Thesis for the Degree of Doctor of Philosophy

Expressivity and Complexity of
the Grammatical Framework

Peter Ljungl eof

CHALMERS ‘ GOTEBORG UNIVERSITY

Department of Computing Science
Chalmers University of Technology and ®&teborg University
SE{412 96 Gvteborg, Sweden

Geteborg, November 2004

Expressivity and Complexity of the Grammatical Framework
Peter Ljunglef
ISBN 91-628-6331-2

c Peter Ljunglef, 2004

Technical Report no. 31D
ISSN 1651-4971
School of Computer Science and Engineering

Department of Computing Science

Chalmers University of Technology and Geteborg University
SE{412 96 Geteborg, Sweden

Telephone +46 (0) 31{772 1000

Printed at Chalmers, Geteborg, Sweden, 2004

Varje varelse, varje skapelse, varje dsm som manniskan agonsin

dremt nns h ar. Ni formade dem i era demmar och fabler och i era
becker, ni gav dem form och substans och ni trodde p dem och ga
dem makt att gera det och detanda tills de ck eget liv. Och sedan
evergav ni dem.

Lundwalll (1974, p. 114)

Abstract

This thesis investigates the expressive power and parsingomplexity of the
grammatical framework (of), a formalism originally designed for display-
ing formal propositions and proofs in natural language. Th is done by relating
gf with two more well-known grammar formalisms; generalized context-

free grammar (gcfg), best seen as a framework for describing various gram-
mar formalisms; andparallel multiple context-free grammar (pmcfg),
an instance ofgcfg .

Sincegf is a fairly new theory, some questions about expressivity ath parsing
complexity have until now not been answered; and these quekins are the main
focus of this thesis. The main result is that the important subclasscontext-free
of is equivalent to pmcfg , which has polynomial parsing complexity, and whose
expressive power is fairly well known.

Furthermore, we give a number of tabular parsing algorithmsfor pmcfg with
polynomial complexity, by extending existing algorithms for context-free gram-
mars. We suggest three possible extensions gff/pmcfg , and discuss how the
expressive power and parsing complexity are in uenced. Fially, we discuss the
parsing problem for unrestricted gf grammars, which is undecidable in gen-
eral. We nevertheless describe a procedure for parsing granars containing
higher-order functions and dependent types.

Keywords: Grammatical Framework, generalized context-free grammarmulti-
ple context-free grammar, context-free rewriting systemstype theory, expressive
power, abstract syntax, linearization, parsing

Acknowledgments

Although | am the sole writer of the text in this thesis, it wou Id never have been
written without the support of a number of people.

| vaguely recall from when | started my ve year PhD studies, that my su-
pervisor Aarne Ranta had an idea of investigating the expresive power and
parsing complexity of the grammatical framework ; and after three years,
one daughter and a Licenciate thesis, the idea had nally reahed my brain.
Now, after two more years, one son, and some reinvention of th wheel, the
idea together with some results of this investigation is avdlable in printed form.
Apart from planting the seed to this thesis, Aarne has also péently listened to,
answered, explained, rejected and sometimes accepted my egtions and ideas;
always taking his time, even when there has been none.

Some of the reasons why | began my PhD studies in the rst placeare Robin
Cooper and Jan Smith, who made me interested of doing resedic Together
with people like Bengt Nordstrem, Jan Smith, Torbjern Lager, Joakim Nivre,
Koen Claessen, Josef Svenningsson and Paul Callaghan, théave throughout
the years taken their time for discussions about type theorygrammar formalisms
and parsing algorithms; the three research areas that form te foundational
origins of this thesis.

For very helpful and insightful comments on, and proof-readng of, earlier ver-
sions of this manuscript, | am grateful to Aarne Ranta, Joakim Nivre, Bernard
Lang, Robin Cooper and Kristofer Johannisson.

I am honoured to have Bernard Lang as my opponent; some partsiithis thesis
would be much more di cult to nalize without some of his publ ications.

\Y

During the nal year of writing this thesis, my research has been enabled by
support from the eu project talk

I'm sometimes aware that there is a world outside the actual hesis writing;
even though it has been far away the last year or so. From this wrld | would
like to thank my current and previous o ce mates, and the other fellow current
and previous PhD students, for all the social events | almostcertainly fail to
attend. The people of the departments of Computing Science rad Linguistics
have succeeded in creating a research-friendly atmospherand my students
have been very good in creating a teaching-friendly atmospére.

There are several people, both inside the research commugieind outside in the
real world, | would like to thank for interesting discussions on whatever topic,
or simply just for being around; but this list would most cert ainly be both long
and incomplete, so | leave its completion as an exercise to thinterested reader.

I would like to thank all my friends and relatives who never will understand
what | do for a living, but still accept me as the person | happen to be.

Finally, my greatest thanks go to my beloved family; Saga, Sjne, Elis and Svea,
who continue to drag my attention away from research, remindng me that there
really is a world outside of this department.

Geteborg, November 2004

1TALK (Talk and Look, Tools for Ambient Linguistic Knowledge), IST-507802

Vi

Contents

[1__Introduction | 1
[LL1_Motivation for thisthesisl 2
(1.2 Expressivity and parsing complexity 3

21 FExpressivepower 3
[L.2.2 Complexity of parsing 5
23 Storingparseresulls 7
(.3 _Separating abstract and concrete syntdx 8
.31 linguistic advantagek 9
[1.3.2 Comparison with some grammar formalisms 11
[L3.3 Generalized context-free grammar 14
[L.3.4 Grammatical Frameworkl 15
.35 Anintroductory exampld 17
(L4 _Overview and main results of the thesls 21

b_Background 25

2.1 Preliminary denitions|. 26
2.1.1 Sequences, languages and grammars 26
12 Datatypesandelemenis. 27

L2 Parsingasdeductiol 30
[2.2.1 _Soundness and completeness of algorithims 30
2.2.2 Examples of context-free parsing algorithmis 31

B Rangds oo 82
M11 Range-restrictioh, 84
KU.1.2 Ranges and lineagf grammar$ 84

4.2 Polynomial parsing for context-freegfl 85
K21 An active version of the algorithmd 87

4.3 Parsing through context-free approximatioh 89
K31 Creating a context-free approximation 90
K32 Converting context-free items topmefg items 91
KU.3.3 Soundness and complefengss 93
K34 An active version of the algorithmd 94

U4 Active parsingofpmefgl. L 94
K41 Dierent prediction strategied 96

.5 Parsing of erasing and suppressingmefgl L. L. 99
KU.5.1 Removing erasingness from a grammar 100
KU.5.2 Using the restriction grammar for parsing 102

46 Incrementalpmcfg parsind 104
K61 Alternative strategie$ 106
K62 Frasing and suppressing grammars 110

BZ SUMMAaryo 111

i5__Extensions of concrete syntax 113

B1 ntersection (&). 114
B11 Astrictextensionl 115
5.1.2 Conjunctive pmcfg describes the polynomial languagés 116
5.1.3 Parsing of conjunctivepmefgl 120

5.2 Intepsional disjunction) 121
21 Anon-strictextensioh 123
.2.2 Parsing of intensionally disjunctivepmcfgl 123

5.3 Extensiopaldisjunction (). 123
31 Astrictextensiod 124
£.3.2 Parsing of extensional disjunctivepmefg] 126

B4 nterleave &) 127
5.4.1 Active parsing of interleavedpmefgl 128

BE _SUMMAy . . . oo 130

6__Non-context-free abstract syntax |
6.1 Higher-order functiond
6.1.1 _Removing higher-order functions from a grammar
i - i S L
6.2 Dependenttypek
6.2.1 Type checking as proofsearth.
i - S,
(6.3 Limitations of the approach in this chapted
6.3.1 Functiondenitions
6.3.2 | ambda-abstractions in typing$
B4 _summary
[Bibliographyl

Figures

2.1 _Rules for types and objects in abstract syntax. 38
2.2 The types and objects in concrete syntak. 48
2.3 Example grammar for a small fragment of Englishl 49
2.4 Example grammar in canonical fornd. 53
B —3 e = —1 54
2.6 _pmcfg version of the example grammal. 59
8.1 _Example grammar after conversiontopmefg 75
4.1 A derivation using the active algorithm) 97
4.2 A derivation using the incremental algorithm) 107

Xi

Xii

Notations

This is a list of the notations that are used in this thesis. Nde that a sym-
bol/notation can occur in several places in this list if it is used with di erent
meanings.

N the set of natural numbers
Nn the niteset f0;:::;n 1g
i; j; k; n; m natural numbers

G a grammar
a set of terminals

C a set of categories

A; B categories and types

C a basic category

S the starting category of a grammar

F a set of function symbols

fi g function symbols

a, b constants (functions without arguments)

Xiii

rs

a set of rules
a grammar rule
an arity (the number of arguments of a rule)

a set of trees
an abstract term; a tree

a chart
a chart item

a language
a string
the input string

a linearization type
linearizations
sequences in linearization rules

a parameter type
a parameter; a parameter pattern
a parameter record

record labels
a path (sequence of labels and parameters)
a set of labels or paths

a range
a record (or a general datastructure) of ranges

a substitution

a projection
a permutation

Xiv

Abbreviations

In this thesis we refer to many di erent grammar formalisms, and use abbrevi-
ations whenever possible; the most common are listed below.

of Grammatical Framework

cf -of Context-free of

cfg Context-free grammar

gcfg Generalizedcfg

mcfg Multiple cfg

pmcfg Parallel mcfg

Imcfg Linear mcfg

Icfrs Linear context-free rewriting system
Img Literal movement grammar

s-Img Simple Img

rcg Range concatenation grammar
poms-cfg Partially ordered multiset cfg

hg Head grammar

tag Tree adjoining grammar

(Dig (Linear) indexed grammar

(c)cg (Combinatory) categorial grammar
hpsg Head-driven phrase structure grammar
Ifg Lexical functional grammar

XV

Chapter 1

Introduction

This thesis investigates the expressive power and parsamgptexity of the Gram-
matical Framework(GF; IRanta,|2004ia), a formalism originally designed for digpla
ing formal propositions and proofs in natural language. 8 done by relatingsF
with two more well-known grammar formalismggeneralized context-free grammar
(GCFG Pallard, 11984), best seen as a framework for describingower grammar
formalisms; angparallel multiple context-free grammaiPMCFG,; ISeki et al.| 1991),
an instance ofGCFG

This rst chapter introduces the problem setting, and dissses some questions
about expressivity and parsing complexity which have uméiv not been answered,
and are the main focus of the thesis. The chapter also corgaimroductions to
the areas of expressivity and parsing complexity, and to ginemmar formalismsF
and GCFG Finally, an overview of the thesis is given, in which the megsults are
discussed.

SinceGF is a fairly new theory, some questions about expressivity parsing com-
plexity have until now not been answered; and these questiare the main focus
of this thesis. The main result is that the important subctasontext-free GF is
equivalent toPMCFG, which has polynomial parsing complexity, and whose expres
sive power is fairly well known. Furthermore, a number ofgiag algorithms for
PMCFG are given; some possible extensions are studied; and the édleising the
algorithms when parsing unrestricte®@F grammars is discussed.

Chapter 1. Introduction

1.1 Motivation for this thesis

This thesis investigates the relations between the followig grammar formalisms,
all sharing the idea of separating abstract and concrete sytax;

Grammatical framework (of ; IRanta, 20044) is a formalism originally de-
signed for displaying formal propositions and proofs in natiral language, but

has since then evolved into a formalism suited for describig both the semantics
and the syntax of natural languages. The representation of he abstract syn-
tax is intuitionistic type theory, and the concrete syntax i s a restricted variant

of a functional programming language. gf is a very general formalism, since
the abstract syntax is a logical framework; it is e.g. possite to formulate an

undecidable proposition as an undecidable parsing problermside gf .

Generalized context-free grammar (gcfg ; IPallard, 1984) is also a very
general grammar formalism, originally designed to give a fomal interpretation
for head grammar . The abstract syntax is a context-free grammar, whereas
the concrete syntax is only vaguely specied. Thusgcfg can be seen as a
framework for describing various grammar formalisms.

Parallel multiple context-free grammar (pmcfg ; ISeki et all,[1991) is
an instance of gcfg , where the concrete syntactical structures are tuples of
strings. It is known that pmcfg parsing is polynomial in the length of the input

string.

Sincegf is a fairly new theory, some questions about expressivity ath parsing
complexity have until now not been answered, especially foa very important
subclass calledcontext-free gf (from now on written cf -gf);

(1) What is the expressive power ofcf -gf ; i.e. what language constructs can
the formalism express?

(2) What is the parsing complexity of cf-gf ; i.e. are there e cient parsing
algorithms?

These two questions are the main focus of this thesis. The ageof research can
therefore be narrowed to formal language theory and parsinglgorithms, two

areas that have tight connections; if two formalisms are stongly equivalent, the

one can be used to parse grammars from the other.

The main result in this thesis is that cf-gf and pmcfg are equivalent for-
malisms. Sincepmcfg has a polynomial parsing algorithm and its expressive
power is fairly well known, the result answers both question(1) and (2). As a
side-e ect, new parsing algorithms for gf can be developed using the simpler
pmcfg formalism. As a further answer to question (2), a number of n&v parsing
algorithms for pmcfg are developed, all being polynomial in the length of the
input.

As mentioned above, the concrete syntax ofgf is a restricted functional pro-
gramming language. A natural question then arises;

2

1.2. Expressivity and parsing complexity

(3) How can the concrete syntax be extended, e.g. by adding me operations?
(4) What happens to the expressive power and parsing complety?
These two questions are partially answered by giving three pssible extensions;
intersection, disjunction and interleave. Two of these (irtersection and disjunc-
tion) are strict extensions in the sense that the new formalsm can express a
wider range than previously. The parsing complexity is stil polynomial for

intersection; in fact, it is shown that with this extension, cf-gf and pmcfg
describe exactly the class of languages recognizable in gabmial time.

Finally, the thesis addresses the parsing problem for fullf ;

(5) Can the polynomial parsing algorithms for cf-gf be of use when parsing
unrestricted gf grammars?

The question is partially answered for a subclass ofyf , which is larger than
cf-gf , but cannot handle all possibilities of a general logical famework.

1.2 Expressivity and parsing complexity

1.2.1 Expressive power

We use the standard de nition of what constitutes a language In short, a
language is a set of strings, where we write e.@"b" for the setf a"b" jn 0g.

What context-free grammars cannot express

The following non-regular constructions can be expressedybcontext-free gram-
mars (see e.g._Honcroft and Ullman| 1979);

Nesting, exempli ed by the languagea"b’;

Reverse copyingﬂ exempli ed by the languagef wwR jw 2 (a[b) .
From the pumping lemmafor context-free languages (see e.3. Hopcroft and Ullman,
1979), it is possible to show that the following constructians are not possible to
express with a context-free grammar;

Multiple agreement, exempli ed by the languagea"b'c";

Crossed agreement, exempli ed by the languaga"b™c"d™;

1By the operation wR we mean the reverse of w.

3

Chapter 1. Introduction

Duplication, exempli ed by the language f wwjw 2 (a[b) g@.

However, there is linguistic evidencel(Joshi, 198%; Shielig1985%5) that these three
constructions occur in natural languages. Partly for this reason, but mostly
because it simpli es grammar writing, more expressible granmar formalisms
have been suggested.

Mildly context-sensitive grammar formalisms

The next step after context-free grammars in the Chomsky hiearchy is context-
sensitive grammars (Chomsky, 11959). Unfortunately, this step is quite big;
context-sensitive grammars can express an unnecessary ¢gr class of languages,
with the drawback that parsing is no longer polynomial in the length of the
input. Joshi (1985) suggested therefore the notion ofmild context-sensitivity to
capture the formal power needed for de ning natural languages. A grammar
formalism is mildly context-sensitive if it has the following four properties;

It can express any context-free language;
It can be parsed in time polynomial in the length of the input;
It can express multiple agreement, crossed agreement and glication;

It has the constant growth property.

Informally, the constant growth property states that if we o rder the sentences
of a language by increasing length, then the length of two cosecutive strings
do not di er by more than a constant.

The grammar formalismstree adjoining grammar (tag ; Moshi et all,11975;
Joshi and Schabes| 1997)head grammar (hg; [Pollard, 1984), linear in-
dexed grammar (lig ;!Gazdal,|1987) andcombinatory categorial gram-

mar (ccg ; ISteedman,|1985) 1986) were all developed independently efich
other, with the aim of overcoming the problems of cfg . They are all mildly
context-sensitive, and were shown equivalent by Vijay-Shaker and Weill (1.994).

The non-context-free constructions above can all be geneliaed to more complex
forms;

k-multiple agreement, af :::ay;
k-crossed agreementay® :::apk bt ik,
k-duplication, f w* jw 2 (a[b) o;

4

1.2. Expressivity and parsing complexity

These (and similar) general languages can be used to give bids on the expres-
sivity of grammar formalisms. For example,cfg can express at most 2-multiple
agreement, 1-crossed agreement and 1l-duplication, wheredag and equiva-
lent formalisms can express at most 4-multiple agreement, -2rossed agreement
and 2-duplication. This can be extended to formalisms that @n express these
properties for any given k. Two such formalism are linear context-free
rewriting systems (Icfrs ; Viiay-Shanker et all, 1987) and linear multi-

ple context-free grammar (Imcfg ;ISeki et al.,119911), which are still mildly
context-sensitive in the sense above; where k-Icfrs can express at most R-
multiple agreement, k-crossed agreement and-duplication.

Limitations of mildly context-sensitive formalisms

However, there are limitations of a mildly context-sensitive formalism; e.g. it
cannot describe the exponentially growing language?” , simply because that
language is not constantly growing. The formalismsparallel multiple con-
text-free grammar (pmcfg ; ISeki et all,[1991),simple literal movement
grammar (s-Img ;|Groenink,119974.bb) andrange concatenation grammar

(rcg ; IBoullier, 2000bla) can describe that exponential grammar But on the
other hand pmcfg cannot describe the languaged [b)2" .

This last language can be described by context-sensitive fmalisms, such as
head-driven phrase structure grammar (hpsg; IPollard and Sag,(1994)
or lexical functional grammar (Ifg ;Bresnan and Kaplan,1982); but then
there are other languages that these formalisms cannot desbe, e.g. the set
of all valid propositions in rst-order logic. Highest in th e hierarchy are the
recursively enumerable languages, that can be described byuring-complete
formalisms.

1.2.2 Complexity of parsing

The standard way of describing the theoretical e ciency of algorithms is to

calculate the worst-case time complexity, parameterized eer the length of the
input string. For this purpose we use the ordo notation, where f (n) = O(g(n))

says that the function f grows at most as fast agg. For our purposes we only
need to note that n* = O(n**1) and n* = O(a"), but that n**1 6 O(nk)

and a" 6 O(n*). Or in other words, polynomial functions are better than

exponential, and the lower the degree the better.

Parsing of context-free grammars

Parsing of context-free grammars can be accomplished in tie cubic in the
length of the input string, O(n®). Several di erent algorithms exist; the simple
cky algorithm (Kasami, 1965; |Younger,196/7) has been extendedybEarley

5

Chapter 1. Introduction

(1970),|Graham et al. (1980) and Kilbury (1985), just to mention a few. These
and similar algorithms are calledtabular or chart parsing algorithms (Kay, 1986;
Wien/ 1992).

Other algorithms compile the grammar into a push-down automaton |Knuth
(1965) introduced the Ir parsing algorithm, which has been widely used for
parsing of deterministic grammars. The extension to non-deerministic gram-
mars, such as grammars for natural languages, was made hy Len(1974) and
Tomital (L986); later work has reformulated these as tabularalgorithms (Land,
1994;| Nederhof and Satta| 1996).

Most context-free parsing algorithms can be given a formuldion in a pars-
ing framework, such asparsing as deduction (Shieber et al.,[1995) orparsing
schemata (Sikkel, 1997b).

Parsing of more expressive formalisms

The more expressive a formalism is, the higher is its parsingomplexity. As
an example, tag parsing can be accomplished in timeO(n®), as rst shown
by Viiay-Shanker and Joshi (1985); andpmcfg parsing can be accomplished in
time O(n®), whereeis a constant depending on the grammarl(Seki et &l!, 1991).
sdmg and rcg both characterize exactly the class of languages recognike
in polynomial time (Groenink| 1997alb; [Boulliel, 20004.b) More expressive
formalisms might take exponential time O(e") or may even be undecidable.

A context-free id/l[p grammar can be transformed to an equivalentcfg , thus

making it parsable in cubic time. But the grammar size can expode expo-
nentially, making the dependence on the grammar dominating IShieber [(1984)
has given a direct parsing algorithm forid/lp grammars, which reduces the
overhead of parsing.

In the last years there has been interest in linearization-lasedhpsg grammars.
When parsing these grammars, one uses bit vectors of length to represent
the input string of length n (Reape,|1991] Daniels and Meurerd, 2002). This
gives rise to 2 possibilities for the bit vectors, and thus the algorithms are
exponential, but on the other hand hpsg is in itself an exponential formalism.

Reducing to boolean matrix multiplication

Valiant| (1975) has shown that it is possible to transform the cky algorithm
into the problem of boolean matrix multiplication (bmm), for which there are
sub-cubic algorithms. The best known complexity for bmm is approximately
0O(n?378), by Coppersmith and Winograd (1990).

For more expressive formalisms it is also sometimes posséto reduce the pars-
ing problemto bmm; e.g.tag parsing has been reduced by Rajasekaran and Yooseph

6

1.2. Expressivity and parsing complexity

(1995%) to multiplying two n? n? boolean matrices, which gives a lower complex-
ity bound of O (n?)%3% = O(n*72). Furthermore, Nakanishi et al| (1997,
1998) has extended the technique to give lower complexity hands for parsing
of Icfrs , LMCFG and pmcfg .

However, these sub-cubic algorithms all involve large coriants making them

ine cient in practice. And, since a bmm of sizen can be reduced to context-
free parsing of lengthn (Lee,[2002), and similarly a sizen? bmm can be reduced
to length n tag parsing (Sattd,1994); there is not much hope in nding practical

parsing algorithms with better time complexity than O(n®) (or O(n®) for tag -

equivalent formalisms).

Practical parsing algorithms

Unfortunately, apart from the tag formalism (and the equivalent ones) and the
uni cation-based formalisms, almost all parsing algorithms are extensions of the
cky algorithm. This algorithm has a good theoretical worst-cage complexity,

but performs badly in practice. The Earley algorithm and its relatives are often

better choices, which is shown by the fact that most formalisns that have been
used for practical purposes also have implementations of Ekey-like parsers and
similar algorithms.

1.2.3 Storing parse results

A string recognized by a context-free grammar might have an gponential num-
ber (in the length of the string) of syntactical analyses, whch are called parse
trees. A classical example is a grammar for mathematical expressns containing
the rule,

Exp ! Exp +' Exp

In some pathological cases (i.e. when the grammar is cyclicthere might even
be an in nite number of trees. The polynomial parse time comgexity comes
from the fact that all these parse trees can be compactly stagd in polynomial
space, in aparse forest also known as achart.

Parsing as intersection

A parse forest can be represented as a context-free grammargcognizing the
language consisting of only the input string. This is a consguence of the fact
that the class of context-free languages is closed under iatsection with reg-
ular languages. | Bar-Hillel et al. (1964) gave an algorithm ér calculating the
intersection, thus also giving one of the rst parsing algoiithms for context-free
grammars. The resulting cfg directly represents all possible parse trees for the
given input. The forest can then be further investigated to remove useless nodes,

7

Chapter 1. Introduction

increase sharing and reduce space complexity_(Billot and Liag, 11989), and in
fact all chart parsing algorithms can be seen as variants oftiis idea.

More expressive formalisms

The idea of parsing as intersection has been extended to morexpressive for-
malisms, such agag andlig (Viiay-Shanker and Weir, 1990,119930,a) and even
very general formalisms such affrs (Lang,[1994). An interesting consequence
of the idea is that for even more expressive formalisms \paiigg" (i.e. construct-
ing the intersection) can be easier than \recognition" (i.e. deciding whether the
input is recognized); while the intersection with a regular set can be performed
e ciently resulting in a parse forest, checking the forest for whether the input
was recognized or extracting parse trees can be quite costly

Still the idea can be helpful when implementing parsers for ery expressive
formalisms; when parsinghpsg one often removes thedaughters feature from

the elements in the chart, to reduce space complexity. Thisdature corresponds
to the parse tree of acfg , and can always be deduced from the nal chart when
necessary.

1.3 Separating abstract and concrete syntax

The grammar formalisms studied in this thesis all have one tling in common;

the separation of abstract and concrete syntax. The abstratpart of a grammar

de nes a set of abstract syntactic structures, called abstact terms or trees; and
the concrete part de nes a relation between abstract structires and concrete
structures.

The distinction between abstract and concrete syntax has ben made by several
authors since the late 1950's] McCarthy (1963) and_Landin [(866) made the
distinction in describing the syntax for programming languages| Chomskyi(1957,
1965) made the distinction between (abstract)deep structure and (concrete)
surface structure together with transformations between the structures; Cury.
(1963) introduced the distinction under the headings of tectogrammatic and
phenogrammatic structure; and IMontague (1974) viewed a grammar as a set
of rules linearizing logically interpreted (abstract) analysis trees into (concrete)
strings of a natural language.

A linearization perspective

The formalisms studied in this thesis all have a linearizaton perspective, where
the relation between abstract and concrete is viewed as a magng from abstract
to concrete structures, calledlinearization terms. In some cases the mapping
can be partial or even many-valued.

1.3. Separating abstract and concrete syntax

1.3.1 Linguistic advantages

Although not exploited in many well-known grammar formalisms, a clear sepa-
ration between abstract and concrete syntax gives some adwdiages.

Higher-level language descriptions

The grammar writer has a greater freedom in describing the sgytax for a lan-
guage. When describing the abstract syntax he/she can choesnot to take
certain language speci ¢ details into account, such as in e&tion and word order.
Abstracting away smaller details can make the grammars simfer, both to read
and understand, and to create and maintain.

Language speci c details

Abstract linguistic description | ———> (in ection, word order)

Multilingual and multimodal grammars

Itis possible to de ne several di erent concrete syntax mappings for one particu-
lar abstract syntax. The abstract syntax could e.g. give a hgh-level description
of a family of similar languages, and each concrete mappingiges a specic
language instance.

Language 1

Abstract linguistic description

Languagen

This kind of multilingual grammar can be used as a model for itterlingua trans-
lation between languages. But we do not have to restrict ourslves to only
multilingual grammars; di erent concrete syntaxes can be gven for di erent
modalities. As an example, consider a grammar for displayig time table infor-
mation. We can have one concrete syntax for writing the infomation as plain
text, but we could also present the information in the form of a table output
as a BTEX le or in excel format, and a third possibility is to output the
information in a format suitable for speech synthesis.

Syntax editing
It is possible to write documents by directly editing the abstract syntax, and

let the program display the resulting concrete syntax. This was done for pro-
gramming languages in e.g. the systemmentor (Donzeau-Gouge et al.| 1975)

9

Chapter 1. Introduction

and cornell program synthesizer (Teitelbaum and Reps, 1981); and has
been generalized to natural language grammars and evanultilingual document
authoring (Dymetman et al), 2000; [Khegai et al.,|2008), where a documenis
written simultaneously in several languages. One examplefanultilingual au-
thoring is when writing technical user manuals which shouldhave exactly the
same interpretation in any language.

Several descriptional levels

In this thesis we only talk about formalisms with two descriptional levels; ab-
stract and concrete. But this can be generalized to as many leels as is wanted,
by equating the concrete syntax of one grammar level with theabstract syntax
of another level. As an example we could have a spoken dialogusystem with
a semantical, a syntactical, a morphological and a phonologal level. This sys-
tem has to de ne three mappings;i) a mapping from semantical descriptions
to syntax trees; ii) a mapping from syntax trees to sequences of lexical tokens;
and iii) a mapping from lexical tokens to lists of phonemes.

Semantics | ——| Syntax |——>| Morphology |——> | Phonology

This formulation makes grammars similar to transducers (Karttunen et al.| 1996,
Mobhri, 1997) which are mostly used in morphological analyss, but has been gen-
eralized to dialogue systems by Lager and Kronlid [(2004).

Grammar composition

A multi-level grammar as described above, can be viewed as ablack box",

where the intermediate levels are unknown to the user. Then & are back in
our rstview as a grammar specifying an abstract and a concrée level together
with a mapping. In this way we can talk about grammar composition, where
the composition G, G of two grammars is possible if the abstract syntax of
G is equal to the concrete syntax ofG;. The result of the composition is the
grammar inheriting the abstract syntax from G, the concrete syntax from Gy,

and having the linearization mappingf, f1, wheref,; f, are the linearization

mappings for Gi; G, respectively.

If the grammar formalism supports this, a composition of seeral grammars can
be pre-compiled into a compact and e cient grammar which doesn't have to
mention the intermediate domains and structures. This is the case for e.g. nite
state transducers, but also forgf as has been shown by Rantal (2004b).

10

1.3. Separating abstract and concrete syntax

Resource grammars

The possibility of separate compilation of grammar compodions, opens up for
writing resource grammars (Rantal, 2004b). A resource grammar is a fairly
complete linguistic description of a specic language. Man applications do
not need the full power of a language, but instead want to use anore well-
behaved subset, which is often called @ontrolled language Now, if we already
have a resource grammar, we do not even have to write a concresyntax for the
desired controlled language, but instead we can specify theanguage by mapping
structures in the controlled language into structures in the resource grammar.

Controlled syntax |——>| Resource syntax|—> | Object language

1.3.2 Comparison with some grammar formalisms

Here we compare some existing grammar formalisms from the pspective of
the ability to separate abstract and concrete syntax. We hawe no intention of
giving a full description of the formalisms, and the reader @n safely skip any
part of this section. The main formalisms studied in this thesis, grammatical
framework and generalized context-free grammar , are presented in
the next two sections.

Context-free grammar (CFG)

A context-free grammar has no separation of abstract and cocrete syntax what-
soever. There is only one level of syntax rules, de ning botithe abstract syntax
trees and the concrete language. The concrete syntax is notrsictured at all,
making it impossible, or at least very complicated, to have gveral descriptional
levels.

Head grammar (HG)

Head grammar (Pollard, 1984) in an extension of cfg , where the concrete
syntax is headed strings which can be concatenated omrapped inside another
headed string. There is not much structure in the concrete sptax, and the
abstract syntax is tightly connected to the concrete word order.

Categorial grammar (CG)
Combinatory categorial grammar (CCG)

Categorial grammar (Ajdukiewicz, 1935;|Bar-Hillel, 1953;|Lambek,[1958) is
equivalent to cfg , but instead of grammar rules it has complexfunctional cate-
gories, together with rules for function application. Combinatory categorial

11

Chapter 1. Introduction

grammar (Steedman, 1985| 1986) also adds rules fdunction composition to
the framework, thus yielding an extension ofcfg .

The notion corresponding to abstract syntax is the derivation trees, and they are
tightly bound to the order of the given words. There are extersions (e.g.type
logical grammar ; Maorrill} 1994) that add some word order freedom, but the
concrete syntax is nevertheless simple strings. This mearthat cg and relatives
are similar to cfg when it comes to separating abstract and concrete syntax.

Indexed grammar (IG)
Linear indexed grammar (LIG)

Indexed grammar (Aho, 1968) andlinear indexed grammar (Gazdar,|1987)
are also extensions ofcfg . In these formalisms the context-free categories are
augmented with a stack of indices On each application of a rule, an index can
be pushed onto or popped from a stack. But the abstract syntaxas represented
by the syntax tree is still tightly connected to the concrete syntax of strings.

Tree adjoining grammar (TAG)

Tree adjoining grammar (Uoshi et all, 11975;| Joshi and Schabes, 1997) is a
formalism based on trees and a tree rewriting operation ca#ld adjunction. It
shares the basic problem withcfg , that there is only one descriptional level;
syntax trees are directly correlated to the concrete word oder.

Linear context-free rewriting systems (LCFRS)
Parallel multiple context-free grammar (PMCFG)

Linear context-free rewriting systems (Viiay-Shanker et al., 1987) and
parallel multiple context-free grammar (Seki et all, [1991) are de ned
as instances ofgcfg where the linguistic objects are tuples of strings. The
operations associated with syntax rules are only allowed tause tuple projec-
tion and string concatenation, and Icfrs has some extra restrictions on the
linearization functions to ensure mild context-sensitivity. Since they are de ned

asgcfg , they share the same separation of abstract and concrete sygx. The

only drawback is that the concrete syntax is restricted to sting tuples.

