[] ; φd ; ]

[ NP → npd[D, N] ; φnp1 ; φd, φn1 ] [ N → nc[] ; φn1 ; ]

[ VP → vpt[V, NP] ; φvp ; φv, φnp2 ] [ V → ve[] ; φv ; ]

[ NP → npp[N] ; φnp2 ; φn2 ] [ N → nf [] ; φn2 ; ]

where φs, φnp1, φvp, φnp2, φd, φn1, φv, φn2 are matching linearizations.
N

6In other words, a chart is sound by default.
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Definition 2.29 (complete chart). A chart C is complete with respect to A and
φ iff

• [A ; φ ] ⊆ C;

• C is complete with respect to Bi and ψi for each [A→ f [ ~B] ; φ ; ~ψ ] ∈ [A ; φ]
and 1 ≤ i ≤ δf .

Lemma 2.30. A complete (with respect to A and φ) chart C represents a tree t
iff t : A⇒ φ.

Proof. In either direction, the tree t must be a legal syntax tree, and therefore
we can say that it is of the form t = f(~t). We now use induction on the size of
t.

(⇒) If C represents t, then [ A → f [ ~B] ; φ ; ~ψ ] ∈ C such that [[t]] = φ and
the subtrees ~t are represented by C. The induction hypothesis says that
~t : ~B ⇒ ~ψ, but since t = f(~t) and φ = f◦(~ψ) we have that t : A⇒ φ.

(⇐) If t : A ⇒ φ, then φ = [[t]] = [[f(~t)]] = f◦([[~t]]) = f◦(~ψ) for some ~ψ such

that ~t : ~B ⇒ ~ψ. But then t is represented by the item [A→ f [ ~B] ; φ ; ~ψ ]
which is contained in [ A ; φ ], and in C since the chart is complete. The
induction hypothesis finally tells us that the subtrees ~t are represented by
C, and then the tree is also represented by C.

�

Corollary 2.31. The set T (S, w) of all syntactical analyses for an input string
w can be represented by a complete chart with respect to S and w, where S is
the starting category.

In other words, a correct parsing algorithm for gcfg does not have to return
anything more than a complete chart. Naturally, it is also useful to know that
the algorithm always returns a finite chart. We do not dwell on this interesting
subject in this thesis; we only note that the algorithms presented in chapter 4
all return finite charts.

If the chart is finite, extracting a tree that is represented by an item can be
done in time linear in the size of the tree, with the assumption that items in the
chart can be looked up in constant time.

Example 2.32.

The chart in example 2.28 is complete with respect to S and the input string
‘many lions eat fish’, since the represented tree is the only possible tree.

N
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2.6.3 Equivalence and simulation of grammars

There are (at least) two kinds of equivalence one can imagine, when talking
about grammars. Weak equivalence is the most common, saying that two gram-
mars G1, G2 are equivalent if they generate the same language, L(G1) = L(G2).
Unfortunately, for many purposes this notion of equivalence in not very useful.
In our case we want to show that converting a grammar preserves something
more than just the language; the conversion should also preserve the syntactical
structures. Chomsky (1965) introduced the notion of strong generative capacity
of a grammar G as the set of its syntactic structures, which in our setting can be
the set TG or TG(S), depending on one’s personal preferences. Unfortunately,
this definition is not very useful and several others have been suggested; see
e.g. Miller (1999) for a recent survey.

For our purposes the notion of simulation is well suited; of which the definition
here is adapted from Chiang (2001).

Definition 2.33 (simulating interpretation). A simulating interpretation 〈| · |〉 :
T1 → T2 is a surjective mapping between two sets of trees, such that for each
function symbol f occurring in T1,

〈|f(~t)|〉 = t[~x/〈|~t|〉]

where t[~x] is a tree in T2 whenever ~x are trees in T2.

In other words, a simulating interpretation transforms trees in a compositional
way; it can always be defined by pattern matching on the function symbols
(without taking cases of subtrees), as is done in the equation. Note that a
simulating interpretation is efficiently computable in time proportional to the
size of the input tree.

We say that 〈| · |〉 is trivial if it is of one of the following forms,

• 〈|f(x)|〉 = x, where f can take only one argument;

• 〈|f(~x)|〉 = g(〈|~y|〉), where g is a function symbol in T2, and ~y is a permuta-
tion of ~x.

In the first case, f is called a coercion. A trivial simulating interpretation can be
specified by a bijective mapping (also written 〈| · |〉) between F1 and F2 ∪{−},7
where 〈|f |〉 = − when f is a coercion; together with a permutation θ : F1 → N∗.
We also use the notation 〈|·|〉 for bijections between categories and linearizations.

7Recall that F is the set of function symbols in a grammar.
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Chapter 2. Background

Example 2.34.

The following is a simulating interpretation between trees for the pmcfg gram-
mar in figure 2.6, and trees for the original gf grammar in figure 2.4;

〈|sp1(x, y)|〉 = sp(〈|x|〉, 〈|y|〉)
〈|sp2(x, y)|〉 = sp(〈|x|〉, 〈|y|〉)

〈|npd1(x, y)|〉 = npd(〈|x|〉, 〈|y|〉)
〈|npd2(x, y)|〉 = npd(〈|x|〉, 〈|y|〉)
〈|vpt1(x, y)|〉 = vpt(〈|x|〉, 〈|y|〉)
〈|vpt2(x, y)|〉 = vpt(〈|x|〉, 〈|y|〉)

〈|npp(x)|〉 = npp(〈|x|〉)
〈|c|〉 = c (c = da, dm, nc, nf , ve)

Furthermore, the interpretation is trivial and has no coercions.
N

Definition 2.35 (simulation). A gcfg grammar G is a (trivial) simulation of
another grammar G′, if there is a (trivial) simulating interpretation, and a
mapping 〈|·|〉 between pairs of categories and linearizations such that if t : A⇒ φ
then 〈|t|〉 : A′ ⇒ φ′, where 〈|A ; φ|〉 = A′ ; φ′. Furthermore, 〈|S ; w|〉 = S′ ; w
for all input strings w, where S and S′ are the starting categories of G and G′

respectively.

Note that if A → f [B] is a coercion in the simulation G, then [[f(t)]] = [[t]] for
all trees t : B, and 〈|A ; φ|〉 = 〈|B ; φ|〉 whenever A ⇒ φ. This also implies that
any item for f is of the form [A→ f [B] ; φ ; φ ]

Example 2.36.

Together with the simulating interpretation in the previous example, the follow-
ing bijection between pairs of categories and linearizations constitutes a simu-
lation by the pmcfg grammar of the original gf grammar;

〈|S ; s = α|〉 = S ; { s = α }
〈|X1 ; s = α|〉 = X ; { s = α ; n = Sg } (X = NP, D)

〈|X2 ; s = α|〉 = X ; { s = α ; n = Pl } (X = NP, D)

〈|Y ; s1 = α, s2 = β|〉 = Y ; { s = [ Sg ⇒ α ; Pl ⇒ β ] } (Y = VP, N, V)

N

Implications to parsing

Since the simulating interpretation is efficiently computable, a simulation can
be used to parse a grammar in the obvious way; just use the simulating inter-
pretation for translating back the parse trees.
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2.7. Summary

If G trivially simulates G′, there is a simple procedure transforming a complete
chart for G, with respect to S and w, into a complete chart for G′, with respect
to S′ and w.

Algorithm 2.37.

For each item [ A → f [B] ; φ ; φ ] such that f is a coercion, and for each item
θ = [ . . .→ g[. . . , A, . . .] ; . . . ; . . . ], add a copy of θ where A is replaced by B.

Then transform each item [ A→ f [ ~B] ; φ ; ~ψ ] such that,

〈|f |〉 = f ′ 6= −
〈|A ; φ|〉 = A′ ; φ′

〈| ~B ; ~ψ|〉 = ~B′ ; ~ψ′

into the new item [ A′ → f ′[ ~B′] ; φ′ ; ~ψ′ ].
N

Lemma 2.38. Transforming a complete chart C, with respect to S and w, results
in a complete chart C′, with respect to S′ and w.

Proof. We have to show that [ A′ ; φ′ ] is contained in C′ whenever [ A ; φ ] is
contained in C.

Since the simulating interpretation is surjective, each tree t′ such that t′ : A′ ⇒
φ′ will be the image 〈|t|〉 of some tree t such that t : A ⇒ φ. But since [ A ; φ ]
is contained in C, each tree t : A ⇒ φ is represented by C; which implies that
each tree t′ : A′ ⇒ φ′ will be represented by C′, which means that [ A′ ; φ′ ] is
contained in C.

Finally, C is complete with respect to S′ and w, since C is complete with respect
to S and w, and 〈|S ; w|〉 = S′ ; w, C′.

�

This procedure can be used to transform a chart returned by a parsing algorithm
for the simulation, into a chart for the original grammar.

2.7 Summary

In this chapter we defined the basic notions for use in the rest of the thesis.
Most importantly the grammar formalisms gf (with the important subclass
context-free gf), gcfg and pmcfg were defined. Most of the material has
been introduced by previous authors; it is only some things that are previously
unseen. We stated two minor results which follow directly from the definitions;
context-free gf is an instance of gcfg, and pmcfg is an instance of context-free
gf.
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Chapter 2. Background

In section 2.6 we discussed the representation of syntactical terms. We extended
the notion of a shared forest for compactly representing a set of syntactical
analyses, to the gcfg formalism. We also discussed when a grammar formalism,
for which there are known parsing algorithms, can be used to parse grammars in
another formalism. This was done by adapting the notion of grammar simulation
from Chiang (2001).
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Chapter 3

Reducing context-free GF

to PMCFG

This chapter shows that context-free GF is strongly equivalent to PMCFG. This
equivalence is shown by giving an algorithm converting context-free GF grammars
into PMCFG grammars recognizing the same language; and by showing that parse
results can be converted back efficiently.

The conversion algorithm consists of enumerating all parameter instantiations in
a linearization, and then moving the instantiated parameters to the abstract cate-
gories. Enumerating all instantiations may lead to an exponential increase of the
grammar size. Therefore two alternative conversion algorithms are given, which do
not enumerate all possible instantiations, but instead try to only instantiate when
it is necessary.
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Chapter 3. Reducing context-free GF to PMCFG

The main result of this chapter is the following theorem, which is a direct
consequence of the conversions in sections 3.2 and 3.3.

Theorem 3.1. Any context-free gf grammar can be transformed to an equiva-
lent pmcfg grammar, which furthermore is a trivial simulation of the original
grammar.

Example 3.2.

Our example grammar throughout this chapter will be the canonical gf gram-
mar in figure 2.4 on page 53.

N

3.1 Paths and η-normal form

Definition 3.3 (path). A path is a sequence of record projections and table
selections. The empty path is written ε, and σ.r and σ !φ are paths if σ is a
path.

A path that does not contain any argument variables xi is called instantiated;
in which case the selections φ can only be parameters. A non-instantiated path
is called nested; this is because if a path contains an argument variable xi, then
that variable is always followed by a (possibly empty) path.

Note that we in the following equate nested tables and records with sets of
path-value pairs. I.e. the nested linearization term

{ s = [ Sg ⇒ φ1 ; Pl ⇒ φ2 ] ;

p = { n = Sg ; g = Utr } }

can also be written as a set of path-value pairs, or a flattened record,

{ s ! Sg = φ1 ;

s ! Pl = φ2 ;

p.n = Sg ;

p.g = Utr }

Definition 3.4 (string path, parameter path). A linearization type T as well as
a linearization φ can be partitioned into their string paths and parameter paths :

[T ]Str = { σ : Str | T.σ = Str }
[T ]Par = { σ : P | T.σ = P ∈ Par }
[φ]Str = { σ = φ.σ | φ.σ : Str }
[φ]Par = { σ = φ.σ | φ.σ : P ∈ Par }

Note that there are only a finite number of instantiated parameter records π :
[T ]Par, since there are only finitely many parameters.
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3.2. Converting to table normal form

Example 3.5.

For the terms dm : D and nc : N in the example grammar in figure 2.4 we have
the following.

[d◦m]Str : [D◦]Str = { s = ‘many’ } : { s : Str }
[d◦m]Par : [D◦]Par = { n = Pl } : { n : Num }
[n◦
c ]

Str : [N◦]Str = { s ! Sg = ‘lion’ ; s ! Pl = ‘lions ’ }
: { s ! Sg : Str ; s ! Pl : Str }

[n◦
c ]

Par : [N◦]Par = { } : { }

N

Definition 3.6 (η-normal form). A linearization term φ of type T is in η-normal
form if the structure follows the structure of its linearization type:

• If T is a record type, { r1 : T1 ; . . . ; rn : Tn }, then φ is a record { r1 =
φ1 ; . . . ; rn = φn } where each subterm φi is in η-normal form.

• If T is a table type P ⇒ T0 and P = { p1, . . . , pn }, then φ is a table
[ p1 ⇒ φ1 ; . . . ; pn ⇒ φn ] where each subterm φi is in η-normal form.

• If T is a basic linearization type, Str or P ∈ Par, then φ is called a leaf.

3.2 Converting to table normal form

Definition 3.7 (table normal form). A gf linearization is in table normal form
if it is of the form

f : B1 × · · · ×Bδ → A

f◦(x1, . . . , xδ) = [ π1 ⇒ φ1 ; . . . ; πn ⇒ φn ] ! ξ

and the following hold:

• ξ contains all parameter paths of the arguments x1, . . . , xδ;

ξ =
〈
[x1]

Par, . . . , [xδ]
Par

〉

• Each πk is a possible parameter instantiation of x1, . . . , xδ;

πk : [B◦
1 ]Par × · · · × [B◦

δ ]
Par

• π1, . . . , πn is an exhaustive enumeration of instantiations;

{ π1, . . . , πn } = [B◦
1 ]Par × · · · × [B◦

δ ]
Par
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Chapter 3. Reducing context-free GF to PMCFG

• Each φk is in η-normal form where the leaves are either parameters or
concatenations of constant strings and instantiated string paths.

The following algorithm converts any gf linearization in canonical form1 into
table normal form.

Algorithm 3.8.

Given a gf function with a context-free backbone;

f : B1 × · · · ×Bδ → A

f◦(x1, . . . , xδ) = φ

convert the canonical linearization φ to table normal form by applying the fol-
lowing two steps;

• First, add the outer table as in the definition of table normal form;

f◦(x1, . . . , xδ) = [ π1 ⇒ φ ; . . . ; πn ⇒ φ ] ! ξ

ξ =
〈
[x1]

Par, . . . , [xδ]
Par

〉

πk : [B◦
1 ]Par × · · · × [B◦

δ ]
Par

• Second, for each instantiation πk, convert φ to φk, by repeating the fol-
lowing substitution until there are no parameter paths left;

– Substitute each term xi.σ, where σ is an instantiated parameter path,
by its πk-instantiation (πk)i.σ.

N

Note that the normal form of a linearization, can very well lead to an exponential
increase of the size of the linearization. The reason is that the outer table
[ π1 ⇒ φ1 ; . . . ; πn ⇒ φn ] has a number of rows proportional to the total
number of parameters occurring in the gf linearization.

Lemma 3.9. Algorithm 3.8, together with the standard computation rules, yields
an equivalent linearization in table normal form.

Proof. Assume that the resulting linearization is not in table normal form.
Then there must be some φk which is not in the form described in definition
3.7. Now φk can not contain any instantiated parameter paths, since they are
substituted by the algorithm.

The only possibility for φk is therefore to contain nested paths. Then there
must be a “least”nested path σ, occurring as xi.σ, where σ does not contain any
nested paths itself. But then σ can neither contain nested paths, nor instantiated
parameter paths, meaning that σ is not nested. We have a contradiction. �

1The canonical form is defined in section 2.3.7.
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3.3. Converting to a pmcfg grammar

Example 3.10.

There are three linearizations in the example that are not in table normal form,
and this is how they look after conversion;

s◦p(x, y) = [ Sg ⇒ { s = x.s · y.s ! Sg } ;

Pl ⇒ { s = x.s · y.s ! Pl } ] ! x.n

np◦
d(x, y) = [ Sg ⇒ { s = x.s · y.s ! Sg ; n = Sg } ;

Pl ⇒ { s = x.s · y.s ! Pl ; n = Pl } ] ! x.n

vp◦
t (x, y) = [ Sg ⇒ { s = [ Sg ⇒ x.s ! Sg · y.s ;

Pl ⇒ x.s ! Pl · y.s ] } ;

Pl ⇒ { s = [ Sg ⇒ x.s ! Sg · y.s ;

Pl ⇒ x.s ! Pl · y.s ] } ] ! y.n

N

3.3 Converting to a PMCFG grammar

To get a pmcfg grammar, we have to get rid of the parameters in some way;
and this we do by moving them to the abstract syntax. Each table row πk ⇒ φk
resulting from algorithm 3.8 will then give rise to a unique function symbol f̂
with linearization φk.

Algorithm 3.11.

Given the context-free backbone of a gf grammar where all linearizations are
in table normal form, create a grammar with the following categories, function
symbols and linearizations:

• For each category A and each instantiated parameter record π : [A◦]Par,
create a new category Â = A[π]. The linearization type is the same as the
string paths of the original linearization type, Â◦ = [A◦]Str.

• For each syntax rule f : B1 × · · · × Bδ → A, and all new categories
Â, B̂1, . . . , B̂δ, create a new syntax rule f̂ : B̂1 × · · · × B̂δ → Â; where f̂
is a unique function symbol, f̂ = f [B̂1 · · · B̂δ → Â].

• For each linearization function,

f◦(x1, . . . , xδ) = [ π1 ⇒ φ1 ; . . . ; πn ⇒ φn ] ! ξ

and each table row πk ⇒ φk, create a new linearization function for f̂ ;

f̂◦(x1, . . . , xδ) = [φk]
Str

Â = A[[φk]
Par]

Âi = Ai[(πk)i]

where we by (πk)i mean the ith component of πk.
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Chapter 3. Reducing context-free GF to PMCFG

The resulting grammar is a pmcfg grammar, since all linearizations are records
of strings.

N

A trivial simulation

Recalling the definition of simulation in section 2.6.3, we define a trivial simu-
lating interpretation, 〈|f(~t)|〉 = g(〈|~t|〉), where g is the function symbol such that
f = ĝ. A mapping between pairs of categories and linearizations can be defined
as 〈|A ; φ|〉 = B ; ψ where B is the category such that A = B̂ = B[π], and
ψ = φ ∪ π. With these two functions we can state the following lemma.

Lemma 3.12. The resulting pmcfg grammar is a trivial simulation of the orig-
inal gf grammar.

Proof. We have to show that t : A ⇒ φ implies that 〈|t|〉 : B ⇒ ψ where
〈|A ; φ|〉 = B ; ψ. We proceed by induction on the size of the tree t = f(~t), where

f : ~A→ A.

Assume that t : A ⇒ φ. But from the algorithm we know that there are g,
B and π such that g : ~B → B, f = ĝ, A = B̂ = B[π] and ψ = φ ∪ π. Now,

f(~t) : A ⇒ φ implies that ~t : ~A ⇒ ~φ, which by the induction hypothesis is

equivalent to 〈|~t|〉 : ~B ⇒ ~ψ, which in turn implies that 〈|t|〉 : B ⇒ ψ.
�

Example 3.13.

Figure 3.1 shows how the example grammar looks like after conversion to pm-
cfg. Note that the grammar is equivalent to example 2.20, modulo renaming
of categories, functions and labels.

N

3.4 Non-deterministic reduction

Another possible conversion is to use a non-deterministic substitution algorithm.
This can also in some cases reduce the size of the resulting pmcfg grammar,
when argument parameters are not mentioned in the original linearizations.

Algorithm 3.14.