Literal movement grammar (LMG)
Range concatenation grammar (RCG)

These formalisms are very similar; a grammar is seen as a cetition of Horn-like
clauses over predicates, just as in the programming languaprolog . IGroenink
(19974a.b) introduced literal movement grammar , Where predicates range
over tuples of strings, making the formalism Turing-complege. There are also

12

1.3. Separating abstract and concrete syntax

restricted variants called simple Img (s-lmg) and range concatenation
grammar (Boullier, 2000aih), which characterize the class of langages rec-
ognizable in polynomial time. Img and rcg are similar to gcfg , and share the
same representation of abstract syntax. The drawbacks arehat the concrete
syntax is restricted to strings, and that the abstract and concrete syntax are
de ned simultaneously, making it di cult to use the same abs tract syntax with
several concrete.

Lexical functional grammar (LFG)

Lexical functional grammar (Bresnan_and Kaplan,|198?) has a clean divi-
sion betweenc-structures and f-structures; the former represents concrete syn-
tax as trees, and the latter represents the \functional" (or abstract) structure
as feature structures. Since the structures are clearly sméed, it is dicult

to implement several levels of abstraction; apart from that Ifg inherits all
advantages of a clear separation between abstract and corete syntax.

Dependency grammar (DG)

Dependency grammar consists of a large and diverse family of grammar for-
malisms, all sharing the assumption that syntactic structure consists oflexical
nodes linked by binary relations called dependencies(see e.gl Mel'cuk, 1988;
Hudson, 11990); meaning thatdg do not have the idea of phrases. Because
of the diversity it is dicult to make general comments regar ding the sepa-
ration of abstract and concrete syntax. There are formalisns (Hays, 11964;
Gaifman, 1196%) having no separation at all; and there are mag recent for-
malisms (Debusmann et al.| 2004) where the concrete syntasinot even limited
to strings.

Head-driven phrase structure grammar (HPSG)

The syntactical structures in head-driven phrase structure grammar
(Pallard and Sag,11994) aretyped feature structures similar to but more pow-
erful than records.

An hpsg grammar has several descriptional levels, for phonology,ysitax, se-
mantics etc., but the separation is not always that clear. The di erent levels all
live together in one single feature structure, as di erent features. E.g. concrete
strings resides under the featurephon, whereas the syntactic structure is split
into several parts. This makes it di cult to generalize hpsg to multilingual
grammar, but also to perform compilation to remove intermedate levels.

Later work on linearization-based hpsg has separated the concrete word or-
der from the feature structures (Reapk)| 1991 Daniels and Me&ers,|200?), thus
giving a better separation of concrete and abstract syntax.

13

Chapter 1. Introduction

1.3.3 Generalized context-free grammar

Generalized context-free grammar (gcfg) was introduced by [Pallaro
(1984) as a mathematical framework for describinchead grammar , an exten-
sion of context-free grammars. Although the main idea of Pdard was not the
separation of abstract and concrete syntaxgcfg can be seen as a very nice ex-
ample of this idea. Sincegcfg is a very expressive grammar formalism involving
general (Turing-complete) partial functions, its main usage is as a framework
for specifying more restricted grammar formalisms.

A de nition of a gcfg consists of a context-free grammar where eachn-ary
rule

Al flAL; i And
is associated with ann-ary operation over (linguistic) objects,
f 2 O"! O

The set O of linguistic objects is not further speci ed, and the n-ary operation
f can be any partial mapping from O" to O. The context-free grammar cor-
responds to the abstract syntax, and the operations togethe with the set of
linguist objects correspond to the concrete syntax.

Often it is more fruitful to view gcfg as a framework for describing formalisms,
rather than a speci c formalism itself. The reason is that the de nitions of what

constitutes an object or an operation are very vague. A gramrar formalism is

an instance of gcfg if the structure of O is specied, and if it describes how
operations can be formed.

Instances of GCFG

The following is a list of some grammar formalisms that can beseen as relatively
direct instances of gcfg .

Context-free grammar The linguistic objects are strings, and the only al-
lowed operation is concatenation.

Head grammar The linguistic objects are strings with a distinguished head
element, and apart from concatenation, there is also avrapping operation;

Indexed grammar The linguistic objects are pairs of strings andstacks and
together with string concatenation, there are the usual stak operations;

Linear context-free rewriting systems The linguistic objects are string
tuples and the allowed operations are concatenation on the elemés of
the tuples;

14

1.3. Separating abstract and concrete syntax

Parallel multiple context-free grammar Similar to Icfrs , but argu-
ment strings can be deleted and duplicated at will.

Other formalisms such astag , ccg, Img and rcg have slightly less intuitive
formulations as instances ofgcfg .

1.3.4 Grammatical Framework

The abstract theory of grammatical framework (of ; IRanta, 20044) is
a version of dependent type theory, similar tolf (Harper et all, 1993), alf
(Magnusson and Nordst®ni, [1994) andcoqg (Cog,11999). What gf adds to the
logical framework is a possibility to de ne concrete syntax that is, notations
expressing formal concepts in user-readable ways. In thisegsegf ts well into
the idea of separating abstract and concrete syntax.

The development of gf started as a notation for type-theoretical gram-

mar (Rantal, 1994), which use Martin-Lef's type theory (1984) to express the
semantics of natural language. The development ofyf as an authoring sys-
tem started as a plug-in to the proof editor alf , to permit natural-language
rendering of formal proofs [Hallgren and Ranta,[2000). The g&tension of the
scope outside mathematics was made in the Multilingual Docment Authoring
project at xerox (Dymetman et all, 2000). In continued work, gf has been
used in areas like software speci cationsi(lhnle et all,[2002) and dialogue sys-
tems (Ranta_and Cooper,2004).

After the rst publication (M_aenmea and Rantd, [1999), the expressiveness of
the concrete syntax has developed into a functional programming language. As
such it is similar to a restricted version of programming languages likehaskell
(Peyton Jones,12008) andml (Milner et al.] 1997). The language is restricted
enough to be possible to compile into an e cient canonical foamat, but ex-
pressive enough to incorporate modern programming languagconstructs such
as user-de nable data types, higher-order functions, and amodule system for
de ning grammatical resources.

Type theory

The abstract syntax of a gf grammar is de ned by declaring a number of basic
types (called categories), and a number of basic functions. A function is declared

by giving its typingB

f : Bi B! A

2Note that the notation for gf we use is di erent from the notation used in the actual GF
implementation and in other publications; the di erences a re spelled out in section £238]

15

Chapter 1. Introduction

This declaration states that f is a function taking arguments of typesBq, ...,
B , resulting in a term of type A. A function with no arguments (= 0) is
called aconstant, and is simply declared as,

c : A

In general we writet : T if the term t is of type T. By applying the basic
functions to each other, compound terms can be formed,

f(c;::i;c) @ A

whenever eachg : B; and f is declared as above.

Higher-order functions and dependent types

It is also possible to declare higher-order functions and deendent types in agf
grammar. A higher-order function is a function where some ofthe arguments
are functions themselves; and a dependent type is declaredtdepend on (one
or more) terms of other types.

These features are more thoroughly described in sectidnZB but they are not
used until in chapter @ of this thesis. Instead we concentra¢ on the very im-
portant subclasscontext-free gf , which does not contain higher-order functions
or dependent types.

Concrete linearizations

The novel thing about gf with respect to a logical framework, is that it adds
a mapping from abstract terms to concretelinearizations. To de ne a concrete
syntax of a grammar, we only need to do the following.

For each basic categoryA de ned in the abstract syntax, we de ne a
correspondinglinearization type A .

For each basic functionf de ned in the abstract syntax, we de ne a corre-
spondinglinearization function f . If the original function f has a typing,

f : Bx B! A

then the linearization function f has the typing,

f : BY? B! A
The linearization of atermt : T can now bedenedas [= f ([ta];:::; [t D
whenevert = f(t;;:::;t). The constraints on the linearization de nitions

assure that linearizations always have the correct type. Gammars are thus
compositional in the sense that a linearization is a function of the argumen
linearizations, not of the arguments themselves.

16

1.3. Separating abstract and concrete syntax

The module system

gf has a module system, inspired by ideas from programming langages. There
are three kinds of modules; abstract, concrete and resouramodules.

An abstract module de nes an abstract theory, with categories and func-
tions.

A concrete module de nes the concrete syntax of an abstract heory, by
giving linearization types and linearization functions.

A resource module de nes parameter types, and operations tht can be
used as helper functions in concrete modules.

Modules canextend other modules by adding new de nitions, thus opening the
possibilities for modular grammar engineering. Another ugful feature is that
a concrete module (together with the corresponding abstracmodule) can be
translated into a resource module. Since a resource moduleag be used by an-
other concrete module, this makes it possible to perform graamar compositions
as described in sectiofi_L311.

1.3.5 An introductory example:
Transforming a context-free grammar into GF

In this section we give some examples of how to write grammari gf , just to
get a feeling of the possibilities.

We start with a simple context-free grammar for a fragment of English. It
consists of the context-free categoriesS, NP, VP, D, N and V (standing for
Sentence,Noun Phrase,Verb Phrase,Determiner, Noun and Verb respectively),
and has the following rules;

S ! NP VP
NP ! D N
NP ! N
VP IV NP

D! -a

D ! ‘“many

N ! Jlion" | lions'
N I “sh'

V I ‘eats | ‘eats

17

Chapter 1. Introduction

The abstract syntax

To get a correspondinggf grammar, we start by giving the abstract syntax.
First we have to give a name to each of theefg rules, and then we can introduce
the type declarations,

sp - NP VP! S
npg : D N! NP
npp : N! NP
vk @ V. NP! VP

da;dm : D
ng;ng @ N
Ve .V

The predication function s, forms a sentence out of a noun phrase and a verb
phrase. There are two ways of forming noun phrases; either by determiner
and a noun (‘a lion', ‘'many lions'), or just a plural noun (lions'). We assume
that all verbs are transitive, so we only have the transitive verb phrase forming
function vp,. The determiners d,; dy, are singular and plural inde nites ("a'
and ‘many'"); nc; n¢ are the nouns lion' and " sh'; and v, is the verb ‘eat'.

The concrete syntax

If we only want a gf grammar that is equivalent to the original cfg , we can
assign the same linearization type to each categons = NP = = fs:Strg,
which is a record consisting of only one strin@ The concrete linearizations then
look like followsfl

Sy) = fs=xs yssg
npg(x;y) = fs=xs yisg
npp(x) = fs=xsg
vp (X y) = fs=xs yisg
d, = fs="ag
d, = fs="many'g
ng = fs="lion" j lions'g
ng = fs="sh'g
V. = fs="eats | ‘eat'g

3The reason for using records and not just strings will become apparent later.

4The alert reader might notice that we abuse notation somewha t here, by using the non-
deterministic choice (j) which is an extension introduced in section 5Z_but the gra mmar will
anyway be improved upon later.

18

1.3. Separating abstract and concrete syntax

A concrete syntax that takes care of agreement

If we want to change the grammar so that it also takes care of agement, we
can do as follows. First we introduce the parameter typeNum with the two
values or constructorsSg and PI;

param Num = Sgj Pl

Then we make a decision that nouns, verbs and verb phrases aparameterized
over the number; whereas determiners and noun phrases have anherent num-
berf A phrase parameterized overP is stored as an in ection table P) Str;
and an inherited parameter is stored in a record together wih the linearized
string,

N =V =VP fs:Num) Strg
D =NP = fs:Str; n:Numg

To give the value of an inherent parameter, we simply form a reord; and to
access the value of an inherent parameter, we use record pegtion (just as
we do to access the linearized string). An in ection table isformed by [p;)
ti; i1 pn) tan], whereps; :::; pn are inection patterns; and to apply an
in ection table to a parameter, we use the selection operation (!). Returning
to our example, we get the following concrete syntax for the mBglish grammar
with number agreement between the subject and the verl

S(y) = fs=xss yslxng

npy(x;y) = fs=xis yslxn;n=xng
npp(x) = fs=xs!Pl;n=Plg
vp(x;y) = fs=[z) xsslz ys]g
d, = fs="a'; n= Sgg
d, = fs="many';n=Plg
ng = fs=[Sg) Tlion'; PI) ’lions']g
n = fs=[_) “sh'lg
V. = fs=[Sg) ‘eats; Pl) ‘eat']g

Note that the table in vp, has only one pattern matching any parameter, binding
it to the variable z which can be used in the table body. Also note that the table
in n; has ananonymous pattern, meaning that the value is “sh' regardless of

5gf has a functional perspective on linearizations, meaning th at parameters have to be
either parameterized over or inherited. The principal way o f making parameters agree is to
apply a parameterized in ection table to an inherited param eter.

6 A notational convention throughout this thesis is that reco rd projection (:) binds harder
than table selection (!), which in turn binds harder that con catenation ().

19

Chapter 1. Introduction

the in ection parameter. Both uses are examples of that tabkes can sometimes
be compacted.

Examples of phrases that are disallowed by this concrete syax are i) noun
phrases consisting of just a singular nounii) noun phrases where the determiner
and noun does not agree; andii) sentences where the subject noun phrase does
not agree with the following verb.

This English grammar will be used as the main example grammain this thesis;
the grammar is also shown in gure[Z3 on pagé&39.

A concrete syntax for Swedish

Swedish has a more complex morphology than English; nouns daot only de-
pend on number, they also have an inherengender (neuter and uter) associated
to them. Determiners, on the other hand, have number as an inbrent feature
and depend on the gender of the noun. First we have to declarene correspond-
ing parameter type Gen

param Gen = Neuj Utr
then the linearization types for nouns and determiners can le declared as,
N = fs:Num) Str; g:Geng
D = fs:Gen) Str;n:Numg

Now we can de ne the linearizations for the determinersd,; d,, and the nouns
Ne; Nt

d, = fs=[Utr) ‘en’; Neu) ‘ett']; n= Sgg
d, = fs=[_) ‘ranga']; n= Plg

ng = fs=[_) ’lejon']; g= Neug

n = fs=[Sg) "sk'; Pl) “skar']; g= Utrg

Noun phrases, on the other hand, do not in uence the in ection of verbs, which
means that they can have simple linearization typesNP =V = f s: Str gﬂ
Now we are ready to give the linearization functions for nounphrase forming;

npg(X; y) fs=xsly:,g ysslxng
npp(x) = fs=xs!Plg

Finally, the word order of sentences depend on the context ahe sentence. There
are three di erent word orders (direct, indirect and subordinate), introducing
yet another parameter type Order,

param Order = Dirj Indirj Sub

"This is a simpli cation; when adding pronouns and/or adject ives, Swedish noun phrases
can get quite complex.

20

1.4. Overview and main results of the thesis

The indirect order (used e.g. in questions) puts the subjectnoun phrase inside
the verb phrase. The way to solve this ingf is to use discontinuous verb phrases.
The linearization of sentences and verb phrases will ba,

S = fs:Order) Strg
VP = fs;:Str;s,:Strg
S(xy) = fs=[Indir) yis1 xis yis;-) Xs yss; yis2]g

vpe(xy) = fsi=xs;s;=ysg

A fourth possible word order could betopicalized, which is used when the ob-
ject is put in front of the sentence for focusing purposes; @. the sentence
“skar ater ranga lejon ' (sh eat many lions) have the preferred reading (it

is sh that many lion eat). This can be solved by adding a new castructor Top

to the type Order, and a new row to thes, table, [Top) yis; Xis y:si].

1.4 Overview and main results of the thesis

Here we give an overview of the thesis, together with the mairresults. The
overview and results are presented chapter by chapter.

Chapter 2: Background

This chapter gives the theoretical background for the rest é the thesis. Gram-
matical framework (of ;IRanta, 20044) is de ned together with its important
subclasscontext-free gf (cf-gf). Generalized context-free grammar

(gcfg ; IPallard, 1984) is introduced as a framework for describingother gram-
mar formalisms; one instance isparallel multiple context-free gram-

mar (pmcfg ; ISeki et all, 1991), which is known to have polynomial parsig
complexity.

Some direct consequences of the de nitions are noted:f-gf is an instance of
gcfg , and pmcfg is an instance ofcf -gf .

For parsing purposes, the representation of syntactical tems is discussed. We
extend the notion of a shared forest for compactly represerimg a set of syn-

tactical analyses, to the gcfg formalism. We also discuss when a grammar
formalism, for which there are known parsing algorithms, ca be used to parse
grammars in another formalism.

Chapter 3: Reducing context-free GF to PMCFG

This chapter shows that cf-gf is strongly equivalent to pmcfg . This equiva-
lence is shown by giving an algorithm convertingcf-gf grammars into pmcfg

8The di erence between direct and subordinate word order onl y shows up in the presence
of negation, which we don't have in this example.

21

Chapter 1. Introduction

grammars recognizing the same language; and by showing thgiarse results can
be converted back e ciently.

The conversion algorithm consists of enumerating all pararater instantiations
in a linearization, and then moving the instantiated parameters to the abstract
categories. Enumerating all instantiations may lead to an &ponential increase
of the grammar size. Therefore two alternative conversion lgorithms are given,
which do not enumerate all possible instantiations, but ingead try to only in-

stantiate when it is necessary.

Chapter 4: Parsing algorithms for context-free GF and PMCFG

This chapter investigates a number of tabular parsing algoithms for cf-gf and
pmcfg , all with polynomial time complexity. Starting with a gener al passive
algorithm similar to the one given by |Seki et al. (1991), seveal di erent modi-
cations are suggested.

The search space can be reduced by approximating themcfg grammar by an
over-generatingcfg . Afterwards the context-free parse results can be translagd
back into pmcfg parse results, which have to be checked for correctness sic
the cfg is over-generating.

Another alternative is to use an active algorithm, in the spirit of the context-
free|Earley (1970) algorithm. We give two active algorithms one recognizing
the linearization rows of a rule in a xed order, and another recognizing rows
incrementally according to the order in which they occur in the input. Both
top-down and bottom-up prediction strategies are investigated.

All suggested algorithms, except for the last incremental ersion, require that
the pmcfg grammar is nonerasing; therefore we give an algorithm for n@oving
erasingness from a grammar.

Chapter 5: Extensions of concrete syntax

This chapter describes four possible extensions ajf , cf-gf and pmcfg . Apart
from investigating the resulting expressive power and pargg complexity, we
also give active parsing algorithms for each of the extensits.

The intersection operation, borrowed from conjunctive grammar (Okhotin|
2001), makepmcfg equivalentto simple literal movement grammar (Groenink,
19974.b) andrange concatenation grammar (Baullier, P000all). As a
corollary we get that conjunctive pmcfg describe exactly the class of languages
recognizable in polynomial time.

The disjunction operation can have two possible interpretdions; one intensional
which does not change the descriptive power otf-gf and pmcfg , and one
extensional which is conjectured to be a strict extension. Vith extensional

22

1.4. Overview and main results of the thesis

disjunction it is possible to describe the language &| b)2", which is conjectured
cannot be described bycf-gf and pmcfg .

The third operation is the interleaving operation, which is borrowed from par-
tially ordered multiset context-free grammar (poms-cfg ;INederhof et al.,
2003) which in turn is a variant of the id/lp formalism (Shieber,11984). This
operation can be reduced to a number of disjunctions, but thé reduction can
lead to an exponential increase of the grammar size. We inséal give a direct
parsing algorithm derived from a parsing algorithm for poms-cfg .

Chapter 6: Non-context-free abstract syntax

This nal chapter discusses how to handlegf grammars containing higher-order
functions or dependent types.

We give an algorithm for converting higher-order functionsinto rst-order func-
tions. The resulting cf-gf grammar is over-generating, since it cannot type-
check variable occurrences correctly. We therefore give arpcedure for ltering
out non-well-formed terms during the conversion from rst-order to higher-order
parse results.

In the presence of dependent types it is possible to describendecidable lan-
guages ((Ranta,| 2004a), so the parsing problem is undecidablin general. We
nevertheless describe a two-step parsing process for suchagimars; rst we
translate into an overgenerating cf-gf grammar, and parse using that gram-
mar. The resulting parse items are then converted into a logt program, which
can be solved by any proof search procedure.

23

Chapter 1. Introduction

24

Chapter 2

Background

This chapter gives the theoretical background for the re§tloe thesis. Grammati-

cal Framework(GF; IRanta,|2004a) is de ned together with its important subda

context-free GF. Generalized context-free grammé&GCFG [Pollard,|1984) is intro-

duced as a framework for describing other grammar formadisrone instance is
parallel multiple context-free grammaPMCFG,; ISeki et al.,1991), which is known
to have polynomial parsing complexity.

Some direct consequences of the de nitions are noted; catifeee GFis an instance
of GCFG and PMCFG is an instance of context-fre6F.

For parsing purposes, the representation of syntacticatte is discussed. We extend
the notion of a shared forest for compactly representing acfesyntactical analyses,
to the GCFGformalism. We also discuss when a grammar formalism, foctvitihere
are known parsing algorithms, can be used to parse gramnmaasother formalism.

25

Chapter 2. Background

2.1 Preliminary de nitions

2.1.1 Sequences, languages and grammars
Sequences

A sequencex; :::X, over a setX is an element of X , whenever eachx; 2 X.
The empty sequence is written . Concatenation is an associative operation on
sequences de ned as

X1:::Xn Y1iiiYm = X1iiiXnY1iiiYm
Mathematically, concatenation and the empty sequence togier form a monoid
over X . This means among other things that is a zero for concatenation, or

%= % = % When no confusion can arise, we write the concatenation vy
simply as xy. The repetition x" is de ned as n successive concatenations of,
wherex® = :

x”zilt}(ii

Apart from writing a sequence asxj :::Xp, it can also be written with small
Greek letters, ; ; ::: ; or as avector %. In the latter case we implicitly assume
that x = X1 :::Xn, meaning that we can usex; as a reference to thath element
in the vector. We also use the termstrings for sequences over aalphabet where
the alphabet is a nite set usually written .

As a shorthand for a sequence of applications of a given funicin or relation,
we often write R(%; ¥; 2 instead of R(X1; y1; z1); :::; R(Xn; Yn; zZn). Note that
this presupposes that the sequences, ¥ and z all have the same length.

Languages

A languageis a set of strings over an alphabet. Concatenation and repdéion
are lifted to languages is the standard way,AB = f xy j x 2 A;y 2 B g and
A" = fx" jx 2 Ag. The Kleene star A is the union of all possible repetitions;

When specifying a language we can identify a strings with the singleton lan-
guagef sg. All integer repetition variables are assumed to be univerally quan-
ti ed over. This allows us to specify languages through a reglar-expression-like
syntax; e.g.

a"b a"b
(a[B

fa'da"t jn;i;j Og
fw2fabg jjwj=2";n O0g

26

2.1. Preliminary definitions

Context-free grammars

We nally give the standard de nition of context-free gramm ars.

De nition 2.1 (CFG). A context-free grammar is a 4-tuple (C; S; ; R), where
Cand are nite sets of categories and terminals respectively, S 2 C is the
starting category, and R C (C[) is a nite set of context-free syntax
rules.

Instead of writing (B;) 2 R, we use the more readabl® ! . The rewriting
relation) is de ned on sequences of categories and terminals, aB)
wheneverB ! . The re exive and transitive closure) is used to specify the
language associated with a category,

LA) = fw2 jA) wg

The language recognized by a grammalG is L(G) = L(S), where S is the
starting category of G.

2.1.2 Data types and elements

In this thesis we talk a lot about types. We use that term in two di erent ways,
separable by the context:

As inductively de ned types, as is used in dependent type thery. We will
only use this in the abstract syntax of gf grammars, where we often call
the types categories

De ning a type in this way consists of giving inference rulessaying when
something is a type and when something is a term of a given typeThe
statementt : T is true when we can deduce from the inference rules that
T isatype andt is of type T.

The second usage is simply as a set of terms. We do not presentpartic-
ular set theory, since we will only use simple sets; the mostamplex sets
we use are enumerable. De ning a type in this way consists ofiging the
corresponding set; the statementt : T is true whent 2 T.

In the rest of this section we talk about types in the second sese.

Operations and computations

We can de ne operations on di erent types. An operation is dened by saying
what types the arguments and the result should be, and by givig a computation
rule of the operation. An operation can sometimes be partial or even non-
deterministic, also called many-valued.

27

Chapter 2. Background

Basic types

The type Str of strings is the set of sequences over a nite set of tokens,
where the token set is de ned in the context. Concatenation is an operation
on strings de ned in the standard way. A concatenation of two strings is written
S1 S, or often simply s; Sp.

The type N of natural numbers consists of all integers 0. Addition is an
operation on natural numbers.

Finally, any nite set can be seen as a type. An example is then-element type
N, =f0;:::;n 1gof all natural numbers less thann.

Records

A label is an atomic symbol, not being a term or a type. Ifry;:::;r, are
distinct labels and Ty; :::; T, are types, then

fri:Te;:iiiirn; Tho
is a record type consisting of all records,
fri= 1500, m= ng

suchthat ;:Tiforl i n. Note thatthe order between the rows in a record
is not signi cant; meaning that a record is equivalent to a se of label-value pairs.
Record projection is an operation taking a record and a labelde ned as

fiiryr= iiigr =
Two record typesfry @ Ty; i s Togand frf - T oo v - TOg are
equivalent, if T; is equivalent to T°for each 1 i n, modulo permutations of

the rows.
A tuple can be seen as syntactic sugar for a record,
hog;oon g f 1= 41;:::;n= »9g

where the tuple projection ;() is syntactic sugar for :i. Then a record =
fro= 1;::0;rn = ngisequivalenttoatuple = h 1;:::; 4i, byreplacing
each record projection :r ; by the corresponding tuple projection ;().

Tables

A pattern for a nite type P is a set of terms, or equivalently a subset ofP.
The patterns p1; :::; pn are exhaustive forP if py[:::[p, = P. A pattern p
matches a termt if t 2 p. When writing patterns of type P we often write _ for
the set of all possibilities, i.e. the full setP.

28

2.1. Preliminary definitions

If P is a nite type and T is a type, thenP) T is a table type. The elements
are tables of the form

[Pr) 15::i5pn) nl
where eachp;, 1 i n, is a pattern for type P, and the patterns py; :::; pn
are exhaustive forP. Selection is an operation taking a table of typeP) T
and a term of type P, returning a term of type T, de ned as

[::oyp) 5ot =
if pis the rst pattern in the table that matches t.

A pattern is constant or instantiated if it is a singleton set. If all patterns are
instantiated, then there are as many patterns as the size oP, and the table is
called instantiated.

Comparing records and instantiated tables

An instantiated table is very similar to a record. The diere nce does not lie
in the formation of tables and records, but in the associatedprojection and
selection operations. The main di erence is that for record the labels are not
terms of some type. Tables on the other hand, take arguments hich are of
a (nite) type. So, for a record projection it is always known at compile-time
which row in the record is meant, but a table can be selected by variable and
thus is not known until the variable is bound to some value.

The similarity has the e ect that if all table selections in a term are instantiated,
the term can be converted to another where tables are conveed to records and
table selections are converted to record projections.

Record uni cation

Records can beuni ed , which is a partial operationde ned as 1t = 1[2
whenever there is nor such that :r 6 ir. Note that this de nition is
very simplistic, and not as general as the standard de nitions of uni cation
(Robinsorn, 11965); as an example, the de nition is not recuréze and thus does
not unify records recursively.

Records, subrecords and attened records

Arecordfry = q1;:::;r, = ,gis equivalent to a nite set of n pairs of

labels and terms. Therefore we sometimes view a record as atse® be able to

form subrecords. E.g. given a recordR and a predicate P on record labels, we
can form the subrecord of all rows matchingP,

fr= 2RjP()g R

29

Chapter 2. Background

Testing whether a record R is a subrecord of another recordR® amounts to
testing R RY Note that being a subrecord is the opposite of being a subtyg;
the empty record is a subrecord of all records, but any recordype is a subtype
of the empty record type.

A nested record can beattened by repeated application of the following equiv-
alence,

frosri=Ffrin= 1,0 = inQ;iiig
forioornirie= 15005 0Tin = in; it

2.2 Parsing as deduction

Most parsing algorithms can be seen as a deductive processitivaxioms, goals
and inference rules. In this thesis we use the framework cat deductive parsing
by Shieber et al. (1995). Another wide-spread framework igarsing schemata
by Sikkel (1.997b), which could be used instead.

According to Shieber et al. (1995), parsing is \a deductive pocess in which
rules of inference are used to derive statements about the gmmatical status

of strings from other such statements”. The statements are alled items, and

are represented by formulae in some formal language. The iaefence rules and
axioms are written in natural deduction style, and they can have side condi-
tions mentioning e.g. grammar rules. The inference rules ah axioms are rule
schemata, meaning that they contain metavariables to be intantiated by ap-

propriate terms when the rule is invoked. The set of items buit in the deductive

process is sometimes called ahart.

The general form of an inference rule is

8
< C
1 n 2t
Cm
where ; 1;:::; , areitems andcy; :::; ¢, are side conditions.

2.2.1 Soundness and completeness of algorithms

We write items as syntactic terms (e.g. [R; ; 7]) and give an interpretation
to each term. The interpretation states whether an item is grammatical given
a certain input string.

Following ISikke! (1998), we prove correctness by rst guessg a set of valid
items, and then proving soundness and completeness for all items ithat set.

30

2.2. Parsing as deduction

Soundness A parsing system is sound if all derived items are grammatical
according to the interpretation. To show soundness we only Ave to prove
that each inference rule yields valid items whenever the ardcedents are
valid items.

Completeness A parsing system iscomplete if all grammatical items are de-
rived, i.e. that we do not miss any interpretations. Completeness is often
more di cult to show than soundness; but often it amounts to a ssociat-
ing each valid item with a natural number d() such that there is some
instance of an inference rule,

1 i K c

suchthat 1;:::; k arevaliditems, the side conditionCholds, andd(;) <
d()forl i k.

Sikkel (1998) calls the functiond a deduction length function while \Shieber et al.
(1995) use the termrank for d(). Completeness of the inference rules follows
from induction on the ranks of the valid items.

2.2.2 Examples of context-free parsing algorithms

Here we give examples of some well-known parsing algorithnfer context-free
grammars. First we give a very simplistic algorithm, and then two re ne-
ments; the top-down algorithm of [Earley (1970), and the bottom-up algorithm
of KKilbury|(1985). The algorithms are slightly modi ed for p resentation pur-
poses, but their essence are still the same. The rst basic gbrithm is also
proved to be sound and complete. When developing active pansg algorithms
for gf and pmcfg in sectionsZ3 andZb we do this by extending the algorithms
given here.

Parse items

In these algorithms we assume that the input string is,
W = Wplliwg

A substring wi+1 :::w; is said to span the positionsi j, so the whole input
string w spans the positions 0 n.

The parse items are of the form| ;A] whereA'! is a context-
freerule,and O i j n are positions in the input string. The meaning is
that isrecognized spanning j;i.e.) Wi+ iiiwj. If is empty the item
is called passive We write [i j; A]for any passive item [i j; A'!]

The goal of the parsing process is to deduce an item represeny that the
starting category is found spanning the whole input string; such an item can be
written [0 n; S] in our notation.

31

Chapter 2. Background

A basic context-free chart parsing algorithm

Our rst context-free chart parsing algorithm consists of t hree inference rules.
The rst two, Combine and Scan, remain the same in all variants of chart
parsing (sometimes only slightly modi ed); while the third , Predict , is a very
simplistic variant, which will be improved upon later. The algorithm is also
presented byl Sikkel (1997h/a, 1998), who calls it \bottom-yp Earley".

Combine
[i j,A! B 1 [i k;B]

i kK;:A! B] 2.1)

The basis for all chart parsing algorithms isthe fundamental rule saying
that if there is an active item looking for a category B spanningi j, and
there is a passive item forB spanningj k, then the dot in the active
item can be moved forward, and the new item will span the posiibnsi k.

Scan
[i j;A! we]
[k; Al wy |

k=j+1 2.2)

If the active item is looking for a terminal, then we can move the dot
forward whenever the terminal is the next input token.

Predict
Al (2.3)

[i i;A!]