Assume the following abstract syntax rule, together with its linearization func-
tion:

f : B1 × · · · ×Bδ → A

f◦(x1, . . . , xδ) = φ

Repeat the following non-deterministic substitution until there are no instanti-
ated parameter paths left, accumulating the parameter records π1, . . . , πδ:
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3.4. Non-deterministic reduction

Categories and linearization types

X̂1 = X [n = Sg] (X = D, NP)

X̂2 = X [n = Pl] (X = D, NP)

X̂ = X [] (X = S, VP, V, N)

Ŝ◦, D̂◦
1, D̂◦

2, N̂P
◦

1, N̂P
◦

2 = { s : Str }
N̂◦, V̂◦, V̂P

◦
= { s ! Sg : Str ; s ! Pl : Str }

Functions

ŝpi : N̂Pi × V̂P → Ŝ (i = 1, 2)

n̂pdi : D̂i × N̂ → N̂Pi (i = 1, 2)

n̂pp : N̂ → N̂P2

v̂pti : V̂ × N̂Pi → V̂P (i = 1, 2)

d̂a : D̂1

d̂m : D̂2

n̂f , n̂c : N̂

v̂e : V̂

Linearization functions

ŝ◦p1(x, y) = { s = x.s · y.s ! Sg }
ŝ◦p2(x, y) = { s = x.s · y.s ! Pl }

n̂p
◦
d1(x, y) = { s = x.s · y.s ! Sg }

n̂p
◦
d2(x, y) = { s = x.s · y.s ! Pl }
n̂p

◦
p(x) = { s = x.s ! Pl }

v̂p
◦
t1(x, y) = { s ! Sg = x.s ! Sg · y.s ;

s ! Pl = x.s ! Pl · y.s }
v̂p

◦
t2(x, y) = the same as v̂p

◦
t1(x, y)

d̂◦a = { s = ‘a’ }
d̂◦m = { s = ‘many’ }
n̂◦
c = { s ! Sg = ‘lion’ ; s ! Pl = ‘lions ’ }

n̂◦
f = { s ! Sg = ‘fish’ ; s ! Pl = ‘fish’ }
v̂◦e = { s ! Sg = ‘eats ’ ; s ! Pl = ‘eat ’ }

Figure 3.1: Example grammar after conversion to pmcfg.
N
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Chapter 3. Reducing context-free GF to PMCFG

• Substitute each instantiated parameter path xi.σ : P with any p ∈ P ,
such that the unification πi t { σ = p } is defined.2 Update πi with the
result of the unification.

Supposing that the final substituted linearization is ψ, we can add the following
rule for the new function symbol f̂ :

f̂ : B̂1 × · · · × B̂δ → Â

f̂◦(x1, . . . , xδ) = [ψ]Str

Â = A[[ψ]Par]

B̂i = Bi[πi]

N

The algorithm is non-deterministic, and we get the final grammar by finding
all solutions for each function symbol f . This terminates since there are only a
finite number of parameters.

3.4.1 Coercions between categories

There is a difference between algorithm 3.14 and the previous algorithms 3.8 +
3.11; if an argument parameter xi.σ is not mentioned in φ (i.e. if the linearization
is erasing), then there will be no σ-row in the constraint record πi. This means
that the new category B̂i = Bi[πi] will only contain a subrecord of Bi[[ψi]

Par],
where φi is a linearization of type B◦

i . This problem can be solved by introducing
coercion functions between Bi[πi] and Bi[[ψi]

Par].

Algorithm 3.15.

Consider two syntax rules resulting from algorithm 3.14,

f̂ : · · · × B̂1 × · · · → Â

ĝ : · · · → B̂2

where B̂1 = B[π1] and B̂2 = B[π2]. If π1 is a subrecord of π2, add the coercion
function ĉ = c[π1π2]:

ĉ : B̂2 → B̂1

ĉ◦(x) = x

N

Applying algorithm 3.14 and then algorithm 3.15 results in a grammar that is
a trivial simulation of the original grammar. This is not difficult to see, since
the coercion functions will be coercions in the simulating interpretation.

2Recall that we defined a simplistic variant of record unification in section 2.1.2; π1 tπ2 =
π1 ∪ π2 whenever there is no r such that π1.r 6= π2.r.
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3.5. Tables with anonymous variables

Example 3.16.

One function symbol gets a linearization from algorithm 3.15 that differs from
figure 3.1; the functions v̂pt1 and v̂pt2 get merged into one function v̂pt,

v̂pt : V̂ × N̂P → V̂

v̂p
◦
t (x, y) = { s ! Sg = x.s ! Sg · y.s ;

s ! Pl = x.s ! Pl · y.s }

where N̂P = NP[]. This yields coercions for the more specific types N̂P1 =

NP[n = Sg] and N̂P2 = NP[n = Pl].

ĉi : N̂Pi → N̂P (i = 1, 2)

ĉ◦i (x) = x

N

3.5 Tables with anonymous variables

In full gf it is possible to have anonymous tables of the form [ ⇒ φ ], meaning
that the value of the parameter is uninteresting. In canonical form such a table
will have the form [ p1 ⇒ φ ; . . . ; pn ⇒ φ ]. The algorithms presented so
far will then result in n copies of φ in each resulting linearization. Here we
show how to reduce this overhead, in a way similar to the regulus compiler
(Rayner et al., 2001), which compiles limited unification-based grammars into
context-free grammars.

We assume that anonymous tables are written as [ ⇒ φ ]. This can be ac-
complished either by transforming each table [ p1 ⇒ φ1 ; . . . ; pn ⇒ φn ] such
that φ1 = · · · = φn; or by changing the canonical form compiler into leaving
anonymous tables alone.3

3.5.1 Constraints and anonymous variables

The non-deterministic substitution in algorithm 3.14 remains almost the same.
But now we have the possibility of reducing a selection from an anonymous table
[ ⇒ φ ] ! (xi.σ) directly to φ, without updating the constraint record πi at all.
This means that there are two conflicting behaviors if xi.σ is an instantiated
parameter path; either substitute it by any p ∈ P and update πi, or reduce to φ
without updating πi. In either case, the final result will be φ, but in the former
we get several solutions, one for each p ∈ P . Therefore, we should try to reduce
[ ⇒ φ ] !xi.σ directly whenever possible. The best way to do this is to reduce a
term from the inside; i.e. when considering a term φ ! (xi.σ), first reduce φ and

3This is already implemented as an option in the current implementation of GF.
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Chapter 3. Reducing context-free GF to PMCFG

check whether it is an anonymous table. If it is, reduce without updating πi,
otherwise substitute by some p ∈ P and update πi.

Now, assume the following initial rule

f : B1 × · · · ×Bδ → A

f◦(x1, . . . , xδ) = φ

After constraint reduction of φ we will get ψ, together with the constraints
π1, . . . , πδ. From this we can deduce the following rule for the new function
symbol f̂ :

f̂ : B̂1 × · · · × B̂δ → Â

f̂◦(x1, . . . , xδ) = [ψ]Str

Â = A[[ψ]Par ; Σ]

B̂i = Bi[πi ; ∅]
Σ = { σ | ψ.σ = [ ⇒ ψ′ ] }

Note that the new categories Â and B̂i consists of the parameter paths, together
with a set Σ. This set contains the paths for all anonymous tables of the resulting
term.

3.5.2 More coercion functions

With anonymous tables, algorithm 3.15 for creating coercions has to be ex-
tended.

Algorithm 3.17.

Given two rules,

f̂ : · · · × B̂1 × · · · → Â

ĝ : . . .→ B̂2

where B̂1 = B[π1 ; ∅], B̂2 = B[π2 ; Σ] and B̂1 6= B̂2. If π1 is a subrecord of π2,
then we can add the coercion ĉ = c[π1π2Σ],

ĉ : B̂2 → B̂1

ĉ◦(x) = { σ1 = x.σ∗
1 ; . . . ; σn = x.σ∗

n }

where σ∗
i is created from σi by the following substitution; whenever σi = σ ! p.σ′

and σ ∈ Σ, i.e. a prefix of σi is in Σ, replace p by in σ∗
i .

N

Note that there can be more than one substitution; if σ ∈ Σ and σ ! .σ′ ∈ Σ,
then σi = σ ! p.σ′ ! p′ will be replaced by σ∗

i = σ ! .σ′ ! .
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3.6. Summary

Example 3.18.

The original (non-canonical) rule for nf contains an anonymous table,

nf : N

n◦
f = { s = [ ⇒ ‘fish’ ] }

The non-deterministic reduction then results in the following rule,

n̂f : N̂s

n̂◦
f = { s ! = ‘fish’ }

where N̂s = N[ ; s], since s is the path for the only anonymous table. The rest of
the grammar results in the same pmcfg grammar as figure 3.1 augmented with
example 3.16. Finally we get a coercion from the “anonymous noun” N̂s = N[ ; s]

to the standard noun N̂ = N[],

ĉ : N[ ; s] → N[]

ĉ◦(x) = { s ! Sg = x.s ! ; s ! Pl = x.s ! }
N

3.6 Summary

The main result of this chapter is that any context-free gf grammar can be
transformed to an equivalent pmcfg grammar. Furthermore, the resulting
grammar is a simulation, meaning that it can be used for the purpose of parsing
the original context-free gf grammar. The translation works by first instanti-
ating all tables and table selections, and converting them to records and record
projections; and then all parameters are moved to the abstract syntax. This
means among other things that a category in the original grammar can be split
into a number of distinct categories in the resulting grammar; and that a func-
tion in the original grammar can be split, or duplicated, into several functions
with different typings.

Since a simulating pmcfg grammar always exists, context-free gf can be seen
as a nice front-end for pmcfg, in the same way as generalized phrase-
structure grammar (Gazdar et al., 1985) can be seen as a nice front-end for
cfg.

As noted in section 3.2, the translation from gf to pmcfg can lead to an ex-
ponential increase of the grammar size. Therefore two alternative translation
algorithms were given that can in some cases reduce the increase of grammar
size. The main idea of these variants is that it is not always necessary to instan-
tiate every possible table and parameter, and in these cases a number of similar
grammar rules (and categories) can be merged into one single rule (and cate-
gory), together with simple coercion functions between the merged categories
and the original categories.
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Chapter 4

Parsing algorithms for context-free
GF and PMCFG

This chapter investigates a number of tabular parsing algorithms for context-free GF

and PMCFG, all with polynomial time complexity. Starting with a general passive al-
gorithm similar to the one given by Seki et al. (1991), several different modifications
are suggested.

The search space can be reduced by approximating the PMCFG grammar by an
over-generating CFG. Afterwards the context-free parse results can be translated
back into PMCFG parse results, which have to be checked for correctness since the
CFG is over-generating.

Another alternative is to use an active algorithm, in the spirit of the context-free
Earley (1970) algorithm. We give two active algorithms; one recognizing the lin-
earization rows of a rule in a fixed order, and another recognizing rows incrementally
according to the order in which they occur in the input. Both top-down and bottom-
up prediction strategies are investigated.

All suggested algorithms, except for the last incremental version, require that the
PMCFG grammar is nonerasing; therefore we give an algorithm for removing eras-
ingness from a grammar.
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A note on erasing grammars

The algorithms in sections 4.2, 4.3 and 4.4 only work for nonerasing grammars.
In section 4.5 it is discussed how to handle grammars where linearization ar-
guments are deleted. The final algorithm in section 4.6 works for erasing and
suppressing grammars directly.

A note on items and charts

The parse items defined in the algorithms in this chapter are strictly not items
in the sense of definition 2.25 in section 2.6.2. But it is not difficult to convert
the parse items resulting from an algorithm to items satisfying the definition.

The soundness and completeness results of the algorithms can then be used to
show that the transformed chart is complete according to definition 2.29.

A running example

Example 4.1.

Throughout this chapter we will use the following example grammar when ex-
emplifying the algorithms.

S → f [A] := s = A.p A.q

A → g[A1, A2] := p = A1.p A2.p,

q = A1.q A2.q

A → ac[] := p = ‘a’, q = ‘c’

A → bd [] := p = ‘b’, q = ‘d ’

This grammar generates the language,

L = { s θ(s) | s ∈ (a ∪ b)∗ }
where θ is a homomorphic mapping satisfying θ(a) = c and θ(b) = d.

This language is a kind of “copy-morphism” language, since the second occur-
rence of s is transformed through the homomorphism θ. Some strings that
are accepted by the grammar are ‘ac’, ‘bd ’, ‘abcd ’, ‘badc’, ‘aacc’, ‘bbdd ’, and
‘abbacddc’.

N

4.1 Ranges

The idea of ranges is taken from range concatenation grammar (rcg;
Boullier, 2000a,b). But instead of using pairs of input positions as in the rcg
formalism, we use sets of pairs. The reason for this is that a gf/pmcfg grammar
can have reduplication of strings.
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Definition 4.2 (range). Given an input string w, the universal range Rw is the
set of all pairs of input positions, Rw = { (i, j) | 0 ≤ i ≤ j ≤ |w| }. A range ρ is
a nonempty subset of Rw. Concatenation is a partial operation on ranges,

ρ1 · ρ2 = { (i, k) | (i, j) ∈ ρ1, (j, k) ∈ ρ2 }
whenever the resulting set is non-empty.

There is a partial function from a string to a range,

〈s〉w = { (i, j) | s = wi+1 . . . wj }
whenever s is a substring of w. If the input string w is known, we simply write
〈s〉. We write i . . . j for the range 〈wi+1 . . . wj〉. A string s is an image of a
range ρ if ρ = 〈s〉. In the sequel we only consider string-equivalent ranges,
i.e. ranges that have an image. The string-equivalent ranges are closed under
concatenation, and form a partition of Rw. There are only O(|w|2) string-
equivalent ranges (instead of 2|w| ranges in total) and they can be stored in
constant space by only remembering the first pair. Concatenation of string-
equivalent ranges can be done in constant time by creating a “multiplication
table” of size O(|w|4) before-hand.

For string-equivalent ranges ρ we write wρ for the string wi+1 . . . wj whenever
(i, j) ∈ ρ. This means that wi...j = wi+1 . . . wj . Note that 〈wρ〉 = ρ; and
w〈s〉 = s whenever s is a substring of w. The empty range 〈ε〉 matches the
empty string and is equal to { (i, i) | 0 ≤ i ≤ |w| }. If Γ is a data structure
(such as a list, a record or a tree) containing one or more ranges, we write wΓ

for the data structure where all occurrences of a range ρ in Γ are replaced by
the string wρ; and if φ is a data structure containing strings, we write 〈φ〉 for
the data structure where all strings are replaced by matching ranges.

If Γ or φ are incomplete in the sense that they contain as yet unbound variables,
then these variables are left unchanged in wΓ and 〈φ〉. If Γ or φ are in the

context of a rule A→ f [ ~B] := ψ, then argument variables Bi are considered as
unbound variables.

Example 4.3.

Given the input string w = ‘abaabaa’, the following are examples of ranges;

ρ1 = 〈abaa〉 = { (0, 4), (3, 7) } (= 0 . . . 4 = 3 . . . 7)

ρ2 = 〈aaba〉 = { (2, 6) } (= 2 . . . 6)

ρ3 = 〈ab〉 = { (0, 2), (3, 5) }
ρ4 = 〈a〉 = { (0, 1), (2, 3), (3, 4), (5, 6), (6, 7) }

Now, given that,

Γ = { s = ρ3 · ρ4 · ρ4 ; t = ρ3 · x · ρ3 }
where x is a variable, we have that,

wΓ = { s = ‘abaa’ ; t = ‘ab’ · x · ‘ab’ }
N
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4.1.1 Range-restriction

We say that a linearization is string-concatenative if the only linearization
operation involving strings is concatenation; gf and pmcfg are both string-
concatenative formalisms. The notion of range-restriction is only meaningful
for string-concatenative linearizations.

Definition 4.4 (range-restriction). A gf linearization φ can be range-restricted
by an input string w. In the resulting linearization 〈φ〉, each string constant
s is replaced by the range 〈s〉, and string concatenation is replaced by range
concatenation.

Note that range-restriction is a partial operation since 〈s〉 is a partial function.

A linearization can contain at most O(|φ|) constant strings, and since each of
these takes O(|w|) time to restrict, the following lemma is trivial.

Lemma 4.5. Range-restricting a gf linearization φ by w can be done in time
O(|φ| · |w|).

This lemma is noted only to make sure that range-restriction is not the main
part of the time complexity for a parsing algorithm.

Example 4.6.

The following rule in the example grammar,

A→ ac[] := p = ‘a’, q = ‘c’

can be range-restricted by the input string ‘abbacddc’, resulting in the following
rule,

A→ ac[] := p = { (0, 1), (3, 4) } , q = { (4, 5), (7, 8) }

N

4.1.2 Ranges and linear GF grammars

Recall from section 2.4.4 that a grammar is linear if no part of any argument
variable occurs more than once in a linearization. In a linear gf grammar each
record projection for a linearization variable Bi.r occurs at most once.

A non-linear grammar has a rule where some argument projection occurs twice,
i.e. A → f [ ~B] := φ1 Bi.r φ2 Bi.r φ3. In the final linearized string w, the first
occurrence of Bi.r represents some substring wi . . . wj and the second occur-
rence represents another substring wi′ . . . wj′ . This is the reason why ranges are
represented as sets of index pairs, and not just index pairs.
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A linear grammar does not have this reduplication of arguments, which means
that it is not necessary to represent ranges as sets. Instead we can use a rep-
resentation as pairs of indices (i, j), where 0 ≤ i ≤ j ≤ |w|, as done in rcg.
Concatenation is defined as (i, j) · (j′, k) = (i, k) whenever j = j′. We call
this representation simple ranges, as opposed to the previous set-representation.
When using simple ranges, there are only some small things to note;

• The partial function 〈s〉 from strings to ranges, becomes a many-valued
function;

• This implies that range-restriction becomes a non-deterministic operation.

All algorithms from this chapter work on simple ranges with only slight modifi-
cations. The only difference is that each occurrence of ρ = 〈s〉 should be replaced
by ρ ∈ 〈s〉. As an example, the inference rule 4.12 of section 4.4 becomes (after
simplification),

[ R ; Γ, r = (i, j) • s α, φ ; ~Γ ]

[R ; Γ, r = (i, k) • α, φ ; ~Γ ]

{
s = wj+1 . . . wk

Example 4.7.

The example grammar is linear, meaning that we can use simple ranges instead.
Range-restricting the example grammar with the same input string, now results
in the following four rules,

A→ ac[] := p = (0, 1) , q = (4, 5)

A→ ac[] := p = (3, 4) , q = (4, 5)

A→ ac[] := p = (0, 1) , q = (7, 8)

A→ ac[] := p = (3, 4) , q = (7, 8)

N

4.2 Polynomial parsing for context-free GF

Given the range definitions above, it is straightforward to describe a simple
bottom-up parsing algorithm for context-free gf grammars. This algorithm is
a natural extension of the cky algorithm and similar to the one described by
Seki et al. (1991), only this one is more general since it also works for a more
general formalism than pmcfg.

The parse items for a rule A → f [ ~B] := φ are of the form [ A → f [ ~B] ; Γ ; ~Γ ],
where Γ and Γi are range-restricted linearizations. The interpretation is that

there is some tree t = f(~t) : A such that [[t]] = wΓ and [[~t]] = w
~Γ.
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Combine
[B1 ; Γ1 ] . . . [Bδ ; Γδ ]

[ A→ f [ ~B] ; Γ ; ~Γ ]

{
A→ f [ ~B] := φ

Γ = 〈φ〉 [ ~B/~Γ]
(4.1)

First we range-restrict the linearization φ, and then substitute each argu-
ment variable Bi by its range-restricted linearization Γi.

Since the grammar is nonerasing, all Γi are contained in Γ. From this we can
define a ranking of parse items where each antecedent is less than the consequent.
This implies that the inference rule can be implemented by the generalized cky
deduction engine (algorithm 2.4). A simple item ranking can be defined as
r([A ; Γ]) = |wΓ|, which works as long as there are no coercions in the grammar.
Recall from section 2.6.3 that a coercion is a rule of the form A → f [B] with
f◦(x) = x.

When we want to prove completeness, the ranking r above works well for gram-
mars without coercions. In the general case we can define a ranking based on
the size of the corresponding minimal tree instead;1

d([ A→ f [ ~B] ; Γ ; ~Γ ]) = min{ |t| | t = f(~t) : A, [[t]] = wΓ, [[~t]] = w
~Γ }

Theorem 4.8. Inference rule 4.1 is sound and complete.

Proof. Soundness follows from the fact that the antecedents [Bi : Γi ] say that
there are trees ti : Bi such that [[ti]] = Γi. Then the tree t = f(t1, . . . , tδ) is

type-correct and has linearization [[t]] = φ[ ~B/w
~Γ]; and since Γ = 〈φ〉 [ ~B/~Γ], the

consequent item has a correct interpretation.

Completeness follows from the fact that the only way to infer an item is by
the Combine rule, and then the size |t| = |f(t1, . . . , tδ)| > |ti| for all trees t,
including the minimal tree.

�

Example 4.9.

Given the example grammar and an input string w = ‘acbd ’, the final goal item
is [ S ; Γw ], where Γw = { s = 〈w〉 } and 〈w〉 = 0 . . . 4 = { (0, 4) }. Here is an
example derivation using inference rule 4.1,

1 [A→ ac[] ; Γa,c ; ] Combine
1′ [A ; Γa,c ]
2 [A→ bd[] ; Γb,d ; ] Combine
2′ [A ; Γb,d ]
3 [A→ g[A1, A2] ; Γab,cd ; Γa,c, Γb,d ] Combine (1’), (2’)
3′ [A ; Γab,cd ]
4 [ S → f [A] ; Γw ; Γab,cd ] Combine (3’)
4′ [ S ; Γw ]

1Recall from section 2.6.1 that the size |t| of a tree t = f(~t) is equal to 1 + |~t|.
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where the range records Γi are as follows,

Γa,c = { p = 〈a〉 ; q = 〈c〉 }
Γb,d = { p = 〈b〉 ; q = 〈d〉 }

Γab,cd = { p = 〈ab〉 ; q = 〈cd〉 }
Γw = { s = 〈abcd〉 }

N

Theorem 4.10. For a context-free gf grammar, the final chart is finite and poly-
nomial in the length of the input. Thus the algorithm terminates in polynomial
time in the length of the input.

Proof. To get an upper bound of the number of items we observe that any
linearization type [[A]] in the grammar G can only contain a finite number dA
of occurrences of Str. In an item of a given rule A→ f [ ~B] := φ, there are dA +∑
dBi

different ranges. For each range there are O(n2) possibilities, where n =
|w| is the length of the input. Thus, there are O(n2(dA+

∑
dBi

)) possible items for
the given rule. The space complexity is O(|R|n2e), where e = max

A→f [ ~B](dA +∑
dBi

).

For the time complexity we note that since all information available in the
antecedent items and the side conditions also exist in the consequent, each item
will only be inferred once. This in turn means that the time for inferring one
item is constant, given that the calculation in the side condition is constant.
Thus, the time complexity is equal to the space complexity.

�

For pmcfg grammars, the upper bound for space and time complexity can be
tightened to O(|R|ne+1) by inspecting the structure of the linearization records.
Informally, the reason is that the daughter strings in an item are not independent
of each other; e.g. in a linearization r = A.r B.s C.t, the leftmost position of B.s
must be equal to the rightmost position of A.r, and the rightmost position of B.s
must be equal to the leftmost position of C.t. For a more detailed explanation,
see Seki et al. (1991).

4.2.1 An active version of the algorithm

The algorithm above suffers from the same problem as similar context-free pars-
ing algorithms do; for the inference rule to apply, we must find δ matching items,
which can take long time for large δ. The standard solution is to introduce par-
tial results, giving us the possibility to match one item at the time. The items
now look like [ A → f [ ~B • ~B′] ; Γ ; ~Γ ] with | ~B| = |~Γ|, where the categories ~B

to the left of the dot are found with linearizations ~Γ. The linearization Γ is a
partially instantiated linearization. When ~B′ is empty, the item is passive and
Γ is fully instantiated. In this case we can write [ B ; Γ ] for the passive item
[B → g[. . . • ] ; Γ ; . . . ].
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Predict

[A→ f [ • ~B] ; Γ ; ]

{
A→ f [ ~B] := φ

Γ = 〈φ〉 (4.2)

Prediction converts each grammar rule to a range-restricted equivalent
active item.

Combine

[ A→ f [ ~B •Bk, ~B′] ; Γ ; ~Γ ] [Bk ; Γk ]

[A→ f [ ~B, Bk • ~B′] ; Γ′ ; ~Γ, Γk ]

{
Γ′ = Γ[Bk/Γk] (4.3)

Here we substitute only one argument variable Bk by its range-restricted
linearization Γk.

Example 4.11.

We use the same grammar and input string w = ‘abcd ’ as in example 4.9; and
get the following derivation,

1 [ S → f [ •A] ; Γ0
w ; ] Predict

2 [ A→ g[ •A1, A2] ; Γ0
ab,cd ; ] Predict

3 [ A→ ac[•] ; Γa,c ; ] Predict
4 [ A→ bd [•] ; Γb,d ; ] Predict
5 [ A→ g[A1 •A2] ; Γ1

ab,cd ; Γa,c ] Combine (2), (3)

6 [ A→ g[A1, A2 • ] ; Γab,cd ; Γa,c, Γb,d ] Combine (4), (6)
7 [ S → f [A • ] ; Γw ; ] Combine (1), (7)

where the range records Γw, Γa,c, Γb,d, Γab,cd are as in example 4.9; Γ0
w, Γ0

ab,cd

are uninstantiated as in their corresponding grammar rules; and Γ1
ab,cd is par-

tially instantiated,

Γ1
ab,cd = { p = 〈a〉 A2.p ; q = 〈c〉 A2.q }

N

Soundness and completeness

We here give arguments of why the active algorithm is correct. To show correct-
ness of the inference rules 4.2 and 4.3, we first have to give an interpretation of
parse items. The interpretation of an item [A→ f [ ~B • ~B′] ; Γ ; ~Γ ], is that there

is an open tree t = f(~t, ~t′) : A, for which [[t]] = wΓ and [[~t]] = w
~Γ. Recall from

section 2.6.1 that an open tree may contain argument variables Bi somewhere.
In this case we can be more specific; each tree in ~t is instantiated, and each tree
ti in ~t′ is equal to the argument variable Bi. Note that for passive items the
tree t is instantiated, and the interpretation coincides with the interpretation of
the passive algorithm.
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For the completeness proofs we assume that the associated grammar rule is;

A→ f [ ~B] := φ

Soundness of Predict follows from the fact that,

[[f( ~B)]] = φ = w〈φ〉 = wΓ

Soundness of Combine follows from [[f(~t, Bk, ~B)]] = wΓ and that there is a tree

tk : Bk such that [[tk]] = wΓk . Then [[f(~t, tk, ~B)]] = wΓ[Bk/w
Γk ] = wΓ′

by the
side condition of Combine.

Completeness can be shown similarly to the completeness proof for inference rule
4.1; the ranking is based on the size of the minimal incomplete tree matching
the interpretation, where the size of an uninstantiated subtree is zero. Now,
given an item [A→ f [ ~B • ~B′] ; Γ ; ~Γ ], there are two possibilities;

• Either ~B is empty, in which case the item is inferred by prediction;

• Otherwise ~B ends with Bk and the item is inferred by combining. The
trees t(~t, Bk, ~B

′) : A and tk : Bk for the antecedents are both smaller than

the consequent tree t(~t, tk, ~B
′) : A, since |Bk| = 0 and |tk| > 0.

4.3 Parsing through context-free approximation

In this section we show how to parse a pmcfg grammar by converting it to a
context-free grammar, and then recovering the pmcfg chart from the context-
free chart. The recovery consists of two steps: first the context-free chart is
converted to an equivalent pmcfg chart; then the items in that chart are com-
bined for discontinuous constituents.

Decorated context-free grammars

The theory in this section gets much simpler if we use a variant of context-free
grammars, where the rules are decorated with extra information.

Definition 4.12 (decorated rule). A decorated context-free rule is of the form
f : A → β, where f is the name of the rule, and each non-terminal B in β can
have some associated information i, written as a superscript of the non-terminal
in question, Bi.
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Example 4.13.

Some rules from the example English grammar in section 1.3.5 might look like
this as decorated context-free rules;

sp : S → NP1 VP2

npd : NP → D1 N2

npp : NP → N1

vpt : VP → V1 NP2

N

Any parsing algorithm for cfg can be trivially transformed to a parsing algo-
rithm for decorated grammars, simply by ignoring the decorations when looking
up matching rules and parse items. From now on we assume that the parsing
algorithm returns a chart of items [◦ i− j ; f : A → β ], as described in section
2.2.2. The only difference is that the name of the rule is added to the item, and
that the categories in β might be decorated.

4.3.1 Creating a context-free approximation

The first step is to convert the pmcfg grammar to a decorated context-free
grammar. This is done by splitting the linearization record of each pmcfg rule
into several context-free rules.

Algorithm 4.14.

From the pmcfg rule,

A→ f [ ~B] := r1 = α1, . . . , rn = αn

create n decorated context-free rules f : A.rk → αk, for 1 ≤ k ≤ n.
N

Note that we do not have to change αk at all, since the variable-free notation
for pmcfg is already decorated.

The final context-free grammar will be over-generating, meaning that all sen-
tences recognized by the original pmcfg grammar will also be recognized by the
decorated cfg. The reason for this is that the resulting cfg cannot constrain
several occurrences of an argument category to represent the same item; an ex-
ample of this is shown in examples 4.15–4.18. That the cfg is over-generating
means in turn that a sound and complete context-free parsing algorithm will
still be complete, but unsound.
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Example 4.15.

The example grammar looks like follows, when converted to a decorated cfg,

f : S.s → A.p A.q
g : A.p → A.p1 A.p2

g : A.q → A.q1 A.q2

ac : A.p → ‘a’
ac : A.q → ‘c’
bd : A.p → ‘b’
bd : A.q → ‘d ’

N

4.3.2 Converting context-free items to PMCFG items

Creating PMCFG pre-items

After parsing we get a chart of context-free parse items which are converted to
pmcfg pre-items as follows.

Algorithm 4.16.

Each decorated context-free item,

[◦ j − k ; f : A.r → β ]

matching the rule A→ f [ ~B], is converted to a pmcfg pre-item,2

[•A→ f [ ~B] ; r = j . . . k ; ~Γ ]

where ~Γ is a partition of the daughters in β such that,

Γi = { r′ = ρ | Bi.r′ ∈ β, Bi.r
′ ⇒∗ wρ }

where Bi.r
′ ⇒∗ wρ is defined by the following equivalence;

X ⇒∗ wj...k iff [◦ j − k ; g : X → γ ]

N

Example 4.17.

After parsing the input string w = ‘abcd ’ using the decorated grammar, we get
the following context-free chart;

1◦ [◦ 0 − 1 ; ac : A.p→ ‘a’ ]
2◦ [◦ 1 − 2 ; bd : A.p→ ‘b’ ]
3◦ [◦ 2 − 3 ; ac : A.q → ‘c’ ]
4◦ [◦ 3 − 4 ; bd : A.q → ‘d ’ ]
5◦ [◦ 0 − 2 ; g : A.p→ A.p1 A.p2 ] from (1◦) and (2◦)
6◦ [◦ 2 − 4 ; g : A.q → A.q1 A.q2 ] from (3◦) and (4◦)
7◦ [◦ 1 − 3 ; f : S.s→ A.p A.q ] from (2◦) and (3◦)
8◦ [◦ 0 − 4 ; f : S.s→ A.p A.q ] from (5◦) and (6◦)

2Recall that j . . . k is the range 〈wj+1 . . . wk〉.
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These context-free items are then converted to pmcfg pre-items,

1• [•A→ ac[] ; Γa ; ]
2• [•A→ bd [] ; Γb ; ]
3• [•A→ ac[] ; Γc ; ]
4• [•A→ bd [] ; Γd ; ]
5• [•A→ g[A1, A2] ; Γab ; Γa, Γb ]
6• [•A→ g[A1, A2] ; Γcd ; Γc, Γd ]
7• [• S → s[A] ; Γb,c ; Γb, Γc ]
8• [• S → s[A] ; Γab,cd ; Γab, Γcd ]

where the range records are as follows;

Γx = { p = 〈x〉 } (x = a, b, ab)

Γy = { q = 〈y〉 } (y = c, d, cd)

Γx,y = { p = 〈x〉 ; q = 〈y〉 }
N

Combining pre-items

Several pre-items can finally be combined to full items with the following single
inference rule.

Combine

[•R ; r1 = ρ1 ; ~Γ1 ] . . . [•R ; rn = ρn ; ~Γn ]

[R ; r1 = ρ1, . . . , rn = ρn ; ~Γ ]

{
~Γ = ~Γ1 t . . . t ~Γn

(4.4)
Each consequent daughter Γi is equal to the unification of the antecedents’
corresponding daughters Γ1,i t . . .t Γn,i, where we use the simplistic uni-
fication defined in section 2.1.2.

Unfortunately, this algorithm is unsound since the underlying parsing algorithm
gives unsound items. This means that the chart might contain incorrect items.

Example 4.18.

Applying this inference rule to the pre-items from the example grammar and
input string w = ‘abcd ’, results in the following chart;

1 [A→ ac[] ; Γa,c ; ] Combine (1•), (3•)
2 [A→ bd [] ; Γb,d ; ] Combine (2•), (4•)
3 [A→ g[A1, A2] ; Γab,cd ; Γa,c, Γb,d ] Combine (5•), (6•)
4 [ S → s[A] ; s = 〈bc〉 ; Γb,c ] Combine (7•)
5 [ S → s[A] ; Γw ; Γab,cd ] Combine (8•)

where Γw = { s = 〈w〉 } and Γx is like in the previous example. Now note that
item (4) is not correct, since the grammar does not recognize the string ‘bc’.

N
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Marking for correctness

The algorithm is complete though, since the underlying algorithm is complete,
meaning that the chart contains all correct items. So, what we can do is mark
the correct items in the chart until there are no more correct items to mark.

Algorithm 4.19.

Repeat the following until there are no more items to mark:

Mark an item [A→ f [ ~B] ; Γ ; ~Γ ] as correct, if there are marked items [Bi ; Γi ]
for each 1 ≤ i ≤ δf

N

Alternatively, add the following inference rule to the one in the previous section,
where we use [ · ]† to mark items.

Mark

[ A→ f [ ~B] ; Γ ; ~Γ ] [B1 ; Γ1 ]† . . . [ Bδ ; Γδ ]†

[A→ f [ ~B] ; Γ ; ~Γ ]†
(4.5)

Recall that [ B ; Γ ] means the passive item [ B → . . . ; Γ ; . . . ]. Note that this
inference rules can be implemented with the generalized cky deduction engine
(algorithm 2.4).

Example 4.20.

Now the incorrect item (4) in the example chart,

[ S → s[A] ; s = 〈bc〉 ; Γb,c ]

will never get marked, since there is no item [ A ; Γb,c ] in the chart. The final
chart consists of the items (1), (2), (3) and (5); note that this chart is equivalent
to the chart that results in example 4.9.

N

4.3.3 Soundness and completeness

Soundness and completeness of the algorithm follows from the fact that the
algorithm in section 4.2 is sound and complete. Note that the inference rule to
mark items is almost equivalent to inference rule 4.1 in section 4.2. The only
difference is that here the value of Γ is precomputed in the unmarked item, but
in section 4.2 we have to compute the value on every invocation of the rule.

So, the algorithm is sound as long as the invariantwΓ = φ[ ~B/w
~Γ] is correct in the

unmarked item. This follows from soundness of the context-free algorithm and
that inference rule 4.4 maintains the invariant. And the algorithm is complete
since the algorithm for combining pre-items is complete.
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4.3.4 An active version of the algorithm

The two inference rules Combine and Mark can be divided into four active
rules, if we introduce dotted items. The items are of the following forms;

[ A→ f [ ~B] ; Γ • φ ; ~Γ ] [A→ f [ ~B] ; Γ ; ~Γ • ~Γ′ ]

The interpretation of items of the first form is that the linearizations before
the dot has been recognized, and the linearizations after the dot remains to be
recognized. The interpretation of the second form of items is that the daughters
before the dot are correct, and the daughters after the dot have to be checked
for correctness.

Pre-Predict

[ A→ f [ ~B] ; • φ ; ~Γ∅ ]

{
A→ f [ ~B] := φ (4.6)

where by ~Γ∅ is meant an δf -element sequence of empty records.

Pre-Combine

[ R ; Γ • r = α, φ ; ~Γ ] [•R ; r = ρ ; ~Γ′ ]

[R ; Γ, r = ρ • φ ; ~Γ′′ ]

{
~Γ′′ = ~Γ t ~Γ′ (4.7)

If we are looking for the row r, and there is a matching pre-item such that
the daughters can be unified, we can move the dot forward. Note that the
linearization α is not used, since it is already recognized by the pre-item.

Mark-Predict
[R ; Γ • ; ~Γ ]

[R ; Γ ; • ~Γ ]
(4.8)

When we are finished with incorporating pre-items, we can start to mark
for correctness.

Mark-Combine

[ A→ f [ ~B] ; Γ ; ~Γ • Γi, ~Γ
′ ] [Bi ; Γi ]

[A→ f [ ~B] ; Γ ; ~Γ, Γi • ~Γ′ ]
(4.9)

where we write [ B ; Γ ] for any passive item [ B → . . . ; Γ ; . . . • ]. If we
want to mark daughter Bi for correctness, and there is a correct passive
item for Bi, we can move the dot forward.

4.4 Active parsing of PMCFG

In this section we give an active algorithm for pmcfg grammars, which parses a
pmcfg grammar directly without having to use any context-free approximation.
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Parse items

The parse items of a rule,

A→ f [ ~B] := ψ, r = β α, φ

are of the form,
[ A→ f [ ~B] ; Γ, r = ρ • α, φ ; ~Γ ]

The informal meaning is that i) all rows ψ have been recognized as Γ; ii) the
sequence β has been recognized as the range ρ; and that iii) for each argument
Bi occurring in ψ or β, there is a passive item [ Bi ; Γi ].

For passive items [ R ; Γ • ; ~Γ ], this amounts to the same interpretation as in
the passive algorithm in section 4.2.

Example 4.21.

The following are examples of parse items for the g-rule from the example gram-
mar, and the input string ‘abcd ’,

1 [A→ g[A1, A2] ; p = 〈ε〉 •A1.p A2.p, q = A1.q A2.q ; Γ∅, Γ∅ ]
2 [A→ g[A1, A2] ; p = 〈ab〉 , q = 〈c〉 •A2.q ; Γa,c, Γb,d ]
3 [A→ g[A1, A2] ; p = 〈ab〉 , q = 〈cd〉 • ; Γa,c, Γb,d ]

where Γa,c, Γb,d are as in example 4.9.

The first item has not found anything at all; while the second item has found the
full p row spanning the range 〈ab〉 = 0 . . . 2, and is in the middle of recognizing
the q row. The last item is a passive item which has found both rows spanning
〈ab〉 = 0 . . . 2 and 〈cd〉 = 2 . . . 4; this item can also be written [ A ; Γab,cd ].

N

Inference rules

There are four inference rules, and the following shorthands are used;

• By [A ; Γ ] we mean any passive item [A→ . . . ; Γ • ; . . . ];

• By ~Γ∅ we mean a δf -element sequence of empty records;

• By Γi we mean the ith element of the sequence ~Γ, and by ~Γ[i := Γ′] we
mean that Γi is replaced by Γ′.

Predict

[A→ f [ ~B] ; r = 〈ε〉 • α, φ ; ~Γ∅ ]

{
A→ f [ ~B] := r = α, φ (4.10)

Prediction is very crude; it just converts each rule to a parse item saying
that the empty range is found; which of course is always true.
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Complete

[R ; Γ, r = ρ • , r′ = α, φ ; ~Γ ]

[ R ; Γ, r = ρ, r′ = 〈ε〉 • α, φ ; ~Γ ]
(4.11)

Completion applies when a row in the linearization record has been found,
and moves the dot into the next row. There it says that the empty range
is found.