This rule takes care of introducing active items; each rulem the grammar
is added as an active item spanning i for any possible input position
0O i n.

Earley-style top-down parsing

The basic algorithm is very crude, it predicts all possible nference rules on each
possible position; if the grammar is large, the chart will become full of useless
items.

Earley (1970) introduced a parsing algorithm, where the pase items are aug-
mented with a lookahead of a number of input tokens. The algorithm with no
lookahead can be simpli ed to a parsing system using four irdrence rules, two of
which are the Complete and Scan rules from above. Earley prediction works
in a top-down fashion; a grammar rule is predicted only when here is an item
looking for the rule's left-hand side.

32

2.2. Parsing as deduction

Combine and Scan remain as the inference rule§Z11 anfA.2.
Predict o
[i j;C! A]
[i J;A!]
If there is an item looking for an A and ending in position j, and there

is a grammar rule for A, add that rule as an active item spanning the
positionsj j.

Al (2.4)

Initial prediction

S! 2.5
[0 0;S!] (2:5)
Now prediction also needs an active item to be triggered, so need some
way of starting the inference process. This is done by addin@n active
item for each rule of the starting category S, spanning the positions 0 0.

Kilbury-style bottom-up parsing

Kilbury1(1985) did a variant of Earley's algorithm, where th e prediction was
changed from looking top-down to bottom-up. Kilbury's algorithm is also called
left-corner parsing in the literature (see e.g.L.Carroll,|12008). The basi idea is
that we predict a grammar rule only when the rule looks for a caegory which
is already found.

Combine and Scan remain as the inference rule§£Z11 anfi2.2.

Predict+Combine
[i j;B]
[i j;AL B]
If there is a passive item forB spanningi |, and there is a rule look-
ing for B, then we can add the rule as an active item. And sinceB is

already found, we can apply theCombine rule immediately to move the
dot forward one step.

Al B (2.6)

Predict+Scan
Al Wj
i jsAL w] j=i+1
If the rule looks for a terminal, which happens to spani |, then we can
add that rule as an item where that terminal is found.

2.7)

Note that this algorithm does not work for grammars with -rules; there is no
way an empty rule can be predicted. There are two possible sations to this;
i) either convert the grammar to an equivalent grammar without -rules; or
i) add extra inference rules to handle -rules. We do not dwell further upon
this issue, since this thesis is not about context-free paiag anyway.

33

Chapter 2. Background

Further modi cations of the algorithms

There are several ways these basic algorithms can be optined; e.g. by adding
(top-down or bottom-up) ltering to the predictions. For the simple case of
grammars without -rules, the left-corner relation is de ned as,

X.Y X1y

and the re exive and transitive closure . is used to Iter out predictions that
do not match the input string or the starting category. The relation . is also
known as the rst set in Ir parsing algorithms (see e.gL_Aho et 8l.._1986).

More information about Itering and other optimizations to chart parsing algo-
rithms can be found in e.g/Wien (.992), ISikkel (1997b/199) oriINederhof and Satta
(2004).

Soundness and completeness of the basic algorithm

To prove correctness we rst specify the set of valid items tocontain all items
[i j;A!]such that) ws :::w;. If the item is passive, then
A) and the interpretation is equivalent to A) Wi+ 111w,

Soundness is easy to show, since the inference rules are guinhtuitive.
Lemma 2.2. The inference rulesCZ1{Z3 are sound.

Proof. For each inference rule we have to prove that the consequensivalid
whenever the antecedents are valid,;

Predict Theitem[i i;A!]is trivially valid, since) W4 :iiw =

Scan Theconsequent{ k;A! wy Jisvalidif w) Wi+ @1iwjwy; but
this is equivalentto) w41 :::w; which is true since the antecedent
[j;Al Wj+1] is valid;

Combine The consequentfj k;A! B Jisvalidif B) W+ 1w
but since the rst antecedent says that) wi+1 :::w;, and the second
antecedent says thatB) wj+1 :::wy, we get that,

B) Wi+1ZZZWjo+1ZZZWk:Wi+1ZZZWk

To prove completeness it is enough to give a@eduction length function assigning
a natural number rank to each valid item. We de ne the function as,

di k; A! D = mnf +ji Kjj) W4 iiiwkg

where is the number of deduction steps. We take the minimum in casehere
are di erent ways to recognize an item. Completeness follow directly from the
following lemma, by induction on the rank of valid items.

34

2.2. Parsing as deduction

Lemma 2.3. Each valid item[i k; A'!] with rank d, is a consequence
of some inference rule, where the ranks of all antecedent ites are less thand.

Proof. There are three possibilities for the item; can be empty, or it can
either end with a terminal or a category;

If = ,theni=j and the item is inferred by prediction;

If = Ow, then the only way the item can be inferred is by scanning the
item[i j;A! ©w]forj =k 1. Notethatthe antecedentitem has
smaller rank sinceji jj < ji kj; and the derivations) Wi+ @::wg

and %) Wiy :::w; have the same deduction lengths;

If = ©°B,then %) * wiy ::iwj and B)) 2 W iiiwg for

somei | k and someB ! . The item can only be inferred by

completion of the items [i j;A! © B Jand[j k;B] The
rank of the consequentisd= 1+ ,+1+ ji Kkj; and the ranks of the
antecedents are 1 +ji jjand .+ jj Kkjrespectively, which are both
less thand.

2.2.3 Possible implementations

Here are two examples of how to implement the deduction enge. If it is
possible to associate each parse item with a natural numberank such that all
antecedents always are less than the consequent in an inferee rulef] then there
is a very simple implementation of a parsing system. This impementation is a
generalization of the ideas of thecky parsing algorithm (Kasaml, [1965%; Younger,
1967), where we use a parse array indexed by starting and entj positions in
the input string.

Algorithm 2.4 (generalized CKY).

First create a parse array indexed by the ranks of the parse #&ms, initialized
with empty sets.

Then loop through each possible rank, and each possible itemaving that rank,

adding the item to the parse matrix if some inference rule hals.
N

Often though, there is no immediate way of associating rankgo items. In that
case, we have to implement an inference engine for the givenapsing system.
Apart from the chart containing all items found so far, we also need anagenda
containing the items that have not yet processed.

INote that the rank may only refer to the item, not e.g. the dedu ction length as is done
when proving completeness.

35

Chapter 2. Background

Algorithm 2.5 (agenda-driven chart parsing).

Initialize the chart to the empty set, and the agenda to all items generated by
inference rules without antecedents. Then repeat the follwing until the agenda
is empty:

Remove one item from the agenda and add it to the chart. Apply ay
inference rule for whichi) the item matches one of the antecedents, and
ii) there are items in the chart matching the rest of the anteceents. Add
all possible consequences not already in the chart to the agda.

N

The two algorithms can sometimes be combined; e.d. Earley QI70) usesitem
sets one for each input token. The item sets can be created one athe time
(using a generalizeccky engine), but each set is created using the agenda-driven
method.

The reader is referred to e.gl_Shieber et al.l (1995) for morenformation about
actual implementations.

2.2.4 Space and time complexity

The space complexity of the algorithm is (the size of the chat) times (the size
of one item). For the algorithms discussed in this thesis, tle size of items does
not depend on the length of the input, which means that the spae complexity
is in the order of the number of items in the chart.

The time complexity is (the size of the chart) times (the time to infer one
item). To calculate the time to infer one item, we can inspectthe inference
rules. The time complexity for an inference rule depends onhe number of
ways to instantiate the m@tavariables in the rule, assumingthat the consequent
is known. There are O(= jxij) possibilities for instantiating a rule, where x;
is any metavariable occurring in an antecedent or a side corition, but not in
the consequent since all metavariables in the consequent arknown. Here we
use jxjj for the total range of a variable; e.g. if X;j 2 Ny, then jxjj = O(n).
Often the variables range over positions in the input string w, in which case
jXij = O(jwj); or pairs of positions (representing substrings of the inpt), in
which casejxij = O(jwj?).

Example 2.6.
For the context-free algorithms in sectionZZ2, we get thefollowing space and
time complexities. We are only interested in complexity in the length n of the

input; therefore the only variables we need to consider aretiose that depend
on n.

An item is of the form [i j; A'!]l,where0 i j nandA'!
is a grammar rule. The only variables that depend onn arei and j; therefore
the space complexity isO(n?).

36

2.3. Grammatical Framework

The most complex inference rule is theCombine rule Z7;
[i j;A! B 1[I k;B]
[i k;A!l B]
There is only one input-dependent variable {) which does not occur in the
consequent; so the time complexity for theCombine rule is O(n). Since this

rule is the most complex, the total time complexity of the algorithm becomes
o(nd).

N

That the argument for time complexity is correct is obvious for parsing sys-
tems which can be implemented by the generalizecky algorithm EZt the
algorithm loops through all possible parse items (the size fothe chart), and for
each item it tries all possible antecedents (the time to infe one item). For the
dynamic agenda-driven algorithm[Z®, the argument is a bit nore complicated,
but amounts to the same result (provided that there are e cie nt lookups for
items in the chart).

2.3 Grammatical Framework

This section describes thegrammatical framework (gf). It is an adaption
of the descriptions inlRanta (20044.b).

A gf grammar consists of a number ofudgements divided into three kinds of
modules abstract, concrete and resource modules.

2.3.1 Abstract syntax: dependent type theory

The abstract syntax of gf is based on type theory, or to be more specic, on
Martin-L of's intuitionistic type theory (Martin-L__ef, [1984). An abstract gram-
mar is de ned by giving a number of abstract judgements, whic can be of the
following forms:

cat C[] C is a category depending on the context
funf : A f is a function of type A
dataC=f,j:::jf, C has the constructorsfq;:::; f,
defa="b ais dened asb

Categories and types

A type declaration a : A says that a is an object of type A, and presupposes
that A is a type according to the type rules. A context is a sequenceof

variable declarationsxy : A1; :::; X, @ An, where eachA; is a type whenever
X1 @ Ag; i X 10 Aj 1. The are two rules for forming types, also shown in
gure £T1

37

Chapter 2. Background

Basic type formation
cat C[xy 1 A1; il X D An]
a; A1 ioan tAp[Xe=ar; il Xn 178 1]
Ca;:::an Type

Function type formation

A Type B Type[x:A]
(x:A)! B Type

Basic object formation

funf @ A
frA
Function application and abstraction
f:(x:A)! B a:A b:B[x:A]
fa : B[x=4a] xb :(x:A)! B
and conversion
c:(x:A)! B
(x:b)a= bx=a] c= x: (cx)

Figure 2.1: Rules for types and objects in abstract syntax.

The category de nition
cat C[xy 1 A1; X2 1Az i1 X T Ap]

says that Ca;:::a, is a type, whenevera; : A, a2 : Ax[xi1=a], ...,
an D Ap[Xi=ag; il Xn 17an 1]

There is also a rule that creates the function type k : A) ! B,if Aisa
type and if B is a type wheneverx : A.

As a syntactic sugar we write A ! B for the type (x : A) ! B wheneverB
does not depend orx.

Functions and objects
There are three rules for forming objects, also shown in gue[Z1;

38

2.3. Grammatical Framework

The function type de nition fun f : A presupposes thatA is a type, and
says thatf is an object of type A, or f : A.

If we have a functionf : (x : A) ! B, and an objecta: A, we can apply
the function to the object as fa : B[x=a].

If we have an objectb : B wheneverx : A, we can form the function
x:b :(x:A)! B.

Higher-order functions and dependent types

Given a function,

f:@ (Xg:By)! ! x :B)! A
where A is not not a function type, we can informally de ne the notions of
higher-order functions and dependent types;

f is a higher-order function if any of the argument types B; is a function
type;

A type B; (or A) is dependentif any of the variables x3; :::; X; 1 occur
in B; (or any of x1; :::; X occurinA).

If a function is not higher-order and does not have dependentypes, it is said
to have acontext-free backbonethis will be further discussed in sectionCZ3P.

Example 2.7.
The function,
f : (x:A! B)! (y:Cx)! D

is higher-order since the rst argument is a function, and has dependent types

since C x depends onx. N

Normal forms

The type of any de ned function fun f has the form
(XA ! x :A)! A

where A; are the argument typesand A = Ct;:::t, is the value typeof f. The
category C is the value categoryof the function. The full application of f has
the form fa,:::a with type A[xi=a; :::; x =a].

Atermisin -normal form if it is of the form z ;! z ! b wherebis
a variable or an application of a constant, and all argumentsof the application
are in -normal form. The and conversion rules in gure[Z7 can be used
to bring any well-typed term into this form. Note that a funct ion f alone is in
normal form only if its type is a basic type; in general the nomal form of f is
of the form z ¢ ! ! z | fzq1:::z.

39

Chapter 2. Background

Curried vs. uncurried functions

We often write function applications in uncurried form, f (a;; :::; a). When
we do this we also write the function type as the type of an uncuried function.

f A Al A f ALl ! Al A
f(ag;:::;a) faj:::a

The natural restriction is that A is a base type.

Data constructors and function de nitions

There are some extra rules for declaring data constructorsad giving function
de nitions. We do not go into details about these subjects, $nce they will not
be further explored in this thesis.

Constructor declarations
dataC = f,j:::jfq

presuppose thatC is a category and that f; :::; f, are fun functions,
all with value types formed by C. The judgement says that eachf; is a
constructor that can be used in patterns in function de nitions.

Function definitions
deffpi:iip =t

presuppose thatf is a fun function, t is an object of the value type of
f, and eachp; is a pattern of the corresponding argument type off . A
pattern is a term formed from variables and constructors ony. There
is a computation rule, saying that an objectfa:::a is equal tot[],
whenever eachg; = pi[], where is a substitution, for the rst matching
function de nition. This implies that function de nitions are ordered.

Functions that are neither constructors nor de ned implicitly are primitive no-
tions. The lexical rules of gf make no distinction between constructors, de ned
functions and primitive notions.

2.3.2 The context-free backbone

Most chapter of this thesis only considers a restricted vamnt of the abstract
syntax, called the context-free backbonelt is not until chapter @&khat we return
to higher-order functions and dependent types.

40

2.3. Grammatical Framework

De nition 2.8 (context-free backbone). A basic function f has a context-free
backbone if it has the type

f @ C ct!c

where C and all C; are categories, without dependencies.

A grammar has a context-free backbone if all basic functiondave. Another way
of saying this is that there are no dependent types and no lamba abstractions
in the grammar, i.e. all category declarations have empty catext and there are
no higher-order functions. By context-free gf we mean all possiblegf grammars
with context-free backbone.

Note that the notions of basic typesand categoriescoincide when we talk about
grammars with context-free backbones. In these cases we ufiee notion cate-
gory, to distinguish from the linearization types of the concrete syntax. In all
chapters except for chapte®, we only talk about grammars wh a context-free
backbone.

The de nition of t : A in gure £Il1becomes very simple for grammars with
context-free backbone;

f(ty; ;) C 0 t1:Cqyiiizt i C
wheneverf has the de nition given above.

Example 2.9.

We repeat our main example from sectiofi’L315; a simple gramar for a fragment
of English sentences. It consists of the context-free categies S, NP, VP, D, N
and V (standing for Sentence,Noun Phrase,Verb Phrase,Determiner, Noun and
Verb respectively), and has the following functions;

sp - NP VP! S
npg : D N! NP
npp : N! NP
vk © V. NP! VP

da;dm : D
ng;ng @ N
Ve © V

The predication function s, forms a sentence out of a noun phrase and a verb
phrase. There are two ways of forming noun phrases; either by determiner
and a noun (a lion', ‘many lions"), or just a plural noun (lions'). We assume
that all verbs are transitive, so we only have the transitive verb phrase forming
function vp;. The determiners d,; d, are singular and plural inde nites (Ca'
and ‘many'); n¢; ny are the nouns lion' and “sh'; and ve is the verb “eat'.

41

Chapter 2. Background

Stripping o dependencies

Given an arbitrary gf grammar G without higher-order functions, we can strip
o all dependencies from that grammar to get the context-free backbone ofG.
This is possible since each rst-order function type can be witten on the form

(xg A7) ! x :A) ! Cty:iiity

where eachA; is of the form Ci ti.1:::tin,. Each typing of the given form is
then translated to C; c! C.

The resulting grammar will be over-generating meaning that all type-correct
terms will still be accepted by the context-free backbone, lot terms that are
not type-correct might also be accepted. Another way of sayig this is that the
translation is complete (i.e. all correct terms are still accepted), but not sound
(i.e. incorrect terms are also accepted).

Higher-order functions

If there are higher-order functions in a grammar, we can stil apply the same
transformation. We only have to note that the argument types A; above can
be functions themselves. We then apply the transformation ecursively on the
argument types. However, the resulting grammar will not hawe a context-
free backbone. Higher-order functions will remain highererder, even when all
dependencies are stripped o. The nal function types will be of the form
A A | C, where eachA; is also of the same form.

2.3.3 Concrete syntax

The concrete syntax of an abstract grammar is speci ed by giing a number of
concrete judgements of the following three forms:

lincat C = L C has the linearization type L
linfxq,:::x =t f has the linearization function x 1:::Xx :t
lindef Cx =t C has the default linearization x:t

Strings and tokens

The type of strings, Str, consists of sequences dbkens where a token is an
abstract entity. The only thing we need to know is that the set of tokens is
nite and written in this thesis as . In our examples, tokens are words, but
they could be e.g. morphological analyses of input words.

There is one operation on strings,concatenation of two strings. In this thesis
we write s; s, for the concatenation of two strings, or often evens; s, when
no confusion can arise. The empty string is written .

42

2.3. Grammatical Framework

In gf itis also possible to concatenate tokens, called thagglutination t; + t, of
two tokens which is also a token. This presupposes that tokes are strings, or
more generally, that the set of tokens forms a monoid. The tyg system ofgf
ensures that the set of tokens that is used by a speci ¢ grammar is still nite.
Since agglutination can be eliminated, we will make no use ofgglutination in
this thesis; so we simply assume that there is a nite set of téens.

Linearization types

A linearization type can be of the following formdA

The type of strings, Str, is a linearization type;

If T1; :::; T, are linearization types or parameter types, and at least onef
them is a linearization type, thenfry : T1; :::; rn : Th gis a linearization
type;

If T is a linearization type and P is a parameter type, thenP) T is a
linearization type.

This means that a linearization type contains the type Str somewhere. Param-
eter types are de ned in sectionZZH; for now it is enough toknow that they
are always nite.

Each categoryC de ned in the abstract grammar, must be given a correspondingy
linearization type C , which is done by the judgementlincat C = L. For context-
free backbones, the judgement simply says thaC = L. For arbitrary types,
linearization types are de ned inductively as followsf

(Caj::itap) = L,iflincatC=1L
(x1:A)! 1 (Xn:AR)! A) St A

The second line in the de nition is only used when the grammarhas higher-
order functions. In that case the de nition speci es how a functional argument
is linearized. This will be discussed further in sectior &1L

Example 2.10.

The example grammar has the following linearization types ér English, where
Num is a parameter type containing parameters for singular and fural;

S = fs:Strg
D;NP = fs:Str;n:Numg
N;V;VP = fs:Num) Strg

2The de nition we use here is more general than the one used by R_antal (P004a), which
includes some implementation-speci ¢ restrictions.
SRecall that a tuple like Str" A s just syntactic sugar for a record.

43

Chapter 2. Background

The reason for these linearization types is that nouns are irected by determin-

ers and that verbs are in ected by the subject noun phrase. Oher languages
might have other linearization types; e.g. in Swedish and Gaman, there is an
extra in ection parameter for gender, making the linearization types more com-

plicated.
N

Linearization functions
To each function typing in the abstract syntax,
funf = (X1:A7)! ! x :A)! A

a correspondinglinearization rule should be speci ed, which is done by a judge-
ment of the form

linfxq,:::x =
This presupposes that : A wheneverx; : A; for1 i . The judgement
de nes a linearization function f = x 1:::X :

Evaluating linearizations

The linearization of a compound termt = ft;:::t is de ned as

[fto:::t] foftal:ocMt]
Xa=ta]; oo x =t 7]

whenever the linearization rule is specied aslin fx1:::x =

Default linearizations

The third possible judgement in a concrete module is a defatllinearization
lindef Cx = . Each basic categoryC can have a default linearization, which
is a function from strings to C . The default linearization is only used when
linearizing bound variables in higher-order functions. This is discussed further
in section6].

2.3.4 Resource syntax

The concrete syntax of gf has developed into a functional programming lan-
guage, with data type de nitions and local and global function de nitions. In
of , data types are calledparameter typesand global functions are calledoper-
ations, and they are speci ed by the following two judgements:

44

2.3. Grammatical Framework

paramP = C; 1j:::JCy n P isa parameter type

with constructors Cq; :::; Cy
operh:T =1t h is an operation of type T
de ned as't

The parameter contexts ; are sequences of parameter typeB;.; ::: Pin, . Both
these judgements specifyesourceswhich can be used by concrete linearization
types and linearization rules.

Parameter types

A parameter type can be of the following forms,
If there is a parameter type declaration forP, then P is a parameter type;
If Py;:::; Py are parameter types, then the record type,
fri:Py;iiisrm:Pag
is a parameter type.

A parameter type declaration is of the form,

paramP = C; 1j:::jCh 1
and de nes a series of constructorCy; :::; C, which can be used as functions
from their parameter contexts to P. l.e. if ; = P;.1:::Pin,, then the construc-
tor C; is a function,

Parameter type declarations may not be recursive; neither @ect, indirect nor
mutually. This ensures that every parameter type P is nite, and we can form
the set of all parameter valuesof type P,

Vp = flp;2p;:::;Npg

Example 2.11.

For the simple English grammar we only need to declare one pameter type for
number,

param Num = Sgj PI

but for more complicated grammars we also need &®ersonparameter type, for
distinguishing rst, second and third person,

param Person = Firstj Second Third

45

Chapter 2. Background

Other languages might need other parameter types, e.g. Geran whose nouns
and verbs also are in ected by gender and case,

param Gen
param Case

Mascj Femj Neu
Nomj Accj Detj Gen

If there are several in ection parameters which often come bgether, it is possible
to de ne a combined parameter type,

paramIn = In (Num; Gen Casé

This type contains 2 3 4 =24 di erent parameters.

Operations

An operation is a global de nition of a helper function that can be used in
linearizations. An operation is de ned by judgements of the form

operh:T = t

where T is any type (in the sense of concrete syntax) and : T.

The type system of concrete syntax consists of linearizatino types augmented
with function types. A simple example of an operation de nition is ss, creating
a record from a string,

operss:Str!f s:Strg = x fs=xg

There is also a designated typeType for describing linearization types. This
designated type is needed to be able to de ne functions that an be applied on
di erent kinds of types. An example is a generalized versionof the previous
operation, creating a record from an object of any type,

operrr :(a:Type)! alf r:ag = ax fr=xg

Note that we use dependent types in this de nition.

Grammar composition

Any gf grammar with a context-free backbone can be transformed inb a re-
source module by the following simple translation:

Each category C with its linearization type C is transformed into the
operation

operC:Type = C

46

2.3. Grammatical Framework

Each basic functionf : A with its linearization function f is transformed
into the operation

operf :A = f

This resource module can then be used by anothegf grammar, giving a way
of performing grammar composition as mentioned in sectionE237 and3H.

2.3.5 Linearization terms

The possible linearization terms in concrete syntax is de red inductively as in
gure EZ1 Most of the de nitions are straightforward. The o nly thing needing
further explanation is the de nition for table formation.

Table formation

To explain the rule for forming tables, we have to give a de nition of patterns.
Informally, a pattern is an incomplete term, where variables can occur in place of
subterms. A pattern p matches a termt if there is some substitution such that
t = p[], i.e. all variables in the pattern can be instantiated to get an equivalent
term. A sequence of patternsp;; :::; pn is exhaustiveif every possible term is
matched by some pattern. We writet : T[p: P] if t : T whenever all variables
in pis assumed to be of type such thap: P.

Example 2.12.

The linearization terms of the example grammar in sectionlI33 are repeated
here.

s(x;y) = fs=xs yslxng
npg(x;y) = fs=xis yslxn;n=xng
npp(x) = fs=xs!Pl;n=Plg

vp(x;y) = fs=[z) xss!lz yslg
d, = fs="a';n= Sgg

d, = fs="many';n=Plg

n = fs=[Sg) Tion'; PI) ‘lions']g
ne = fs=[_) “sh'lg

V., = fs=[Sg) ‘eats; Pl) ‘eat']g

The full gf grammar, including the abstract syntax and the linearization types,

is shown in gure ZZ3. N

47

Chapter 2. Background

Strings
g s; t:Str
string' . Str Str _
s t:Str
Parameter constructors
paramP = ::: JCPy:::Ppj 1o
C:Py! | P! P
Functions
b:B[x:A] f:Al B a:A
x:b :A! B fa:B
Records
t]_:Tl tn:Tn
fri=ty; i m=thgifri:Te; i rmiThg
c:f:iiyr:Tyiiig
cr:T
Tables
ty : T[py 1 P] th :T[pn 1 P] P1;::i Pn
[pr) t1;::i;pn) th]:P) T exhaustive
c:P) T p:P
clp:T
Local definitions
t:T e:E[x:T]
(letx:T=tine): E
Global definitions
operh:T =t
h:T

Figure 2.2: The types and objects in concrete syntax.

48

2.3. Grammatical Framework

Categories
cat S; NP; VP; D; N; V

Parameter types

param Num = Sgj PI

Linearization types

S = fs:Strg
D;NP = fs:Str; n:Numg
N;V;VP = fs:Num) Strg

Functions

sp : NP VP! S
npg : D N! NP
np, : N! NP
vp, ¢ V. NP! VP

da;dn @ D
Nne;ng N
Ve .V

Linearization functions

S(x;y) = fs=xs yslxng
npg(x;y) = fs=xis yslxn;n=xng
np,(x) = fs=xs!Pl;n=Plg
vpi(xy) = fs=[z) xsslz yslg
d, = fs="a';n=Sgg
d, = fs="many';n=Plg
n = fs=[Sg) Tion'; PI) ‘lions']g
ne = fs=[_) “sh'lg
V., = fs=[Sg) 'eats; Pl) ‘eat']g

Figure 2.3: Example grammar for a small fragment of English.

49

Chapter 2. Background

Computation rules

There are straightforward computation rules for string concatenation, local and
global de nitions, function application, record projecti on and table selection.

S1 S22 = $1S
letx: T=tine = ¢x=t]
h = t (operh: T =1)

(xxt)a = t[x=4]
fooosr=t;igr =t
[:::;p) t;:::]'s = tlp=g (p matchess rst)

The restriction for the last rule means that p must be the rst pattern in the
table that matches s. This together with the fact that the patterns in a table
are exhaustive, ensures that table selection is a determistic function. By [p=9
we mean that we apply the unique substitution such that s= p[].

2.3.6 The module system

Here we note some remarks about the module system igf . [Ranta (2004b)
gives a more detailed description of these things.

Interface modules

There are actually four kinds of modules; the fourth beinginterface modules
An interface module is like a restricted resource module, whare only the types
of operations are declared, not the implementations, and oly the names of
parameter types are declared. This gives an analogy betweeabstract and
concrete on the top level and interface and instance on the resource level.

Extension and inheritance

Any module canextend one or more modules of the same kind. The new module
then inherits all de nitions from the underlying module. A m odule can extend
another (unrelated) module, and it can also be extended by ay number of
(unrelated) modules. In this way we can form a hierarchy of malules.

Example 2.13.

Assume that we have an abstract moduleLogic de ning propositions and the
logical connectives. We can have several concrete syntaxdgr this module,
LogicDan LogicSweand LogicLatexfor linearizing to Danish, Swedish and ATEX.
Now we can extend thelLogic module by another abstract module Arithm for

50

2.3. Grammatical Framework

arithmetic. The concrete syntaxesArithmDan, ArithmSweand ArithmLatex, can
be implemented as extensions of the corresponding concretegic modules.

This example can be further extended by extendingLogic in another direc-
tion, such asGeomfor geometry, together with corresponding concrete syntags.
Then a nal abstract module GeoArican be declared as the extension of both
Geomand Arithm, and the corresponding concrete syntaxes can be specied in
the same way.

Finally, we can add a resource module hierarchy which is usedbe the con-
crete modules, e.gLatexRescontaining IATEX features, ScanRegontaining com-
mon features for the Scandinavian languages, together witlbbanResand SweRes
which are both extensions of ScanResand contains language-speci ¢ features.
The concrete moduleXY (for X =Logic, Arithm, Geom, GeoAriand Y =Dan,

Swe, Latex)can then make use of the resource modul¥ Res.
N

2.3.7 Canonical linearizations

The concrete syntax of anygf grammar can be partially evaluated to a gram-
mar in canonical form, as shown in_Ranta (2004a). In canonicaform, all local

and global de nitions disappear, as well as function appli@ations; furthermore,

all tables are instantiated, meaning that all patterns are variable-free. Hierar-
chical parameters can be attened; thus we can assume that t parameters are
declared by giving a nite set Par of parameter types, eachP 2 Par being a
set of parametersps; :::; pn. The resulting possible linearization functions and
terms are de ned by the following.

Linearization functions
A linearization function for f : B, B ! A incanonicalgf is of the form,
f (Xg;:0x) =

where is a canonical linearization term.

Linearization terms

De nition 2.14 (canonical linearization). A canonical linearization term is of
the following form:

A string constant is of type Str; and a concatenations; s, : Str, whenever
S1;Sp : Str.

A constant parameter p : P, wheneverp 2 P.

51

Chapter 2. Background

Arecordfri= q1;:::;rp= pgisoftypeT="fry:Ty; 0050 :Th0,
whenever each ; : T;.

A record projection :r ; : T;, whenever is of the record type T above.

Atable [pr) 1;::;pn) n]isoftypeP) T, wheneverP =

A table selection ! :T,whenever :P) T and :P.
An argument variable x; : B; .

Example 2.15.

The example grammar in gure Z3 is not entirely in canonical form. The
linearization of vp; contains a non-expanded table g) x:s!z y:s], whose
canonical formis [Sg) x:s!Sg y:s; Pl) x:s!Pl y:s]; and the linearization
of ny contains an anonymous table [) “sh'], whose canonical form is [5g)

“sh'; PI) “sh']. The full grammar in canonical form is shown in gure EEN

Computation rules

Together with this there are computation rules for string concatenation, record
projection and table selection. Since all tables are instatiated, table selection
becomes as simple as record projection.

S1 S22 = S1S
foooor=t;igr =t
[:iyp=t; 0]lp = ¢

2.3.8 A note on the syntax of GF grammars

There are some di erences between the notation for GF used itthis thesis, and
the notation used in the actual implementation (GH, 2004); the main di erences
are shown in gure [Z3.

2.4 Generalized context-free grammar

Generalized context-free grammar (gcfg) was introduced by Pollard in

the 80's as a way of formally describinghead grammar (Pollard|, 1984). In
later work people have usedycfg as a framework for describing many other for-
malisms, such adinear context-free rewriting systems (Viiay-Shanker et al.,
1987) and parallel multiple context-free grammar (Seki et all, 11991);
and here we will use it to describegf with a context-free backbone.

52

2.4. Generalized context-free grammar

Categories

Parameter types

Linearization types

Functions

Linearization functions

Sp(X;)
npq(X; y)
npy(X)
np (X; y)

cat S; NP; VP; D; N; V

param Num = Sgj PI

S = fs:Strg
D;NP = fs:Str; n:Numg
N;V;VP = fs:Num) Strg

sp : NP VP! S
npg : D N! NP
np, : N! NP
vp, ¢ V. NP! VP

da;dn @ D
Nne;ng N
Ve .V

fs=xss yslxng

fs=xss yslxn;n=xng
fs=xs!Pl; n= Plg
fs=[Sg) xs!Sg y:s; Pl) xs!PI
fs="a"; n= Sgg
fs="many'; n= Plg
fs=[Sg) Tlion'; Pl) ‘lions']g
fs=[Sg) 'sh'; Pl) “sh']lg
fs=[Sg) ‘eats; PI) ‘eat']g

Figure 2.4: Example grammar in canonical form.