Scan

[R ; Γ, r = ρ • s α, φ ; ~Γ ]

[R ; Γ, r = ρ′ • α, φ ; ~Γ ]

{
ρ′ = ρ · 〈s〉 (4.12)

Scanning applies when the next item to read is a string constant.

Combine

[ R ; Γ, r = ρ •Bi.r′ α, φ ; ~Γ ] [Bi ; Γ′ ]

[ R ; Γ, r = ρ′ • α, φ ; ~Γ[i := Γ′] ]

{
ρ′ = ρ · Γ′.r′

Γi ⊆ Γ′ (4.13)

This is the only complicated rule, applying when the next item is an r′

label of argument Bi. It succeeds if there is a matching passive item
[ Bi ; Γ′ ], for which Γi ⊆ Γ′. By this is meant that the linearization Γ′

of the passive item is consistent with what was previously known about
argument Bi; and since Γ′ comes from a passive item, it is instantiated
and we do not have to use unification; a subset check suffices.

Comparing to traditional algorithms for context-free grammars, such as the ones
in section 2.2.2, there is one extra rule Complete. This rule acts like a kind of
prediction for subsequent rows in a linearization record.

Example 4.22.

A derivation for the example grammar and the input string ‘abcd ’ is shown in
figure 4.1.

N

4.4.1 Different prediction strategies

The Predict rule given above is very crude, adding every rule in the grammar
as a hypothesis. This can be a serious problem for large grammars. Chart
parsing algorithms for context-free grammars have better prediction strategies,
as described in section 2.2.2. In this section we extend those strategies to pmcfg
parsing.
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1 [ Rac ; p = 〈ε〉 • ‘a’, q = ‘c’ ; ] Predict
2 [ Rac ; p = 〈a〉 • , q = ‘c’ ; ] Scan (1)
3 [ Rac ; p = 〈a〉 , q = 〈ε〉 • ‘c’ ; ] Complete (2)
4 [ Rac ; p = 〈a〉 , q = 〈c〉 • ; ] Scan (3)
4′ [ A ; Γa,c ]

5 [ Rbd ; p = 〈ε〉 • ‘b’, q = ‘d ’ ; ] Predict
6 [ Rbd ; p = 〈b〉 • , q = ‘d ’ ; ] Scan (5)
7 [ Rbd ; p = 〈b〉 , q = 〈ε〉 • ‘d ’ ; ] Complete (6)
8 [ Rbd ; p = 〈b〉 , q = 〈d〉 • ; ] Scan (7)
8′ [ A ; Γb,d ]

9 [ Rg ; p = 〈ε〉 • αp, q = αq ; Γ∅, Γ∅ ] Predict
10 [ Rg ; p = 〈a〉 •A2.p, q = αq ; Γa,c, Γ∅ ] Combine (9), (4’)
11 [ Rg ; p = 〈ab〉 • , q = αq ; Γa,c, Γb,d ] Combine (10), (8’)
12 [ Rg ; p = 〈ab〉 , q = 〈ε〉 • αq ; Γa,c, Γb,d ] Complete (11)
13 [ Rg ; p = 〈ab〉 , q = 〈c〉 •A2.q ; Γa,c, Γb,d ] Combine (12), (4’)
14 [ Rg ; p = 〈ab〉 , q = 〈cd〉 • ; Γa,c, Γb,d ] Combine (13), (8’)
14′ [ A ; Γab,cd ]

15 [ Rf ; s = 〈ε〉 •A.p A.q ; Γ∅ ] Predict
16 [ Rf ; s = 〈ab〉 •A.q ; Γab,cd ] Combine (15), (4’)
17 [ Rf ; s = 〈abcd〉 • ; Γab,cd ] Combine (16), (8’)
17′ [ S ; Γw ]

Abbreviations: Rf = S → f [A]

Rg = A→ g[A1, A2]

Rac = A→ ac[]

Rbd = A→ bd []

αp = A1.p A2.p

αq = A1.q A2.q

Figure 4.1: A derivation using the active algorithm.
N
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Earley-style top-down prediction

This is an adaptation of the context-free inference rules 2.4–2.5 in section 2.2.2.

Predict

[ . . . ; Γ, r = ρ •A.s α, φ ; . . . ]

[ A→ f [ ~B] ; r = ρε • α, φ ; ~Γ∅ ]

{
A→ f [ ~B] := r = α, φ (4.14)

We only have to add predictions for a category when there already is an
item looking for that category.

Initial prediction

[ S → f [ ~B] ; s = ρε • α ; ~Γ∅ ]

{
S → f [ ~B] := s = α (4.15)

We also need initial predictions, for the starting category of the grammar.

Complete, Scan and Combine remain as the inference rules 4.11–4.13.

Example 4.23.

Top-down prediction does not reduce the number of items in figure 4.1; it only
specifies the order in which items are predicted. While the predicted items (1),
(5), (9) and (15) in the figure can be deduced in any order, top-down prediction
specifies that item (15) is inferred by the Initial prediction rule, and the
other follows from that by the top-down Predict rule.

However, if the grammar contains more rules, top-down prediction can filter out
more items than the basic algorithm.

N

Kilbury-style bottom-up prediction

This is an adaptation of the context-free inference rule 2.6 in section 2.2.2.

Predict

[ Bi ; Γi ]

[A→ f [ ~B] ; r = ρ • α, φ ; ~Γ∅[i := Γi] ]






A→ f [ ~B] :=
r = Bi.r

′ α, φ
ρ = Γi.r

′

(4.16)
We find the first argument Bi and assure that it has been found previously
as the passive item [ Bi ; Γi ]. Since we know that the item is found, we
implicitly apply the Combine rule and move the dot past the argument.
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Terminal

[ A→ f [] ; Γ • ; ]

{
A→ f [] := φ

Γ = 〈φ〉 (4.17)

If the rule does not contain any arguments, it will not be handled by
Predict. So we need a new rule for this case.

Complete and Combine remain as the inference rules 4.11 and 4.13.

This version of Kilbury prediction only works for grammars where terminals
only occur in rules without arguments, A → f []. All pmcfg grammars can
easily be converted to this form as shown by Seki et al. (1991). For grammars
in this format, the Scan rule will never apply, so we can safely skip that one.

Another possibility is to augment the Predict rule to handle any grammar rules
with terminals; then the Scan rule have to be reintroduced and the Terminal
rule can be dropped.

Example 4.24.

Using bottom-up prediction on the example reduces the number of items in
figure 4.1 drastically; items (1)–(3), (5)–(7), (9) and (15) will no longer be
predicted. Instead the items (4) and (8) will be predicted by the Terminal
axiom, and items (10) and (16) will be predicted by the bottom-up Predict
rule.

N

4.5 Parsing of erasing and suppressing PMCFG

A grammar is erasing if some argument projection in some rule does not occur
on the right-hand side. This means that some parts of a linearization might not
have a realization in the current input string.

Example 4.25.

This is an example of a simple erasing pmcfg;

S → f [A] := s = A.s1

A→ g[A, B, C] := s1 = A.s2 · B.s, s2 = A.s1 · C.s
A→ a[] := s1 = ‘a1 ’, s2 = ‘a2 ’

B → b[] := s = ‘b’

C → c[] := s = ‘c’

The grammar recognizes the language,

(a1 ∪ a2b) · (cb)∗ = { a1, a1cb, a1cbcb, . . . , a2b, a2bcb, a2bcbcb, . . . }

As an example, the string ‘a1 cb’ is recognized by the grammar; but it is im-
possible to create a corresponding parse item for the A category: [ A ; s1 =
0 . . . 3, s2 = ? ], since A.s2 then should linearize to ‘a2 bc’.

N
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One solution is to allow the empty set as a range, meaning that the linearization
in question is not found in the input string. The example item will then become
[A ; s = 0 . . . 3, p = ∅ ]. The algorithms do not have to be change at all, and the
theoretical space and time complexity does not change either. The problem is
that this in practice means that all rules in the grammar will give rise to parse
items, even rules where no part of the linearization is recognized. This will yield
an extremely big chart, and is therefore impractical.

4.5.1 Removing erasingness from a grammar

A better solution is to translate the grammar into non-erasing form. That this
can be done for any pmcfg grammar is already known (Seki et al., 1991). But
for completeness, we give an alternative algorithm for removing erasingness from
a grammar. The resulting grammar is shown to be a simulation of the original
grammar, meaning that it can be directly used for parsing purposes.

We start by defining a relation .f on projections of categories. The idea is that

given a grammar rule A→ f [ ~B] := φ, then A.r .f Bi.r
′ whenever Bi.r

′ occurs
somewhere in row r of the linearization φ.

Definition 4.26. Given a function symbol f with the following rule,

A→ f [B1, . . . , Bδ] := φ

we define a binary relation .f on projections of categories, as

A.r .f Bi.r
′ iff φ.r = . . . , Bi.r

′, . . .

Definition 4.27 (restriction). Given a rule R,

A→ f [B1, . . . , Bδ] := φ

we define the restriction R | Σ by a nonempty set of labels Σ as the new rule,

Â→ f̂ [B̂i | Σi 6= ∅] := { (r = α) ∈ φ | r ∈ Σ }

where we by [B̂i | Σi 6= ∅] mean “the sequence of those B̂i such that Σi is
nonempty”. The new function symbol and the new categories are,

f̂ = f [Σ]

Â = A[Σ]

B̂i = Bi[Σi]

and Σi is defined as,

Σi = { r′ | r ∈ Σ, A.r .f Bi.r
′ }
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The linearization ψ of a restriction R | Σ contains only the rows r = α of
the original linearization φ, such that r ∈ Σ. Furthermore, the categories are
restricted to include only the labels that are mentioned in ψ. If Σi is the empty
set, it means that Bi is not mentioned at all in ψ. Then we have to exclude
from the restriction all such categories B̂i, otherwise the restriction will not be
a nonerasing rule.

It can be deduced from the definition that the linearization type of a category
Â = A[Σ] is a subrecord of the linearization type of A;

Â◦ = { r : Str | r ∈ Σ } ⊆ A◦

This also means that if Σ is empty, the linearization type becomes the empty
record which is not allowed as a pmcfg linearization type. When creating the
nonerasing restriction grammar we have to exclude all categories Â = A[Σ]
where Σ is empty.

Algorithm 4.28.

Given a pmcfg grammar G, create a new grammar Ĝ, called the restriction
grammar, in the following way;

1. Start with Ĝ containing the restriction R | Σ for each grammar rule R =
S → f [. . .], where

Σ = S◦ = { s : Str }

2. Whenever Ĝ contains a restrictionR | Σ for the rule R = A→ f [. . . Bi . . .],
and

Σ′ = { r′ | r ∈ Σ, A.r .f Bi.r
′ }

is nonempty; add the restriction R′ | Σ′ to Ĝ for each grammar rule
R′ = Bi → g[. . .].

N

The algorithm terminates since there are only a finite number of restrictions
R | Σ for a given grammar rule R. Note that is possible for a (non-suppressing)
erasing grammar rule to loose some of its arguments during conversion. The
rule is then called indirectly suppressing.

Example 4.29.

The grammar in example 4.25 is erasing. First we calculate the relation .(·),

S.s .f A.s1
A.s1 .g A.s2 A.s2 .g A.s1
A.s1 .g B.s A.s2 .g C.s
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and from this we see that the g-rule and the a-rule have to be replaced by two
restrictions each,

Â1 → ĝ1[Â2, B] := s1 = Â2.s2 · B.s
Â2 → ĝ2[Â1, C] := s2 = Â1.s1 · C.s

Â1 → â1[] := s1 = ‘a1 ’

Â2 → â2[] := s2 = ‘a2 ’

where Â1 = A[s1] and Â2 = A[s2]. Note that both g-restrictions have lost one
argument each, so the grammar is indirectly suppressing.

N

Example 4.30.

The English example grammar from section 1.3.5, as shown in pmcfg format
in figure 2.6, is also erasing; the NP1, 2 resp. S rules choose only one of the N
resp. VP daughter’s rows, s1 or s2.

Applying the algorithm to this grammar results in a grammar where each noun
resp. verb is split into two nouns resp. verbs; a singular and a plural,

N̂1 → n̂c1[] := s1 = ‘lion’ N̂2 → n̂c2[] := s2 = ‘lions ’

N̂1 → n̂f1[] := s1 = ‘fish’ N̂2 → n̂f2[] := s2 = ‘fish’

V̂1 → v̂e1[] := s1 = ‘eats ’ V̂2 → v̂e2[] := s2 = ‘eat ’

where N̂i = N[si] and V̂i = V[si].
N

4.5.2 Using the restriction grammar for parsing

To be able to use the restriction grammar Ĝ for parsing the original grammar,
we have to add metavariables to parse trees, as defined in section 2.6.1. If the
original grammar is suppressing,3 then for some of its trees, say t, there will be
a subtree t′ whose linearization will not show up in the linearization of t. This
means that t′ is exchangeable in t; or in other words, [[t]] = [[t[t′/t′′]]] for any t′′

of the same category as t′. Since the value of t′ is uninteresting as long as it
is type-correct, we can use a metavariable ? in place of t′. In this way we can
capture a set of trees all having the same linearization.

Now, since the restricted grammar has removed all (directly or indirectly) sup-
pressing arguments, there will be no representation of the suppressed subtree t′

at all in Ĝ. If we are allowed to use metavariables when converting back to trees
for the original grammar G, we can add a metavariable whenever necessary.

Lemma 4.31. The restriction grammar Ĝ is a trivial simulation of the original
grammar G, augmented with metavariables.

3Either directly, or indirectly as in example 4.29.
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Proof. Suppose given a tree g(x1, . . . , xδ) : Â in Ĝ, where Â = A[Σ], corre-
sponding to the Ĝ-rule,

Â → g[X1, . . . , Xδ]

Then we know that there is a G-rule,

A → f [B1, . . . , Bγ ]

for which g = f̂ ; and for each Xi there is some Bj such that Xi = B̂j = Bj [Σj ].
From this we can construct the new tree

〈|g(x1, . . . , xδ)|〉 = f(y1, . . . , yγ)

where yj = 〈|xi|〉 if Xi = B̂j , and yj = ? if there is no Xi = B̂j .

Categories and linearizations in Ĝ are mapped to G by,

〈|Â ; φ|〉 = A ; ψ

where Â = A[Σ], and ψ = φ ∪ { r = ? | r /∈ Σ }. �

When constructing trees from the final chart, metavariables can be left un-
changed since they represent any possible tree of the correct type.

Example 4.32.

For the restriction grammar in example 4.29, parsing the input string w = ‘a1 cb’
results in the following pmcfg chart;

1 [ S → f [Â1] ; s = 〈w〉 ; s1 = 〈w〉 ]

2 [ Â1 → ĝ1[Â2, B] ; s1 = 〈w〉 ; s2 = 〈a1c〉 ; s = 〈b〉 ]

3 [ Â2 → ĝ2[Â1, C] ; s2 = 〈a1c〉 ; s1 = 〈a1〉 ; s = 〈c〉 ]

4 [ Â1 → â1[] ; s1 = 〈a1〉 ; ]
5 [ B → b[] ; s = 〈b〉 ; ]
6 [ C → c[] ; s = 〈c〉 ; ]

Since the simulation is trivial, we can directly convert the chart to a chart
for the original grammar in example 4.25, by inserting metavariables whenever
necessary;

1 [ S → f [A] ; Γ1 ; Γ2 ] Γ1 = { s = 〈w〉 }
2 [ A→ g[A, B, C] ; Γ2 ; Γ3, Γ5, ? ] Γ2 = { s1 = 〈w〉 ; s2 = ? }
3 [ A→ g[A, B, C] ; Γ3 ; Γ4, ?, Γ6 ] Γ3 = { s1 = ? ; s2 = 〈a1c〉 }
4 [ A→ a[] ; Γ4 ; ] Γ4 = { s1 = 〈a1〉 ; s2 = ? }
5 [ B → b[] ; Γ5 ; ] Γ5 = { s = 〈b〉 }
6 [ C → c[] ; Γ6 ; ] Γ6 = { s = 〈c〉 }

From this chart we can extract the following only parse tree,

f(g(g(a, ?, c), b, ?)

N
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4.6 Incremental PMCFG parsing

A parsing algorithm is incremental if it reads the input one token at the time;
and calculates all possible consequences of a token, before the next token is read.
This feature is useful for e.g. recognition of spoken input, since language mod-
eling typically requires that probabilities are assigned incrementally. There is
also cognitive evidence showing that humans process language in an incremental
fashion. For further information about incrementality, see e.g. ACL (2004).

Example 4.33.

The active algorithms in section 4.4 are not incremental. Consider the derivation
of the input string ‘abcd ’ in figure 4.1 and the item (10);

10 [A→ g[A1, A2] ; p = 〈a〉 •A2.p, q = A1.q A2.q ; Γa,b, Γ∅ ]

This item is combined with item (8’) [ A ; Γbd ] into item (11);

11 [A→ g[A1, A2] ; p = 〈ab〉 •, q = A1.q A2.q ; Γa,c, Γb,d ]

But note that this item has only read the first half of the string (〈ab〉), while its
daughters together have read the full string (Γa,c and Γb,d).

A simpler example is when applying the Terminal rule,

A→ ac[] := p = ‘a’, q = ‘c’

to the input string ‘ca’; first it will recognize the first row in the range 1 . . . 2,
and after that it will recognize the second row in the range 0 . . . 1.

N

In this section we describe an incremental, active parsing algorithm. In the
end we will see that this algorithm also handles erasing and suppressing pmcfg
grammars without modification.

Parse items

We use items of the form,

[k A→ f [ ~B] ; Γ, r = ρ • α, φ ; ~Γ ]

where k is an input position; such an item is also called a k-item. The informal
meaning is similar to the active items in section 4.4, with the additional con-
straint that (j, k) ∈ ρ for some j. This means that the item is looking for α
starting in position k.

The rows in Γ have been recognized in sequence, which means that the last row
in Γ is the latest that has been recognized. Since we cannot know in which order
the rows in φ will be recognized, we have to treat φ as a set of rows, not as a
sequence.
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Inference rules

Apart from the fact that we have to treat the linearization record as a set instead
of a sequence, the basic algorithm is quite similar to the active algorithm in
section 4.4. There are four inference rules, and the following shorthands are
used;

• By [k A ; Γ ] we mean any passive item [k A → . . . ; Γ • , φ ; . . . ]. Note
that passive items can be unsaturated, meaning that not all rows are
recognized (which is true if φ is nonempty); contrary to passive items in
previous algorithms;

• By ~Γ∅ we mean a δf -element sequence of empty records;

• By Γi we mean the ith element of the sequence ~Γ; and by ~Γ[i := Γ′] we
mean that Γi is replaced by Γ′.

Predict

[k A→ f [ ~B] ; r = 〈ε〉 • α, φ, ψ ; ~Γ∅ ]






A→ f [ ~B] :=
φ, r = α, ψ

0 ≤ k ≤ |w|
(4.18)

Since we do not know which row will be the first to be recognized, we
choose row nondeterministically. Also we do not know from which position
k it will be recognized, so this is also nondeterministic.

Complete

[j R ; Γ, r = ρ • , φ, r′ = α, ψ ; ~Γ ]

[k R ; Γ, r = ρ, r′ = 〈ε〉 • α, φ, ψ ; ~Γ ]

{
j ≤ k ≤ |w| (4.19)

Here we also have to choose row and input position k nondeterministically;
since the algorithm is incremental, the previous position j has to be less
than or equal to k.

Scan
[j R ; Γ, r = ρ • s α, φ ; ~Γ ]

[k R ; Γ, r = ρ′ • α, φ ; ~Γ ]

{
s = wj+1 . . . wk
ρ′ = ρ · 〈s〉 (4.20)

When scanning a string s, we have to know that it spans the input positions
j − k; otherwise the rule is similar to Scan in section 4.4.