53

Chapter 2. Background

| Notion | Inthisthesis | In the implementation
Function type B1 B! A BlL->.. ->Bn->A
Function application f(;000) f phi ... psi

-abstraction X: \x -> phi

String token “token' "token"
Concatenation phi ++ psi
Empty string 0
Table [p) ;9q)] table {p => phi; g => psi}

Figure 2.5: Notational di erences between this thesis and the implememation.
N

There are several de nitions of gcfg in the literature; Seki et all (1991) use a
de nition similar to Pollard's original, while others (Wei_v, 1988;|Becker, 1994,
Chiang, 12001) more cleanly separates between abstract andoncrete syntax.
However, the latter de nitions use the term gcfg for only the abstract part of
the grammar, and the term context-free rewriting system for the gcfg
together with the concrete interpretation function. While Pollard imposed no
restriction on the concrete linearization type, other de nitions restrict them to
be tuples of strings. In this thesis we stick to the original ce nition as much as
possible, but separate the abstract and concrete syntax in ananner similar to
the de nitions of context-free rewriting systems

2.4.1 Abstract grammar

The abstract grammar is a tuple (C; S;F;R), where Cand F are nite sets of
categories and function symbols respectivelyS 2 C is the starting category, and
R CFZC is a nite set of context-free syntax rules. For each function
symbolf 2 F there is an associated context-free syntax rule;

A ! f[By;::5;B]

The arity of the rule is , and in general we write ; for the arity of the rule

f. The tree rewriting relation t : A is dened asf (t;;:::;t) : A whenever
tp : Byt B . We say that a tree t is valid (for a given category A) if
t:A.

54

2.4. Generalized context-free grammar

Example 2.16.

The abstract syntax of the example grammar (gure[Z3,23),becomes as follows
in gcfg format;

S ! s5[NP; VP]
NP I npy[D; N]
NP ! npy[N]

VP | vp[V; NP]

D ! difl

D ! dnl

N ' ncfl

N ! nef]

AVAR Ve[]

2.4.2 Concrete interpretation

To each categoryA is associated alinearization type A , which is not further
speci ed. To each function symbolf is associated a partialinearization function
f , taking as many arguments as the abstract syntax rule species.

f 2 B; B! A
The linearization of a syntax tree is de ned as,
[f (te; ::;t)] = F ([tal; =2t D

if the application is de ned. Note that the de nition impose s no restrictions on
the linearization types or the linearization functions; this is left to the actual
grammar formalism. For our purposes it is enough to view a lirarization type
as the set of all possible linearization values. This meanshiat the type Str of
strings is equal to (where is the string alphabet). With this view we can
say that a linearization type is nite when it is a nite set.

In section[=3, we extend the de nition to also containmany-valuedlinearization
functions. Then the linearization of a tree becomes a many-alued function,

IfF (e s t)] = F (s)
whenever there are 3;:::; suchthat ; =[t;];:::; =[t]
2.4.3 Variable-free notation for linearizations

In some cases it is more convenient to describe the abstractystax and the
concrete linearization at the same time, without using any \ariable bindings.

55

Chapter 2. Background

The rule A! f[Aq; :::; A], with its linearization f (xi;:::;x)= , can be
written as

Al f[Ag; i A= "
where each occurrence of the variable; in s replaced by the term A; in
N representing the argument number and the argument categor. This means
that the basic operations of the linearization type also mus$ have an explicit
representation in . If more than one argument have the same category, we use
superscripts to separate between them.

Example 2.17.

The following is an arti cial rule in variable-free form (wh ere the linearization
types for A; B are strings):

Al f[BL A B% = "aB'ADB?
This rule is another way of writing the linearization functi on
f (x;y;z) = “a'xybz

Which in turn is a gcfg version of the context-free ruleA! "a'B A "a' B.

2.4.4 Subclasses of GCFG

When de ning subclasses ofgcfg , we use a notion of \a part of x", which can
be de ned in terms of projection functions as follows.

If there is a bijective function :T! Py Pn, we say that forms
a partition of T.

Given atermt : T, we say that a projected termpx : Pk is a part of t if
there is some partition of T such that px = ((t)).

Note that it is important that the partition is bijective, i. e. one-to-one and onto;
i) one-to-one ensures that it is possible to reconstruct terra from the image of
the partition; and ii) onto ensures that there is no overlapping information in
the image.

De nition 2.18. Given agcfg rule A! f[By;:::; B] with its linearization

f(xy1;:::;x)= . We say that the rule is

parallel or nonlinear if some part of X; is mentioned twice in , for some
1 i :

linear if no part of x; is mentioned twice in , forall1 i ;

erasing if some part of X; is not mentioned at all in , for some 1 i ;

56

2.5. Parallel multiple context-free grammar

nonerasing if all parts of x; are mentioned in , forall 1 i ;

suppressing if x; is not mentioned at all in , for some 1 i

Note that linear and parallel are opposites of each other, as arerasing and
nonerasing

Example 2.19.
Arecordtype T = fry:Ty; ::0; ry : Ty g has a natural projection function
T T4 Th:
(fri=ty; i rm=thg) = hyg; ity
N
2.4.5 GF with a context-free backbone
Grammatical framework with a context-free backbone is an instance of

gcfg , where the abstractgf rule,
f : Bi! ! B! A
is just another way of writing the abstract gcfg rule,
A ! f[Bg;::5;B]
We also see that thegf de nition of t : A in section[Z:32 is equivalent to the
gcfg de nition of t : A in section[ZZ1; and that the gf de nition of [t] in

section[ZZ3B is exactly the same as the correspondirgefg de nition in section
zZ2.

2.5 Parallel multiple context-free grammar

Parallel multiple context-free grammar (pmcfg ; Kasami et all, 11988;
Seki et all,[1991) were introduced in the late 80's as a very g@xessive formalism,
incorporating linear context-free rewriting systems and other mildly

context-sensitive formalisms, but still with a polynomial parsing algorithm. pm-
cfg is an instance ofgcfg , with the following restrictions on linearizations:

Linearization types are restricted to tuples of strings:

Each pmcfg grammar de nes alinearization arity d(C) for each category
C; the linearization types can then be de ned asC = Str%(©).

57

Chapter 2. Background

The only allowed operations in linearization functions aretuple projections
and string concatenations:

Each pmcfg linearization function is of the form
fohXeas i Xagg b iy g it Xg 1) = hog; iy i

where each ; is a sequence of variablex;x or constant strings.

Since records can be seen as syntactic sugar for tuples, wencase records in
this thesis without changing the de nition of pmcfg . The linearization function
above will then be written

f (Xg;iryx) = f1=7q;:00;,d="4g9

where each variablex;x in ; is replaced by the projectionx; :k in #;.

2.5.1 Variable-free notation for PMCFG grammars

When writing a pmcfg grammar in variable-free notation, we often write the lin-
earization record as a sequence of rows; in other words we lgaout the opening
and closing braces and replace semicolon by comma. With thisimpli cation,
the following rule for f ,

Al f[Bi;:::;B]
fo(xgpiix) = fri= 1700, m= ng
can equivalently be written,
Al f[By; iy B] = rp="g i =2,

where each each occurrence of variabbe in any | is replaced byB; in ~.

Example 2.20.

Figure [Z8 shows gomcfg version of the example grammar in gure[Z3, recog-
nizing the same strings. Sincepmcfg linearizations cannot contain information

about in ection, we have to move that information into the ca tegories instead.
N

2.5.2 Comparison with GF

Written in record notation, pmcfg becomes a trivial instance of context-free
gf , without using tables and table selections. For the reversedirection, we
see that any gf grammar with a context-free backbone ful lling the followi ng
restrictions can be trivially converted to an equivalent pmcfg :

58

2.5. Parallel multiple context-free grammar

S! sp1[NPy; VP] = s= NPyiis VP:s;
S! sp[NP2; VP] = s= NP.is VP:s;
NP1 ! npgi[D1; N] = s=Diis Nis;
NP2 ! npgs[D2; N] = s=Das Nisp
NP2 ! npy[N] = s= N:s;
VP! vp,[V: NP1l = s1=Vis; NPis; s;=Vis; NPis
VP! vp,[V: NPl = s1=Vis; NPzs; s;=Vis; NPas
D! daf] = s="a
Dy! dn[] := s=many
N! ne[] = sp="lion"; s;="lions'
N! n{[] = s31="sh'; s,="sh'
VI Ve[] = s3= eats; s, ="eat

Figure 2.6: pmcfg version of the example grammar.

Records containing parameters are not allowed;

All tables and all table selections must be instantiated.

The fact that gf can have nested records constitutes no problem { all nesting
can be attened. Also, an expanded table,

[Pr) 1;::i5pn)] 2 P) T
is equivalent to a record,
fpi= 1;:;pn= ng @ fTP:T;:5pn:Tyg

and an instantiated selection !p; is equivalent to a record projection :p ;.

Why GF is not obviously equivalent to PMCFG

When the gf grammar contains parameters in some record, or when some ta-
ble is not instantiated, or when some table selection is not nstantiated, the
equivalence is not trivial.

There is a table in the grammar which is not fully instantiated, e.g.

ng = fs=[_) “sh'lg

59

Chapter 2. Background

There is a table selection where the selector is not an instdiated param-
eter, e.g.

s, = fs=xs yslxng

There is a record in the grammar that contains a parameter, &.

d, = fs="many';n=Plg

The case of non-instantiated tables can be solved by compiig the grammar
into canonical form (see sectiolZZ317), where all tables arinstantiated.

The remaining cases are discussed in chaptét 3, where it is@hn that gf and
pmcfg are equivalent.

2.5.3 Linearity and nonerasingness

The name parallel mcfg (pmcfg) comes from the possibility of writing parallel
grammars. If the grammar is linear as de ned in[ZZ% it is caled alinear mcfg
(Imcfg). If the grammar is also nonerasing, it is called alinear context-
free rewriting system (Icfrs).

Theorem 2.21 (Sekiet al.) 1991). For each erasingpmcfg (Imcfg) there is
an equivalent nonerasingpmcfg (Imcfg).

This implies that Imcfg and Icfrs are equivalent formalisms.

2.6 Representations of syntactical information

2.6.1 Syntax trees or abstract terms

A syntax tree for a gcfg grammar is also known as an abstract term. The
following is a repetition of the tree rewriting relation de ned in gure ET] (for
gf) and sectionZZ1 (forgcfg).

De nition 2.22 (syntax tree). Given a gcfg grammar, the treet = f (t) is a
legal syntax tree of category A, written t: A, i A! f[A]andt: ~B8

Note that the de nition is equivalent to the de nition of the abstract syntax
of gf in gure £Tlon page[38, restricted to context-free categoes. By the
statementt : A) we mean botht : A and that [t] = , and by A) we
meant : A) for some treet.

4Note that we write t: A instead of t1 : A1;:::;t : A , as discussed in sectionZZI1.

60

2.6. Representations of syntactical information

The set of all syntax trees in a grammarG for a category A linearizing to is
de ned as

Te(A;) = ftjt:A) g
The set of all syntax trees for a categoryA is written Tg(A) = Te(A;),
and the set of all syntax trees for the grammar isTgc = , Tc(A). Note that

T consists of all syntax trees of any category, not just the stating category. If
G is understood from the context we can safely skip the subsapt.

The size of a treet = f (t) is equal to the number of function symbols in the
tree;

it = 1+ =1+ Jtjj
i=1
Example 2.23.
If we want to list all possible trees for categoryNP in the example grammar, we
can proceed as follows. First we see that there are only two wa to build an
NP, and that is from the functions npy and npy; the former having 4 possibilities
and the latter 2 possibilities;

NPg(da; Nc) Npg(da; Nt)
NPg(dm; Nc) NPg(dm; Nt)
npp(nc) npp(nf)
An example linearization can be,

NPg(dm; n¢) : NP) “many lions'

Open and incomplete trees

In chapter B, we will make use ofopen trees These are trees where some nodes
consist of metavariables which are variables representing an as yet unknown
tree of the correct category. We write metavariables as?.

De nition 2.24 (open tree). A treet: A isopenifitis either a metavariable
t = ?; orif it is of the form t = f (1), for the rule A'! f [B], where eacht; : B; is
an open tree. A tree isincomplete or uninstantiated if it contains metavariables,
otherwise it is called complete or instantiated.

The linearization of a metavariable ? is the identity [?] = ?. In some cases
we use argument variables as metavariables; then we can sapadt given a rule
A ! f[B] with linearization function f (%) = , the uninstantiated tree f (%)
has linearization [f (%)] =

When calculating the size of an open tree, we say that a metavéable has size
0;ie.if()j=1+ jfjandj?j=0.

61

Chapter 2. Background

2.6.2 Syntax forests or charts

If S is the starting category of agcfg grammar, the setT (S; w) consists of all
syntax trees linearizing to the input string w. For context-free grammars it is
possible to representT (S; w) by another cfg with precisely these syntax trees
(up to renaming of non-terminals), generating the singletn languagef w gE
This new grammar is called a parse forest, and each tree i (S; w) can be
extracted in turn by a simple procedure.

This idea was introduced by Lang and Billot (Lang, [1974;|Billot and Lang,
1989), and has been extended other formalisms_(Vijay-Sharmc and Weir, 11990,
1993b;lLang, 1994). In fact the idea works even when the inputs a regular
language (Lang@,.1991), e.g. an incomplete sentence or outpdrom a speech
recognizer. The result is based on the construction of the itersection between
a context-free grammar and a regular set by Bar-Hillel et al.(1964). The parse
forest can be stored in polynomial space, even if it represém an exponential
number of trees (or even an in nite number of trees in patholaical cases).

In this section we extend the notion of parse forests tacfg ; where a forest can
be seen as the abstract part of somgcfg grammar.

De nition 2.25 (item). An item is of the form [A ! f[B]; ;], where
Al f[B]is aruleinthe grammarand =f (7).

Anitem =[A! f[B]; ; ~]can be viewed as an abstracicfg rule,
A ! f[B;Y B]

All de nitions and results in this section can be reformulated to work on these
kinds of abstract rules instead of items.

The set [A;] contains all items [A! f[B]; ; “]suchthatB) ~. Note
that A) is a consequence of any such item; since there are treesuch that
t:B) T,weseethatf(t) : Aand [f(D)] =f (t]) = f (7) = ; hence
f(t): A) . The reverse direction also holds; all items such thatA) are

contained in [A;]. This is because the only way to build treest : A is by
application of some rule, by which we get an item that is contaned in [A;].

We say that anitem [A ! f[B]; ; ~]representsatreet=f()i t:B) .
Note that there can be items that do not represent any tree. Havever, all items
in[A;]represent at least one tree. We also say that a tree is represented
by [A;]i it contains an item representing t. Finally we note that [A;]
represents atreeti t:A) ; thisis because [A;] contains exactly the
items such that A)

51f w is not recognized by G, the new cfg generates the empty language.

62

2.6. Representations of syntactical information

Example 2.26.

[S! sp[NP; VP];
f s="many lions eat sh'g;
f s="many lions'; n = Plg;
fs=[Sg) ‘eats sh'; Pl) ‘eat sh']g]

is an item for the examplegf grammar in gure E4] representing the tree,

Sp(NPg(dm; Ne); vpy (Ve; npp(nf))

The corresponding item for the pmcfg version of the grammar in gure Z8
looks like,
[S! sp2[NP2; VP];
s ="many lions eat sh';
s = "many lions';
s; = eats sh';s;="eat sh']
N

De nition 2.27 (syntax forest, chart). A syntax forest or chart, is a (possibly
in nite) set of items.

We say that a chart C represents a treet = f (t) i there is an item,
[A! f[B]; ;7] 2 C

such that [t] = and the subtreest are represented by the chart. By induction
on the size of the tree we see that a chart can only representdal syntax treesd

Example 2.28.
The tree from the previous example,

Sp(NPg(dm; Nc); VP (Ve; NP,(N5)))
can be represented by the following chart,
[S! sp[NP; VPL; s; nmp1s wpl [D! dm[l; 4a; 1]
[NP! npy[D; NI; mp1; ai n2l [ND nefl; nas]
[VP1 vp[V:NPl; woi vi mp2] [V! Vell; vi]
[NP! npyINI; np2; n2] IN! ne[l; n2;]

where s; np1; wp: np2; d; ni; v n2 are matching linearizations.

61n other words, a chart is sound by default.

63

Chapter 2. Background

De nition 2.29 (complete chart). A chart Cis completewith respect to A and
i

[A;] C;,

C is complete with respecttoB; and ; foreach[A ! f[B]; ;712 [A;]
and 1 i i

Lemma 2.30. A complete (with respect toA and) chart C represents a treet
i t:A)

Proof. In either direction, the tree t must be a legal syntax tree, and therefore
we can say that it is of the formt = f (t). We now use induction on the size of
t.

()) If Crepresentst, then [A ! f[B]; ;]2 C such that [t] = and
the subtreest are represented byC. The induction hypothesis says that
t:B) ~,butsincet=f(t)and =f (7)we have thatt:A)

() t:A) ,then =[t]=[f®]=f ([t]) = f (7) for some ~ such
that t:B) ~. Butthen t is represented by the item [A! f[B]; ; 7]
which is contained in [A;], and in Csince the chart is complete. The
induction hypothesis nally tells us that the subtrees t are represented by
C, and then the tree is also represented byC.

Corollary 2.31. The setT (S; w) of all syntactical analyses for an input string
w can be represented by a complete chart with respect ® and w, where S is
the starting category.

In other words, a correct parsing algorithm for gcfg does not have to return
anything more than a complete chart. Naturally, it is also useful to know that
the algorithm always returns a nite chart. We do not dwell on this interesting
subject in this thesis; we only note that the algorithms presnted in chapter@d
all return nite charts.

If the chart is nite, extracting a tree that is represented by an item can be
done in time linear in the size of the tree, with the assumption that items in the
chart can be looked up in constant time.

Example 2.32.

The chart in example ZZ8 is complete with respect toS and the input string

‘many lions eat sh', since the represented tree is the only possible tree.
N

64

2.6. Representations of syntactical information

2.6.3 Equivalence and simulation of grammars

There are (at least) two kinds of equivalence one can imaginewhen talking
about grammars. Weak equivalence is the most common, sayintat two gram-
mars Gy; G, are equivalent if they generate the same languagée, (G;1) = L(G>).
Unfortunately, for many purposes this notion of equivalene in not very useful.
In our case we want to show that converting a grammar preservg something
more than just the language; the conversion should also presve the syntactical
structures. IChomsky (1965) introduced the notion ofstrong generative capacity
of a grammarG as the set of its syntactic structures, which in our setting @an be
the set Tg or Tg(S), depending on one's personal preferences. Unfortunately
this de nition is not very useful and several others have bea suggested; see
e.g.lMiller (1999) for a recent survey.

For our purposes the notion ofsimulation is well suited; of which the de nition
here is adapted from_.Chiang (2001).

De nition 2.33 (simulating interpretation). A simulating interpretation h j :
T, !' T , is a surjective mapping between two sets of trees, such thatof each
function symbol f occurring in Ty,

) = thx=m]

wheret[%] is a tree in T, wheneverx are trees inTs.

In other words, a simulating interpretation transforms tre es in a compositional
way; it can always be de ned by pattern matching on the function symbols
(without taking cases of subtrees), as is done in the equatio. Note that a
simulating interpretation is e ciently computable in time proportional to the
size of the input tree.

We say that ij j is trivial if it is of one of the following forms,

hf (x)] = x, wheref can take only one argument;

hf (%)) = g(hyj), where g is a function symbol in T,, and ¥ is a permuta-
tion of x.

In the rstcase, f is called acoercion. A trivial simulating interpretation can be
speci ed by a bijective mapping (also written ij j) betweenF, and F, [f g [
wherehfj = whenf is a coercion; together with a permutation :F;! N .
We also use the notationhj j for bijections between categories and linearizations.

“Recall that F is the set of function symbols in a grammar.

65

Chapter 2. Background

Example 2.34.

The following is a simulating interpretation between treesfor the pmcfg gram-
mar in gure £8] and trees for the original gf grammar in gure £4]

Mspa (X)i = sp(hii; hyi)

Hspo(X; Y)I = sp(hXj; hyj)
tnpa (X ¥)i = npg(hxj; hyi)
npgo(X; Y)i = npg(hxj; hyi)

tvp (6 Y)i = vpe(hxj; hyi)

tvpia (% ¥)i = vpe(hxj; hyi)

hnp,(x)j = npy(hxj)
g = ¢ (c= da; dm; Nc; N5 ; Ve)

Furthermore, the interpretation is trivial and has no coercions.
N

De nition 2.35 (simulation). A gcfg grammar G is a (trivial) simulation of
another grammar G°, if there is a (trivial) simulating interpretation, and a
mapping hj j between pairs of categories and linearizations such that if : A)
then htj : A®) O wherehA; j = A% O Furthermore, HS; wj = SO w
for all input strings w, where S and S° are the starting categories ofG and G°
respectively.

Note that if A! f[B]is a coercion in the simulationG, then [f (t)] = [t] for
all treest : B, and HA; j = hB; j wheneverA) . This also implies that
any item for f is of the form [A ! f[B]; ;]

Example 2.36.

Together with the simulating interpretation in the previou s example, the follow-
ing bijection between pairs of categories and linearizatios constitutes a simu-
lation by the pmcfg grammar of the original gf grammar;

hS;s= j = S;fs= g

hX1;s= j = X;fs= ;n=Sgg (X = NP; D)

HX,:;s= j = X:;fs= :n=Plg (X = NP; D)
MY ;s1=:s2= j = Y;fs=[Sg) ;Pl)]g (Y=VPNV)

Implications to parsing

Since the simulating interpretation is e ciently computab le, a simulation can
be used to parse a grammar in the obvious way; just use the sintating inter-
pretation for translating back the parse trees.

66

2.7. Summary

If G trivially simulates G© there is a simple procedure transforming a complete
chart for G, with respect to S and w, into a complete chart for G° with respect
to S®and w.

Algorithm 2.37.

For each item [A! f[B]; ;]suchthatf is a coercion, and for each item
=[cb gy Ay o]y iy i), add a copy of where A is replaced byB.
Then transform each item [A! f[B]; ; ~]such that,
Hj = 1%
HA; j = A% °
s; 7§ = B% ™

into the new item [A°! f9BY; ©; ~0].
N

Lemma 2.38. Transforming a complete chart C, with respect to S and w, results
in a complete chart C° with respect to S° and w.

Proof. We have to show that [A%; ©]is contained in C° whenever [A;]is
contained in C.

Since the simulating interpretation is surjective, each treet® such that t°: A°)

O will be the image htj of some treet such thatt:A) . Butsince [A;]
is contained in C, each treet : A) is represented byC; which implies that
each treet®: A%) Owill be represented by C°, which means that [A%; °]is
contained in C.

Finally, Cis complete with respect toS®and w, sinceCis complete with respect
to Sandw, and hS; wj = S% w, C°

This procedure can be used to transform a chart returned by a prsing algorithm
for the simulation, into a chart for the original grammar.

2.7 Summary

In this chapter we de ned the basic notions for use in the restof the thesis.
Most importantly the grammar formalisms g¢f (with the important subclass
context-free gf), gcfg and pmcfg were de ned. Most of the material has
been introduced by previous authors; it is only some things hat are previously
unseen. We stated two minor results which follow directly from the de nitions;
context-free gf is an instance ofgcfg , and pmcfg is an instance of context-free

of .

67

Chapter 2. Background

In section[Z8® we discussed the representation of syntactid terms. We extended
the notion of a shared forest for compactly representing a geof syntactical
analyses, to thegcfg formalism. We also discussed when a grammar formalism,
for which there are known parsing algorithms, can be used to @rse grammars in
another formalism. This was done by adapting the notion of gammar simulation
from |[Chiang (2001).

68

Chapter 3

Reducing context-free GF
to PMCFG

This chapter shows that context-fre6F is strongly equivalent toPMCFG. This
equivalence is shown by giving an algorithm converting eatffree GF grammars

into PMCFG grammars recognizing the same language; and by showing plaase
results can be converted back e ciently.

The conversion algorithm consists of enumerating all paed@n instantiations in
a linearization, and then moving the instantiated paramestdo the abstract cate-
gories. Enumerating all instantiations may lead to an expntial increase of the
grammar size. Therefore two alternative conversion aldwnis are given, which do

not enumerate all possible instantiations, but instead try only instantiate when
it is necessary.

69

Chapter 3. Reducing context-free GF to PMCFG

The main result of this chapter is the following theorem, which is a direct
consequence of the conversions in sectioRS13.2 ahdl3.3.

Theorem 3.1. Any context-free gf grammar can be transformed to an equiva-
lent pmcfg grammar, which furthermore is a trivial simulation of the original
grammar.

Example 3.2.

Our example grammar throughout this chapter will be the canmical gf gram-
mar in gure ZZ]Jon page[&3.

N

3.1 Paths and -normal form

De nition 3.3 (path). A path is a sequence of record projections and table
selections. The empty path is written , and :r and ! are pathsif is a
path.

A path that does not contain any argument variables x; is called instantiated;
in which case the selections can only be parameters. A non-instantiated path
is called nested; this is because if a path contains an argumevariable x;, then
that variable is always followed by a (possibly empty) path.

Note that we in the following equate nested tables and record with sets of
path-value pairs. l.e. the nested linearization term

fs = [Sg) 1;Pl) =2];

p = fn=8Sg;,g=Utrgg
can also be written as a set of path-value pairs, or a attenedrecord,
fslSg = 1;
sIPl = 2
p:n = Sg;
pg = Utrg

De nition 3.4 (string path, parameter path). A linearization type T as well as
a linearization can be partitioned into their string paths and parameter paths

[T = f :StrjT: = Strg
[T® = f :PjT: =P 2Parg
[= f =: j: :Strg

[™ f =: j: :P2Parg

Note that there are only a nite number of instantiated param eter records
[T]®, since there are only nitely many parameters.

70

3.2. Converting to table normal form

Example 3.5.

For the terms dy, : D and n¢ : N in the example grammar in gure 4 we have
the following.

A, :[D]®" = fs="many g:fs:Strg
[d. 7 :[D 1™ = fn=Plg:fn:Numg
NS : [N 3" = fs!Sg="lion'; s!Pl="lions'g

. fslSg:Str; s!Pl: Strg
NJ™:INJ® = fg:fg

N

De nition 3.6 (-normal form). A linearizationterm oftype T isin -normal
form if the structure follows the structure of its linearization type:

If T is arecordtype,frq:Ty;:::;r,:Tyhg then isarecordfry =
1; .. = ngwhere each subterm ; is in -normal form.

If TisatabletypeP) Toand P = f pg;:::;pn 0, then is a table
[pr) 1;::::pn) n]where each subterm ; isin -normal form.

If T is a basic linearization type, Str or P 2 Par, then is called aleaf.

3.2 Converting to table normal form

De nition 3.7 (table normal form). A gf linearization is in table normal form
if it is of the form

f . B, B! A
f (xg;iinox) = [1) 1500) ol

and the following hold:

contains all parameter paths of the argumentsxy; :::; X ;
=[x xR
Each is a possible parameter instantiation ofxy; :::; X ;
koo By B 1™
1; 1%, n IS an exhaustive enumeration of instantiations;
foaii ng = [B]™ B 1™

71

Chapter 3. Reducing context-free GF to PMCFG

Each is in -normal form where the leaves are either parameters or
concatenations of constant strings and instantiated strirg paths.

The following algorithm converts any gf linearization in canonical formfll into
table normal form.

Algorithm 3.8.
Given a gf function with a context-free backbone;
f : Bi B! A
f (Xq;:0,x) =

convert the canonical linearization to table normal form by applying the fol-
lowing two steps;

First, add the outer table as in the de nition of table normal form;

foxeiinx) = [1) onyon)]
= x5 x 1P
K o[BI B 1™

Second, for each instantiation , convert to , by repeating the fol-
lowing substitution until there are no parameter paths left;

{ Substitute eachtermx;: , where is an instantiated parameter path,
by its g-instantiation (k)i: .

N

Note that the normal form of a linearization, can very well lead to an exponential
increase of the size of the linearization. The reason is thathe outer table
[1) 1;:::5 n) n]has a number of rows proportional to the total
number of parameters occurring in thegf linearization.

Lemma 3.9. Algorithm B8] together with the standard computation rules, yields
an equivalent linearization in table normal form.

Proof. Assume that the resulting linearization is not in table normal form.
Then there must be some which is not in the form described in de nition
. Now ¢ can not contain any instantiated parameter paths, since the are
substituted by the algorithm.

The only possibility for ¢ is therefore to contain nested paths. Then there
must be a\least"nested path , occurring asx;: , where does not contain any
nested paths itself. Butthen can neither contain nested paths, nor instantiated
parameter paths, meaning that is not nested. We have a contradiction.

1The canonical form is de ned in section 2[Z71

72

3.3. Converting to a pmcfg grammar

Example 3.10.

There are three linearizations in the example that are not intable normal form,
and this is how they look after conversion;

Sp(X;y) = [Sg)f s=xis yis!Sgg;
PI)f s=xs yssIPlg]! xn
npg(x;y) = [Sg)f s=xs yis!Sg; n= Sgg;
Pl)f s=xis yssIPl;n=Plg]! xn
vp (xy) = [Sg)f s=[Sg) xis!Sg y:s;

Pl) xis!Pl y:is]g;
Pl)f s=[Sg) xs!Sg vy:s;
Pl') xss!'Pl y:is]g]!yn

3.3 Converting to a PMCFG grammar

To get a pmcfg grammar, we have to get rid of the parameters in some way;
and this we do by moving them to the abstract syntax. Each table row) «
resulting from algorithm BB will then give rise to a unique function symbol
with linearization .

Algorithm 3.11.

Given the context-free backbone of agf grammar where all linearizations are
in table normal form, create a grammar with the following categories, function
symbols and linearizations:

For each categoryA and each instantiated parameter record : [A |?,
create a new category = A[]. The linearization type is the same as the
string paths of the original linearization type, A =[A].

For each syntax rulef : B; B ! A, and all new categories
A, B1;:::; B, create a new syntax rulef : B, B 1 A; wheref'
is a unique function symbol,f = f[B; B ! Al

For each linearization function,
frxginx) = [1) 1500 0) all
and each table row) , create a new linearization function forf";
' (xa;ix) = [k]
All (171
Ail(il

where we by (k)i mean theith component of .

> >,
| |

73

Chapter 3. Reducing context-free GF to PMCFG

The resulting grammar is apmcfg grammar, since all linearizations are records

of strings.
9 N

A trivial simulation

Recalling the de nition of simulation in section we de ne a trivial simu-

lating interpretation, hf (t)j = g(htj), where g is the function symbol such that

f =4%. A mapping between pairs of categories and linearizationsan be de ned

ashA; j = B; whereB is the category such thatA = B = B[], and
= [. With these two functions we can state the following lemma.

Lemma 3.12. The resulting pmcfg grammar is a trivial simulation of the orig-
inal gf grammar.

Proof. We have to show thatt : A) implies that htj : B) where
HA; j = B; . We proceed by induction on the size of the treg = f (1), where
f:A!l A

Assume thatt : A) . But from the algorithm we know that there are g,
Band suchthatg:B! B,f =% A=B=B[]and = [. Now,
f():A) implies that t: A') =, which by the induction hypothesis is
equivalent to hitj : B') ~, which in turn implies that htj : B)

Example 3.13.
Figure B shows how the example grammar looks like after caersion to pm-
cfg . Note that the grammar is equivalent to example[Z2ZD, modulorenaming
of categories, functions and labels.

N

3.4 Non-deterministic reduction

Another possible conversion is to use a non-deterministicubstitution algorithm.
This can also in some cases reduce the size of the resultipgncfg grammar,
when argument parameters are not mentioned in the original inearizations.

Algorithm 3.14.

Assume the following abstract syntax rule, together with its linearization func-
tion:

f : Bi B! A
f Xy x) =

Repeat the following non-deterministic substitution unti | there are no instanti-
ated parameter paths left, accumulating the parameter recods 1;:::;

74

3.4. Non-deterministic reduction

Categories and linearization types

B - bl; 92; NP,; NP,
R:9:¢p

Functions

Linearization functions

9pl(X; Y)
Sp2(X Y)
BP41(X; Y)
BPgo(X; Y)
8P, (X)
ep1(X; y)

P, (X Y)

X1
X2

= X[nh=S5g (X
= X[h=Pl] (X
= X (X
= fs:Strg

D; NP)
D; NP)
S; VP; V; N)

= fs!Sg:Str; s!Pl:Strg
P, $P! B (i=1;2)
b R! AP (i=1;2)
RI QP,

v QP! ¢P (i=1;2)
B,

B,

R

\%

fs=xs y:s!Sgg
fs=xs ys!Plg
fs=xss y:s!Sgg
fs=xs yss!Plg
fs=xs!Plg

fs!Sg= xis!Sg vy:s;
s!Pl y:sg
the same asup,;(X; y)

= x:s!PI

fs="a'g
fs="many'g

f sISg="lion'; s!Pl="lions' g
fs!Sg="sh'; s!PI="sh'g
f s1Sg="eats'; s!Pl="eat' g

Figure 3.1: Example grammar after conversion topmcfg .