Combine

[j R ; Γ, r = ρ •Bi.r′ α, φ ; ~Γ ] [k Bi ; Γ′ ]

[k R ; Γ, r = ρ′ • α, φ ; ~Γ[i := Γ′] ]






(j, k) ∈ Γ′.r′

ρ′ = ρ · Γ′.r′

Γi ⊆ Γ′

(4.21)
The passive Bi-item must have recognized the row r′ spanning the posi-
tions j − k; otherwise the rule is similar to Combine in section 4.4.
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Example 4.34.

A derivation for the example grammar and the input string ‘abcd ’ is shown in
figure 4.2. Note that the algorithm also predicts a lot of useless items;

• The S-rule Rf introduces one predicted item for each k (5 items);

• Each of the A-rules Rg, Rac, Rbd introduces two predicted items for each
k, one for each linearization row (30 items);

• Each of the k-items (5), (7) and (8) gives rise to one completed item for
each k′ ≥ k (10 items).

All in all 45 predicted and completed items, of which only 7 are used in the
derivation.

N

4.6.1 Alternative strategies

The inference rules Predict and Complete are extremely crude, predicting
any possible row to the right of the dot, anywhere in the input. Obviously this
gives rise to several useless items, which shouldn’t be there in the first place.
Therefore it becomes necessary to have either top-down or bottom-up filtering
in the predictions.

Earley-style top-down filtering

The idea with top-down filtering is that we only predict a k-item for A.r if there
already is a k-item looking for A.r. This can be applied to the Complete rule
too; and we finally have to give an initial prediction of the starting category.
We write [k •A.r ] for a predict item, i.e. an item of the form,

[k . . . ; . . . , r′ = ρ •A.r . . . , . . . ; . . . ]

Predict

[k •A.r ]

[k A→ f [ ~B] ; r = 〈ε〉 • α, φ, ψ ; ~Γ∅ ]

{
A→ f [ ~B] :=

φ, r = α, ψ
(4.22)

Prediction is much more deterministic than in the basic algorithm, since
there has to be a predict item in position k already looking for row r.

Complete

[j R ; Γ, r = ρ • , φ, r′ = α, ψ ; ~Γ ] [k •A.r ]

[k R ; Γ, r = ρ, r′ = 〈ε〉 • α, φ, ψ ; ~Γ ]

{
j ≤ k (4.23)

Completion is also more deterministic, by the same argument.
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1 [0Rf ; s = 〈ε〉 •A.p A.q ; Γ∅ ] Predict
2 [0Rg ; p = 〈ε〉 • αp, q = αq ; Γ∅, Γ∅ ] Predict
3 [0Rac ; p = 〈ε〉 • ‘a’, q = ‘c’ ; ] Predict

4 [1Rbd ; p = 〈ε〉 • ‘b’, q = ‘d ’ ; ] Predict
5 [1Rac ; p = 〈a〉 • , q = ‘c’ ; ] Scan (1)
6 [1Rg ; p = 〈a〉 •A2.p, q = αq ; Γa, Γ∅ ] Combine (2), (5)

7 [2Rbd ; p = 〈b〉 • , q = ‘d ’ ; ] Scan (4)
8 [2Rg ; p = 〈ab〉 • , q = αq ; Γa, Γb ] Combine (6), (7)
9 [2Rf ; s = 〈ab〉 •A.q ; Γab ] Combine (1), (8)

10 [2Rac ; p = 〈a〉 , q = 〈ε〉 • ‘c’ ; ] Complete (5)
11 [2Rg ; p = 〈ab〉 , q = 〈ε〉 • αq ; Γa, Γb ] Complete (8)

12 [3Rac ; p = 〈a〉 , q = 〈c〉 • ; ] Scan (10)
13 [3Rg ; p = 〈ab〉 , q = 〈c〉 •A2.q ; Γa,c, Γb ] Combine (11), (12)
14 [3Rbd ; p = 〈b〉 , q = 〈ε〉 • ‘d ’ ; ] Complete (7)

15 [4Rbd ; p = 〈b〉 , q = 〈d〉 • ; ] Scan (14)
16 [4Rg ; p = 〈ab〉 , q = 〈cd〉 • ; Γa,c, Γb,d ] Combine (13), (15)
17 [4Rf ; s = 〈abcd〉 • ; Γab,cd ] Combine (9), (16)

Abbreviations: Rf = S → f [A]

Rg = A→ g[A1, A2]

Rac = A→ ac[]

Rbd = A→ bd []

αp = A1.p A2.p

αq = A1.q A2.q

Figure 4.2: A derivation using the incremental algorithm.
N
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Initial prediction

[0 S → f [ ~B] ; s = 〈ε〉 • α ; ~Γ∅ ]

{
S → f [ ~B] := s = α (4.24)

This rule is needed to start the prediction process; we look for the sequence
α starting in position 0.

Scan and Combine remain as the inference rules 4.20 and 4.21.

Example 4.35.

The example derivation in figure 4.2 remains exactly the same. The main dif-
ference is that this algorithm does not predict as many useless items;

• The items (1) and (6) introduce predictions for A.p at k = 0, 1 (6 items);

• The items (9) and (13) introduce predictions for A.q at k = 2, 3 (6 items);

• The items (5), (7) and (8) introduce completions for A.q at k = 2, 3 (6
items).

In total 19 predicted and completed items (included the initial prediction); as
opposed to 45 items in example 4.34.

N

Kilbury-style bottom-up prediction

The main idea with Kilbury prediction is that we only predict a row if the first
thing to look for is already found. And if the thing is found, we can also move
the dot forward. Since there are two different rules for predicting (Predict and
Complete), and the thing to look for can either be a terminal or an argument,
we get four combinations.

Predict+Scan

[k A→ f [ ~B] ; r = 〈s〉 • α, φ, ψ ; ~Γ∅ ]






A→ f [ ~B] :=
φ, r = s α, ψ

s = wj+1 . . . wk

(4.25)

If the row r starts with some terminals occurring in the input string,
predict that row and move the dot past the already read terminals.

Predict+Combine

[k Bi ; Γ′ ]

[k A→ f [ ~B] ; r = ρ • α, φ, ψ ; ~Γ∅[i := Γ′] ]






A→ f [ ~B] :=
φ, r = Bi.r

′ α, ψ
(j, k) ∈ ρ = Γ′.r′

(4.26)
If the row r starts with Bi.r

′, and Bi.r
′ have been found ending in k, then

we can predict the row r and move the dot past Bi.r
′. When moving the

dot forward, we also have to update argument number i to Γ′.
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Complete+Scan

[j0 R ; Γ • , φ, r = s α, ψ ; ~Γ ]

[kR ; Γ, r = 〈s〉 • α, φ, ψ ; ~Γ ]

{
s = wj+1 . . . wk
j0 ≤ j

(4.27)

The same argument as for Predict+Scan, with the added constraint
that the terminals should come after the item’s previous position j0.

Complete+Combine

[j0 R ; Γ • , φ, r = Bi.r′ α, ψ ; ~Γ ] [k Bi ; Γ′ ]

[k R ; Γ, r = ρ • α, φ, ψ ; ~Γ[i := Γ′] ]






(j, k) ∈ ρ = Γ′.r′

j0 ≤ j
Γi ⊆ Γ′

(4.28)
The same argument as for Predict+Combine; but the recognized row
Bi.r

′ has to come after the previous position j0.

Scan and Combine remain as the inference rules 4.20 and 4.21.

This version of the Kilbury algorithm does not work for grammars with ε-
linearizations. All pmcfg grammars can be converted to ε-free form, see Seki et al.
(1991) for details. An alternative to removing ε-linearizations is to add extra
inference rules.

Example 4.36.

First we note that the example grammar is does not have ε-linearizations, so
the Kilbury algorithm can be used right away.

The derivation in figure 4.2 still basically holds. The only real difference is that
all predicted and completed items, (1)–(4), (10), (11) and (14), disappear since
they are combined with the following item instead. Also, the rules used to infer
the items (5)–(7), (9), (12), (13) and (15) will be one of the four Kilbury rules
above.

The main difference is as for the top-down algorithm, the useless predicted and
completed items;

• The rules Rac, Rbd introduce items by Predict+Scan and Complete+
Scan at the positions of the corresponding input tokens (6 items);

• For each of these predicted or completed items, Predict+Combine ap-
plies for the rules Rf , Rg (12 items);

• The inference rule Complete+Combine only applies once, yielding item
(13) in the derivation (1 item).

All in all 19 predicted or completed items, as compared to the 45 items in
example 4.34.

N
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4.6.2 Erasing and suppressing grammars

The incremental algorithm also handles erasing grammars, and even totally
suppressed arguments. The problem is how to reconstruct the parse trees from
the chart. This can be done by using metavariables as described in section 2.6.1.

Suppressed arguments in an item will show up as { } in the children’s list. All
these can simply be seen as metavariables for later purposes, e.g. when building
parse trees.

Example 4.37.

We give a derivation for the erasing grammar in example 4.25 and the input
string w = ‘a1 cb’, using the basic incremental algorithm,

1 [0Rf ; s = 〈ε〉 •A.s1 ; Γ∅ ] Predict
2 [0Rg] ; s1 = 〈ε〉 • α1, s2 = α2 ; Γ∅, Γ∅, Γ∅ ] Predict
3 [0Rg ; s2 = 〈ε〉 • α2, s1 = α1 ; Γ∅, Γ∅, Γ∅ ] Predict
4 [0Ra ; s1 = 〈ε〉 • ‘a1 ’, s2 = ‘a2 ’ ; ] Predict

5 [1Rc ; s = 〈ε〉 • ‘c’ ; ] Predict
6 [1Ra ; s1 = 〈a1〉 • , s2 = ‘a2 ’ ; ] Scan (4)
7 [1Rg ; s2 = 〈a1〉 • C.s, s1 = α1 ; Γa1

, Γ∅, Γ∅ ] Combine (3), (6)

8 [2Rb ; s = 〈ε〉 • ‘b’ ; ] Predict
9 [2Rc ; s = 〈c〉 • ; ] Scan (5)

10 [2Rg ; s2 = 〈a1c〉 • , s1 = α1 ; Γa1
, Γ∅, Γc ] Combine (7), (9)

11 [2Rg ; s1 = 〈a1c〉 •B.s, s2 = α2 ; Γa1c, Γ∅, Γ∅ ] Combine (2), (10)

12 [3Rb ; s = 〈b〉 • ; ] Scan (8)
13 [3Rg ; s1 = 〈a1cb〉 • , s2 = α2 ; Γa1c, Γb, Γ∅ ] Combine (11), (12)
14 [3Rf ; s = 〈a1cb〉 •A.s1 ; Γa1cb ] Combine (1), (13)

where we use the following abbreviations;

Rf = S → f [A] Γa1
= { s1 = 〈a1〉 }

Rg = A→ g[A, B, C] Γb = { s = 〈b〉 }
Ra = A→ a[] Γc = { s = 〈c〉 }
Rb = B → b[] Γa1c = { s2 = 〈a1c〉 }
Rc = C → c[] Γa1cb = { s1 = 〈a1cb〉 }
α1 = A.s2 B.s α2 = A.s1 C.s

Note that the passive items (6), (9), (10), (12), (13) and (14) correspond to
the items (4), (6), (3), (5), (2) and (1) respectively in example 4.32. Also note
that the basic incremental algorithm predict several useless items, which are not
noted in the derivation.

N
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4.7 Summary

In this chapter we defined four different tabular parsing algorithms for context-
free gf and pmcfg. First we gave a general passive algorithm, which works
for context-free gf grammars. Then we showed how to use a context-free ap-
proximation for pmcfg parsing; the pmcfg grammar is converted to an over-
generating cfg, which is used for parsing. Afterwards the resulting context-free
chart is converted back to a pmcfg chart, from which unsound items have to
be removed, since the cfg is over-generating.

Finally we gave two active parsing algorithms for pmcfg; the first is a basic
algorithm which recognizes the linearization rows of a rule in a fixed order. The
second algorithm recognizes rows incrementally according to the order in which
they occur in the input. Both top-down and bottom-up prediction strategies
were investigated.

It is only the last, incremental algorithm that can handle erasing and suppressing
pmcfg grammars without modification. For the other three algorithms, we gave
an algorithm for removing erasingness from a grammar; we also showed that the
resulting nonerasing grammar is a simulation and thus can be used for parsing
the original grammar.
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Chapter 5

Extensions of concrete syntax

This chapter describes three possible extensions of GF, context-free GF and PMCFG,
one of which has two different possible interpretations. Apart from investigating
the resulting expressive power and parsing complexity, we also give active parsing
algorithms for each of the extensions.

The intersection operation, borrowed from conjunctive grammar (Okhotin, 2001),
make PMCFG equivalent to simple literal movement grammar (Groenink, 1997a,b)
and range concatenation grammar (Boullier, 2000a,b). As a corollary we get that
conjunctive PMCFG describe exactly the class of languages recognizable in polyno-
mial time.

The disjunction operation can have two possible interpretations; one intensional
which does not change the descriptive power of context-free GF and PMCFG, and
one extensional which is conjectured to be a strict extension. With extensional
disjunction it is possible to describe the language (a ∪ b)2n

, which is conjectured
cannot be described by context-free GF and PMCFG.

The third operation is the interleaving operation, which is borrowed from partially

ordered multiset context-free grammar (poms-CFG; Nederhof et al., 2003) which in
turn is a variant of the ID/LP formalism (Shieber, 1984). This operation can be
reduced to a number of disjunctions, but this reduction can lead to an exponential
increase of the grammar size. We instead give a direct parsing algorithm derived
from a parsing algorithm for poms-CFG.
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A note on PMCFG vs. context-free GF

In this chapter we write“gf/pmcfg”when the surrounding text applies both for
full gf and pmcfg. When the context applies for context-free gf and pmcfg,
we use only the term“pmcfg”, since the two formalisms are equivalent as shown
in chapter 3.

5.1 Intersection (&)

There is an extension of context-free grammars called conjunctive grammar,
introduced by Okhotin (2001), where the right-hand sides of rules are extended
with a new intersection operator. A conjunctive context-free rule is written,

A → α1 & . . . &αn

where αi ∈ (N ∪ Σ)∗. The interpretation is that A can be rewritten to w ∈ Σ∗

iff all αi can be rewritten to w. This operation can be directly transferred to
gf/pmcfg linearizations.

Definition 5.1 (intersection). The intersection operation is a partial lineariza-
tion operation with the following definition; φ1 &φ2 is calculated to φ1 iff
φ1 = φ2.

We call gf/pmcfg extended with the intersection operation conjunctive gf/
pmcfg. The following laws hold for intersections of linearizations:

φ&φ = φ

α (β1 & β2) γ = (α β1 γ)& (α β2 γ)

φ, r = α1 &α2, ψ = (φ, r = α1, ψ)& (φ, r = α2, ψ)

This means that we can push out an intersection to a row, which is used in the
active parsing algorithm described in section 5.1.3. We can even push out an
intersection to an intersection of linearizations.

Example 5.2.

In the end of section 1.3.5, we introduced discontinuous verb phrases (with
the rows s1, s2) to handle some phenomena in Swedish syntax. Even En-
glish syntax needs discontinuous verb phrases to handle e.g. topicalization as
in ‘it is fish that many lions eat ’.

Groenink (1997a,b) suggests to handle verb phrase coordination by using con-
junction on the verb component of the verb phrase. In pmcfg format, this looks
like follows;

VP → vpc[VP1, VP2] := s1 = VP1.s1 ‘and ’ VP2.s1,

s2 = VP1.s2 & VP2.s2
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By combining two verb phrases with the same object, we can form a coordinated
verb phrase;

vp◦c({ s1 = ‘catch’, s2 = ‘fish’ },
{ s1 = ‘eat ’, s2 = ‘fish’ }) = { s1 = ‘catch and eat ’, s2 = ‘fish’ }

which in turn can be used to form sentences like ‘many lions catch and eat fish’,
or the topicalized version ‘it is fish that many lions catch and eat ’.

N

5.1.1 A strict extension

Theorem 5.3. The class of languages recognized by conjunctive gf/pmcfg
grammars is closed under intersection.

Proof. Let G1 and G2 be two grammars (with no common categories or func-
tion symbols) recognizing the languages L(G1) and L(G2) respectively. Let
G contain all rules from G1 and G2 plus the following single rule for the new
starting category S:

S → f [S1, S2] := s = S1.s&S2.s

It is trivial to see that G recognizes all and only those strings that are recognized
by both G1 and G2.

�

Corollary 5.4. The intersection operation is a strict extension of pmcfg.

The corollary follows from the fact that pmcfg is not closed under intersection
Seki et al. (1991), a property it shares with context-free grammars.

Language-theoretic implications

Closedness under intersection has some less desirable properties, which conjunc-
tive pmcfg inherits from conjunctive grammar (Okhotin, 2001).

• The following decision problems are undecidable: emptiness, finiteness,
regularity, context-freeness, inclusion and equivalence. This is because
these decision problems are undecidable for finite intersections of context-
free grammars, see e.g. Hopcroft and Ullman (1979).

• Conjunctive pmcfg is not closed under homomorphism. This follows from
the fact that any recursively enumerable language L can be described by
h(L1 ∩L2), for some homomorphism h and context-free languages L1, L2,
see e.g. Ginsburg (1975).
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Usefulness of intersection

Conjunctive GF/PMCFG is not only closed under intersection, but the clo-
sure is also modular, i.e. it preserves the structure of the underlying gram-
mar conjuncts. This makes it useful for modular grammar engineering, as
noted by Boullier (2000a,b). Intersection might also be useful for modeling
secondary/tertiary structures of biological sequences, as has been investigated
by Chiang (2004).

For purely linguistic phenomena, Groenink (1997a) has a suggestion of how to
use intersection to describe verb coordination, as shown in example 5.2.

5.1.2 Conjunctive PMCFG describes the polynomial languages

In this section we show that conjunctive pmcfg is equivalent to the formalisms
s-lmg and rcg. Since it is already known that these formalisms exactly describe
the class of languages recognizable in polynomial time, we get the same result
for pmcfg extended with a intersection operation.

Literal movement grammar and range concatenation grammar

Literal movement grammar (lmg; Groenink, 1997a,b), and its relative
range concatenation grammar (rcg; Boullier, 2000a,b), are grammar for-
malisms based on predicates over string tuples. A grammar is a collection of
clauses for predicates, very similar to the programming language prolog. We
here define the general formalism of lmg, and then two equivalent subclasses,
rcg and simple lmg. We assume given a finite set Σ of terminal tokens, and
an infinite supply of logical variables x1, x2, . . . ∈ Var.

Definition 5.5 (clause, predicate). A clause is of the form φ ` ψ1, . . . , ψm
where each of φ, ψ1, . . . , ψm are predicates. A predicate is a termA(α1, . . . , αn),
where each αi ∈ (Σ ∪Var)∗ is a concatenative sequence of terminals and logical
variables. A clause can be instantiated by substituting a string for each variable
in the clause.

A literal movement grammar is a finite number of clauses together with a des-
ignated start predicate. To define the language of a lmg grammar G, we define
a rewriting relation ⇒G on sequences of instantiated predicates,

Γ1, φ̄, Γ2 ⇒G Γ1, ψ̄1, . . . , ψ̄m, Γ2

whenever φ̄ ` ψ̄1, . . . , ψ̄m is an instantiation of a clause in G. The language
of a grammar is then L(G) = { w ∈ Σ∗ | S(w) ⇒∗

G ε }, where S is the start
predicate in G.

lmg is a very general, Turing-complete, grammar formalism. To get a rec-
ognizable subclass of lmg, one can consider two possibilities; to restrict the
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definition of clause instantiation, or to put syntactic restrictions on the form of
the predicates.