75

Chapter 3. Reducing context-free GF to PMCFG

Substitute each instantiated parameter path x;: : P with any p 2 P,
such that the unication ; tf = pgis de ned B Update ; with the
result of the uni cation.

Supposing that the nal substituted linearizationis , we can add the following
rule for the new function symbol f

. B B! A
[]Str

All 177

Bil i]

ﬂ>

=
@5 2
| | I

N

The algorithm is non-deterministic, and we get the nal grammar by nding
all solutions for each function symbolf . This terminates since there are only a
nite number of parameters.

3.4.1 Coercions between categories

There is a di erence between algorithmE3IT# and the previouslgorithms B8 +
B13; if an argument parameterx;: is not mentioned in (i.e. if the linearization
is erasing), then there will be no -row in the constraint record ;. This means
that the new category B; = B;[;] will only contain a subrecord of Bi[[i]?1,
where ; is a linearization of type B; . This problem can be solved by introducing
coercion functions betweerB;[;] and B;[[i]™®].

Algorithm 3.15.
Consider two syntax rules resulting from algorithm [314,
o B, ! A
g : I B,

where B, = B[1] and B, = B[,]. If 1 is a subrecord of », add the coercion
function €= c[1 2l

¢ @2 ! @1
e(x) = x
N

Applying algorithm ET4]and then algorithm BIH results in a grammar that is
a trivial simulation of the original grammar. This is not di cult to see, since
the coercion functions will be coercions in the simulating interpretation.

2Recall that we de ned a simplistic variant of record uni cat ion in section ET2] 1t 2=
1[2 whenever there isno r such that 1:ir 6 »:r.

76

3.5. Tables with anonymous variables

Example 3.16.
One function symbol gets a linearization from algorithm[37H that di ers from

gure 871 the functions ep,; and ep,, get merged into one functionep,,
w, : ¥ QP! Y
ep;(X;y) = fslSg=xs!Sg y:s;
s!Pl = xis!Pl y:sg
where QP = NPJ[]. This yields coercions for the more specic typesRP; =
NP[n = Sg and RP, = NP[n = PI].
¢ : QP! RP (i=1;2)
G(x) = X

3.5 Tables with anonymous variables

In full gf itis possible to have anonymous tables of the form[)], meaning
that the value of the parameter is uninteresting. In canonical form such a table
will have the form [p;) Pl P)]. The algorithms presented so
far will then result in n copies of in each resulting linearization. Here we
show how to reduce this overhead, in a way similar to theregulus compiler
(Rayner et all, 2001), which compiles limited uni cation-based grammars into
context-free grammars.

We assume that anonymous tables are written as [)]. This can be ac-
complished either by transforming each table [p;) 1,17, Pn) n]such
that ; = = 4, or by changing the canonical form compiler into leaving
anonymous tables alond

3.5.1 Constraints and anonymous variables

The non-deterministic substitution in algorithm EIZJremains almost the same.
But now we have the possibility of reducing a selection from a anonymous table
[2)]'(xi:) directly to , without updating the constraint record ; at all.
This means that there are two conicting behaviors if x;: is an instantiated
parameter path; either substitute it by any p 2 P and update ;, or reduce to
without updating ;. In either case, the nal result will be , but in the former
we get several solutions, one for each 2 P. Therefore, we should try to reduce
[-) 1!x;: directly whenever possible. The best way to do this is to redae a
term from the inside; i.e. when considering a term !(x;:), rstreduce and

3This is already implemented as an option in the current imple mentation of GF.

77

Chapter 3. Reducing context-free GF to PMCFG

check whether it is an anonymous table. If it is, reduce withait updating i,
otherwise substitute by somep 2 P and update ;.

Now, assume the following initial rule

f : Bi B! A
f (Xg;:i0;x) =
After constraint reduction of we will get , together with the constraints
1; .. . From this we can deduce the following rule for the new functon
symbol f*
f' B, B! A
fxasix) = [
A = A T™:]
Bi = Bi[i;;]
= f j: =[2) °lg

Note that the new categoriesA and B; consists of the parameter paths, together
with a set . This set contains the paths for all anonymous tab les of the resulting
term.

3.5.2 More coercion functions

With anonymous tables, algorithm I3 for creating coercims has to be ex-
tended.

Algorithm 3.17.
Given two rules,

o g, ! A
g : !l B,

whereB1 = B[1;:;],B2=B[2;]and B; 6 B,. If 1 is a subrecord of »,
then we can add the coerciorc™= ¢[1 2],

¢ B\zl 3\1
e(x) = f 1=Xx 41577 n=X ,0
where ; is created from ; by the following substitution; whenever ; = Ip: 0
and 2 ,i.e.aprexof isin ,replace pby_in ;.
N
Note that there can be more than one substitution; if 2 and 1. %2 |
then ;= 1p: %1p°will be replaced by ; = ' %1

78

3.6. Summary

Example 3.18.
The original (non-canonical) rule for n; contains an anonymous table,

Ng¢ . N

np = fs=[_) “sh'lg
The non-deterministic reduction then results in the following rule,

h; = fsl_="sh'g
whereR; = N[; s], sinces is the path for the only anonymous table. The rest of
the grammar results in the samepmcfg grammar as gure B augmented with
example[3I6. Finally we get a coercion from the \anonymous oun" R, = N[; s]
to the standard noun R = NJ,
¢ : N[;s]! N[
¢ (x) = fs!Sg=xs!_;s!Pl=xs!_g

3.6 Summary

The main result of this chapter is that any context-free gf grammar can be
transformed to an equivalent pmcfg grammar. Furthermore, the resulting
grammar is a simulation, meaning that it can be used for the pupose of parsing
the original context-free gf grammar. The translation works by rst instanti-
ating all tables and table selections, and converting them ¢ records and record
projections; and then all parameters are moved to the abstrat syntax. This
means among other things that a category in the original granmar can be split
into a number of distinct categories in the resulting gramma; and that a func-
tion in the original grammar can be split, or duplicated, int o several functions
with di erent typings.

Since a simulatingpmcfg grammar always exists, context-freegf can be seen
as a nice front-end for pmcfg , in the same way asgeneralized phrase-
structure grammar (Gazdar et all,[1985) can be seen as a nice front-end for
cfg .

As noted in section[32, the translation from gf to pmcfg can lead to an ex-
ponential increase of the grammar size. Therefore two alterative translation
algorithms were given that can in some cases reduce the inaee of grammar
size. The main idea of these variants is that it is not always ecessary to instan-
tiate every possible table and parameter, and in these casesnhumber of similar
grammar rules (and categories) can be merged into one singkelle (and cate-
gory), together with simple coercion functions between themerged categories
and the original categories.

79

Chapter 3. Reducing context-free GF to PMCFG

80

Chapter 4

Parsing algorithms for context-free
GF and PMCFG

This chapter investigates a number of tabular parsing aitions for context-freeGF
and PMCFG, all with polynomial time complexity. Starting with a gerarpassive al-
gorithm similar to the one given by Seki etlal. (1991), seveatierent modi cations
are suggested.

The search space can be reduced by approximating PIMCFG grammar by an
over-generatingCFG. Afterwards the context-free parse results can be transtht
back into PMCFG parse results, which have to be checked for correctnesedine

CFGis over-generating.

Another alternative is to use an active algorithm, in the spbf the context-free

Earley (1970) algorithm. We give two active algorithms; orecognizing the lin-
earization rows of a rule in a xed order, and another recadng rows incrementally
according to the order in which they occur in the input. Botbg-down and bottom-
up prediction strategies are investigated.

All suggested algorithms, except for the last incrementatsion, require that the
PMCFG grammar is nonerasing; therefore we give an algorithm fanoging eras-
ingness from a grammar.

81

Chapter 4. Parsing algorithms for context-free GF and PMCFG

A note on erasing grammars

The algorithms in sections 4.2, 4.3 and 4.4 only work fomonerasing grammars.
In section 4.5 it is discussed how to handle grammars wherenearization ar-
guments are deleted. The nal algorithm in section 4.6 worksfor erasing and
suppressing grammars directly.

A note on items and charts

The parse items de ned in the algorithms in this chapter are grictly not items
in the sense of de nition 2.25 in section 2.6.2. But it is not d cult to convert
the parse items resulting from an algorithm to items satisfying the de nition.

The soundness and completeness results of the algorithms rcahen be used to
show that the transformed chart is complete according to denition 2.29.

A running example

Example 4.1.

Throughout this chapter we will use the following example glammar when ex-
emplifying the algorithms.

SI f[A] = s=ApAq
Al g[AL; A2l = p= AlipAZp;
q= Al:gA%q
A! ac]] = p="a;q="¢
Al bd] = p="b; q="d

This grammar generates the language,
L = fs (s)js2(a[b g
where is a homomorphic mapping satisfying (a) = cand (b) = d.

This language is a kind of \copy-morphism" language, since lhe second occur-
rence ofs is transformed through the homomorphism . Some strings that
are accepted by the grammar are ac'; bd'; "abcd; "badc; "aacc; ‘bbdd, and

‘abbacddt
N

4.1 Ranges

The idea of ranges is taken fromrange concatenation grammar (reg ;
Boullier, 2000a,b). But instead of using pairs of input postions as in the rcg
formalism, we use sets of pairs. The reason for this is that gf/pmcfg grammar
can have reduplication of strings.

82

4.1. Ranges

De nition 4.2 (range). Given an input string w; the universal range R, is the
set of all pairs of input positions,Ry, = f (i;j)jO0 i | j wjg. Arange is
a nonempty subset ofR,,. Concatenation is a partial operation on ranges,

12 = f(@Kk)j@E])2 15 Gk)2 290
whenever the resulting set is non-empty.

There is a partial function from a string to a range,

msi" = f(i;j)js= W ::w g
whenevers is a substring ofw. If the input string w is known, we simply write
hsi. We write i:::j for the range hwi+1 :::w;i. A string s is animage of a
range if = bsi. In the sequel we only considerstring-equivalent ranges,
i.e. ranges that have an image. The string-equivalent range are closed under
concatenation, and form a partition of R,,. There are only O(jwj?) string-
equivalent ranges (instead of 21 ranges in total) and they can be stored in
constant space by only remembering the rst pair. Concatendion of string-
equivalent ranges can be done in constant time by creating amultiplication
table" of size O(jwj*) before-hand.

For string-equivalent ranges we write w for the string wi+1 :::w; whenever

(i;j) 2 . This means that w*J = wis; :::wj. Note that tw i = ; and
w's' = s whenevers is a substring of w. The empty range hi matches the
empty string and is equal tof (i;i) jO i j wjg. If is a data structure

(such as a list, a record or a tree) containing one or more rargs, we writew
for the data structure where all occurrences of a range in are replaced by
the string w ; and if is a data structure containing strings, we write h i for
the data structure where all strings are replaced by matchimg ranges.

If or areincompletein the sense that they contain as yet unbound variables,
then these variables are left unchanged inrv and hi. If or are in the
contextof arule A! f[B]:= ,then argument variablesB; are considered as
unbound variables.

Example 4.3.
Given the input string w = ~abaabag, the following are examples of ranges;

1 = habad = f(0;4);(3;7)g (=0:::4 =3:::7)
2 = hmpaba = f(2;6)g (= 2:::6)

s = hab = f(0;2) (359

4= hi = f(0;1) (2 3); (3 4)(56)(6;7)9

Now, given that,
= fs= 3 4 4;t= 3 X 30
where x is a variable, we have that,

w = fs="abad;t="ab x ‘abg

83

Chapter 4. Parsing algorithms for context-free GF and PMCFG

4.1.1 Range-restriction

We say that a linearization is string-concatenative if the only linearization
operation involving strings is concatenation; gf and pmcfg are both string-
concatenative formalisms. The notion ofrange-restriction is only meaningful
for string-concatenative linearizations.

De nition 4.4 (range-restriction). A gf linearization can berange-restricted
by an input string w. In the resulting linearization h i, each string constant
s is replaced by the rangebsi, and string concatenation is replaced by range
concatenation.

Note that range-restriction is a partial operation since hsi is a partial function.

A linearization can contain at most O(j j) constant strings, and since each of
these takesO(jwj) time to restrict, the following lemma is trivial.

Lemma 4.5. Range-restricting a gf linearization by w can be done in time
oG j jwi).
This lemma is noted only to make sure that range-restrictionis not the main

part of the time complexity for a parsing algorithm.

Example 4.6.

The following rule in the example grammar,

A! ac]] = p="a‘;q="c¢

can be range-restricted by the input string abbacdd¢ resulting in the following
rule,

Al acf] = p=1(0;1);(3;4)g; q=1(4,5);(7.8)g

4.1.2 Ranges and linear GF grammars

Recall from section 2.4.4 that a grammar is linear if no part d any argument
variable occurs more than once in a linearization. In a lineagf grammar each
record projection for a linearization variable B;:r occurs at most once.

A non-linear grammar has a rule where some argument projeabin occurs twice,
ie. Al f[B]:= 1Bjir ,Bjir 3. Inthe nallinearized string w, the rst
occurrence ofB;:r represents some substringy; :::w; and the second occur-
rence represents another substringvio : : : wjo. This is the reason why ranges are
represented assets of index pairs, and not just index pairs.

84

4.2. Polynomial parsing for context-free gf

A linear grammar does not have this reduplication of argumers, which means
that it is not necessary to represent ranges as sets. Insteade can use a rep-
resentation as pairs of indices i j), where 0 i | j wj, as done inrcg .
Concatenation is dened as ;j) (j% k) = (i; k) wheneverj = j% We call
this representation simple ranges as opposed to the previous set-representation.
When using simple ranges, there are only some small things toote;

The partial function hsi from strings to ranges, becomes a many-valued
function;

This implies that range-restriction becomes a non-determistic operation.

All algorithms from this chapter work on simple ranges with only slight modi -
cations. The only di erence is that each occurrence of = hsi should be replaced
by 2 hsi. As an example, the inference rule 4.12 of section 4.4 becoméafter
simpli cation),

[R; sr=(ij) s: 71
[R; ;r=(ik) ; 7]

S= Wj+p fii Wk

Example 4.7.

The example grammar is linear, meaning that we can use simpleanges instead.
Range-restricting the example grammar with the same input $ring, now results
in the following four rules,

Al ac[] = p=(0;1); q=(4;5)
Al ac[] = p=(3;4);q=(4:5)
Al ac] = p=(0;1); q=(7;8)
Al ac] = p=@3;4);q=(7;8)

4.2 Polynomial parsing for context-free GF

Given the range de nitions above, it is straightforward to describe a simple
bottom-up parsing algorithm for context-free gf grammars. This algorithm is
a natural extension of the cky algorithm and similar to the one described by
Seki et al. (1991), only this one is more general since it alsaorks for a more
general formalism than pmcfg .

The parse items for a ruleA ! f[B]:= are of the form [A! f[B]; ; 7,
where and ; are range-restricted linearizations. The interpretation is that
there is some treet = f (t): A such that [tj=w and [tj=w .

85

Chapter 4. Parsing algorithms for context-free GF and PMCFG

Combine
[Bi; 1] i [B 5] Al f[B]:=

[A! f[B], ; 7] = hi[B=]

First we range-restrict the linearization , and then substitute each argu-
ment variable B; by its range-restricted linearization ;.

(4.1)

Since the grammar is nonerasing, all ; are contained in . From this we can
de ne a ranking of parse items where each antecedent is leskdn the consequent.
This implies that the inference rule can be implemented by tre generalizedcky
deduction engine (algorithm 2.4). A simple item ranking can be de ned as
r((A;)= jw j, which works as long as there are no coercions in the grammar.
Recall from section 2.6.3 that a coercion is a rule of the formA I f[B] with

f (X)= x.

When we want to prove completeness, the ranking above works well for gram-
mars without coercions. In the general case we can de ne a r&ing based on
the size of the corresponding minimal tree instead;

d(A! f[B]; ;) = min fitjjt=f@®O:A[tl=w;[f=w g

Theorem 4.8. Inference rule 4.1 is sound and complete.

Proof. Soundness follows from the fact that the antecedentsB; : ;] say that
there are treest; : B; such that [t;] = . Then the treet = f (t;:::;t) is
type-correct and has linearization f] = [B=w]; and since = h i [B=T, the
consequent item has a correct interpretation.

Completeness follows from the fact that the only way to infer an item is by
the Combine rule, and then the sizejtj = jf (t1; :::;t)] > jt;j for all trees t,
including the minimal tree.

Example 4.9.
Given the example grammar and an input stringw = ~acbhd, the nal goal item
is[S; w] where , =fs=hwigandhwi =0:::4=f (0; 4)g. Here is an
example derivation using inference rule 4.1,

1 [A!D ad]l; acs] Combine
1° [A; a;c]

2 [A! bdl; bd;] Combine

22 [A; bal

3 [A! d[AY; A%]; abed; ac; bal Combine (1Y), (2
3 [A; abed]

4 [S! f[A]l; w; abed] Combine (3"

42 1s; W]

1Recall from section 2.6.1 that the size jtj of a tree t = f (t) is equal to 1 + jtj.

86

4.2. Polynomial parsing for context-free gf

where the range records ; are as follows,
ac = fp=hai;q=tcig
ba = fp=hoi;g=hig
abjed — f pP= hab ; gq= h:dig
w = fs=habcdg
N
Theorem 4.10. For a context-free gf grammar, the nal chart is nite and poly-

nomial in the length of the input. Thus the algorithm terminaes in polynomial
time in the length of the input.

Proof. To get an upper bound of the number of items we observe that any
linearization type [A] in the grammar G can only contain a nite number da
gf occurrences ofstr. In an item of a givenrule A! f[B]:= , there areda +
ds, dierent ranges. For each range there areO(n?).possibilities, wheren =
jwj is the length of the input. Thus, there are O(n?(9»* dsi)) possible items for
E,]e given rule. The space complexity isO(jRj n?¢), where e = max ,, f[B](dA +
ds,).
For the time complexity we note that since all information available in the
antecedent items and the side conditions also exist in the atsequent, each item
will only be inferred once. This in turn means that the time for inferring one
item is constant, given that the calculation in the side condtion is constant.
Thus, the time complexity is equal to the space complexity.

For pmcfg grammars, the upper bound for space and time complexity can &
tightened to O(jRj n®*!) by inspecting the structure of the linearization records.
Informally, the reason is that the daughter strings in an item are not independent
of each other; e.g. in a linearizationr = A:r B:s C:t, the leftmost position of B:s
must be equal to the rightmost position of A:r , and the rightmost position of B:s
must be equal to the leftmost position of C:t. For a more detailed explanation,
see Seki et al. (1991).

4.2.1 An active version of the algorithm

The algorithm above su ers from the same problem as similar ontext-free pars-
ing algorithms do; for the inference rule to apply, we must nd matching items,
which can take long time for large . The standard solution is to introduce par-
tial results, giving us the possibility to match one item at the time. The items
now look like [A! f[B BY; ; ~]with jBj = j~j, where the categoriesB
to the left of the dot are found with linearizations ~ The linearization is a
partially instantiated linearization. When B is empty, the item is passiveand
is fully instantiated. In this case we can write [B ;] for the passive item

[BY gl::: 1; ; 5]

87

Chapter 4. Parsing algorithms for context-free GF and PMCFG

Predict
Al f_[B] = 4.2)
[A! f[Bl ;] = hi
Prediction converts each grammar rule to a range-restrictd equivalent
active item.
Combine
[A! f[B Bx;BY; ; 71 [Bk; «]

0= _
[Al f[B:Bx BY; %~ (] [Bk=«] (43)

Here we substitute only one argument variableBy by its range-restricted
linearization .

Example 4.11.

We use the same grammar and input stringw = “abcd as in example 4.9; and
get the following derivation,

1 [S! f[Al 931 Predict
2 [A! o AL A% Jheds] Predict
3 [Al acl]; ac;] Predict
4 [A! bd]; ba;] Predict
5 [A! gAY A% Locds ac] Combine (2), (3)
6 [A! g[Al: A? I; abed: aci ba] Combine (4), (6)
7 [S! fIA 1 w;] Combine (1), (7)

where the range records w; ac; bd; abcd are asin example 4.9; 9; % .4
are uninstantiated as in their corresponding grammar rules and 1.4 is par-
tially instantiated,

wed = fp=hai A%p;g=hi A%qg

Soundness and completeness

We here give arguments of why the active algorithm is correct To show correct-
ness of the inference rules 4.2 and 4.3, we rst have to give aimterpretation of
parse items. The interpretation of anitem [A! f[B BY; ; 7, is that there
is anopentreet = f(t; t9 : A, for which [t] = w and [t] = w . Recall from
section 2.6.1 that an open tree may contain argument varialdsB; somewhere.
In this case we can be more speci c; each tree itiis instantiated, and each tree
t; in t%is equal to the argument variable B;. Note that for passive items the
tree t is instantiated, and the interpretation coincides with the interpretation of
the passive algorithm.

88

4.3. Parsing through context-free approximation

For the completeness proofs we assume that the associatedagnmar rule is;

Al f[B] =

Soundness ofPredict follows from the fact that,
FE1= =w'=w

Soundness ofCombine follows from [f (t; Bk; B)] = w and that there is a tree
tx : Bk such that [ty] = w . Then [f (t; tx; B)] = w [Bx=w] = w ° by the
side condition of Combine .

Completeness can be shown similarly to the completeness pwbfor inference rule
4.1; the ranking is based on the size of the minimal incomplet tree matching
the interpretation, where the size of an uninstantiated suliree is zero. Now,
given anitem [A! f[B BY; ; 7], there are two possibilities;

Either B is empty, in which case the item is inferred by prediction;

Otherwise B ends with By and the item is inferred by combining. The
treest(t; Bx; B9 : A andty : By for the antecedents are both smaller than
the consequent treet(t; ty; BY : A, sincejBgj = 0 and jtxj > 0.

4.3 Parsing through context-free approximation

In this section we show how to parse gpmcfg grammar by converting it to a
context-free grammar, and then recovering thepmcfg chart from the context-
free chart. The recovery consists of two steps: rst the conext-free chart is
converted to an equivalentpmcfg chart; then the items in that chart are com-
bined for discontinuous constituents.

Decorated context-free grammars

The theory in this section gets much simpler if we use a varianhof context-free
grammars, where the rules are decorated with extra informaibn.

De nition 4.12 (decorated rule). A decorated context-free rule is of the form
f Al |, wheref is the name of the rule, and each non-terminaB in can
have some associated informatiom, written as a superscript of the non-terminal
in question, B'.

89

Chapter 4. Parsing algorithms for context-free GF and PMCFG

Example 4.13.

Some rules from the example English grammar in section 1.3.might look like
this as decorated context-free rules;

ss : S ! NP VP
npg : NP ! D' N2
np, : NP 1 N!

vp, @ VP I vI NP?

Any parsing algorithm for cfg can be trivially transformed to a parsing algo-
rithm for decorated grammars, simply by ignoring the decoraions when looking

up matching rules and parse items. From now on we assume thathie parsing
algorithm returns a chart of items [i j;f : Al], as described in section
2.2.2. The only di erence is that the name of the rule is addedto the item, and

that the categories in might be decorated.

4.3.1 Creating a context-free approximation

The rst step is to convert the pmcfg grammar to a decorated context-free
grammar. This is done by splitting the linearization record of eachpmcfg rule
into several context-free rules.

Algorithm 4.14.

From the pmcfg rule,
Al f[B] == ri= 1,5 rm=

create n decorated context-free rulesf : Axry ! v, forl k n.

Note that we do not have to change g at all, since the variable-free notation
for pmcfg is already decorated.

The nal context-free grammar will be over-generating, meaning that all sen-
tences recognized by the originapbmcfg grammar will also be recognized by the
decoratedcfg . The reason for this is that the resulting cfg cannot constrain
several occurrences of an argument category to represent ¢hsame item; an ex-
ample of this is shown in examples 4.15{4.18. That thecfg is over-generating
means in turn that a sound and complete context-free parsingalgorithm will
still be complete, but unsound.

90

4.3. Parsing through context-free approximation

Example 4.15.
The example grammar looks like follows, when converted to a ecoratedcfg ,
f : Ss I Ap Aq
g : Ap ! Ap! Ap?
g : Agq ! Aqg' Aqg?
ac : Ap ! ‘@
ac : Ag ! ¢
bd : Ap ! 1
bd : Ag ! d

4.3.2 Converting context-free items to PMCFG items
Creating PMCFG pre-items
After parsing we get a chart of context-free parse items whih are converted to

pmcfg pre-items as follows.

Algorithm 4.16.
Each decorated context-free item,

[] k;f:Ar!]

matching the rule A! f[B], is converted to apmcfg pre-item,?
[A! f[B];r=j:::k; 7]
where ~is a partition of the daughters in such that,
i = fr%= jBjr°2 :Biw% wg
whereB;:r®) w is de ned by the following equivalence;
X)) wE i) o krgiX o]

Example 4.17.
After parsing the input string w = "abcd using the decorated grammar, we get
the following context-free chart;

1 [0 1;ac:Ap! a]

2 [1 2;bd:Ap! b]

3 [2 3;ac:Aq! ¢']

4 [3 4;bd:Aq! d]

5 [0 2;g:Ap! AplAp?] from(1)and(2)

6 [2 4;9:Aq!' Aqg'Aqg?] from(3)and (4)

7 [1 3;f:Ss! ApAq] from (2) and (3)

8 [0 4;f:Sis! ApAq] from (5) and (6)
2Recall that j:::k is the range hwj+1 :::wyi.

91

Chapter 4. Parsing algorithms for context-free GF and PMCFG

These context-free items are then converted tqgomcfg pre-items,
[Al ac[l;

a; |
[Al bdl]; »;]
[Al acfl; ¢;]
[Al bdl]; 4;]

[Al gAY A%l ap; ar bl
[Al gAY A% s o dl
[S! S[A]; be:r b cl
[S! S[A]; abied 5 abs cd]
where the range records are as follows;
x = fp: h(|g (X:a;b;ab)
y = fag=1tyig (y = ¢; d; cd)
xy = fp=Hmi;q=tyig

oO~NO UL WN PR

Combining pre-items

Several pre-items can nally be combined to full items with the following single
inference rule.
Combine
[Riri= 1571] 0 [Rirm= n;™nl
[Riri= ;i = n; 7]

(4.4)
Each consequent daughter ; is equal to the uni cation of the antecedents'
corresponding daughters 1t :::t p, where we use the simplistic uni-
cation de ned in section 2.1.2.

Unfortunately, this algorithm is unsound since the underlying parsing algorithm
gives unsound items. This means that the chart might containincorrect items.

Example 4.18.

Applying this inference rule to the pre-items from the examge grammar and
input string w = ~abcd, results in the following chart;

1 [A! acfl; ac; | Combine (1); (3)
2 [A! bd]; bd;] Combine (2); (4)
3 [Al g[A'; A% abed; acs bd] Combine (5);(6)
4 [S! s[A]l;s=hbd ; pel Combine (7)
5 [S! s[A]l; w; abcd] Combine (8)

where ,, = f s= hwig and is like in the previous example. Now note that
item (4) is not correct, since the grammar does not recogniz¢he string "bc'.

92

4.3. Parsing through context-free approximation

Marking for correctness

The algorithm is complete though, since the underlying algeithm is complete,
meaning that the chart contains all correct items. So, what we can do is mark
the correct items in the chart until there are no more correctitems to mark.

Algorithm 4.19.
Repeat the following until there are no more items to mark:

Mark anitem [A! f[B]; ; 7] as correct, if there are marked items [B;;]

foreach 1 i f N

Alternatively, add the following inference rule to the one in the previous section,
where we use [to mark items.

Mark
Al f[B]; ; 7 Bi; y .. [B; Y
[(B] 1 [Bi; 1] [] (4.5)
[Al f[B]; ; 717
Recall that [B ;] means the passive item [B! :::; ; :::]. Note that this

inference rules can be implemented with the generalizedky deduction engine
(algorithm 2.4).

Example 4.20.
Now the incorrect item (4) in the example chart,

[S! s[A];s=Hod ; pcl

will never get marked, since there is no item JA;] in the chart. The nal
chart consists of the items (1), (2), (3) and (5); note that this chart is equivalent

to the chart that results in example 4.9.
N

4.3.3 Soundness and completeness

Soundness and completeness of the algorithm follows from éhfact that the
algorithm in section 4.2 is sound and complete. Note that theinference rule to
mark items is almost equivalent to inference rule 4.1 in sedbn 4.2. The only
di erence is that here the value of is precomputed in the unmarked item, but
in section 4.2 we have to compute the value on every invocatio of the rule.

So, the algorithm is sound as long as the invariantv = [B=w’]is correctin the
unmarked item. This follows from soundness of the contextiee algorithm and
that inference rule 4.4 maintains the invariant. And the algorithm is complete
since the algorithm for combining pre-items is complete.

93

Chapter 4. Parsing algorithms for context-free GF and PMCFG

4.3.4 An active version of the algorithm

The two inference rulesCombine and Mark can be divided into four active
rules, if we introduce dotted items. The items are of the folbwing forms;

[A! f[B]; ;7] [A! f[B]; ; = 79

The interpretation of items of the rst form is that the linea rizations before
the dot has been recognized, and the linearizations after th dot remains to be
recognized. The interpretation of the second form of itemss that the daughters
before the dot are correct, and the daughters after the dot hae to be checked
for correctness.

Pre-Predict

AR Al f[B]:= (4.6)

where by ~. is meant an ¢ -element sequence of empty records.
Pre-Combine
[R; r=; ;71 [Rr= ;79
[R; ;r= ;79

~00= ~t ~0 (47)

If we are looking for the row r, and there is a matching pre-item such that
the daughters can be uni ed, we can move the dot forward. Notethat the
linearization is not used, since it is already recognized by the pre-item.

Mark-Predict
[R; 7]
[R; ;7]
When we are nished with incorporating pre-items, we can stat to mark
for correctness.

(4.8)

Mark-Combine

[AD f[B]; ; = ;7° [Bi; il
[AV fBL ;=5 0 7O 9
where we write [B;] for any passiveitem [B ! :::; ; 0] Ifwe

want to mark daughter B; for correctness, and there is a correct passive
item for B;, we can move the dot forward.

4.4 Active parsing of PMCFG

In this section we give an active algorithm forpmcfg grammars, which parses a
pmcfg grammar directly without having to use any context-free approximation.

94

4.4, Active parsing of pmcfg

Parse items

The parse items of a rule,

Al f[B] = ;r =
are of the form,

[AL f[B]; ;r= ;7]

The informal meaning is that i) all rows have been recognized as ji) the
sequence has been recognized as the range and that iii) for each argument
B; occurring in or , there is a passive item B;;]

For passive items [R; ;], this amounts to the same interpretation as in
the passive algorithm in section 4.2.
Example 4.21.

The following are examples of parse items for thg-rule from the example gram-
mar, and the input string ~abcd,

1 [A! gAY A?l;p=hi AlipAZp;q= AligAZqg; .; .1

2 [Al gAY A?%); p=tabi; = hi A%Q; aci bl

3 [Al g[Al;Az]:p: habi ; = hedi ; ac; bl
where ,c¢; b4 are asin example 4.9.
The rstitem has not found anything at all; while the second i tem has found the
full p row spanning the rangehahi =0 :::2, and is in the middle of recognizing

the q row. The last item is a passive item which has found both rows ganning
habi =0 :::2 and hcdi = 2 :::4; this item can also be written [A; apicd |-

Inference rules

There are four inference rules, and the following shorthand are used;

By [A;]we mean any passive item [A! :::; e

By ~. we mean a ¢ -element sequence of empty records;

By i we mean theith element of the sequence; and by Ti:= 9 we
mean that ; is replaced by °.