Definition 5.6 (RCG). A range concatenation grammar (rcg) is an lmg
with a restricted form of clause instantiation. A clause can only be instantiated
by substrings of the given input string; i.e. if φ ` ψ1, . . . , ψm is an instantiation
of a clause, then all arguments to φ, ψ1, . . . , ψm are substrings of the input.
This has the effect that all strings in a rcg can be replaced by pairs of input
positions, called ranges, as explained in section 4.1.1

As an example, if the input string is ‘b a c h’, then for the following clauses,

A(bac) ` B(b), C(c)

A(bach) ` B(b), C(ch)

A(back) ` B(b), C(ck)

the first two are rcg instantiations of the clause A(x a z) ` B(x), C(z); but
not the third.

Definition 5.7 (s-LMG). A simple lmg (s-lmg) is an lmg where each clause
φ ` ψ1, . . . , ψm obeys the following restrictions:

• Non-combinatorial (NC): The arguments of the right-hand side pred-
icates are variables;

• Bottom-up nonerasing (BNE): Each variable in the right-hand side
also occurs in the left-hand side;

• Bottom-up linear (BL): No variable occurs more than once in the left-
hand side.

Both these formalisms are equivalent, since they describe exactly the class of lan-
guages recognizable in polynomial time (Groenink, 1997b,a; Boullier, 2000a,b;
Bertsch and Nederhof, 2001). Note that s-lmg/rcg are closed under intersec-
tion; if S1 and S2 are the start predicates ofG1 andG2, then S(x) ` S1(x), S2(x)
defines the intersection of the languages L(G1) and L(G2).

There is an alternative formulation of s-lmg; we can remove the restriction on
bottom-up linearity and instead add top-down nonerasingness:

• Top-down nonerasing (TNE): Each variable in the left-hand side also
occurs in the right-hand side.

The following lemma states that TNE and BL are equivalent restrictions in the
context of NC and BNE; i.e. that either of TNE and BL can be used when
defining s-lmg.

1Boullier (2000a,b) defines rcg predicates directly on ranges, but this definition is equiva-
lent.
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Lemma 5.8. TNE and BL are equivalent in the following sense;

1. Any lmg clause φ ` ψ1, . . . , ψm can be converted to an equivalent top-
down nonerasing (TNE) clause;

2. Any lmg clause can be converted to an equivalent bottom-up linear (BL)
clause;

3. Both conversions preserve NC and BNE.

Proof.

1. Assume that there is a variable x in φ not occurring in any of ψ1, . . . , ψm.
Add the predicate call Str(x) to the right-hand side, with the definition,

Str(ε) ` ε

Str(s x) ` Str(x) (for each s ∈ Σ)

This new clause is equivalent, since the predicate Str(x) only says that x
is a string.

2. (Groenink, 1997a,b) Assume that there is a variable x occurring twice in
φ. Replace one occurrence by a new variable x′, and add the predicate
call Eq(x, x′) to the right-hand side, with the definition,

Eq(ε, ε) ` ε

Eq(s x, s y) ` Eq(x, y) (for each s ∈ Σ)

This new clause is equivalent, since the predicate Eq(x, y) says that the
two arguments are equal strings.

3. The conversions preserve NC, since the predicates Str(x) and Eq(x, x′)
are non-combinatorial. Furthermore, they preserve BNE, since the only
variable that is introduced on the left-hand side (x′) is also introduced on
the right-hand side.

�

In the following we will use the alternative definition of s-lmg; where clauses
are NC, BNE and TNE.

Equivalence of PMCFG and s-LMG/RCG

Here we use the original definition of pmcfg rules; as functions over string
tuples, not records. In this setting, a pmcfg rule looks like,

A → f [B1, . . . , Bδ]

f◦(x1,1, . . . , x1,n1
;

. . . ;

xδ,1, . . . , xδ,nδ
) = α1, . . . , αn
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where each αi is a sequence of strings and bound variables. We also assume that
the linearizations are nonerasing, i.e. that each variable xi,j occurs in some αk;
recall from section 2.5.3 that this is not a real restriction on the expressivity of
pmcfg.

It is straightforward to convert a nonerasing pmcfg grammar into an equivalent
s-lmg grammar. Each pmcfg rule above is converted to the equivalent s-lmg
clause,

A(α1, . . . , αn) ` B1(x1,1, . . . , x1,n1
),

. . . ,

Bδ(xδ,1, . . . , xδ,nδ
)

Note that this clause is NC (since each of the xi,j is a variable), BNE (since
f◦ is nonerasing) and TNE (since f◦ is a function), and therefore the clause is
s-lmg.

Lemma 5.9. Any conjunctive pmcfg can be converted to an equivalent s-lmg.

Proof. Since intersections can be pushed out, we can assume that the pmcfg
rules are of the form,

A → f [B1, . . . , Bδ]

f◦(x1,1, . . . , x1,n1
;

. . . ;

xδ,1, . . . , xδ,nδ
) = α1,1 & . . . &α1,c1 ,

. . . ,

αn,1 & . . . &αn,cn

where each αi,j is a sequence of strings and variables, as above. Translate this
to the s-lmg clause,

Â(α1,1 & . . . &α1,c1 ;

. . . ;

αn,1 & . . . &αn,cn
) ` B1(x1,1, . . . , x1,n1

),

. . . ,

Bδ(xδ,1, . . . , xδ,nδ
)

where the left-hand side is just syntactic sugar for a predicate with arity c1 +
· · ·+ cn. If the pmcfg rule is nonlinear, we can utilize the same transformation
as in the proof of lemma 5.8, by adding calls to Eq(x, y). Finally, add coercion
clauses for Â(. . .), implementing the intersections,

A(x1, . . . , xn) ` Â(x1 & . . . & x1 ; . . . ; xn & . . . & xn)

The resulting s-lmg grammar is equivalent to the pmcfg grammar. �
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Lemma 5.10. Any s-lmg can be converted to an equivalent conjunctive pmcfg.

Proof. A s-lmg predicate is of the form,

A(α1, . . . , αn) ` B1(x1,1, . . . , x1,n1
),

. . . ,

Bδ(xδ,1, . . . , xδ,nδ
)

If the variables xi,j all are distinct, it is equivalent to the pmcfg rule,

A → f [B1, . . . , Bδ]

f◦(x1,1, . . . , x1,n1
;

. . . ;

xδ,1, . . . , xδ,nδ
) = α1, . . . , αn

However, in s-lmg, the variables in the right-hand side of a clause need not be
distinct. Assume therefore that xi′,j′ = xi,j = x. Now, introduce a new variable
x′ to replace x as xi′,j′ ; and replace each occurrence of x in the right-hand side
with the conjunction (x& x′). The resulting rule is a correct conjunctive pmcfg
rule, and equivalent to the given s-lmg clause. �

Theorem 5.11. Conjunctive pmcfg, s-lmg and rcg are equivalent.

Corollary 5.12. The class of languages recognizable by conjunctive pmcfg is
exactly the class of languages recognizable in polynomial time.

Example 5.13.

The following is the result of translating the pmcfg rule for verb coordination
in example 5.2, into s-lmg/rcg;

V̂P(x1 ‘and ’ y1 ; x2 & y2) ` VP(x1, x2), VP(y1, y2)

VP(x, y) ` V̂P(x ; y& y)

After simplifying away V̂P, we get the same rule as in Groenink (1997a);

VP(x ‘and ’ y, z) ` VP(x, z), VP(x, z)

N

5.1.3 Parsing of conjunctive PMCFG

Ranges and intersection

We can use exactly the same definition of ranges as in section 4.1. The general
definition of range intersection is set intersection, ρ1 & ρ2 = ρ1 ∩ ρ2. For string-
equivalent ranges this boils down to a simple equality check (ρ1 & ρ2 is calculated
to ρ1 iff ρ1 = ρ2), since the string-equivalent ranges form a partition of Rw.
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The notion of range-restriction can be extended to also include intersection.
This is possible since there is a range interpretation of intersection. The follow-
ing theorem is a direct consequence of the fact that range intersection can be
interpreted as range equality for string-equivalent ranges.

Theorem 5.14. The parsing algorithms for context-free gf of section 4.2 has
polynomial time complexity for conjunctive pmcfg.

Active parsing

Here we describe a simple extension of the active parsing algorithm in section
4.4. We assume that an intersection r = α1 & . . . &αn in a linearization is
written as a number of consecutive rows in the record, r = α1, . . . , r = αn.
This is a slight abuse of notation, but the justification is that the inference rules
4.10–4.13 in section 4.4 only need minimal changes.

Intersect
[ R ; Γ, r = ρ0, r = ρ1 • , φ ; ~Γ ]

[ R ; Γ, r = ρ0 • , φ ; ~Γ ]

{
ρ0 = ρ1 (5.1)

This is the only extra rule, taking care of the intersection of two lineariza-
tions; if two linearizations ρ0 and ρ1 are found for the same label, they
have to be equal.

Complete

[ R ; Γ, r = ρ • , r′ = α, φ ; ~Γ ]

[ R ; Γ, r = ρ, r′ = 〈ε〉 • α, φ ; ~Γ ]

{
Γ 6= (. . . , r = ρ1) (5.2)

The only difference to the original rule is the extra side condition; we have
to state that Complete must not apply when Intersect applies.

Predict, Scan and Combine remain as the rules 4.10, 4.12 and 4.13.

5.2 Intensional disjunction (|)

The dual operation of intersection is disjunction, which we write as φ1 | φ2. This
can also be added to gf/pmcfg linearizations, which we then call disjunctive
gf/pmcfg.

There are two possible interpretations of the disjunction operation; an inten-
sional and an extensional. The first does not change the descriptive power of
pmcfg, but we conjecture that the second does. In this section we describe the
intensional, and the next section takes care of the extensional version.
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Example 5.15.

The first gf grammar in section 1.3.5 uses disjunctive linearizations for the
terms n◦

c and v◦e ;

N → nc[] := s = ‘lion’ | ‘lions ’

V → ve[] := s = ‘eats ’ | ‘eat ’

N

Example 5.16.

This is another simple grammar using disjunction,

S → f [S] := s = S.s S.s

S → a[] := s = ‘a’ | ‘b’

and since it also makes use of reduplication, it makes a good example for dis-
cussion the differences between intensional and extensional disjunction.

N

Disjunction as a non-deterministic operation

To be able to define intensional disjunction, we must extend the definition of
gcfg to many-valued, or non-deterministic, linearization functions, as discussed
in section 2.4.2.

Definition 5.17 (intensional disjunction). Intensional disjunction is a non-
deterministic operation with the following definition; φ1 | φ2 is calculated to
either φ1 or φ2.

The following laws hold for intensional disjunctions (as for intersections):

α (β1 | β2) γ = (α β1 γ) | (α β2 γ)

φ, r = α1 | α2, ψ = (φ, r = φ1, ψ) | (φ, r = φ2, Φ′)

This means that we can push out a disjunction to a row, which is used in
the active parsing algorithm below. We can even push out a disjunction to a
disjunction of linearizations, which is used when showing that the extension is
not strict.

Example 5.18.

The reduplication grammar in example 5.16 have trees of the form fk(a); i.e. k
applications of f , finally applied to a. There are two possible linearizations of
the term a, and each application of f duplicates the string; thus the language
is Lint = a2n ∪ b2n

, when we use the intensional semantics. This language is an
exponentially growing language, and hence not mildly context-sensitive.

N
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5.2.1 A non-strict extension

To see that the intensional disjunction is not a strict extension, we give a trans-
lation from disjunctive gf/pmcfg to ordinary gf/pmcfg.

Since it is possible to push out disjunctions, we can assume that each disjunctive
rule is of the form A → f [ ~B] := α1 | . . . | αn, where none of φi contains a

disjunction. Such a rule is translated to n rules A→ fi[ ~B] := αi for 1 ≤ i ≤ n.
That the grammars are equivalent comes from the compositionality of gcfg;
any rule taking a term of type A as argument cannot separate the functions fi
from each other, thus they are indistinguishable.

5.2.2 Parsing of intensionally disjunctive PMCFG

Here we describe an extension of the active parsing algorithm described in sec-
tion 4.4, to handle intensional disjunctions. The only difference to the original
algorithm is the Complete rule, where we non-deterministically choose any of
the disjunctions.

Complete

[ R ; Γ, r = ρ • , r′ = α1 | . . . | αn, φ ; ~Γ ]

[ R ; Γ, r = ρ, r′ = ρε • αi, φ ; ~Γ ]

{
1 ≤ i ≤ n (5.3)

Predict, Scan and Combine remain as the rules 4.10, 4.12 and 4.13.

5.3 Extensional disjunction (|)

To define extensional disjunctions, we do not change the definition of gcfg, but
instead we change what is meant by linearization types.

Linearizations as sets

We lift the linearization types to non-empty sets of linearizations. This means
that an (extensional) linearization, written Φ, is a set of (original) linearizations,
still written φ. We have to redefine all existing linearization operations in the
following way:

• Concatenation is applied to sets of strings, in the standard manner;

Φ1 · Φ2 = { α1 · α2 | α1 ∈ Φ1, α2 ∈ Φ2 }
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• Record formation returns a set of records;

{ r1 = Φ1 ; . . . ; rn = Φn } = { { r1 = φ1 ; . . . ; rn = φn } | φi ∈ Φi, 1 ≤ i ≤ n }

• Record projection is also lifted to sets of linearizations;

Φ.r = { φ.r | φ ∈ Φ }

Disjunction as set union

With these changes we can define linearization of disjunctions as set union

Definition 5.19 (extensional disjunction). Extensional disjunction is an oper-
ation on extensional linearizations defined as φ1 | φ2 = φ1 ∪ φ2.

Unfortunately, the natural law of η-conversion, Φ = { r1 = Φ.r1 ; . . . ; rn =
Φ.rn }, does not hold any more. Instead we have the much weaker law,

Φ ⊆ { r1 = Φ.r1 ; . . . ; rn = Φ.rn }

The following law for string concatenation still holds though,

α (β1 | β2) γ = (α β1 γ) | (α β2 γ)

So, disjunctions cannot be pushed out to the linearization definitions, and the
translation to pmcfg in section 5.2.1 cannot be applied.

5.3.1 A strict extension

The effect of extensional disjunction is to lift reduplication to work on the tree
level instead of the string level. This means that each reduplication in a lin-
earization can linearize to different strings, as long as they are represented by
the same tree. With extensional disjunction it is possible to define languages
not obviously definable by ordinary pmcfg linearizations.

Example 5.20.

The grammar in example 5.16 generates the language Lext = (a ∪ b)2
n

using
the extensional semantics. The reason for this is that each application of f
duplicates the length of the string, but otherwise only says that the string should
consist of a’s and b’s.

N

Note that this language is larger than the intensional language for the same
grammar, Lint ( Lext. To be precise, very much larger; there are 2 strings in
Lint of length 2n, while there are 22n

strings of the same length in Lext.
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Conjecture 5.21. There is no pmcfg grammar that can express the language
Lext = (a ∪ b)2n

.

Unfortunately we have not yet found a proof of the conjecture, but we give an
informal argument of why it should be true.

Proof (idea). The argument is based on the fact that each pmcfg tree has
exactly one linearization. We argue that Lext contains more strings of length 2n

than any candidate pmcfg grammar can have corresponding trees;

• There are 22n+1

=
(
22n)2

legal strings of length 2n+1;

• Any pmcfg string of length 2n+1 must be composed of strings of length
≤ 2n;

• But there are only
∑n

i=1 22i

< 2
(
22n)

�
(
22n)2

legal strings of length
≤ 2n;

So, a pmcfg function f creating rules of length 2n+1 must take at least two
arguments with strings of length ≤ 2n. But, there is no way of guaranteeing
that two argument strings x and y have equal length. This means that if 2j =
|x| 6= |y| = 2k, then |f◦(x, y)| = 2j + 2k 6= 2n for any n, and therefore f must
accept strings of length 6= 2n. We have a contradiction.

�

The reason why this is not a correct proof is that it does not cover all possible
pmcfg grammars. Note that the argument hinges on reduplication; without the
possibility of reduplication, extensional and intensional disjunction are equiva-
lent.

Corollary 5.22. Extensional disjunctive pmcfg is a strict extension of pmcfg
(if the conjecture holds).

Note however that the argument does not hold for conjunctive pmcfg; in fact
the following conjunctive grammar recognizes the language Lext;

S → f [S′] := s = S′.s2

S′ → f ′[R, L] := s1 = R.s& L.s1, s2 = L.s2

R → r[R] := s = R.s R.s

R → a[] := s = ‘a’

L → la[L] := s1 = ‘a’ L.s1, s2 = ‘a’ L.s2

L → lb[L] := s1 = ‘a’ L.s1, s2 = ‘b’ L.s2

L → e[] := s1 = ε, s2 = ε

This grammar consists of two subgrammars; where R recognizes the language
a2n

. The second subgrammar L can be seen as a relation on string pairs, where
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φ.s1 = an iff φ.s2 = (a∪b)n. The S′ category states that the L argument should
have length 2n, meaning that the s2 component defines the language (a ∪ b)2n

.
Note that this grammar relies on the possibility of erasing the row s1, without
losing its information.

It is an open question whether there are disjunctive grammars that are not
recognizable in polynomial time; or in other words, whether any disjunctive
grammar can be translated to an equivalent conjunctive grammar.

5.3.2 Parsing of extensional disjunctive PMCFG

Ranges and extensional disjunction

We can use exactly the same definition of ranges as in section 4.1. The general
definition of range disjunction is set union, ρ1 | ρ2 = ρ1 ∪ ρ2. Since disjunction
has a range interpretation, we can extend the notion of range-restriction to also
include intersection. Thus, the parsing algorithms for context-free gf in section
4.2 still apply.

Extensional disjunctive PMCFG parsing is not polynomial

Unfortunately, the parsing algorithms for context-free gf are not polynomial
in the length of the input any more. The reason is that ranges are no longer
string-equivalent. In fact, a range can be almost any subset of the universal
range Rw; and there are O(2|w|) possible ranges. An exponential number of
ranges gives exponential space complexity for the algorithm.

Active parsing of extensional disjunctive PMCFG

Although parsing with general ranges is not polynomial, it is still possible to
augment the active parsing algorithm from section 4.4 to handle extensional
disjunction. In this algorithm we assume that an intersection r = α1 | . . . | αn
is written as a number of rows in the record, r = α1, . . . , r = αn. This is a
slight abuse of notation, but the justification is that the inference rules from the
original algorithm only need minimal changes.

Union
[ R ; Γ, r = ρ0, r = ρ1 • , φ ; ~Γ ]

[R ; Γ, r = ρ • , φ ; ~Γ ]

{
ρ = ρ0 ∪ ρ1 (5.4)

If we have found two linearizations for the same label, we take the union
of the linearizations.
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Skip
[R ; Γ, r = ρ • , r′ = α, φ ; ~Γ ]

[R ; Γ, r = ρ • , φ ; ~Γ ]

{
φ = (r′ = α′, . . .)

or r = r′
(5.5)

But there is also the possibility that some linearization is not possible, so
we are allowed to skip a row whenever there are other opportunities for
the same label.

Complete

[ R ; Γ, r = ρ • , r′ = α, φ ; ~Γ ]

[ R ; Γ, r = ρ, r′ = 〈ε〉 • α, φ ; ~Γ ]

{
Γ 6= (. . . , r = ρ1) (5.6)

The only difference to the original Complete rule is the added side con-
dition, stating that the rule must not apply when Union applies.

Predict, Scan and Combine remain as the rules 4.10, 4.12 and 4.13.

5.4 Interleave (‖)

cfg is not an ideal formalism for writing grammars for languages with free
or multiple word-order. For this reason more expressive formalisms have been
introduced, most notably id/lp grammars (Shieber, 1984). The drawback of
the id/lp formalism is that parsing is exponential in the size of the grammar
(Barton Jr., 1985).2 Nederhof et al. (2003) propose to recast id/lp grammars
with partially ordered multiset context-free grammars (poms-cfg),
to generate refined bounds on id/lp parsing complexity. The rules in a poms-
cfg have poms-expressions on the right-hand side, which are a syntactic variant
of pomsets (Gischer, 1988).

The main idea with poms-expressions is to introduce the interleave operator, (‖).
This operator has also been called“merge”,“shuffle”,“weave”and other things in
the contexts of process algebra, concurrency theory and formal language theory
(see e.g. Hopcroft and Ullman, 1979; Gischer, 1988).