Predict

[Al f[B];r=hi ; ;~.] Al f[B]l:=r=; (4.10)

Prediction is very crude; it just converts each rule to a par® item saying
that the empty range is found; which of course is always true.

95

Chapter 4. Parsing algorithms for context-free GF and PMCFG

Complete
[R; ;r= r%=: ;7]
[R; 5r=;r%=hi ; ;7]

(4.11)

Completion applies when a row in the linearization record ha been found,
and moves the dot into the next row. There it says that the empty range
is found.

Scan
[R; ;r= s 57
[R; ;r=°; ;7]

0= hsi (4.12)

Scanning applies when the next item to read is a string constat.
Combine
[R; ;r= Bix%; ;7] [Bi; °] 0= 00
[R; ;r= 0 . fi= 9] 0

(4.13)

This is the only complicated rule, applying when the next item is an r°

label of argument B;. It succeeds if there is a matching passive item
[Bi; ©], for which 0 By this is meant that the linearization °

of the passive item is consistent with what was previously kown about

argument B;; and since ° comes from a passive item, it is instantiated
and we do not have to use uni cation; a subset check su ces.

Comparing to traditional algorithms for context-free gram mars, such as the ones
in section 2.2.2, there is one extra rulecComplete . This rule acts like a kind of
prediction for subsequent rows in a linearization record.

Example 4.22.

A derivation for the example grammar and the input string “abcd is shown in
gure 4.1.
N

4.4.1 Dierent prediction strategies

The Predict rule given above is very crude, adding every rule in the gramrar
as a hypothesis. This can be a serious problem for large gramars. Chart
parsing algorithms for context-free grammars have better pediction strategies,
as described in section 2.2.2. In this section we extend thesstrategies topmcfg
parsing.

96

4.4, Active parsing of pmcfg

1 [Rac;p=hi "a;q="c;] Predict

2 [Rac;p=hai ;q="c';] Scan (1)

3 [Rac;p=hai;g=hi c';] Complete (2)

4 [Rac;p=hai;q=hi ;] Scan (3)

4 [A; acl

5 [Rpg; p=hi b;q="d";] Predict

6 [Rpa; p=ho ;q="d";] Scan (5)

7 [Rpg; p=Ha;qg=hi 'd';] Complete (6)

8 [Rpg; p=Ho;qg=hdi ;] Scan (7)

8 [A; bal

9 [Rg;p=hi 9= q; ;5 ;] Predict

10 [Rq; p=hai AZ2p;q= gq; ac; : | Combine (9), (4"
11 [Rg i P= hab ;q= g, ac, bd] Combine (10), (8')

12 [Rg;p=hab;q=hi g, ac; bdl Complete (11)
13 [Rq; p=habi;gq=hi AZ%Q; ac; na] Combine (12), (4)
14 [Rq;p=habi;qg=hed ; ac; bal Combine (13), (8

15 [Ri;s=hi ApAq; .] Predict
16 [Rf;s=hab AQ; abcd] Combine (15), (4
17 [Rf;s=habcd ; apcd] Combine (16), (8
17 0S5 wl
Abbreviations: Ry = S! f[A]
Ry = A! glA'; A7
Rac = Al acf]
Rbd = Al bd[l
»p = AlpAZp
¢ = AlgAZq

Figure 4.1: A derivation using the active algorithm.

97

Chapter 4. Parsing algorithms for context-free GF and PMCFG

Earley-style top-down prediction
This is an adaptation of the context-free inference rules 24{2.5 in section 2.2.2.
Predict

[:::; ;r= As ;]
[A!l f[B];r= oo T]

Al f[B]:=r=; (4.14)

We only have to add predictions for a category when there alrady is an
item looking for that category.

Initial prediction

[S! f[B];s= 1 St f[B]l=s= (4.15)

We also need initial predictions, for the starting categoryof the grammar.
Complete, Scan and Combine remain as the inference rules 4.11{4.13.

Example 4.23.

Top-down prediction does not reduce the number of items in gure 4.1; it only
speci es the order in which items are predicted. While the pedicted items (1),
(5), (9) and (15) in the gure can be deduced in any order, top-down prediction
speci es that item (15) is inferred by the Initial prediction rule, and the
other follows from that by the top-down Predict rule.

However, if the grammar contains more rules, top-down predition can Iter out

more items than the basic algorithm.
N

Kilbury-style bottom-up prediction
This is an adaptation of the context-free inference rule 2.6n section 2.2.2.
Predict

(B 1] < Al f[B]:=
[Al f[Bl;r= 5 7 0= 511 © - 0

(4.16)
We nd the rstargument B; and assure that it has been found previously
as the passive item B;; ;]. Since we know that the item is found, we
implicitly apply the Combine rule and move the dot past the argument.

98

4.5, Parsing of erasing and suppressing pmcfg

Terminal
Al f[]:=
[ATf0; 5] = hi
If the rule does not contain any arguments, it will not be handled by
Predict . So we need a new rule for this case.

(4.17)

Complete and Combine remain as the inference rules 4.11 and 4.13.

This version of Kilbury prediction only works for grammars where terminals
only occur in rules without arguments, A ! f[]. All pmcfg grammars can
easily be converted to this form as shown by Seki et al. (1991)For grammars
in this format, the Scan rule will never apply, so we can safely skip that one.

Another possibility is to augment the Predict rule to handle any grammar rules
with terminals; then the Scan rule have to be reintroduced and theTerminal
rule can be dropped.

Example 4.24.
Using bottom-up prediction on the example reduces the numbe of items in
gure 4.1 drastically; items (1){(3), (5){(7), (9) and (15) will no longer be
predicted. Instead the items (4) and (8) will be predicted by the Terminal
axiom, and items (10) and (16) will be predicted by the bottom-up Predict
rule.

N

4.5 Parsing of erasing and suppressing PMCFG

A grammar is erasing if some argument projection in some ruleloes not occur
on the right-hand side. This means that some parts of a lineazation might not
have a realization in the current input string.

Example 4.25.
This is an example of a simple erasingpmcfg ;
S! f[A] = s=As;
Al gA;B;C] = s31=As, Bis;s;=As; Cis
Al a] = si1="a';s2= &'
B! b] = s="b
C!] = s=7c

The grammar recognizes the language,

(a2 [a2b) (cbh = f ag; a;ch; acheb; :::; ab; abcb; abcbceb; ::g

As an example, the string a; cb' is recognized by the grammar; but it is im-
possible to create a corresponding parse item for thé\ category: [A; s1 =

0:::3; s = ?], sinceA:s;, then should linearize to a; bc'. N

99

Chapter 4. Parsing algorithms for context-free GF and PMCFG

One solution is to allow the empty set as a range, meaning thathe linearization

in question is not found in the input string. The example item will then become
[A;s=0:::3; p= ;] The algorithms do not have to be change at all, and the
theoretical space and time complexity does not change eithre The problem is

that this in practice means that all rules in the grammar will give rise to parse
items, even rules where no part of the linearization is recogized. This will yield

an extremely big chart, and is therefore impractical.

4.5.1 Removing erasingness from a grammar

A better solution is to translate the grammar into non-erasing form. That this
can be done for anypmcfg grammar is already known (Seki et al., 1991). But
for completeness, we give an alternative algorithm for remaing erasingness from
a grammar. The resulting grammar is shown to be a simulation 6the original
grammar, meaning that it can be directly used for parsing putposes.

We start by de ning a relation . on projections of categories. The idea is that
given a grammar ruleA! f[B]:= ,then Axr . B;:r®wheneverB;:r®occurs
somewhere in rowr of the linearization

De nition 4.26. Given a function symbol f with the following rule,

Al f[By;:::;B] =
we de ne a binary relation .; on projections of categories, as

Ar . ¢ Bir® i o= B

De nition 4.27 (restriction). Given a rule R,

Al f[By;:::;B] =
we de ne the restriction R j by a nonempty set of labels as the new rule,

Al fBij 1651 = f(r=)2 jr2 g

where we by Bi j i 6 ;] mean \the sequence of thoseB; such that ; is
nonempty". The new function symbol and the new categories ag,

f* f[]
A All
B Bil il

and ; is de ned as,
i = fr%r2 ;Ar.; B

100

4.5, Parsing of erasing and suppressing pmcfg

The linearization of a restriction R j contains only the rows r = of
the original linearization , such that r 2 . Furthermore, the categories are

restricted to include only the labels that are mentioned in . If ; is the empty
set, it means that B; is not mentioned at all in . Then we have to exclude
from the restriction all such categoriesB;, otherwise the restriction will not be

a nonerasing rule.

It can be deduced from the de nition that the linearization t ype of a category
A = A[]is a subrecord of the linearization type of A;

A = fr:strjr2 g A

This also means that if is empty, the linearization type bec omes the empty
record which is not allowed as apmcfg linearization type. When creating the
nonerasing restriction grammar we have to exclude all categries A = Al]
where is empty.

Algorithm 4.28.

Given a pmcfg grammar G, create a new grammar@, called the restriction
grammar, in the following way;

1. Start with G containing the restriction R j for each grammar rule R =
S! f[:::], where

= S = fs:Strg

2. WheneverG contains arestriction R j fortherule R= A! f[:::Bj::1],
and

© = fr%r2 ;Ar.; Bir

is nonempty; add the restriction R®j ©to G for each grammar rule
RO=B;! g}::]

N

The algorithm terminates since there are only a nite number of restrictions

R j for a given grammar rule R. Note that is possible for a (non-suppressing)
erasing grammar rule to loose some of its arguments during ewersion. The

rule is then called indirectly suppressing

Example 4.29.

The grammar in example 4.25 is erasing. First we calculate th relation . (),

Sis . Asp
As; .9 As; As; .4 As
As; .4 Bs As; .4 Cis

101

Chapter 4. Parsing algorithms for context-free GF and PMCFG

and from this we see that theg-rule and the a-rule have to be replaced by two
restrictions each,

Ai' 0[5, B] = s,=Ays, Bis
Aot @[A1;C] = s;=Aiis; Cis
Al &l = sp="a'
Kot 8] = sp="a

where A1 = A[s;] and A, = A[s,]. Note that both g-restrictions have lost one

argument each, so the grammar is indirectly suppressing.
N

Example 4.30.

The English example grammar from section 1.3.5, as shown ipmcfg format
in gure 2.6, is also erasing; theNP;., resp. S rules choose only one of theN
resp. VP daughter's rows, s; or Sp.

Applying the algorithm to this grammar results in a grammar w here each noun
resp. verb is split into two nouns resp. verbs; a singular anda plural,

Ri! Al = sp="lion R,! Agll = s, ="lions'
Nl [oF 1[] = S1 = “sh' Nz I A 2[' = Sy = “sh'
Vl ! O'e]_[] = $1 = " eats Vg ! 092|] = Sy= " eat’

where Rj = N[si] and ¥; = V[s;].

4.5.2 Using the restriction grammar for parsing

To be able to use the restriction grammarG for parsing the original grammar,
we have to add metavariablesto parse trees, as de ned in section 2.6.1. If the
original grammar is suppressing? then for some of its trees, sayt, there will be
a subtreet® whose linearization will not show up in the linearization of t. This
means that t®is exchangeable int; or in other words, [t] = [t[t%=t°]] for any t%
of the same category ag®. Since the value oft® is uninteresting as long as it
is type-correct, we can use a metavariable? in place oft° In this way we can
capture a set of trees all having the same linearization.

Now, since the restricted grammar has removed all (directlyor indirectly) sup-
pressing arguments, there will be no representation of thegpressed subtree?
atallin &. If we are allowed to use metavariables when converting bacto trees
for the original grammar G, we can add a metavariable whenever necessatry.

Lemma 4.31. The restriction grammar G is a trivial simulation of the original
grammar G, augmented with metavariables.

SEither directly, or indirectly as in example 4.29.

102

4.5, Parsing of erasing and suppressing pmcfg

Proof. Suppose given a treegg(x1; :::; X) : A in G, where A = A[], corre-
sponding to the G-rule,

A 1 gXy X]
Then we know that there is a G-rule,
Al f[By;:::;B]

for which g = ', and for eachX; there is someB; such that X; = Bj = Bj[;].
From this we can construct the new tree

ho(xa; ciosx) = flysiiny)
wherey; = hx;j if X; = Bj, andy; = ?if there is no X; = Bj.
Categories and linearizations inG are mapped toG by,
HA: 1 = A;

whereA= A[],and = [f r=2?jr2 g

When constructing trees from the nal chart, metavariables can be left un-
changed since they represent any possible tree of the correiype.

Example 4.32.

For the restriction grammar in example 4.29, parsing the input string w = “a; cb'
results in the following pmcfg chart;

1 [S! f[A1]; s=hwi; s;= hwi]

[A1! u[A2; B]; s = hwi ;s = heudi ; s= i]

[R2! 0[A1; Cl; 2= heudi ;51 = heui 5 5= hoi]

(ALl &fl; s1= hayi ;]

[B! H];s=hoi;]

[C! cfl;s=hai;]

Since the simulation is trivial, we can directly convert the chart to a chart

for the original grammar in example 4.25, by inserting metaariables whenever
necessary;

[St f[A]; 1; 2]

OO, WN

fs=hwig

1 1=

2 [Al gAB;Cl; 27 3 5 7] 2=fsp=twi;s;=7g
3 [A!l gA;B;Cl; 3 41?7 6] 3=fs1=7?;,s=hydcg
4 [A!D a]; 4; 1] 4s=Fs;=hai ;sp=7?g
5 [B! bl 55] 5=fs=hoig

6 [C! d]; &:] g=fs=hcig

From this chart we can extract the following only parse tree,

f (g(g(a; ?; ©); b; ?)

103

Chapter 4. Parsing algorithms for context-free GF and PMCFG

4.6 Incremental PMCFG parsing

A parsing algorithm is incremental if it reads the input one token at the time;
and calculates all possible consequences of a token, befone next token is read.
This feature is useful for e.g. recognition of spoken inputsince language mod-
eling typically requires that probabilities are assigned ncrementally. There is
also cognitive evidence showing that humans process langga in an incremental
fashion. For further information about incrementality, see e.g. ACL (2004).

Example 4.33.

The active algorithms in section 4.4 are not incremental. Caisider the derivation
of the input string “abcd in gure 4.1 and the item (10);

10 [A! gAY A?];p=hai AZ%p;q= AhgA%q; ap;]
This item is combined with item (8) [A; pg] into item (11);
11 [A! gAY A?%];p=habi ;q= AL A%Q; ac; bl

But note that this item has only read the rst half of the strin g (hah), while its
daughters together have read the full string (a.c and p.q).

A simpler example is when applying theTerminal rule,
Al acf] = p=-a;q="'c
to the input string " ca’; rst it will recognize the rst row in the range 1 :::2,

and after that it will recognize the second row in the range Q.:: 1. N

In this section we describe an incremental, active parsing lgorithm. In the
end we will see that this algorithm also handles erasing andugppressingpmcfg
grammars without modi cation.

Parse items

We use items of the form,
kAl f[B]; ;r= ; ;7]

wherek is an input position; such an item is also called &-item. The informal
meaning is similar to the active items in section 4.4, with the additional con-
straint that (j; k) 2 for somej. This means that the item is looking for
starting in position k.

The rows in have been recognized in sequence, which means dhthe last row
in is the latest that has been recognized. Since we cannot kow in which order
the rows in will be recognized, we have to treat as a set of rows, not as a
sequence.

104

4.6. Incremental pmcfg parsing

Inference rules

Apart from the fact that we have to treat the linearization re cord as a set instead
of a sequence, the basic algorithm is quite similar to the adve algorithm in
section 4.4. There are four inference rules, and the followiy shorthands are

used;

By [FA;] we mean any passive item fA ! :::; ;3 :::]. Note
that passive items can be unsaturated, meaning that not all ows are
recognized (which is true if is nonempty); contrary to passive items in
previous algorithms;

By . we mean a f -element sequence of empty records;

By ; we mean theith element of the sequence; and by Ti:= 9 we
mean that ; is replaced by °.

Predict g
< A! f[B]:=
” : — . pro= (4.18)
A f[B];r=hi ;; e I K wi

Since we do not know which row will be the rst to be recognized we
choose row nondeterministically. Also we do not know from wiich position
k it will be recognized, so this is also nondeterministic.
Complete
[R; ;r= ;5r%=; ;7]
FR; ;r=;r%hi ;; ;7]
Here we also have to choose row and input positiok nondeterministically;

since the algorithm is incremental, the previous positionj has to be less
than or equal to k.

ik ojowj (4.19)

Scan _
R, 5r= s; ;7] S= Wy IliWg
KR; ;r= 095 ;7] = i (20

When scanning a strings, we have to know that it spans the input positions
i k; otherwise the rule is similar to Scan in section 4.4.

Combine
j 0 ~1 [k 0 g G: k)2 OO
lR; ;r= Bir?; 7] [¥Bi; °] o 00
KR; ;r= 0 . 7= 9] L 0

(4.21)

The passiveB;-item must have recognized the rowr® spanning the posi-
tionsj k; otherwise the rule is similar to Combine in section 4.4.

105

Chapter 4. Parsing algorithms for context-free GF and PMCFG

Example 4.34.

A derivation for the example grammar and the input string “abcd is shown in
gure 4.2. Note that the algorithm also predicts a lot of useless items;

The S-rule R; introduces one predicted item for eachk (5 items);

Each of the A-rules Rg; Rac; Rug introduces two predicted items for each
k, one for each linearization row (30 items);

Each of the k-items (5), (7) and (8) gives rise to one completed item for
eachk® k (10 items).

All in all 45 predicted and completed items, of which only 7 are used in the

derivation.
N

4.6.1 Alternative strategies

The inference rulesPredict and Complete are extremely crude, predicting
any possible row to the right of the dot, anywhere in the input. Obviously this
gives rise to several useless items, which shouldn't be therin the rst place.
Therefore it becomes necessary to have either top-down or lom-up ltering
in the predictions.

Earley-style top-down ltering

The idea with top-down ltering is that we only predict a k-item for A:r if there
already is ak-item looking for A:r. This can be applied to the Complete rule
too; and we nally have to give an initial prediction of the st arting category.
We write [A:r] for a predict item, i.e. an item of the form,

Moo %= Ao it
Predict

[« Ar] Al f[B]:=
KAl f[B];r=hi ;; e o=

(4.22)

Prediction is much more deterministic than in the basic algaithm, since
there has to be a predict item in positionk already looking for row r.

Complete
IR; ;r= ;1% ;=1 [Ar]
FR; ;r=;r%hi ;; ;7]

i k (4.23)
Completion is also more deterministic, by the same argument

106

4.6. Incremental pmcfg parsing

N -

o O b~

ol
O © o~

13
14

15
16
17

PR¢;s=hi ApAq; .] Predict
[ORg;pzhi pad= q; 5] Predict
PRac; p=hi ‘a;q="c’;] Predict
FRpa; p=hi b;q="d;] Predict
[Rac; p=hai ;q="c';] Scan (1)
[Rg; p=hai AZp;q= 4; a ;] Combine (2), (5)
PRpg; p=hoi ;q="d";] Scan (4)
PRg; p=hab ;4= ¢; a bl Combine (6), (7)

PRt ;s=hab AqQ; a]

Combine (1), (8)

PRac; p=hai;q=hi c;] Complete (5)

PRg; p=habi;q=hi g;

;]

BRac; p= hai;q= i

a; bl Complete (8)

Scan (10)

BRy; p=habi; q= hci A2%:.q; ac; b] Combine (11), (12)
BRpa; p=Ha;q=hi d';] Complete (7)

[4Rbd;p=l‘bi;q= hdi
PRg; p=habi; q= hedi
PRf;s=habcd ; apcal

Abbreviations: Ry =
Ry =

Rac =

Rpa =

o =

q =

;]

Scan (14)
ac: bd] Combine (13), (15)
Combine (9), (16)

St f[A]
Al gAY A%
Al ac[]
Al bd]
Al:p A%:p
Al:q A%q

Figure 4.2: A derivation using the incremental algorithm.

107

Chapter 4. Parsing algorithms for context-free GF and PMCFG

Initial prediction

°st! f[B];s=hi ;~.] St f[B]:=s= (4.24)

This rule is needed to start the prediction process; we lookdr the sequence
starting in position 0.
Scan and Combine remain as the inference rules 4.20 and 4.21.

Example 4.35.
The example derivation in gure 4.2 remains exactly the same The main dif-
ference is that this algorithm does not predict as many uselgs items;

The items (1) and (6) introduce predictions for A:p at k =0; 1 (6 items);
The items (9) and (13) introduce predictions for A:q at k = 2; 3 (6 items);

The items (5), (7) and (8) introduce completions for A:q at k = 2; 3 (6
items).

In total 19 predicted and completed items (included the initial prediction); as

opposed to 45 items in example 4.34. N

Kilbury-style bottom-up prediction

The main idea with Kilbury prediction is that we only predict a row if the rst
thing to look for is already found. And if the thing is found, we can also move
the dot forward. Since there are two di erent rules for predicting (Predict and
Complete), and the thing to look for can either be a terminal or an argument,
we get four combinations.

Predict+Scan

8

< A! f[B]:=

. : — . r = s (4.25)
Al f[Bl;r=hsi ;; N ST Wj4p iiiWk

If the row r starts with some terminals occurring in the input string,
predict that row and move the dot past the already read terminals.

Predict+Combine 8
[kBi; 0] < Al f[B]:= o
K po— . O = TH
KAl f[B];r= s T = 91 (k)2 = OO
(4.26)
If the row r starts with B;:r% and B;:r° have been found ending irk, then

we can predict the rowr and move the dot pastB;:r® When moving the
dot forward, we also have to update argument numberi to °.

108

4.6. Incremental pmcfg parsing

Complete+Scan

[°R; ;;r=s; ;7] ST Wi iiWk
kR; ;r=msi ;7] Jo]

(4.27)

The same argument as forPredict+Scan , with the added constraint
that the terminals should come after the item's previous pogdion jo.

Complete+Combine
8
oR; ;ir =Bur®; ;-] [kB; 0 < (k)2 = orf
KR; ;r= ;; S1i= 9] et

(4.28)
The same argument as forPredict+Combine ; but the recognized row
B;:r% has to come after the previous position o.

Scan and Combine remain as the inference rules 4.20 and 4.21.

This version of the Kilbury algorithm does not work for grammars with -
linearizations. All pmcfg grammars can be converted to -free form, see Seki et al.
(1991) for details. An alternative to removing -linearizations is to add extra
inference rules.

Example 4.36.

First we note that the example grammar is does not have -linearizations, so
the Kilbury algorithm can be used right away.

The derivation in gure 4.2 still basically holds. The only r eal di erence is that
all predicted and completed items, (1){(4), (10), (11) and (14), disappear since
they are combined with the following item instead. Also, the rules used to infer
the items (5){(7), (9), (12), (13) and (15) will be one of the four Kilbury rules
above.

The main di erence is as for the top-down algorithm, the usekss predicted and
completed items;

The rules Ry¢; Rpqg introduce items by Predict+Scan and Complete+
Scan at the positions of the corresponding input tokens (6 items)

For each of these predicted or completed itemsPredict+Combine ap-
plies for the rulesR¢ ; Rq (12 items);

The inference ruleComplete+Combine only applies once, yielding item
(13) in the derivation (1 item).

All in all 19 predicted or completed items, as compared to the45 items in

example 4.34.
N

109

Chapter 4. Parsing algorithms for context-free GF and PMCFG

4.6.2 Erasing and suppressing grammars

The incremental algorithm also handles erasing grammars, r@d even totally
suppressed arguments. The problem is how to reconstruct thparse trees from
the chart. This can be done by using metavariables as descréddl in section 2.6.1.

Suppressed arguments in an item will show up a$g in the children's list. All
these can simply be seen as metavariables for later purposesg. when building
parse trees.

Example 4.37.

We give a derivation for the erasing grammar in example 4.25 iad the input
string w = "a; cb', using the basic incremental algorithm,

1 PRi;s=hi Asy;] Predict

2 PRgl;si=hi 15s2= 25 .7] Predict

3 PRyg;s2=hi 2;s1= 15 . . .1 Predict

4 PRa;si=hi ‘a';sp="ap'; | Predict

5 FRe;s=hi ¢] Predict

6 [Ra;si=hai ;s="a";] Scan (4)

7 FRg;s2=hai Css;si= 1; a; o5 ;] Combine (3), (6)
8 PRp;s=hi b;] Predict

9 PRe;s=hi ;] Scan (5)

10 PRg;S2=huC ;s1= 1; a 5 cl Combine (7), (9)
11 PRg;si=hmc Bis;s;= 2; ac :; ;] Combine (2), (10)
12 PRp;s=Mi ;] Scan (8)

13 PRg;si=hucl ;s2= 2; ac; b»] Combine (11), (12)
14 PRf;s=hacd Asi; a] Combine (1), (13)

where we use the following abbreviations;

Ry = S! f[A] a, = fs1=haig

Ry = A! g[A; B; C] p = fs=tHhg

Ra = Al 4[] ¢c = fs=rcig

R, = B! u] aic - f so = hagci g

R, = C! C[l ajch — f s; = haych g
1 = Asy;B:s > = As;C:s

Note that the passive items (6), (9), (10), (12), (13) and (14 correspond to
the items (4), (6), (3), (5), (2) and (1) respectively in example 4.32. Also note
that the basic incremental algorithm predict several useless items, which are not

noted in the derivation.
N

110

4.7. Summary

4.7 Summary

In this chapter we de ned four di erent tabular parsing algo rithms for context-
free gf and pmcfg . First we gave a general passive algorithm, which works
for context-free gf grammars. Then we showed how to use a context-free ap-
proximation for pmcfg parsing; the pmcfg grammar is converted to an over-
generating cfg , which is used for parsing. Afterwards the resulting contex-free
chart is converted back to apmcfg chart, from which unsound items have to
be removed, since thecfg is over-generating.

Finally we gave two active parsing algorithms for pmcfg ; the rst is a basic
algorithm which recognizes the linearization rows of a rulein a xed order. The
second algorithm recognizes rows incrementally according the order in which
they occur in the input. Both top-down and bottom-up predict ion strategies
were investigated.

Itis only the last, incremental algorithm that can handle erasing and suppressing
pmcfg grammars without modi cation. For the other three algorith ms, we gave
an algorithm for removing erasingness from a grammar; we atsshowed that the

resulting nonerasing grammar is a simulation and thus can baised for parsing

the original grammar.

111

Chapter 4. Parsing algorithms for context-free GF and PMCFG

112

Chapter 5

Extensions of concrete syntax

This chapter describes three possible extensions@fcontext-freeGF and PMCFG,
one of which has two di erent possible interpretations. Apdrom investigating
the resulting expressive power and parsing complexity, \8e give active parsing
algorithms for each of the extensions.

The intersection operation, borrowed fromonjunctive grammar(Okhotin, 2001),
make PMCFG equivalent tosimple literal movement grammaiGroenink, 1997a,b)
and range concatenation grammaBoullier, 2000a,b). As a corollary we get that
conjunctivePMCFG describe exactly the class of languages recognizable ipnpel
mial time.

The disjunction operation can have two possible interpt&ias; one intensional
which does not change the descriptive power of context-f&eand PMCFG, and

one extensional which is conjectured to be a strict extensioNith extensional
disjunction it is possible to describe the language[b)2", which is conjectured
cannot be described by context-freéeF and PMCFG.

The third operation is the interleaving operation, whichh&rrowed frompartially
ordered multiset context-free grammgpoms-CFG, Nederhof et al., 2003) which in
turn is a variant of theID/LP formalism (Shieber, 1984). This operation can be
reduced to a number of disjunctions, but this reduction caad to an exponential
increase of the grammar size. We instead give a direct pgrsilgorithm derived
from a parsing algorithm fopomsCFG.

113

Chapter 5. Extensions of concrete syntax

A note on PMCFG vs. context-free GF

In this chapter we write\ gf/pomcfg "when the surrounding text applies both for
full gf and pmcfg . When the context applies for context-freegf and pmcfg ,
we use only the term\pmcfg ", since the two formalisms are equivalent as shown
in chapter 3.

5.1 Intersection (&)

There is an extension of context-free grammars calledonjunctive grammar
introduced by Okhotin (2001), where the right-hand sides ofrules are extended
with a new intersection operator. A conjunctive context-free rule is written,

A ! 1& & g

where ;2 (N[) . The interpretation is that A can be rewritten to w 2
i all ; can be rewritten to w. This operation can be directly transferred to
gflpmcfg linearizations.

De nition 5.1 (intersection). The intersection operation is a partial lineariza-
tion operation with the following de nition; 1& 5 is calculated to 1 i
1= 2.

We call gf/pmcfg extended with the intersection operation conjunctive gf/
pmcfg . The following laws hold for intersections of linearizations:

& =
(1& 2) = (1)&(2)
= o1& 25 = (r =g)&(ir = 2)

This means that we can push out an intersection to a row, whichis used in the
active parsing algorithm described in section 5.1.3. We careven push out an
intersection to an intersection of linearizations.

Example 5.2.

In the end of section 1.3.5, we introduced discontinuous vér phrases (with
the rows s;; s2) to handle some phenomena in Swedish syntax. Even En-
glish syntax needs discontinuous verb phrases to handle e.gopicalization as
in it is sh that many lions eat .

Groenink (1997a,b) suggests to handle verb phrase coorditian by using con-
junction on the verb component of the verb phrase. Inpmcfg format, this looks
like follows;

VP! vp[VPY; VP?] := s;= VPhYs; "and' VP%isy;
s» = VPLis; & VPZs,

114

5.1. Intersection (&)

By combining two verb phrases with the same object, we can fan a coordinated
verb phrase;

vp.(f s; = "catch’; s, =" sh'g;
fsg="eat';s,="sh'g) = fs;="catch and eat; s, =" sh'g

which in turn can be used to form sentences likemany lions catch and eat sh,

or the topicalized version it is sh that many lions catch and eat'. N

5.1.1 A strict extension

Theorem 5.3. The class of languages recognized by conjunctivgf/pmcfg
grammars is closed under intersection.

Proof. Let G; and G, be two grammars (with no common categories or func-
tion symbols) recognizing the languaged. (G;) and L(G;) respectively. Let

G contain all rules from G; and G, plus the following single rule for the new
starting category S:

S! f[S1; S2] = s= S1:5& S3:8

It is trivial to see that G recognizes all and only those strings that are recognized
by both G; and G».

Corollary 5.4. The intersection operation is a strict extension of pmcfg .

The corollary follows from the fact that pmcfg is not closed under intersection
Seki et al. (1991), a property it shares with context-free gammars.

Language-theoretic implications

Closedness under intersection has some less desirable peofies, which conjunc-
tive pmcfg inherits from conjunctive grammar (Okhatin, 2001).

The following decision problems are undecidable: emptines niteness,
regularity, context-freeness, inclusion and equivalence This is because
these decision problems are undecidable for nite intersetns of context-
free grammars, see e.g. Hopcroft and Ullman (1979).

Conjunctive pmcfg is not closed under homomorphism. This follows from
the fact that any recursively enumerable languagel can be described by
h(L1\L), for some homomorphismh and context-free languaged.1; L »,
see e.g. Ginsburg (1975).

115

Chapter 5. Extensions of concrete syntax

Usefulness of intersection

Conjunctive GF/PMCFG is not only closed under intersection, but the clo-
sure is alsomodular, i.e. it preserves the structure of the underlying gram-
mar conjuncts. This makes it useful for modular grammar engneering, as
noted by Boullier (2000a,b). Intersection might also be usé&ul for modeling

secondary/tertiary structures of biological sequences, s has been investigated
by Chiang (2004).

For purely linguistic phenomena, Groenink (1997a) has a sugestion of how to
use intersection to describe verb coordination, as shown iexample 5.2.

5.1.2 Conjunctive PMCFG describes the polynomial languages

In this section we show that conjunctive pmcfg is equivalent to the formalisms
s-Img andrcg . Since itis already known that these formalisms exactly desribe
the class of languages recognizable in polynomial time, weetjthe same result
for pmcfg extended with a intersection operation.

Literal movement grammar and range concatenation grammar

Literal movement grammar (Img ; Groenink, 1997a,b) and its relative
range concatenation grammar (rcg ; Boullier, 2000a,b), are grammar for-
malisms based onpredicates over string tuples. A grammar is a collection of
clausesfor predicates, very similar to the programming languageprolog . We
here de ne the general formalism ofImg , and then two equivalent subclasses,
rcg and simple Img. We assume given a nite set of terminal tokens, and
an in nite supply of logical variables x1; X; ::: 2 Var.

De nition 5.5 (clause, predicate). A clauseis of the form ~ 1;:::; m
where eachof;, i;:::; p arepredicates. ApredicateisatermA(1;:::; n),
where each ; 2 ([Var) is a concatenative sequence of terminals and logical
variables. A clause can bénstantiated by substituting a string for each variable
in the clause.

A literal movement grammar is a nite number of clauses together with a des-
ignated start predicate. To de ne the language of almg grammar G, we de ne
a rewriting relation) g on sequences of instantiated predicates,

1, 2)6 1 1t omy 2

whenever ~ 1;:::; m is an instantiation of a clause in G. The language
of a grammar is thenL(G) = f w 2 j S(w)) 5 g, whereS is the start
predicate in G.

Img is a very general, Turing-complete, grammar formalism. To @t a rec-
ognizable subclass ofimg, one can consider two possibilities; to restrict the

116

5.1. Intersection (&)

de nition of clause instantiation, or to put syntactic rest rictions on the form of
the predicates.

De nition 5.6 (RCG). A range concatenation grammar (rcg) is anImg
with a restricted form of clause instantiation. A clause canonly be instantiated
by substrings of the given input string; i.e. if ~ 1;:::; mn IS an instantiation
of a clause, then all arguments to; 4;:::; m are substrings of the input.
This has the e ect that all strings in a rcg can be replaced by pairs of input
positions, called ranges, as explained in section 44.

As an example, if the input string is b a ¢ H, then for the following clauses,

A(bag ° B(b); C()
A(bach * B(b); C(ch)
A(back ° B(b); C(ck)

the rst two are rcg instantiations of the clause A(x a z) = B(x); C(z); but
not the third.

De nition 5.7 (s- LMG). A simple Img (s-Img) is an Img where each clause

1; .11, m obeys the following restrictions:

Non-combinatorial (NC): The arguments of the right-hand side pred-
icates are variables;

Bottom-up nonerasing (BNE): Each variable in the right-hand side
also occurs in the left-hand side;

Bottom-up linear (BL): No variable occurs more than once in the left-
hand side.

Both these formalisms are equivalent, since they describexactly the class of lan-
guages recognizable in polynomial time (Groenink, 1997b;aBoullier, 2000a,b;
Bertsch and Nederhof, 2001). Note thats-Img/rcg are closed under intersec-
tion; if S; and S, are the start predicates ofG; and G, then S(x) ~ S1(X); Sz(x)
de nes the intersection of the languaged. (G:) and L (G»).

There is an alternative formulation of s-Img ; we can remove the restriction on
bottom-up linearity and instead add top-down nonerasingness:

Top-down nonerasing (TNE): Each variable in the left-hand side also
occurs in the right-hand side.

The following lemma states that TNE and BL are equivalent redrictions in the
context of NC and BNE; i.e. that either of TNE and BL can be used when
de ning s-Img.

1Boullier (2000a,b) de nes rcg predicates directly on ranges, but this de nition is equiva -
lent.

117

Chapter 5. Extensions of concrete syntax

Lemma 5.8. TNE and BL are equivalent in the following sense;
1. Any Img clause ~ ;:::; m can be converted to an equivalent top-
down nonerasing (TNE) clause;

2. Any Img clause can be converted to an equivalent bottom-up linear (B
clause;

3. Both conversions preserve NC and BNE.

Proof.

1. Assume that there is a variablex in not occurring in any of 1; :::; m.
Add the predicate call Str(x) to the right-hand side, with the de nition,

Str()
Str(sx) ~ Str(x) (foreachs 2)

This new clause is equivalent, since the predicat&tr(x) only says that x
is a string.

2. (Groenink, 1997a,b) Assume that there is a variablex occurring twice in
. Replace one occurrence by a new variablg®, and add the predicate
call Eq(x; x9) to the right-hand side, with the de nition,

Ea(;)
Eqsx;sy) ~ Eq(xy) (foreachs 2)

This new clause is equivalent, since the predicat&q(x; y) says that the
two arguments are equal strings.

3. The conversions preserve NC, since the predicateStr(x) and Eq(x; x9)
are non-combinatorial. Furthermore, they preserve BNE, shce the only
variable that is introduced on the left-hand side (x°) is also introduced on
the right-hand side.

In the following we will use the alternative de nition of s-Img; where clauses
are NC, BNE and TNE.

Equivalence of PMCFG and s-LMG/RCG
Here we use the original de nition of pmcfg rules; as functions over string
tuples, not records. In this setting, a pmcfg rule looks like,
A ! f[B; ;B
fo(Xpa oot Xany s

X;1; 00 Xn) = 1500

118

5.1. Intersection (&)

where each ; is a sequence of strings and bound variables. We also assuniet
the linearizations are nonerasing, i.e. that each variablex;; occurs in some ;
recall from section 2.5.3 that this is not a real restriction on the expressivity of
pmcfg .

It is straightforward to convert a nonerasing pmcfg grammar into an equivalent
s-Img grammar. Each pmcfg rule above is converted to the equivalents-Img
clause,

A(15000) 0 Ba(Xpas i Xuny)s
B”(,x;l;:::;x;n)

Note that this clause is NC (since each of thex;; is a variable), BNE (since
f is nonerasing) and TNE (sincef is a function), and therefore the clause is
s-lmg.

Lemma 5.9. Any conjunctive pmcfg can be converted to an equivalent #ng .

Proof. Since intersections can be pushed out, we can assume that themcfg
rules are of the form,

Al f[By:ii B
fo(Xu1 00 Xang s
X1 X) = 11& 111 & 1
n1& 111 & e,

where each ;; is a sequence of strings and variables, as above. Translathis
to the s-Img clause,

Al 11& 11 & 1¢,;
m1& 11 & nc,) Bai(Xya: il Xang);

B (X.1;::5 X)

where the left-hand side is just syntactic sugar for a prediate with arity c; +

+ ¢,. If the pmcfg rule is nonlinear, we can utilize the same transformation
as in the proof of lemma 5.8, by adding calls toEq(x; y). Finally, add coercion
clauses forA(:::), implementing the intersections,

A(Xy it Xn) S AKX & 11 &Xy i Xn & 11t & Xn)
The resulting s-lmg grammar is equivalent to the pmcfg grammar.

119

Chapter 5. Extensions of concrete syntax

Lemma 5.10. Any s-Img can be converted to an equivalent conjunctivgmcfg .

Proof. A s-Img predicate is of the form,

A(15000) 0 Ba(Xaas tin Xy)s

iB (X.1;::0 X0)

If the variables x;; all are distinct, it is equivalent to the pmcfg rule,
A ! f[B; ;B
fo(Xp1; 000 Xang s
X;1; 10 X) = 1l n
However, in s-Img , the variables in the right-hand side of a clause need not be
distinct. Assume therefore that xjoj0 = Xj; = X. Now, introduce a new variable
x%to replace x asxio;o; and replace each occurrence of in the right-hand side

with the conjunction (x & x9. The resulting rule is a correct conjunctive pmcfg
rule, and equivalent to the givens-Img clause.

Theorem 5.11. Conjunctive pmcfg , s-img and rcg are equivalent.

Corollary 5.12. The class of languages recognizable by conjunctiyamcfg is
exactly the class of languages recognizable in polynomiainie.
Example 5.13.

The following is the result of translating the pmcfg rule for verb coordination
in example 5.2, intos-Img /rcg ;

¥P(x1 "and' y1; x2&Yy2) © VP(X1; X2); VP(y1; Y2)
VP(x;y) ~ 9P(x;y&y)

After simplifying away ¥P, we get the same rule as in Groenink (1997a);

VP(x ‘and'y; z) ~ VP(x; z); VP(X; z)

5.1.3 Parsing of conjunctive PMCFG

Ranges and intersection

We can use exactly the same de nition of ranges as in section.4. The general
de nition of range intersection is set intersection, 1 & ,= 1\ 2. For string-

equivalent ranges this boils down to a simple equality check 1 & » is calculated
to 11 1= »), since the string-equivalent ranges form a partition of R, .

120

5.2. Intensional disjunction ()]

The notion of range-restriction can be extended to also inalde intersection.
This is possible since there is a range interpretation of intrsection. The follow-
ing theorem is a direct consequence of the fact that range imrsection can be
interpreted as range equality for string-equivalent ranges.

Theorem 5.14. The parsing algorithms for context-free gf of section 4.2 has
polynomial time complexity for conjunctive pmcfg .

Active parsing

Here we describe a simple extension of the active parsing algthm in section
4.4. We assume that an intersectionr = & ::: & 4 in a linearization is
written as a number of consecutive rows in the recordr = 1;:::;r = .
This is a slight abuse of notation, but the justi cation is th at the inference rules
4.10{4.13 in section 4.4 only need minimal changes.

Intersect
[R; sr= or=1; ;7]
[R; 5r= o 5 ;7]

0= 1 (5.1)

This is the only extra rule, taking care of the intersection of two lineariza-
tions; if two linearizations ¢ and i are found for the same label, they
have to be equal.

Complete
[R; jr= %= ;7]
[R; ;r=:r%=hi ; ;7]

6(:::;r= 1) (5.2

The only di erence to the original rule is the extra side condition; we have
to state that Complete must not apply when Intersect applies.

Predict, Scan and Combine remain as the rules 4.10, 4.12 and 4.13.

5.2 Intensional disjunction (j)

The dual operation of intersection is disjunction, which wewrite as ;] 2. This
can also be added togf/pmcfg linearizations, which we then call disjunctive
gf/pmcfg

There are two possible interpretations of the disjunction geration; an inten-
sional and an extensional. The rst does not change the desqtive power of
pmcfg , but we conjecture that the second does. In this section we deribe the
intensional, and the next section takes care of the extensital version.

121

Chapter 5. Extensions of concrete syntax

Example 5.15.

The rst gf grammar in section 1.3.5 uses disjunctive linearizationsdr the
terms n; and vg;

N! ng] = s="lion']j lions'
VI Ve[] := s="eatsj eat
N
Example 5.16.
This is another simple grammar using disjunction,
S! f[S] = s=SisS:s
S! @] = s="ajb

and since it also makes use of reduplication, it makes a goodkample for dis-
cussion the di erences between intensional and extensionalisjunction.

Disjunction as a non-deterministic operation

To be able to de ne intensional disjunction, we must extend the de nition of
gcfg to many-valued or non-deterministic, linearization functions, as discussed
in section 2.4.2.

De nition 5.17 (intensional disjunction). Intensional disjunction is a non-
deterministic operation with the following de nition; 1 j » is calculated to
either 1 or ».

The following laws hold for intensional disjunctions (as fa intersections):

(1] 2) (1)iC 2)
it = 1) o2 = (5r= o1)iGr= 209

This means that we can push out a disjunction to a row, which isused in
the active parsing algorithm below. We can even push out a disinction to a
disjunction of linearizations, which is used when showing lhat the extension is
not strict.

Example 5.18.

The reduplication grammar in example 5.16 have trees of thedrm f ¥(a); i.e. k
applications of f, nally applied to a. There are two possible linearizations of
the term a, and each application off duplicates the string; thus the language
isLin = @2 [B?", when we use the intensional semantics. This language is an
exponentially growing language, and hence not mildly contgt-sensitive.

122

5.3. Extensional disjunction (i)

5.2.1 A non-strict extension

To see that the intensional disjunction is not a strict extension, we give a trans-
lation from disjunctive gf/pmcfg to ordinary gf/pmcfg

Since it is possible to push out disjunctions, we can assumédat each disjunctive
rule is of the form A'! f[B] = 1 :::] n, where none of ; contains a
disjunction. Such a rule is translated ton rulesA! f{[B]:= ;forl i n.
That the grammars are equivalent comes from the compositioality of gcfg ;
any rule taking a term of type A as argument cannot separate the functiond;
from each other, thus they are indistinguishable.

5.2.2 Parsing of intensionally disjunctive PMCFG

Here we describe an extension of the active parsing algorith described in sec-
tion 4.4, to handle intensional disjunctions. The only di e rence to the original
algorithm is the Complete rule, where we non-deterministically choose any of
the disjunctions.

Complete
[Ri jr= %= 4jij i i7]
[R; ;r=;r°= i 5]

1 i n (5.3)

Predict, Scan and Combine remain as the rules 4.10, 4.12 and 4.13.

5.3 Extensional disjunction (j)

To de ne extensional disjunctions, we do not change the de rition of gcfg , but
instead we change what is meant by linearization types.

Linearizations as sets

We lift the linearization types to non-empty sets of linearizations. This means
that an (extensional) linearization, written , is a set of (original) linearizations,
still written . We have to rede ne all existing linearization operations in the
following way:

Concatenation is applied to sets of strings, in the standardmanner;

1 02 = f 1 2] 12 1, 22 290

123

Chapter 5. Extensions of concrete syntax

Record formation returns a set of records;
fro= q17:iim= ng = ffri= 1700, m= agj i2 31
Record projection is also lifted to sets of linearizations;

r = firj 2 g

Disjunction as set union

With these changes we can de ne linearization of disjunctims as set union

De nition 5.19 (extensional disjunction). Extensional disjunction is an oper-
ation on extensional linearizations dened as 1j >= 1[2.

Unfortunately, the natural law of -conversion, = fry = ry; i rn =
:rh g, does not hold any more. Instead we have the much weaker law,

fori= ;i rm= ing
The following law for string concatenation still holds though,

(2020 = 2)j(C 2)

So, disjunctions cannot be pushed out to the linearization @ nitions, and the
translation to pmcfg in section 5.2.1 cannot be applied.

5.3.1 A strict extension

The e ect of extensional disjunction is to lift reduplicati on to work on the tree
level instead of the string level. This means that each redufication in a lin-
earization can linearize to di erent strings, as long as the/ are represented by
the same tree. With extensional disjunction it is possible b de ne languages
not obviously de nable by ordinary pmcfg linearizations.

Example 5.20.

The grammar in example 5.16 generates the languagkex = (a[b)2" using
the extensional semantics. The reason for this is that each gplication of f
duplicates the length of the string, but otherwise only saysthat the string should
consist ofa's and b's.

N

Note that this language is larger than the intensional langwage for the same
grammar, Liy: (Lex. TO be precise, very much larger; there are 2 strings in
Lint of length 2", while there are 2 strings of the same length inL gy:.

124

5.3. Extensional disjunction (i)

Conjecture 5.21. There is no pmcfg grammar that can express the language
Lext =(a[b?".

Unfortunately we have not yet found a proof of the conjecture but we give an
informal argument of why it should be true.

Proof (idea). The argument is based on the fact that eachpmcfg tree has
exactly one linearization. We argue thatL 4 contains more strings of length 2
than any candidate pmcfg grammar can have corresponding trees;

There are 2" = 22" ? legal strings of length 21 ;

Any pmcfg string of length 2"*1 must be composed of strings of length
2",

B P n 2i 2n 2n 2 .
ut there are only ., 2° < 2 2 2 legal strings of length
2";

So, apmcfg function f creating rules of length 2+ must take at least two
arguments with strings of length 2". But, there is no way of guaranteeing
that two argument strings x and y have equal length. This means that if 2 =

jXj & jyj = 2K, then jf (x;y)j =21 +2% 82" for any n, and thereforef must
accept strings of length6 2". We have a contradiction.

The reason why this is not a correct proof is that it does not coer all possible
pmcfg grammars. Note that the argument hinges on reduplication; wthout the

possibility of reduplication, extensional and intensiond disjunction are equiva-
lent.

Corollary 5.22. Extensional disjunctive pmcfg is a strict extension of pmcfg
(if the conjecture holds).

Note however that the argument does not hold for conjunctivepmcfg ; in fact
the following conjunctive grammar recognizes the languagé ex:;

S! [= s= s,

L1 fIR L] = s1= Rs&Ls;; sy = Lisy
R! r[R] = s=RsRs
R! a] = s="a
L! I4L] == si1="a'Ls;;s;="a Ls;
L! Ip[lL] = sp="a' Ls;;s,="b' Lis;
LI €] = s1=;82=

This grammar consists of two subgrammars; whereR recognizes the language
n . . .
a? . The second subgrammail can be seen as a relation on string pairs, where

125

Chapter 5. Extensions of concrete syntax

s;=a"i :sp=(a[b". The S category states that the L argument should
have length 2, meaning that the s, component de nes the language 4 [b)?2" .
Note that this grammar relies on the possibility of erasing the row s;, without
losing its information.

It is an open question whether there are disjunctive grammas that are not
recognizable in polynomial time; or in other words, whetherany disjunctive
grammar can be translated to an equivalent conjunctive granmar.

5.3.2 Parsing of extensional disjunctive PMCFG
Ranges and extensional disjunction

We can use exactly the same de nition of ranges as in section.4. The general
de nition of range disjunction is set union, 1j 2= 1[2. Since disjunction
has a range interpretation, we can extend the notion of rangeestriction to also
include intersection. Thus, the parsing algorithms for conext-free gf in section
4.2 still apply.

Extensional disjunctive PMCFG parsing is not polynomial

Unfortunately, the parsing algorithms for context-free gf are not polynomial

in the length of the input any more. The reason is that ranges @& no longer
string-equivalent. In fact, a range can be almost any subsebf the universal

range Ry; and there are O(2"1) possible ranges. An exponential number of
ranges gives exponential space complexity for the algoritm.

Active parsing of extensional disjunctive PMCFG

Although parsing with general ranges is not polynomial, it is still possible to
augment the active parsing algorithm from section 4.4 to hamlle extensional
disjunction. In this algorithm we assume that an intersectionr = 1j :::j n

is written as a number of rows in the record,r = 4;:::;r = ,. Thisis a
slight abuse of notation, but the justi cation is that the in ference rules from the
original algorithm only need minimal changes.

Union
[R; ;r= or= 1, ;71
[R; ;r= 1 ;7]

= ol 1 (5.4)

If we have found two linearizations for the same label, we tak the union
of the linearizations.

126

5.4. Interleave (k)

Skip
[R; ;r= ;r%=,; ;7] =(r%= %)

[R; ;r= 1 ;7] orr=r

(5.5)

But there is also the possibility that some linearization is not possible, so
we are allowed to skip a row whenever there are other opportuties for
the same label.

Complete
[R; ;r= r%=; 7]
[R; ;r=;r%=hi ; ;7]

6(:::;r= 1) (5.6)

The only di erence to the original Complete rule is the added side con-
dition, stating that the rule must not apply when Union applies.

Predict, Scan and Combine remain as the rules 4.10, 4.12 and 4.13.

5.4 Interleave (k)

cfg is not an ideal formalism for writing grammars for languageswith free
or multiple word-order. For this reason more expressive famalisms have been
introduced, most notably id/l[p grammars (Shieber, 1984). The drawback of
the id/lp formalism is that parsing is exponential in the size of the gammar
(Barton Jr., 1985).2 Nederhof et al. (2003) propose to recasid/lp grammars
with partially ordered multiset context-free grammars (poms-cfg),
to generate re ned bounds onid/lp parsing complexity. The rules in a poms-
cfg have poms-expressions on the right-hand side, which are a syntacticariant
of pomsets (Gischer, 1988).

The main idea with poms-expressions is to introduce thénterleave operator, (k).
This operator has also been called\merge",\shu e",\weave "and other things in
the contexts of process algebra, concurrency theory and faral language theory
(see e.g. Hopcroft and Ullman, 1979; Gischer, 1988).

De nition 5.23 (interleave). Interleave is a non-deterministic linearization op-
eration on sequencesdenedas k = 1 3 n n Whenever there are (pos-
sibly empty) sequences j; j suchthat = ,::: and = q::: ,.

The operation can also be de ned inductively via the disjundion operation as;

a kb
k =
k =

a(kb)) j ba k)

2To be exact, the problem is NP-complete.

127

Chapter 5. Extensions of concrete syntax

This means that interleave is not a strict extension of pmcfg linearizations,
provided we use intensional disjunction which itself is a na-strict extension.
But expanding an interleave can result in an exponential incease of the size of
the linearization. As an example, the expressiora; kK k a,, saying that the n
arguments can come in any order, gives rise ta! distinct disjuncts.

Usefulness of interleave

The main usage of interleaving is to de ne grammars in free waod-order lan-
guages. Nederhof et al. (2003) show that there is a direct carersion of gram-
mars written in the id/lp format to linearizations using interleave.

Example 5.24.

The grammar fragment of verb phrases in the free word-order Mkua language
(Gazdar et al., 1985, page 48) can be written as follows in théd/Ip formalism;

VP IV vV S
VP ! V; NP

VP I V;S

VP I V; NP; NP

VP !V, NP; PP

VP ! V;NP; S

The rules can be written as an interleavedpomcfg in the following way (adapted
from Nederhof et al., 2003)3

VP! fiV] = V
VP! f5V;NP] = V k NP
VP! f3V;S == V S
VP! f,V; NP: NP?] = V k NP' k NP?
VP! fs[V;NP;PP] = V k NP k PP
VP! fgV;NP;S] = V S k NP

5.4.1 Active parsing of interleaved PMCFG

Shieber (1984) has given a direct parsing algorithm for corgxt-freeid/l[p gram-
mars, which does not improve on the theoretical parse time cmplexity for
parsing the equivalentcfg , but in practice is much more e cient (Barton Jr.,

1985). Nederhof et al. (2003) give a direct parsing algoritm for poms-cfg ,

3For clarity we skip the record labels, since all linearizati ons are single strings.

128

5.4. Interleave (k)

which is also exponential in the size of the grammar, but the lpunds are even
more re ned that in Shieber's algorithm. They compile the poms-expressions
to poms-automata which then are used in their Earley-style parsing algorithm.

Here we modify their algorithm to work with pmcfg grammars. For simplicity
we do not compile the linearization expression to gpoms-automaton, but instead
use the expression directly in the parsing algorithm.

Interleave
[R; &r
[R;

(1k kX ik k)5 71
X1k k ik k) 7]

(5.7)

The rst component of any part of an interleave can be moved tothe front.
This is non-deterministic as long as more than one ; is non-empty.

Merge
= [,F:;_;fik k)L] = 58
The interleave of empty strings is empty and can be removed.
Predict, Complete, Scan and Combine remain as the rules 4.10{4.13.

Note that the Interleave rule is not formally correct as it is written. Nested
interleaves such asak (bk c)d are not handled correctly;

ak(bkcd 6 a(bkoyd j (bkc)(akd)

Handling nested interleaves

To handle nested interleaves correctly, we need to de nalerivatives over poms-
expressions, where by ,() mean the derivative of over a. This can be done
in a similar way as derivatives for regular expressions (Brazowski, 1964). As
an example, the derivatives of the given expression are

a(ak(bkc)d) = (bkcd
p(ak(bkc)d) = akcd
c(ak(bkc)d) = akbd

Note that derivatives can be non-deterministic, as in 5(abkac) which can be
bk ac or abkc. This constitutes no problem, since the inference rules with use
a are non-deterministic themselves.

Now the Interleave rule can be combined into theScan and Combine rules
as follows.

129

Chapter 5. Extensions of concrete syntax

Scan+Interleave

[R: :r= L] = s()
[R; ;r= 0 0 »~] 0= hsi (5:9)
Combine+Interleave
8
R ;r= ; ;-1 ([B; 9 < = &)
[R; ;r= 0 0 -~[i:= 9] : ?_ 0 o (5.10)

Predict and Combine remain the same as the rules 4.10 and 4.13.

The e ect of this algorithm is to simulate a poms-automaton via the derivative.
As an alternative, the linearizations can also be compiledrnto automata as is
done by Nederhof et al. (2003).

5.5 Summary

In this chapter we gave three dierent extensions of the pmcfg formalism.
The rst, intersection, is borrowed from conjunctive grammar (Okhotin,
2001), and is a strict extension sincepmcfg is not closed under intersection.
We showed that conjunctive pmcfg is equivalent to simple literal move-
ment grammar (Groenink, 1997a,b) andrange concatenation grammar
(Boullier, 2000a,b), meaning that the formalisms exactly daracterizes the class
of languages recognizable in polynomial time.

The second extension is disjunction, which can have two di eent interpreta-
tions; one intensional and one extensional. The intensiorlavariant is not a
strict extension of pmcfg , but the extensional can describe languages which
are conjectured not can be described by an ordinarypmcfg . There are some
open questions left regarding the extensional disjunctionthe rst being how
the proof sketch can be turned into a correct proof. Another @en question is
whether disjunctive pmcfg can describe non-polynomial languages.

The third extension is an adaptation of the poms-cfg format of Nederhof et al.

(2003) to handle pmcfg grammars. The operation is called interleave, and we
gave a parsing algorithm for interleavedpmcfg grammars. An application of

interleave can be converted to a number of disjunctions, butthis reduction can

lead to an exponential increase of the grammar size. We insté&l augmented the
active parsing algorithm from chapter 4, with rules to handle interleaves.

130

Chapter 6

Non-context-free
abstract syntax

This nal chapter discusses how to handteF grammars containing higher-order
functions or dependent types.

We give an algorithm for converting higher-order functianso rst-order functions.
The resulting context-freeGF grammar is over-generating, since it cannot type-
check variable occurrences correctly. We therefore givecegdure for ltering out
non-well-formed terms during the conversion from rst-@ndto higher-order parse
results.

In the presence of dependent types it is possible to desaritecidable languages
(Ranta, 2004a), so the parsing problem is undecidable inggah We nevertheless
describe a two-step parsing process for such grammars; wettranslate into an
overgenerating context-fre6F grammar, and parse using that grammar. The re-
sulting parse items are then converted into a logic prograwhjch can be solved by
any proof search procedure.

131

Chapter 6. Non-context-free abstract syntax

6.1 Higher-order functions

In full gf , arguments to functions can themselves be functions. Fundbns tak-
ing other functions as arguments are calledhigher-order functions, and their
corresponding typings are called higher-order categories

Example 6.1.

The following is a simple grammar for a subset of predicate Igic, with quanti -
cation over a domain of individuals.

all; some : (Ind! Prop)! Prop
equal : Ind Ind! Prop
a;b;c : Ind

And here are some example propositions.

all(x: equal(x; x)) : Prop
someg y: equallb;y) : Prop

N

The presence of higher-order functions gives rise to the qgéon of how to lin-
earize a functional argumentC; C,! B, a problem that can be solved
in di erent ways. The solution chosen in gf is to pair the linearization of the
result category B with linearizations of variable bindings representing terms
of the argument categoriesC, Ch. This means that gf automatically
infers the linearization type for functional arguments asStr" B , for a func-
tion type C; C, ! B. For convenience we write elements of the type
(C1 Ch! B) as hecg; i ¢y b

Example 6.2.

Here is a possible concrete syntax for the given abstract gramar.

all (h;pi) = “forall'x'p
some (hx; pi) = Tthere is an' x such that p
equal (x;y) = x'is equal t0y
a = "Anna'
b = "Bessi¢e
¢ = ’Carlotta'

Note that we use hx; pi as syntactic sugar for a pair of the linearization type
(Ind! Prop) = Str Prop .
N

132

6.1. Higher-order functions

A formal treatment
To be able to de ne a concrete syntax for grammars with higherorder functions,
we need to introduce some extra notions.

De nition 6.3. The linearization type for a function type C; Ch! B,
is de ned as

(Cy C,! B) = St" B

For each categoryC the grammar writer needs to de ne a default linearization
for bound variables, which is written

lindef C(x) =

where : C wheneverx is a string. The framework also contains a coercion
for variables, wherex*: Str wheneverx is a variable. The most natural way to
de ne this coercion is to view the name of the variable as a sting, e.g.X*="x'
and ¥, = "y2'.

Now we can augment the de nition of term linearization with t wo extra cases,
for lambda-abstractions and bound variables,

[x1:::%Xn:t]

Ix]

hR1; o R [t
(lindef C(®)=)

Example 6.4.

The example grammar has to be augmented with default lineadations for each
category. But this is trivial; since all linearization type s are strings, we can
simply declarelindef Ind (x) = x, and similar for the type Prop.

Now we can linearize the example propositions as,

[all(x: equal(x; x))] all (h; [equal(x; x)]i)
= all (h; equal (%; R)i)
= all (hx';equal (x'; x)i)
= “for all x; x is equal to X
[some(y: equalb; y))] = some (hg; [equakb; y)]i)
= “there is some y such that Bessie is equal to'y

N

6.1.1 Removing higher-order functions from a grammar

In this section we show that a grammar with higher-order fundions can be
converted to a grammar with a context-free backbone. The reglting grammar is
overgenerating in the presence of variables, and we give a @cedure for lItering

out non-well-formed results.

133

Chapter 6. Non-context-free abstract syntax

Algorithm 6.5.

First, add a new categoryVar for representing bound variables. We assume that
there is an in nite supply of terms v; : Var (i 2 N), representing each possible
variable xj. The linearization type for variables is strings, Var = Str, and
each termv; has a linearization de nition in terms of its represented variable,
Vi = Xi.

Then, convert each default linearizationlindef C(x) = to a function
c . Val! C
c(x) =

Finally, for each higher-order function such as,

h : B (Cs Cn! By) B% A
create a new categoryBy = [C; Cn ! Bg] together with a coercion
function 3.,
lincat By = St B,
B, . Va" By! By
B (X1 T Xnsy) = Mg Xa sy
Replace each occurrence dof; Cn ! Bk as an argument in a function

typing, by the new category By.
N

The resulting grammar has a context-free backbone since aligher-order func-
tions has been removed. There is an in nite number of termsyv; in Var, but
that constitutes no severe problem for parsing, since the nmber of terms that
are used in any given instance is nite, and these terms can bereated in a
pre-processing phase.

The resulting context-free gf grammar is over-generating, since there is no way
of checking that the variables occurring in a term are bound ly a preceding
lambda-abstraction, and that all occurrences of the same vaable have the same
type. Therefore we have to check that the variables are boundand type-correct
when the terms have been assembled.

Theorem 6.6. The grammar resulting from algorithm 6.5 recognizes all stings
that are recognized by the original grammar.

Proof. Assume for simplicity that we have a higher-order function d the form,
h : B (C C,! By) Bl A

134

6.1. Higher-order functions

The generalization to arbitrary higher-order functions is straightforward. We
have to show that there is a corresponding rst-order tree fa each higher-order
tree h(t; X 1:::Xn:tx; 19, with the same linearization.

The corresponding rst-order tree for the higher-order treeh(t; x 1:::Xn:t; 19
is,

h(t B, (V1) 155 Vo teXa= c; (V1); 225 Xn= ¢, (Vn)]); 19

where vi; :::; vy, are the terms in Var representing the variablesxi; :::; X;.
Now, the linearization de nition of ¢, says that,

[ci)l= c(vi)= cRi)= =[xl

wherelindef C;(%i) = . This implies that the substitution tx[Xi= ¢, (vi)] does
not have e ect for any x; on the linearization; i.e.
[tX1= c,(va); tr Xn=c, (va)ll = [t]

But this in turn gives us,

[8 (vesiiisvns t[Xe= ¢y (Va)s 25 Xn= ¢, (Vn)D]
= g (il i3 vl Itk[Xa= ¢y (Va); 2225 Xn= ¢, (V)1
= MRy iz R [tk

= [x1:i:xnitk]

Converting rst-order parse results to higher-order

There is only one possible way to create terms of the new type,

B\k = [Cl Cn ! Bk]
and that is by application of the coercion function g, . So, each term of typeB
is of the form g, (v1; :::; Va; t) Wherevy; :::; vy @ Varand t : Bx. From this
term we recreate the function x 1 :::xn:t% wherexy; :::; X, are the variables
represented byvy; :::; vn, by substituting,
0 = t[c,(vi)=xa; 1115 ¢, (Vn)=Xn]

The resulting function is equivalent to the original term by the argument above,
except whent® contains some spurious p (v;) after substitution. If it does, the

corresponding variablex; occurs with type D; either it is unbound or it should

have had another type.

So, the resulting context-freegf grammar is over-generating, and the recognized
terms must be checked for spurious variables, which constittes a limited form
of type-checking.