Definition 5.23 (interleave). Interleave is a non-deterministic linearization op-
eration on sequences defined as α ‖ β = α1β1 · · ·αnβn whenever there are (pos-
sibly empty) sequences αi, βi such that α = α1 . . . αn and β = β1 . . . βn.

The operation can also be defined inductively via the disjunction operation as;

aα ‖ bβ = a(α ‖ bβ) | b(aα ‖ β)

α ‖ ε = α

ε ‖ β = β

2To be exact, the problem is NP-complete.
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This means that interleave is not a strict extension of pmcfg linearizations,
provided we use intensional disjunction which itself is a non-strict extension.
But expanding an interleave can result in an exponential increase of the size of
the linearization. As an example, the expression a1 ‖ · · · ‖ an, saying that the n
arguments can come in any order, gives rise to n! distinct disjuncts.

Usefulness of interleave

The main usage of interleaving is to define grammars in free word-order lan-
guages. Nederhof et al. (2003) show that there is a direct conversion of gram-
mars written in the id/lp format to linearizations using interleave.

Example 5.24.

The grammar fragment of verb phrases in the free word-order Makua language
(Gazdar et al., 1985, page 48) can be written as follows in the id/lp formalism;

VP → V V ≺ S

VP → V, NP

VP → V, S

VP → V, NP, NP

VP → V, NP, PP

VP → V, NP, S

The rules can be written as an interleaved pmcfg in the following way (adapted
from Nederhof et al., 2003);3

VP → f1[V] := V

VP → f2[V, NP] := V ‖ NP

VP → f3[V, S] := V · S

VP → f4[V, NP1, NP2] := V ‖ NP1 ‖ NP2

VP → f5[V, NP, PP] := V ‖ NP ‖ PP

VP → f6[V, NP, S] := V · S ‖ NP

N

5.4.1 Active parsing of interleaved PMCFG

Shieber (1984) has given a direct parsing algorithm for context-free id/lp gram-
mars, which does not improve on the theoretical parse time complexity for
parsing the equivalent cfg, but in practice is much more efficient (Barton Jr.,
1985). Nederhof et al. (2003) give a direct parsing algorithm for poms-cfg,

3For clarity we skip the record labels, since all linearizations are single strings.
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which is also exponential in the size of the grammar, but the bounds are even
more refined that in Shieber’s algorithm. They compile the poms-expressions
to poms-automata, which then are used in their Earley-style parsing algorithm.

Here we modify their algorithm to work with pmcfg grammars. For simplicity
we do not compile the linearization expression to a poms-automaton, but instead
use the expression directly in the parsing algorithm.

Interleave

[R ; Γ, r = ρ • (α1 ‖ · · · ‖X αi ‖ · · · ‖αn) α, φ ; ~Γ ]

[R ; Γ, r = ρ •X (α1 ‖ · · · ‖αi ‖ · · · ‖αn) α, φ ; ~Γ ]
(5.7)

The first component of any part of an interleave can be moved to the front.
This is non-deterministic as long as more than one αi is non-empty.

Merge
[ R ; Γ, r = ρ • (ε ‖ · · · ‖ ε) α, φ ; ~Γ ]

[ R ; Γ, r = ρ • α, φ ; ~Γ ]
(5.8)

The interleave of empty strings is empty and can be removed.

Predict, Complete, Scan and Combine remain as the rules 4.10–4.13.

Note that the Interleave rule is not formally correct as it is written. Nested
interleaves such as a ‖ (b ‖ c)d are not handled correctly;

a ‖ (b ‖ c)d 6= a(b ‖ c)d | (b ‖ c)(a ‖ d)

Handling nested interleaves

To handle nested interleaves correctly, we need to define derivatives over poms-
expressions, where by δa(α) mean the derivative of α over a. This can be done
in a similar way as derivatives for regular expressions (Brzozowski, 1964). As
an example, the derivatives of the given expression are

δa(a ‖ (b ‖ c)d) = (b ‖ c)d
δb(a ‖ (b ‖ c)d) = a ‖ cd
δc(a ‖ (b ‖ c)d) = a ‖ bd

Note that derivatives can be non-deterministic, as in δa(ab ‖ ac) which can be
b ‖ ac or ab ‖ c. This constitutes no problem, since the inference rules which use
δa are non-deterministic themselves.

Now the Interleave rule can be combined into the Scan and Combine rules
as follows.
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Scan+Interleave

[R ; Γ, r = ρ • α, φ ; ~Γ ]

[ R ; Γ, r = ρ′ • α′, φ ; ~Γ ]

{
α′ = δs(α)
ρ′ = ρ · 〈s〉w (5.9)

Combine+Interleave

[ R ; Γ, r = ρ • α, φ ; ~Γ ] [B ; Γ′ ]

[R ; Γ, r = ρ′ • α′, φ ; ~Γ[i := Γ′] ]






α′ = δB.r′(α)
ρ′ = ρ · Γ′.r′

Γi ⊆ Γ′
(5.10)

Predict and Combine remain the same as the rules 4.10 and 4.13.

The effect of this algorithm is to simulate a poms-automaton via the derivative.
As an alternative, the linearizations can also be compiled into automata as is
done by Nederhof et al. (2003).

5.5 Summary

In this chapter we gave three different extensions of the pmcfg formalism.
The first, intersection, is borrowed from conjunctive grammar (Okhotin,
2001), and is a strict extension since pmcfg is not closed under intersection.
We showed that conjunctive pmcfg is equivalent to simple literal move-
ment grammar (Groenink, 1997a,b) and range concatenation grammar
(Boullier, 2000a,b), meaning that the formalisms exactly characterizes the class
of languages recognizable in polynomial time.

The second extension is disjunction, which can have two different interpreta-
tions; one intensional and one extensional. The intensional variant is not a
strict extension of pmcfg, but the extensional can describe languages which
are conjectured not can be described by an ordinary pmcfg. There are some
open questions left regarding the extensional disjunction; the first being how
the proof sketch can be turned into a correct proof. Another open question is
whether disjunctive pmcfg can describe non-polynomial languages.

The third extension is an adaptation of the poms-cfg format of Nederhof et al.
(2003) to handle pmcfg grammars. The operation is called interleave, and we
gave a parsing algorithm for interleaved pmcfg grammars. An application of
interleave can be converted to a number of disjunctions, but this reduction can
lead to an exponential increase of the grammar size. We instead augmented the
active parsing algorithm from chapter 4, with rules to handle interleaves.

130



Chapter 6

Non-context-free
abstract syntax

This final chapter discusses how to handle GF grammars containing higher-order
functions or dependent types.

We give an algorithm for converting higher-order functions into first-order functions.
The resulting context-free GF grammar is over-generating, since it cannot type-
check variable occurrences correctly. We therefore give a procedure for filtering out
non-well-formed terms during the conversion from first-order to higher-order parse
results.

In the presence of dependent types it is possible to describe undecidable languages
(Ranta, 2004a), so the parsing problem is undecidable in general. We nevertheless
describe a two-step parsing process for such grammars; first we translate into an
overgenerating context-free GF grammar, and parse using that grammar. The re-
sulting parse items are then converted into a logic program, which can be solved by
any proof search procedure.
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6.1 Higher-order functions

In full gf, arguments to functions can themselves be functions. Functions tak-
ing other functions as arguments are called higher-order functions, and their
corresponding typings are called higher-order categories.

Example 6.1.

The following is a simple grammar for a subset of predicate logic, with quantifi-
cation over a domain of individuals.

all , some : (Ind → Prop) → Prop

equal : Ind × Ind → Prop

a, b, c : Ind

And here are some example propositions.

all(λx. equal (x, x)) : Prop

some(λy. equal(b, y) : Prop

N

The presence of higher-order functions gives rise to the question of how to lin-
earize a functional argument C1 × · · · ×Cn → B, a problem that can be solved
in different ways. The solution chosen in gf is to pair the linearization of the
result category B with linearizations of variable bindings representing terms
of the argument categories C1 × · · · × Cn. This means that gf automatically
infers the linearization type for functional arguments as Strn × B◦, for a func-
tion type C1 × · · · × Cn → B. For convenience we write elements of the type
(C1 × · · · × Cn → B)◦ as λ 〈c1, . . . , cn, b〉.

Example 6.2.

Here is a possible concrete syntax for the given abstract grammar.

all◦(λ 〈x, p〉) = ‘for all ’ x ‘, ’ p

some◦(λ 〈x, p〉) = ‘there is an’ x ‘such that ’ p

equal◦(x, y) = x ‘is equal to’ y

a◦ = ‘Anna’

b◦ = ‘Bessie’

c◦ = ‘Carlotta’

Note that we use λ 〈x, p〉 as syntactic sugar for a pair of the linearization type
(Ind → Prop)◦ = Str × Prop◦.

N
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A formal treatment

To be able to define a concrete syntax for grammars with higher-order functions,
we need to introduce some extra notions.

Definition 6.3. The linearization type for a function type C1 × · · · × Cn → B,
is defined as

(C1 × · · · × Cn → B)◦ = Strn ×B◦

For each category C the grammar writer needs to define a default linearization
for bound variables, which is written

lindef C(x) = φ

where φ : C◦ whenever x is a string. The framework also contains a coercion
for variables, where x̂ : Str whenever x is a variable. The most natural way to
define this coercion is to view the name of the variable as a string, e.g. x̂ = ‘x ’
and ŷ2 = ‘y2 ’.

Now we can augment the definition of term linearization with two extra cases,
for lambda-abstractions and bound variables,

[[λx1 . . . xn. t]] = λ 〈x̂1, . . . , x̂n, [[t]]〉
[[x]] = φ (lindef C(x̂) = φ)

Example 6.4.

The example grammar has to be augmented with default linearizations for each
category. But this is trivial; since all linearization types are strings, we can
simply declare lindef Ind(x) = x, and similar for the type Prop.

Now we can linearize the example propositions as,

[[all (λx. equal (x, x))]] = all◦(λ 〈x̂, [[equal (x, x)]]〉)
= all◦(λ 〈x̂, equal◦(x̂, x̂)〉)
= all◦(λ 〈‘x ’, equal◦(‘x ’, ‘x ’)〉)
= ‘for all x , x is equal to x ’

[[some(λy. equal (b, y))]] = some◦(λ 〈ŷ, [[equal(b, y)]]〉)
= ‘there is some y such that Bessie is equal to y’

N

6.1.1 Removing higher-order functions from a grammar

In this section we show that a grammar with higher-order functions can be
converted to a grammar with a context-free backbone. The resulting grammar is
overgenerating in the presence of variables, and we give a procedure for filtering
out non-well-formed results.
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Algorithm 6.5.

First, add a new category Var for representing bound variables. We assume that
there is an infinite supply of terms vi : Var (i ∈ N), representing each possible
variable xi. The linearization type for variables is strings, Var◦ = Str, and
each term vi has a linearization definition in terms of its represented variable,
v◦i = x̂i.

Then, convert each default linearization lindef C(x) = φ to a function

δC : Var → C

δ◦C(x) = φ

Finally, for each higher-order function such as,

h : ~B × (C1 × · · · × Cn → Bk) × ~B′ → A

create a new category B̂k = [C1 × · · · × Cn → Bk] together with a coercion
function λBi

,

lincat B̂k = Strn ×B◦
k

λBk
: Varn ×Bk → B̂k

λ◦Bk
(x1, . . . , xn, y) = λ 〈x1, . . . , xn, y〉

Replace each occurrence of C1 × · · · × Cn → Bk as an argument in a function
typing, by the new category B̂k.

N

The resulting grammar has a context-free backbone since all higher-order func-
tions has been removed. There is an infinite number of terms vi in Var, but
that constitutes no severe problem for parsing, since the number of terms that
are used in any given instance is finite, and these terms can be created in a
pre-processing phase.

The resulting context-free gf grammar is over-generating, since there is no way
of checking that the variables occurring in a term are bound by a preceding
lambda-abstraction, and that all occurrences of the same variable have the same
type. Therefore we have to check that the variables are bound and type-correct
when the terms have been assembled.

Theorem 6.6. The grammar resulting from algorithm 6.5 recognizes all strings
that are recognized by the original grammar.

Proof. Assume for simplicity that we have a higher-order function of the form,

h : ~B × (C1 × · · · × Cn → Bk) × ~B′ → A
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The generalization to arbitrary higher-order functions is straightforward. We
have to show that there is a corresponding first-order tree for each higher-order
tree h(~t, λx1 . . . xn. tk, ~t

′), with the same linearization.

The corresponding first-order tree for the higher-order tree h(~t, λx1 . . . xn. tk, ~t
′)

is,
h(~t, λBk

(v1, . . . , vn, tk[x1/δC1
(v1), . . . , xn/δCn

(vn)]), ~t
′)

where v1, . . . , vn are the terms in Var representing the variables x1, . . . , xn.
Now, the linearization definition of δCi

says that,

[[δCi
(vi)]] = δ◦Ci

(v◦i ) = δ◦Ci
(x̂i) = φi = [[xi]]

where lindef Ci(x̂i) = φi. This implies that the substitution tk[xi/δCi
(vi)] does

not have effect for any xi on the linearization; i.e.

[[tk[x1/δC1
(v1), . . . , xn/δCn

(vn)]]] = [[tk]]

But this in turn gives us,

[[λBk
(v1, . . . , vn, tk[x1/δC1

(v1), . . . , xn/δCn
(vn)])]]

= λ◦Bk
([[v1]], . . . , [[vn]], [[tk[x1/δC1

(v1), . . . , xn/δCn
(vn)]]])

= λ 〈x̂1, . . . , x̂n, [[tk]]〉
= [[λx1 . . . xn. tk]]

�

Converting first-order parse results to higher-order

There is only one possible way to create terms of the new type,

B̂k = [C1 × · · · × Cn → Bk]

and that is by application of the coercion function λBk
. So, each term of type B̂k

is of the form λBk
(v1, . . . , vn, t) where v1, . . . , vn : Var and t : Bk. From this

term we recreate the function λx1 . . . xn. t
′, where x1, . . . , xn are the variables

represented by v1, . . . , vn, by substituting,

t′ = t[δC1
(v1)/x1, . . . , δCn

(vn)/xn]

The resulting function is equivalent to the original term by the argument above,
except when t′ contains some spurious δD(vi) after substitution. If it does, the
corresponding variable xi occurs with type D; either it is unbound or it should
have had another type.

So, the resulting context-free gf grammar is over-generating, and the recognized
terms must be checked for spurious variables, which constitutes a limited form
of type-checking.
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Example 6.7.

The example grammar now needs to be augmented with the following rules,

vi : Var (i ∈ N)

δI : Var → Ind

δP : Var → Prop

with the variable linearizations v◦0 = ‘x ’, v◦1 = ‘y’, v◦2 = ‘z ’, etc. The default
coercion δP will never be used in the grammar, and can be removed. The
default linearizations for Ind and Prop are converted to the identical linearization
definitions δ◦I (x) = x and δ◦P (x) = x.

The quantifiers contain the argument type Ind → Prop, from which we introduce
the new category P̂ = [Ind → Prop], with its lambda-coercion λP ,

λP : Var × Prop → P̂

λ◦P (x, y) = λ 〈x, y〉

Finally we transform the original rules into first-order format,

all , some : P̂ → Prop

equal : Ind × Ind → Prop

a, b, c : Ind

retaining their original linearizations.

Now, we can parse the strings ‘for all x, x is equal to x ’ and ‘there is some y
such that Bessie is equal to y’, yielding the parse results,

all(λP (v0, equal(δI(v0), δI(v0))) : Prop

some(λP (v1, equal(b, δI(v1)))) : Prop

which can be back-translated into the original parse trees as described above.
Note that sentences like ‘x is equal to y’ and ‘there is some x such that x’, also
are recognized by the first-order grammar; but back-translation fails since the
resulting higher-order terms contains spurious variables (δI(v0) and δI(v1) for
the first sentence, and δP (v0) for the second).

N

6.1.2 Higher-order functions as arguments

Suppose we have a higher-order function as argument to a function. An example
is the function,

h : D × (C × (D → C) → B) → A
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where the second argument is a higher-order function of type C×(D → C) → B.

The first question that arises is how to linearize such a higher-order argument.
In gf this is done by assuming that it is a variable like other variables, meaning
that the linearization of h has the form,

h◦(x, λ 〈y, f, z〉) = φ

where x : D◦, z : B◦ and y, f : Str. This treatment means that algorithm 6.5
still works without modifications.

Unfortunately, it is not clear how to handle default linearizations for function
types; e.g. what is the default linearization for the function type D → C above?
This is not obvious since functional variables can be applied to arguments; in
the example we could apply f to a term of type D, e.g. f x is a term of type C.

In the current implementation of gf, there is an ad hoc solution where the
application f x is linearized as the string ‘f x ’; but there could perhaps be other
alternative choices. These issues have not been fully investigated, since it seems
implausible that there will be any linguistic need for more than second-order
functions.

6.2 Dependent types

If we have a gf grammar with dependent categories, there is a straightforward
two-step parsing process for that grammar. First we simply remove all depen-
dencies from the abstract syntax, thereby getting a grammar with a context-free
backbone. This grammar is over-generating, so parsing returns all parse trees
we want, but perhaps also some unwanted trees. The second step consists of
filtering the parse trees through the original grammar.

The naive way of performing the second step is to extract each parse tree and
then check that it is type-correct. However, this can result in extracting a very
large number of trees, which are all rejected by the type-checker. In some cases
there can even be an infinite number of parse trees, of which only a finite number
is correct. Then the filtering algorithm does not even terminate.

Example 6.8.

The following is an example grammar for a fragment of arithmetic with over-
loaded operators. There are two possible number domains; natural numbers
and reals (Nat , Real : Dom). Some operations (plus) work on any domain,
while others (sqrt) only work on reals.
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Nat , Real : Dom

plus : (d : Dom) × Num(d) × Num(d) → Num(d)

sqrt : Num(Real) → Num(Real)

c : Num(Nat) → Num(Real)

one, two : Num(Nat)

plus◦(d, x, y) = x ‘plus ’ y

sqrt◦(x) = ‘the square root of ’ x

c◦(x) = x

one◦ = ‘one’

two◦ = ‘two’

Since the abstract type theory does not have overloading, we need a coercion
function c from integers to reals. There are three possible terms that linearize
to the string w = ‘the square root of one plus two’;

1 sqrt(plus(Real , c(one), c(two)))

2 sqrt(c(plus(Nat , one, two)))

3 plus(Real , sqrt(c(one)), c(two))

The difference between (1) and (2) is that the first uses integer addition, while
the second uses real addition. Both utilize the mathematical term

√
1 + 2, while

(3) is a representation of
√

1 + 2.

To be able to use the parsing algorithms in chapter 4, we have to remove the
dependencies to get the context-free backbone, which looks like this in pmcfg
format;

Num → plus [Dom, Num1, Num2] := Num1 ‘plus ’ Num2

Num → sqrt [Num] := ‘the square root of ’ Num

Num → c[Num] := Num

Num → one[] := ‘one’

Num → two[] := ‘two’

Note that the rule for the coercion c is a cyclic rule. Now, parsing the input
string w using this grammar results in the following pmcfg chart;
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1 [ sqrt ; 0 . . . 7 ; 4 . . . 7 ]

2 [ sqrt ; 0 . . . 5 ; 4 . . . 5 ]

3 [ plus ; 4 . . . 7 ; ?, 4 . . . 5, 6 . . . 7 ]

4 [ plus ; 0 . . . 7 ; ?, 0 . . . 5, 6 . . . 7 ]

5 [ one ; 4 . . . 5 ; ]

6 [ two ; 6 . . . 7 ; ]

7 [ c ; 0 . . . 7 ; 0 . . . 7 ]

8 [ c ; 0 . . . 5 ; 0 . . . 5 ]

9 [ c ; 4 . . . 7 ; 4 . . . 7 ]

10 [ c ; 4 . . . 5 ; 4 . . . 5 ]

11 [ c ; 6 . . . 7 ; 6 . . . 7 ]

Note that items (3) and (4) have metavariables for the linearization of the do-
main, since the rule for plus is suppressing. The items (7)–(11) are all cyclic
items which can be applied on any part of a parse tree, any number of times.
So, there are infinitely many parse trees that can be constructed from this chart,
of the following two forms;

c∗(sqrt(c∗(plus(c∗(one), c∗(two)))))

c∗(plus(c∗(sqrt(c∗(one)), c∗(two))))

Of these infinitely many trees, only three are correct according to the original
grammar.

N

6.2.1 Type checking as proof search

In this section we describe how to do the second step on the resulting parse chart,
instead of each parse tree. The idea is to convert the chart into Horn clauses,
which can be solved by any proof search procedure, e.g. standard prolog.

Converting to Horn clauses

Algorithm 6.9.

Convert each chart item,

[ A→ f [A1, . . . , Aδ] ; φ ; φ1, . . . , φδ ]

where f has the abstract typing,

f : (x1 : A1) × (x2 : A2[x1]) × · · · × (xδ : Aδ[x1, . . . , xδ−1])

→ A[x1, . . . , xδ]
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into the following Horn clause (where t : A ⇒ φ is just syntactic sugar for a
3-tuple);

f(x1, . . . , xδ) : A[x1, . . . , xδ] ⇒ φ ` x1 : A1 ⇒ φ1,

x2 : A2[x1] ⇒ φ2,

. . . ,

xδ : Aδ[x1, . . . , xδ−1] ⇒ φδ

Metavariables in a linearization φi are treated as anonymous logical variables.
N

This algorithm works fine for non-suppressing grammars; but if the rule for f
above is suppressing, then some linearization φi in the resulting clause might be
completely uninstantiated, φi = ?. This means that the term represented by xi
is suppressed, and the corresponding predicate call can (and must) be removed
from the clause.

Algorithm 6.10.

From all clauses,

Φ ` Φ1, . . . , Φδ

remove each predicate call Φi with an uninstantiated linearization,

Φi = xi : Ai[. . .] ⇒ ?

N

Querying the logic program

Now, given the input string w and the starting category S, we can try to prove
the query,1

` x : S ⇒ 〈w〉

where x is an unbound logical variable. If the query is true, the string is accepted
by the grammar, and each possible instantiation of x is a correct parse tree.

While the first step, parsing the underlying pmcfg grammar, always terminates
in polynomial time; it is not sure that the second step will. It might take
exponential time to extract a solution from the resulting logic program, or it
might even be non-terminating. Also, the time taken and the termination may
depend on the proof strategy of the theorem solver.

1Note that the query uses the range interpretation of section 4.1, which presupposes that
the chart items also use range linearizations. If the chart uses string linearizations, we only
have to replace 〈w〉 by w in the query.
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Example 6.11.

The chart from the previous example, is translated by the algorithm into the
following logic program;

1 sqrt(x) : Num(Real) ⇒ 0 . . . 7 ` x : Num(Real) ⇒ 4 . . . 7
2 sqrt(x) : Num(Real) ⇒ 0 . . . 5 ` x : Num(Real) ⇒ 4 . . . 5
3 plus(d, x, y) : Num(d) ⇒ 4 . . . 7 ` x : Num(d) ⇒ 4 . . . 5,

y : Num(d) ⇒ 6 . . . 7
4 plus(d, x, y) : Num(d) ⇒ 0 . . . 7 ` x : Num(d) ⇒ 0 . . . 5,

y : Num(d) ⇒ 6 . . . 7
5 one : Num(Nat) ⇒ 4 . . . 5 ` ε
6 two : Num(Nat) ⇒ 6 . . . 7 ` ε
7 c(x) : Num(Real) ⇒ 0 . . . 7 ` x : Num(Nat) ⇒ 0 . . . 7
8 c(x) : Num(Real) ⇒ 0 . . . 5 ` x : Num(Nat) ⇒ 0 . . . 5
9 c(x) : Num(Real) ⇒ 4 . . . 7 ` x : Num(Nat) ⇒ 4 . . . 7

10 c(x) : Num(Real) ⇒ 4 . . . 5 ` x : Num(Nat) ⇒ 4 . . . 5
11 c(x) : Num(Real) ⇒ 6 . . . 7 ` x : Num(Nat) ⇒ 6 . . . 7

The goal to prove is,

` x : Num(d) ⇒ 0 . . . 7

and using a simple theorem prover such as prolog, we get the following answers;

1 d = Real , x = sqrt(plus(Real , c(one), c(two)))

2 d = Real , x = sqrt(c(plus(Nat , one, two)))

3 d = Real , x = plus(Real , sqrt(c(one)), c(two))

N

Horn clauses as a representation of a chart

The logic program resulting from the algorithm in this section can be seen
as a compact representation of the set of parse trees. But then there is an
analogy to Lang (1994); where parsing in the sense “constructing a compact
representation of the parse trees” takes polynomial time, while recognition in
the sense “testing whether the input string is recognized by the grammar” is
undecidable in the worst case. Another example where parsing is harder than
recognition is indexed grammar (Aho, 1968), which was noted by Lang (1994).

Dependencies ranging over finite types

A special case of dependent types which is not considered in this chapter, is when
the dependencies range over finite types. The type Num(d) in example 6.8 is an
example of this, since the variable d : Dom has a finite range, Nat , Real . In this
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case we can treat the types Num(Nat) and Num(Real) as basic categories, and
not dependent types. The function plus will have to be split into two functions;
one for integers and one for reals. As a final remark, we note that treatment of
finite dependencies is similar to the translation of context-free gf to pmcfg in
chapter 3, where finite parameters are moved into the categories.

6.2.2 Dependent types and higher-order functions

A gf grammar can contain functions which are both higher-order and have
dependent typings. These grammars can be parsed using the techniques in
this chapter. We only have to know how gf handles default linearizations for
dependent types.

For the same reason why each instance of a dependent type has the same lin-
earization type, the default linearization is the same for each instance of a de-
pendent type. This means that the default linearization for a dependent type
C(~x) [~x : ~D] can be specified as,

lindef C( ) (y) = φ

where φ : C( )◦ whenever y is a string.

Example 6.12.

If we want to add propositions to the grammar for simple arithmetic, we have
to introduce a higher-order function with a dependent type for the quantifiers;

all , some : (d : Dom) × (Num(d) → Prop) → Prop

equal : (d : Dom) × Num(d) × Num(d) → Prop

all◦(d, λ 〈x, p〉) = ‘for all ’ x ‘, ’ p

some◦(d, λ 〈x, p〉) = ‘there is an’ x ‘such that ’ p

equal◦(d, x, y) = x ‘is equal to’ y

Using these functions, we can form propositions like,

p = some(Nat , λx. equal (Real , c(x), sqrt(c(x)))) : Prop

saying that x =
√
x for some integer x;

[[p]] = ‘there is an x such that x is equal to the square root of x ’

Note that since the linearization functions drop the domain information, the
string does not say that the number is an integer.

The default linearizations for numbers is the trivial identity function as before;

lindef Num( ) (y) = y

N
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The idea is to first translate higher-order functions to first-order; then parse the
context-free backbone, and convert the resulting chart into a logic program.

To translate a higher-order function with a dependent functional argument, e.g.

h : (x, y : D) × (C1[x] × C2[x, y] → B[y]) → A

we move the variables x, y outside the new category B̂,

B̂(x, y) = [C1 × C2 → B](x, y)

together with the coercion function λB;

lincat B̂ = Str2 ×B◦

λB : (x, y : D) × Var × Var ×B[y] → B̂(x, y)

λB(x, y, c1, c2, b) = λ 〈x, y, c1, c2, b〉

Furthermore, the default linearizations lindef Ci( ) (x) = φi are translated to
functions,

δC1
: (x : D) × Var → C1[x]

δC2
: (x, y : D) × Var → C2[x, y]

δ◦C1
( , x) = φ1

δ◦C2
( , , x) = φ2

With these modifications, algorithm 6.5 can be applied to dependent higher-
order functions as well.

Example 6.13.

The arithmetic grammar with propositions is translated to first-order form by
introducing the category P̂(d) [d : Dom], where P̂ = [Num → Prop], and the
following rules;

vi : Var (i ∈ N)

δN : (d : Dom) × Var → Num(d)

δN ( , x) = x

λP : (d : Dom) × Var × Prop → P̂(d)

λP (d, x, p) = λ 〈d, x, p〉

Now we can transform the higher-order quantifiers into first-order format,

all , some : (d : Dom) × P̂(d) → Prop

keeping their original linearizations.
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Parsing the string [[p]] above yields two parse results since the string does not
contain information whether the variable is an integer or a real number;

1 some(Nat , λP (Nat , v0, equal(Real , c(δN (v0)), sqrt(c(δN (v0))))))

2 some(Real , λP (Real , v0, equal(Real , δN (v0), sqrt(δN (v0)))))

Back-translating the terms to higher-order form as in the proof of theorem 6.6,
results in the original term p and a similar term in which x is a real number
variable.

N

6.3 Limitations of the approach in this chapter

The approach to gf parsing taken in this chapter is thus to;

1. First translate higher-order functions to first-order;

2. Then parse using the context-free backbone and convert the resulting chart
to a logic program.

What are the limitations of this approach; or in other words, which gf grammars
cannot be handled by this two-step process?

6.3.1 Function definitions

One feature of the type theory of gf, that cannot be handled by the approach
in this chapter, is abstract function definitions. Recall that a gf grammar
can contain definitions of the form def f ~x = t. During type-checking, it can
sometimes be necessary to reduce terms by such definitions, which is not handled
in our approach.

Example 6.14.

Example grammar 6.12 for propositions of arithmetic, could be augmented with
definitions of the constants one, two, and integer addition,

def one = succ(zero)

def two = succ(one)

def plus(Nat , zero, y) = y

def plus(Nat , succ(x), y) = succ(plus(x, y))

where the typings for the natural number constructors zero and succ are stan-
dard;

zero : Num(Nat)

succ : Num(Nat) → Num(Nat)
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Assume also that we introduce the dependent type of proofs of propositions,

Proof(p) Type [p : Prop]

with the following instances for integer equality;

eq0 : Proof(equal(Nat , zero, zero))

eqs : (m, n : Num(Nat)) × Proof(equal(Nat , m, n))

→ Proof(equal(Nat , succ(m), succ(n)))

Now, the proposition 2 = 1 + 1,

P = equal(Nat , two, plus(one, one)) : Prop

has a proof which can be written;

p = eq
s
(one, one, eq

s
(zero, zero, eq

0
)) : Proof(P )

However, to check that the proof is correct, i.e. to type-check the proof, it is
necessary to expand the function definitions for one and two in p and P .

N

Assuming that we have linearization definitions for all proof terms and propo-
sitions, we could in principle parse a linearization of a proof, and succeed if
the proof is correct. But, then we need to expand function definitions during
type-checking, and cannot use the approach of this chapter. The only current
option is then to resort to extracting all possible parse trees and type-checking
them one at the time.

6.3.2 Lambda-abstractions in typings

Another feature of the type theory, is the possibility to have lambda-abstractions,
representing anonymous functions, in function typings. When type-checking
terms of this kind, it might be necessary to postpone calculation of applications
of anonymous functions until the type gets instantiated, during type checking.
As with function definitions, this feature is also handled in the current gf im-
plementation by extracting all parse trees and type-checking the one at the
time.

Example 6.15.

Useful linguistic examples of functions having anonymous functions in the typing
are difficult to find. Even in logic they are sparse. One example is the third-
order elimination rule of universal quantification (Π-elimination, also known
as funsplit). We do not give the typing of that function here, but refer to
Nordström et al. (1990, p. 56).

N
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6.4 Summary

This final chapter discussed how to handle gf grammars containing higher-order
functions or dependent types.

We gave an algorithm for converting higher-order functions into first-order func-
tions. The resulting context-free gf grammar is over-generating, since it can-
not type-check variable occurrences correctly. We therefore gave a procedure
for filtering out non-well-formed terms during the conversion from first-order to
higher-order parse results. Our current solution is not entirely satisfactory, since
it amounts to generating every possible first-order parse tree, and type-check
the term during the conversion to a higher-order term. A better solution would
be to do the type-checking implicitly during the parsing process, or alternatively
during the extraction of first-order terms from the chart.

In the presence of dependent types it is possible to describe undecidable lan-
guages (Ranta, 2004a), so the parsing problem is undecidable in general. We
nevertheless described a two-step parsing process for such grammars; first trans-
late into an overgenerating context-free gf grammar, by stripping off depen-
dencies, and parse using that grammar. This grammar can be parsed using the
algorithms in chapter 4, and then the resulting parse items are converted into
a logic program consisting of Horn clauses. The logic program can finally be
solved by a first-order theorem prover.

There is no guarantee that a grammar with dependent types always can be
parsed, but formulating the solutions as a logic program often reduces the search
space, compared to the alternative of generating all possible terms and type-
checking them one at the time.
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Hähnle, R., Johannisson, K., and Ranta, A. (2002). An authoring tool for in-
formal and formal requirements specifications. In Kutsche, R.-D. and Weber,
H., editors, Fundamental Approaches to Software Engineering, volume 2306
of LNCS, pages 233–248. Springer.

Joshi, A. (1985). How much context-sensitivity is necessary for characterizing
structural descriptions — tree adjoining grammars. In Dowty, D., Karttunen,
L., and Zwicky, A., editors, Natural Language Processing: Psycholinguistic,
Computational and Theoretical Perspectives, pages 206–250. Cambridge Uni-
versity Press, New York.

Joshi, A. and Schabes, Y. (1997). Tree-adjoining grammars. In Rozenberg, G.
and Salomaa, A., editors, Handbook of Formal Languages. Vol 3: Beyond
Words, chapter 2, pages 69–123. Springer-Verlag, Berlin/Heidelberg/New
York.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree adjunct grammars.
Journal of Computer and System Sciences, 10(1):136–163.

Karttunen, L., Chanod, J.-P., Grefenstette, G., and Schiller, A. (1996). Reg-
ular expressions for language engineering. Natural Language Engineering,
2(4):305–328.

Kasami, T. (1965). An efficient recognition and syntax algorithm for context-free
languages. Technical Report AFCLR-65-758, Air Force Cambridge Research
Laboratory, Bedford, MA.

Kasami, T., Seki, H., and Fujii, M. (1988). Generalized context-free grammars
and multiple context-free grammars. IEICE Transactions, J71-D-I(5):758–
765.

Kay, M. (1986). Algorithm schemata and data structures in syntactic process-
ing. In Grosz, B., Jones, K., and Webber, B., editors, Readings in Natural
Language Processing, pages 35–70. Morgan Kaufman Publishers, Los Altos,
CA.

150



BIBLIOGRAPHY

Khegai, J., Nordström, B., and Ranta, A. (2003). Multilingual syntax editing in
GF. In Gelbukh, A., editor, CICLing-2003: Intelligent Text Processing and
Computational Linguistics, LNCS 2588, pages 453–464. Springer.

Kilbury, J. (1985). Chart parsing and the Earley algorithm. In Klenk, U.,
editor, Kontextfreie Syntaxen und wervandte Systeme. Niemeyer, Tübingen,
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Löf ’s Type Theory. Oxford University Press.

Okhotin, A. (2001). Conjunctive grammars. Journal of Automata, Languages
and Combinatorics, 6(4):519–535.

Peyton Jones, S. (2003). Haskell 98 Language and Libraries. Cambridge Uni-
versity Press, New York.

Pollard, C. (1984). Generalised Phrase Structure Grammars, Head Grammars
and Natural Language. PhD thesis, Stanford University.

Pollard, C. and Sag, I. (1994). Head-Driven Phrase Structure Grammar. Uni-
versity of Chicago Press.

152



BIBLIOGRAPHY

Rajasekaran, S. and Yooseph, S. (1995). TAL recognition in O(m(n2)) time.
In 33rd Meeting of the Association for Computational Linguistics, pages 166–
173.

Ranta, A. (1994). Type-Theoretical Grammar. Oxford University Press.

Ranta, A. (2004a). Grammatical Framework, a type-theoretical grammar for-
malism. Journal of Functional Programming, 14(2):145–189.

Ranta, A. (2004b). Modular grammar engineering in GF. Submitted.

Ranta, A. and Cooper, R. (2004). Dialogue systems as proof editors. Journal
of Logic, Language and Information, 13(2):225–240.

Rayner, M., Dowding, J., and Hockey, B. A. (2001). A baseline method for
compiling typed unification grammars into context free language models. In
EUROSPEECH 2001, Aalborg, Denmark.

Reape, M. (1991). Parsing bounded discontinuous constituents: Generalisations
of some common algorithms. In Reape, M., editor, Word Order in Germanic
and Parsing, pages 41–70. Centre for Cognitive Science, Edinburgh.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–49.

Satta, G. (1994). Tree adjoining grammar parsing and boolean matrix multipli-
cation. Computational Linguistics, 20(2):173–192.

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple context-
free grammars. Theoretical Computer Science, 88:191–229.

Shieber, S. (1984). Direct parsing of ID/LP grammars. Linguistics and Philos-
ophy, 7(2):135–154.

Shieber, S. (1985). Evidence against the context-freeness of natural language.
Computational Linguistics, 20(2):173–192.

Shieber, S., Schabes, Y., and Pereira, F. (1995). Principles and implementation
of deductive parsing. Journal of Logic Programming, 24(1–2):3–36.

Sikkel, K. (1997a). Parsing of context-free languages. In Rozenberg, G. and Sa-
lomaa, A., editors, The Handbook of Formal Languages, volume II. Springer-
Verlag, Berlin.

Sikkel, K. (1997b). Parsing Schemata. Springer Verlag.

Sikkel, K. (1998). Parsing schemata and correctness of parsing algorithms.
Theoretical Computer Science, 199:87–103.

Steedman, M. (1985). Dependency and coordination in the grammar of Dutch
and English. Language, 61:523–568.

153



BIBLIOGRAPHY

Steedman, M. (1986). Combinators and grammars. In Oehrle, R., Bach, E., and
Wheeler, D., editors, Categorial Grammars and Natural Language Structures,
pages 417–442. Foris, Dordrecht.

Teitelbaum, T. and Reps, T. (1981). The Cornell Program Synthesizer: a
syntax-directed programming environment. Communications of the ACM,
24(9):563–573.

Tomita, M. (1986). Efficient Parsing for Natural Language. Kluwer Academic
Press.

Valiant, L. (1975). General context-free recognition in less than cubic time.
Journal of Computer and Systems Sciences, 10(2):308–315.

Vijay-Shanker, K. and Joshi, A. (1985). Some computational properties of tree
adjoining grammars. In 23rd Meeting of the Association for Computational
Linguistics, pages 82–93, Chicago, Illinois.

Vijay-Shanker, K. and Weir, D. (1990). Polynomial parsing of combinatory
categorial grammars. In 28th Meeting of the Association for Computational
Linguistics, pages 1–8, Pittsburgh, PA.

Vijay-Shanker, K. and Weir, D. (1993a). Parsing some constrained grammar
formalisms. Computational Linguistics, 19(4):591–636.

Vijay-Shanker, K. and Weir, D. (1993b). The use of shared forests in tree adjoin-
ing grammar parsing. In Meeting of the European Chapter of the Association
for Computational Linguistics, pages 384–393, Utrecht, Netherlands.

Vijay-Shanker, K. and Weir, D. (1994). The equivalence of four extensions of
context-free grammars. Mathematical Systems Theory, 27:511–546.

Vijay-Shanker, K., Weir, D., and Joshi, A. (1987). Characterizing structural
descriptions produced by various grammatical formalisms. In 25th Meeting of
the Association for Computational Linguistics.

Weir, D. (1988). Characterizing Mildly Context-Sensitive Grammar Formalisms.
PhD thesis, University of Pennsylvania, Philadelphia, PA.

Wirén, M. (1992). Studies in Incremental Natural-Language Analysis. PhD
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