135

Chapter 6. Non-context-free abstract syntax

Example 6.7.
The example grammar now needs to be augmented with the folloimg rules,

vi : Var (i2N)

i Var! Ind

p : Var!l Prop
with the variable linearizations vy = "x', v; =y, v, = “Z', etc. The default
coercion p will never be used in the grammar, and can be removed. The

default linearizations for Ind and Prop are converted to the identical linearization
de nitions | (x) = x and ,(x) = x.

The quanti ers contain the argument type Ind! Prop, from which we introduce
the new categoryP = [Ind! Prop], with its lambda-coercion p,

p . Var Prop! p
p(Xy) = hyi

Finally we transform the original rules into rst-order for mat,

all; some : pi Prop
equal : Ind Ind! Prop
a,b;c : Ind

retaining their original linearizations.

Now, we can parse the stringsfor all x, x is equal to X and “there is some y
such that Bessie is equal to Y yielding the parse results,

all(p(vo; equak | (vo); 1(vo))) : Prop
someg(p (vi; equakb; | (v1)))) : Prop

which can be back-translated into the original parse trees a described above.
Note that sentences like'x is equal to y' and “there is some x such that x'also
are recognized by the rst-order grammar; but back-translation fails since the
resulting higher-order terms contains spurious variableq | (vo) and | (v1) for

the rst sentence, and p (Vo) for the second). N

6.1.2 Higher-order functions as arguments

Suppose we have a higher-order function as argument to a fution. An example
is the function,

h : D (C (D! C)! B)! A

136

6.2. Dependent types

where the second argument is a higher-order function oftyp€ (D! C)! B.

The rst question that arises is how to linearize such a highe-order argument.
In gf this is done by assuming that it is a variable like other variables, meaning
that the linearization of h has the form,

h(x; hy;fzi) =

wherex : D ,z:B andy;f : Str. This treatment means that algorithm 6.5
still works without modi cations.

Unfortunately, it is not clear how to handle default lineari zations for function
types; e.g. what is the default linearization for the function type D ! C above?
This is not obvious since functional variables can be applié to arguments; in
the example we could applyf to a term of type D, e.g.f x is a term of type C.

In the current implementation of g¢f, there is an ad hoc solution where the
application f x is linearized as the string T x'; but there could perhaps be other
alternative choices. These issues have not been fully inviégated, since it seems
implausible that there will be any linguistic need for more than second-order
functions.

6.2 Dependent types

If we have agf grammar with dependent categories, there is a straightfornard
two-step parsing process for that grammar. First we simply emove all depen-
dencies from the abstract syntax, thereby getting a grammaiwith a context-free
backbone. This grammar is over-generating, so parsing retms all parse trees
we want, but perhaps also some unwanted trees. The second steonsists of
Itering the parse trees through the original grammar.

The naive way of performing the second step is to extract eaclparse tree and
then check that it is type-correct. However, this can resultin extracting a very
large number of trees, which are all rejected by the type-cheker. In some cases
there can even be an in nite number of parse trees, of which oly a nite number

is correct. Then the Itering algorithm does not even termin ate.

Example 6.8.

The following is an example grammar for a fragment of arithmeic with over-
loaded operators. There are two possible number domains; maral numbers
and reals (Nat; Real : Dom). Some operations plus) work on any domain,
while others (sqrt) only work on reals.

137

Chapter 6. Non-context-free abstract syntax

Nat; Real : Dom
plus : (d:Dom) Num(d) Num(d)! Num(d)
sgrt ' Num(Real) ! Num(Real)
¢ : Num(Nat)! Num(Real)
one; two : Num(Nat)

plus (d; x;y) = x plus'y

sqgrt (x) = the square root of x
c(x) = X
one = "one
two = Ttwo'

Since the abstract type theory does not have overloading, wa&eed a coercion
function c¢ from integers to reals. There are three possible terms thatihearize
to the string w = "the square root of one plus twg

1 sqrt(plus(Real; c(one); c(two)))
2 sgrt(c(plus(Nat; one; two)))
3 plus(Real; sgrt(c(one)); c(two))

The di erence between (1) and (2) is that the rst uses integer agdition, while
the second uses real add'Bign. Both utilize the mathematichterm = 1 + 2, while
(3) is a representation of 1+ 2.

To be able to use the parsing algorithms in chapter 4, we haved remove the
dependencies to get the context-free backbone, which looKie this in pmcfg
format;

Num! plus[Dom; Num®; Nun?] := Num'® ‘plus’ Nun?
Num! sqrt[Num] := “the square root of Num
Num! c[Num] := Num
Num! one]] := ‘one
Num! two[] := “two'

Note that the rule for the coercion c is a cyclic rule. Now, parsing the input
string w using this grammar results in the following pmcfg chart;

138

6.2. Dependent types

1 [sqrt; 0:::7;4:::7]

2 [sqrt; 0:::5; 4:::5]

3 [plus; 4:::7;?,4:::5,6:::7]
4 [plus; 0:::7;?;0:::5;6:::7]
5 [one; 4:::5;]

6 [two; 6:::7;]

7 [c;0:::7;0:::7]

8 [c;0:::5;0:::5]

9 [c;4:::7;4:::7]

10 [c; 4:::5; 4:::5]

11 [c;6:::7;6:::7]

Note that items (3) and (4) have metavariables for the lineaiization of the do-
main, since the rule for plus is suppressing. The items (7){(11) are all cyclic
items which can be applied on any part of a parse tree, any numér of times.
So, there are in nitely many parse trees that can be construted from this chart,

of the following two forms;

¢ (sqrt(c (plus(c (one); c (two)))))
¢ (plus(c (sqrt(c (one)); ¢ (two))))

Of these in nitely many trees, only three are correct accordng to the original

grammar.
N

6.2.1 Type checking as proof search
In this section we describe how to do the second step on the reking parse chart,

instead of each parse tree. The idea is to convert the chart i@ Horn clauses,
which can be solved by any proof search procedure, e.g. staadd prolog

Converting to Horn clauses

Algorithm 6.9.
Convert each chart item,

[AY flAG i AT G o]
wheref has the abstract typing,
for (XeiA1) (X2 Az[xd]) (X A Xy xo 1))
P OAXg; s x]

139

Chapter 6. Non-context-free abstract syntax

into the following Horn clause (wheret : A) is just syntactic sugar for a
3-tuple);
f(xe; i x) AKXt x) ToxiiAL) g

X2 1 Az[X1]) 2

X CA Xy xo1])

Metavariables in a linearization ; are treated as anonymous logical variables.
N

This algorithm works ne for non-suppressing grammars; but if the rule for f

above is suppressing, then some linearization; in the resulting clause might be
completely uninstantiated, ; = ?. This means that the term represented byx;

is suppressed, and the corresponding predicate call can (dmrmust) be removed
from the clause.

Algorithm 6.10.
From all clauses,

remove each predicate call ; with an uninstantiated linearization,

i = Xi:ALD ?

Querying the logic program

Now, given the input string w and the starting category S, we can try to prove
the query,!

T x:S)h wi

wherex is an unbound logical variable. If the query is true, the string is accepted
by the grammar, and each possible instantiation ofx is a correct parse tree.

While the rst step, parsing the underlying pmcfg grammar, always terminates
in polynomial time; it is not sure that the second step will. It might take
exponential time to extract a solution from the resulting logic program, or it
might even be non-terminating. Also, the time taken and the termination may
depend on the proof strategy of the theorem solver.

INote that the query uses the range interpretation of section 4.1, which presupposes that
the chart items also use range linearizations. If the chart u ses string linearizations, we only
have to replace hwi by w in the query.

140

6.2. Dependent types

Example 6.11.

The chart from the previous example, is translated by the algrithm into the
following logic program;

1 sqrt(x) : Num(Real)) 0:::7 X :Num(Real)) 4:::7
2 sqrt(x) : Num(Real)) 0:::5 X :Num(Real)) 4:::5
3 plus(d; x; y): Num(d)) 4:::7 X :Num(d)) 4:::5;
y:Num(d)) 6:::7
4 plus(d; x; y): Num(d)) 0:::7 X :Num(d)) O0:::5
y:Num(d)) 6:::7
5 one: Num(Nat)) 4:::5
6 two : Num(Nat)) 6:::7
7 c(X): Num(Real)) 0:::7 X : Num(Nat)) 0:::7
8 c(X): Num(Real)) 0:::5 X : Num(Nat)) 0:::5
9 c(X): Num(Real)) 4:::7 X : Num(Nat)) 4:::7
10 c(x): Num(Real)) 4:::5 X :Num(Nat)) 4:::5
11 c(x): Num(Real)) 6:::7 X :Num(Nat)) 6:::7

The goal to prove is,
X :Num(d)) 0:::7
and using a simple theorem prover such aprolog , we get the following answers;

1 d = Real; x = sqrt(plus(Real; c(one); c(two)))
2 d = Real; x = sqrt(c(plus(Nat; one; two)))
3 d= Real; x = plus(Real; sqrt(c(one)); c(two))

Horn clauses as a representation of a chart

The logic program resulting from the algorithm in this section can be seen
as a compact representation of the set of parse trees. But thethere is an
analogy to Lang (1994); whereparsing in the sense \constructing a compact
representation of the parse trees" takes polynomial time, \kile recognition in
the sense \testing whether the input string is recognized bythe grammar" is
undecidable in the worst case. Another example where parsmis harder than
recognition isindexed grammar (Aho, 1968), which was noted by Lang (1994).

Dependencies ranging over nite types

A special case of dependent types which is not considered ihis chapter, is when
the dependencies range over nite types. The typeNum(d) in example 6.8 is an
example of this, since the variabled : Dom has a nite range, Nat; Real. In this

141

Chapter 6. Non-context-free abstract syntax

case we can treat the typesNum(Nat) and Num(Real) as basic categories, and
not dependent types. The function plus will have to be split into two functions;
one for integers and one for reals. As a nal remark, we note tht treatment of
nite dependencies is similar to the translation of context-free gf to pmcfg in
chapter 3, where nite parameters are moved into the categoies.

6.2.2 Dependent types and higher-order functions

A gf grammar can contain functions which are both higher-order ad have
dependent typings. These grammars can be parsed using the deniques in
this chapter. We only have to know how gf handles default linearizations for
dependent types.

For the same reason why each instance of a dependent type hakd same lin-
earization type, the default linearization is the same for ech instance of a de-
pendent type. This means that the default linearization for a dependent type
C(%) [*: D] can be specied as,

lindef C(L) (y) =

where :C(.) whenevery is a string.

Example 6.12.

If we want to add propositions to the grammar for simple arithmetic, we have
to introduce a higher-order function with a dependent type for the quanti ers;

all; some : (d:Dom) (Num(d)! Prop)! Prop
equal : (d:Dom) Num(d) Num(d)! Prop
all (d; hx;pi) = “foral'x’'p
some (d; tx; pi) = Tthere is an' x ‘such that p

equal (d; x; y) x 'is equal td y

Using these functions, we can form propositions like,

p = somgNat; x: equal(Real; c(x); sqgrt(c(x)))) : Prop

saying that x = P

X for some integerx;
[pl = “there is an x such that x is equal to the square root of 'x

Note that since the linearization functions drop the domain information, the
string does not say that the number is an integer.

The default linearizations for numbers is the trivial identity function as before;

lindef Num(_) (y) = vy

142

6.2. Dependent types

The idea is to rst translate higher-order functions to rst -order; then parse the
context-free backbone, and convert the resulting chart inb a logic program.

To translate a higher-order function with a dependent functional argument, e.g.
h = (xy:D) (CGIx] Cofx;y]! Bly)! A
we move the variablesx; y outside the new categoryB,
Bxy) = [Ci C2! Blxy)

together with the coercion function g;

lincat B = Str® B
g : (xy:D) Var Var By]! B(xy)
s(Xy;Ciicrbh) = X y;cy;cp b
Furthermore, the default linearizations lindef C;(L) (x) = ; are translated to
functions,
c, . (x:D) Var! Ci[x]
c. - (xy:D) Varl Cixy]
c.(x) = 1
(X)) = 2

With these modi cations, algorithm 6.5 can be applied to dependent higher-
order functions as well.

Example 6.13.

The arithmetic grammar with propositions is translated to rst-order form by
introducing the category P(d) [d : Dom], where P = [Num ! Prop], and the
following rules;

vi Var (i2N)
N . (d:Dom) Var! Num(d)
N X) =X
p : (d:Dom) Var Prop! b(d)
p(dix;p) = X pi

Now we can transform the higher-order quanti ers into rst- order format,
all; some : (d:Dom) P(d)! Prop
keeping their original linearizations.

143

Chapter 6. Non-context-free abstract syntax

Parsing the string [p] above yields two parse results since the string does not
contain information whether the variable is an integer or a real number;

1 some(Nat; p(Nat; vo; equalReal; c(n (vo)); sart(c(n (Vo))))))
2 some(Real; p(Real; vo; equaReal; n (Vo); sart(n (Vo)))))

Back-translating the terms to higher-order form as in the proof of theorem 6.6,
results in the original term p and a similar term in which x is a real number

variable.
N

6.3 Limitations of the approach in this chapter

The approach to gf parsing taken in this chapter is thus to;

1. First translate higher-order functions to rst-order;

2. Then parse using the context-free backbone and convert aresulting chart
to a logic program.

What are the limitations of this approach; or in other words, which gf grammars
cannot be handled by this two-step process?

6.3.1 Function de nitions

One feature of the type theory of gf , that cannot be handled by the approach
in this chapter, is abstract function de nitions. Recall th at a gf grammar
can contain de nitions of the form def fx = t. During type-checking, it can
sometimes be necessary to reduce terms by such de nitions,hich is not handled
in our approach.

Example 6.14.

Example grammar 6.12 for propositions of arithmetic, couldbe augmented with
de nitions of the constants one; two, and integer addition,

def one = sucqzero)
def two = sucqone)
def plus(Nat; zero;y) = vy

def plus(Nat; sucdx); y) sucdplus(x; y))

where the typings for the natural number constructors zero and succ are stan-
dard;

zero : Num(Nat)
succ : Num(Nat) ! Num(Nat)

144

6.3. Limitations of the approach in this chapter

Assume also that we introduce the dependent type of proofs opropositions,
Proof(p) Type[p : Prop]

with the following instances for integer equality;

eq, : Proof(equalNat; zero; zero))

eg, : (m;n:Num(Nat)) Proof(equalNat; m; n))

I Proof(equal(Nat; sucam); sucg(n)))
Now, the proposition 2 =1+ 1,
P = equal(Nat; two; plus(one; one)) : Prop

has a proof which can be written;

p = eqg,(one; one; eq,(zero; zero; eq,)) : Proof(P)

However, to check that the proof is correct, i.e. to type-chek the proof, it is
necessary to expand the function de nitions forone and two in p and P.

Assuming that we have linearization de nitions for all proof terms and propo-
sitions, we could in principle parse a linearization of a prof, and succeed if
the proof is correct. But, then we need to expand function denitions during

type-checking, and cannot use the approach of this chapter.The only current

option is then to resort to extracting all possible parse trees and type-checking
them one at the time.

6.3.2 Lambda-abstractions in typings

Another feature of the type theory, is the possibility to have lambda-abstractions,
representing anonymous functions, in function typings. Wken type-checking
terms of this kind, it might be necessary to postpone calculéion of applications
of anonymous functions until the type gets instantiated, during type checking.
As with function de nitions, this feature is also handled in the current gf im-
plementation by extracting all parse trees and type-checkng the one at the
time.

Example 6.15.

Useful linguistic examples of functions having anonymoustfnctions in the typing
are dicult to nd. Even in logic they are sparse. One example is the third-
order elimination rule of universal quanti cation (-elim ination, also known
as funsplit). We do not give the typing of that function here, but refer to
Nordstrem et al. (1990, p. 56).

N

145

Chapter 6. Non-context-free abstract syntax

6.4 Summary

This nal chapter discussed how to handlegf grammars containing higher-order
functions or dependent types.

We gave an algorithm for converting higher-order functionsinto rst-order func-
tions. The resulting context-free gf grammar is over-generating, since it can-
not type-check variable occurrences correctly. We therefiee gave a procedure
for ltering out non-well-formed terms during the conversion from rst-order to
higher-order parse results. Our current solution is not enirely satisfactory, since
it amounts to generating every possible rst-order parse tree, and type-check
the term during the conversion to a higher-order term. A better solution would
be to do the type-checking implicitly during the parsing process, or alternatively
during the extraction of rst-order terms from the chart.

In the presence of dependent types it is possible to describendecidable lan-
guages (Ranta, 2004a), so the parsing problem is undecidablin general. We
nevertheless described a two-step parsing process for sugtammars; rst trans-

late into an overgenerating context-freegf grammar, by stripping o depen-

dencies, and parse using that grammar. This grammar can be paed using the
algorithms in chapter 4, and then the resulting parse items ae converted into
a logic program consisting of Horn clauses. The logic progra can nally be

solved by a rst-order theorem prover.

There is no guarantee that a grammar with dependent types ahays can be
parsed, but formulating the solutions as a logic program ofen reduces the search
space, compared to the alternative of generating all posslb terms and type-

checking them one at the time.

146

Bibliography

ACL (2004). Incremental Parsing: Bringing Engineering and Cognition To-
gether, ACL 2004 Workshop, Barcelona, Spain.http://www.acl2004.org/

Aho, A. (1968). Indexed grammars|an extension to context-f ree grammars.
Journal of the ACM, 15:647{671.

Aho, A., Sethi, R., and Ullman, J. (1986). Compilers { Principles, Techniques
and Tools. Addison-Wesley.

Ajdukiewicz, K. (1935). Die syntaktische Konnexitat. Studia Philosophica 1:1{
27.

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for s yntactic description.
Language 29:47{58.

Bar-Hillel, Y., Perles, M., and Shamir, E. (1964). On formal properties of
simple phrase structure grammars. In Bar-Hillel, Y., editor, Language and
Information: Selected Essays on their Theory and Applicatbn, chapter 9,
pages 116{150. Addison-Wesley.

Barton Jr., G. E. (1985). The computational di culty of ID/L P parsing. In
23rd Meeting of the Association for Computational Linguisics, pages 76{81,
Chicago, lllinois.

Becker, T. (1994). HYyTAG: A New Type of Tree Adjoining Grammars. PhD
thesis, Universitat des Saarlandes.

147

BIBLIOGRAPHY

Bertsch, E. and Nederhof, M.-J. (2001). On the complexity ofsome extensions
of RCG parsing. In 7th International Workshop on Parsing Technologies
pages 66{77.

Billot, S. and Lang, B. (1989). The structure of shared foress in ambiguous
parsing. In 27th Meeting of the Association for Computational Linguisics,
pages 143{151, Vancouver, Canada.

Boullier, P. (2000a). A cubic-time extension of context-free grammars. Gram-
mars, 3:111{131.

Boullier, P. (2000b). Range concatenation grammars. In6th International
Workshop on Parsing Technologiespages 53{64, Trento, Italy.

Bresnan, J. and Kaplan, R. (1982). Lexical-functional granmar: A formal sys-
tem for grammatical representation. In Bresnan, J., editor, The Mental Rep-
resentation of Grammatical Relations, pages 173{281. MIT Press, Cambridge,
MA.

Brzozowski, J. A. (1964). Derivatives of regular expressins. Journal of the
ACM, 11(4):481{494.

Carroll, J. (2003). Parsing. In Mitkov, R., editor, The Oxford Handbook of Com-
putational Linguistics, chapter 12, pages 233{248. Oxford University Press.

Chiang, D. (2001). Constraints on strong generative power.In 39th Meeting of
the Association for Computational Linguistics, pages 124{131.

Chiang, D. (2004). Evaluating Grammar Formalisms for Applications to Natural
Language Processing and Biological Sequence AnalysBhD thesis, University
of Pennsylvania.

Chomsky, N. (1957). Syntactic Structures. Mouton, The Hague.

Chomsky, N. (1959). On certain formal properties of grammas. Information
and Control, 2:137{167.

Chomsky, N. (1965). Aspects of the Theory of Syntax MIT Press, Cambridge,
MA.

Coppersmith, D. and Winograd, S. (1990). Matrix multiplica tion via arithmetic
progressions.Journal of Symbolic Computation 9(3):251{280.

Coq (1999). The Coq Proof Assistant Reference Manual The Coq Development
Team. Available at http://pauillac.inria.fr/coq/

Curry, H. B. (1963). Some logical aspects of grammatical sucture. In Jacob-
son, R., editor, Structure of Language and its Mathematical Aspects: Procek
ings of the 12th Symposium in Applied Mathematicspages 56{68. American
Mathematical Society.

148

BIBLIOGRAPHY

Daniels, M. and Meurers, D. (2002). Improving the e ciency of parsing with
discontinuous constituents. In NLULP-02: 7th International Workshop on
Natural Language Understanding and Logic ProgrammingCopenhagen, Den-
mark.

Debusmann, R., Duchier, D., and Kruij, G.-J. M. (2004). Ext ensible depen-
dency grammar: A new methodology. INCOLING 2004 Workshop on Recent
Advances in Dependency Grammar

Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B., and Levy, J.J. (1975).
A structure-oriented program editor: a rst step towards co mputer assisted
programming. In International Computing Symposium (ICS'75).

Dymetman, M., Lux, V., and Ranta, A. (2000). XML and multilin gual doc-
ument authoring: Convergent trends. In COLING, pages 243{249, Saar-
breicken, Germany.

Earley, J. (1970). An e cient context-free parsing algorit hm. Communications
of the ACM, 13(2):94{102.

Gaifman, H. (1965). Dependency systems and phrase-structa systems. Infor-
mation and Control, 8:304{337.

Gazdar, G. (1987). Applicability of indexed grammars to natural languages. In
Reyle, U. and Rohrer, C., editors, Natural Language Parsing and Linguistic
Theories, pages 69{94. D. Reidel Publishing Company.

Gazdar, G., Klein, E., Pullum, G., and Sag, I. (1985). Generalized Phrase
Structure Grammar. Basil Blackwell, Oxford, England.

GF (2004). The Grammatical Framework homepage. Located at
http://www.cs.chalmers.se/~aarne/GF

Ginsburg, S. (1975). Algebraic and Automata-Theoretic Properties of Formal
Languages North-Holland/Elsevier.

Gischer, J. L. (1988). The equational theory of pomsets.Theoretical Computer
Science 61(2{3):199{224.

Graham, S., Harrison, M., and Ruzzo, W. (1980). An improved ontext-free
recognizer. ACM Transactions on Programming Languages and Systems
2(3):415{462.

Groenink, A. (1997a). Mild context-sensitivity and tuple- based generalizations
of context-free grammar. Linguistics and Philosophy 20:607{636.

Groenink, A. (1997b). Surface without Structure | Word order and tractability
issues in natural language analysisPhD thesis, Utrecht University.

149

BIBLIOGRAPHY

Hallgren, T. and Ranta, A. (2000). An extensible proof text editor. In Parigot,
M. and Voronkov, A., editors, LPAR-2000, volume 1955 of LNCS/LNAI ,
pages 70{84. Springer.

Harper, R., Honsell, F., and Plotkin, G. (1993). A framework for de ning logics.
Journal of the ACM, 40(1):143{184.

Hays, D. (1964). Dependency theory: A formalism and some olesvations.
Language 40:511{525.

Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Lan-
guages, and Computation Addison-Wesley.

Hudson, R. (1990). English Word Grammar. Blackwell.

Hahnle, R., Johannisson, K., and Ranta, A. (2002). An authoring tool for in-
formal and formal requirements speci cations. In Kutsche, R.-D. and Weber,
H., editors, Fundamental Approaches to Software Engineeringvolume 2306
of LNCS, pages 233{248. Springer.

Joshi, A. (1985). How much context-sensitivity is necessar for characterizing
structural descriptions | tree adjoining grammars. In Dowt vy, D., Karttunen,
L., and Zwicky, A., editors, Natural Language Processing: Psycholinguistic,
Computational and Theoretical Perspectivespages 206{250. Cambridge Uni-
versity Press, New York.

Joshi, A. and Schabes, Y. (1997). Tree-adjoining grammarsin Rozenberg, G.
and Salomaa, A., editors, Handbook of Formal Languages. Vol 3: Beyond
Words, chapter 2, pages 69{123. Springer-Verlag, Berlin/Heiddberg/New
York.

Joshi, A. K., Lewy, L. S., and Takahashi, M. (1975). Tree adjunct grammars.
Journal of Computer and System Sciencesl0(1):136{163.

Karttunen, L., Chanod, J.-P., Grefenstette, G., and Schiller, A. (1996). Reg-
ular expressions for language engineering.Natural Language Engineering
2(4):305{328.

Kasami, T. (1965). An e cient recognition and syntax algori thm for context-free
languages. Technical Report AFCLR-65-758, Air Force Cambidge Research
Laboratory, Bedford, MA.

Kasami, T., Seki, H., and Fujii, M. (1988). Generalized conext-free grammars
and multiple context-free grammars. IEICE Transactions, J71-D-I(5):758{
765.

Kay, M. (1986). Algorithm schemata and data structures in syntactic process-
ing. In Grosz, B., Jones, K., and Webber, B., editors,Readings in Natural
Language Processingpages 35{70. Morgan Kaufman Publishers, Los Altos,
CA.

150

BIBLIOGRAPHY

Khegai, J., Nordstrem, B., and Ranta, A. (2003). Multilingual syntax editing in
GF. In Gelbukh, A., editor, CICLing-2003: Intelligent Text Processing and
Computational Linguistics, LNCS 2588, pages 453{464. Springer.

Kilbury, J. (1985). Chart parsing and the Earley algorithm. In Klenk, U.,
editor, Kontextfreie Syntaxen und wervandte SystemeNiemeyer, Tebingen,
Germany.

Knuth, D. E. (1965). On the translation of languages from let to right. Infor-
mation and Control, 8:607{639.

Lager, T. and Kronlid, F. (2004). The Current platform: Buil ding conversational
agents in Oz. In2nd International Mozart/Oz Conference.

Lambek, J. (1958). The mathematics of sentence structure. American Mathe-
matical Monthly, 65:154{170.

Landin, P. J. (1966). The next 700 programming languages.Communications
of the ACM, 9(3):157{166.

Lang, B. (1974). Deterministic techniques for e cient non- deterministic parsers.
In Loeckx, J., editor, Proceedings of the 2nd Colloquium on Automata, Lan-
guages and Programming volume 14 of LNCS, pages 255{269. Springer-
Verlag.

Lang, B. (1991). Towards a uniform framework for parsing. In Tomita, M.,
editor, Current Issues in Parsing Technology pages 153{171. Kluwer.

Lang, B. (1994). Recognition can be harder than parsingComputational Intel-
ligence 10(4):486{494.

Lee, L. (2002). Fast context-free grammar parsing requiregast Boolean matrix
multiplication. Journal of the ACM, 49(1):1{15.

Lundwall, S. J. (1974). Alice, Alice! Delta Ferlag, Stockholm, Sweden.

Magnusson, L. and Nordstem, B. (1994). The ALF proof editor and its proof
engine. InTypes for Proofs and Program volume 806 ofLNCS, pages 213{237.
Springer.

Martin-L ef, P. (1984). Intuitionistic Type Theory . Bibliopolis, Napoli.

McCarthy, J. (1963). Towards a mathematical science of comptation. In IFIP
Congress pages 21{28, Amsterdam. North-Holland.

Mel'cuk, 1. (1988). Dependency Syntax: Theory and Practice State University
of New York Press.

Miller, P. H. (1999). Strong Generative Capacity Number 103 in CSLI lecture
notes. CSLI Publications, Stanford, CA.

151

BIBLIOGRAPHY

Milner, R., Tofte, M., Harper, R., and MacQueen, D. (1997). The De nition of
Standard ML { Revised. MIT Press, Cambridge, MA.

Mohri, M. (1997). Finite-state transducers in language andspeech processing.
Computational Linguistics, 23(2):269{312.

Montague, R. (1974). Formal Philosophy. Yale University Press, New Haven.
Collected papers edited by R. Thomason.

Morrill, G. (1994). Type Logical Grammar: Categorial Logic of Signs Dordrecht.

Meenma, P. and Ranta, A. (1999). The type theory and type checker ofGF.
In PLI-1999 workshop on Logical Frameworks and Meta-language Paris,
France.

Nakanishi, R., Takada, K., Nii, H., and Seki, H. (1998). E ci ent recognition
algorithms for parallel multiple context-free languages and multiple context-
free languages.EICE Transactions, E81{D(11):1148{1161.

Nakanishi, R., Takada, K., and Seki, H. (1997). An e cient re cognition al-
gorithm for multiple context-free languages. In MOL5: 5th Meeting on the
Mathematics of Language pages 119{123, Saarbicken, Germany.

Nederhof, M.-J. and Satta, G. (1996). E cient tabular LR par sing. In 34th Meet-
ing of the Association for Computational Linguistics, pages 239{246, Santa
Cruz, California.

Nederhof, M.-J. and Satta, G. (2004). Tabular parsing. In Martin-Vide, C., Mi-
trana, V., and Paun, G., editors, Formal Languages and Applications volume
148 of Studies in Fuzziness and Soft Computingpages 529{549. Springer-
Verlag.

Nederhof, M.-J., Satta, G., and Shieber, S. (2003). Partidly ordered multi-
set context-free grammars and free-word-order parsing. Ir8th International
Workshop on Parsing Technologiespages 171{182, Nancy, France.

Nordstrem, B., Petersson, K., and Smith, J. (1990). Programming in Martin-
Lef's Type Theory. Oxford University Press.

Okhotin, A. (2001). Conjunctive grammars. Journal of Automata, Languages
and Combinatorics, 6(4):519{535.

Peyton Jones, S. (2003).Haskell 98 Language and Libraries Cambridge Uni-
versity Press, New York.

Pollard, C. (1984). Generalised Phrase Structure Grammars, Head Grammars
and Natural Language PhD thesis, Stanford University.

Pollard, C. and Sag, I. (1994). Head-Driven Phrase Structure Grammar. Uni-
versity of Chicago Press.

152

BIBLIOGRAPHY

Rajasekaran, S. and Yooseph, S. (1995). TAL recognition ir0O(m(n?)) time.
In 33rd Meeting of the Association for Computational Linguisics, pages 166{
173.

Ranta, A. (1994). Type-Theoretical Grammar. Oxford University Press.

Ranta, A. (2004a). Grammatical Framework, a type-theoretical grammar for-
malism. Journal of Functional Programming, 14(2):145{189.

Ranta, A. (2004b). Modular grammar engineering in GF. Submtited.

Ranta, A. and Cooper, R. (2004). Dialogue systems as proof édrs. Journal
of Logic, Language and Information 13(2):225{240.

Rayner, M., Dowding, J., and Hockey, B. A. (2001). A baselinemethod for
compiling typed uni cation grammars into context free lang uage models. In
EUROSPEECH 2001 Aalborg, Denmark.

Reape, M. (1991). Parsing bounded discontinuous constitugs: Generalisations
of some common algorithms. In Reape, M., editorWord Order in Germanic
and Parsing, pages 41{70. Centre for Cognitive Science, Edinburgh.

Robinson, J. A. (1965). A machine-oriented logic based on th resolution prin-
ciple. Journal of the ACM, 12(1):23{49.

Satta, G. (1994). Tree adjoining grammar parsing and boolea matrix multipli-
cation. Computational Linguistics, 20(2):173{192.

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple context-
free grammars. Theoretical Computer Science 88:191{229.

Shieber, S. (1984). Direct parsing of ID/LP grammars. Linguistics and Philos-
ophy, 7(2):135{154.

Shieber, S. (1985). Evidence against the context-freenesd natural language.
Computational Linguistics, 20(2):173{192.

Shieber, S., Schabes, Y., and Pereira, F. (1995). Principteand implementation
of deductive parsing. Journal of Logic Programming, 24(1{2):3{36.

Sikkel, K. (1997a). Parsing of context-free languages. In Bzenberg, G. and Sa-
lomaa, A., editors, The Handbook of Formal Languagesvolume Il. Springer-
Verlag, Berlin.

Sikkel, K. (1997b). Parsing Schemata Springer Verlag.

Sikkel, K. (1998). Parsing schemata and correctness of pairgy algorithms.
Theoretical Computer Science 199:87{103.

Steedman, M. (1985). Dependency and coordination in the gnamar of Dutch
and English. Language 61:523{568.

153

BIBLIOGRAPHY

Steedman, M. (1986). Combinators and grammars. In Oehrle, R Bach, E., and
Wheeler, D., editors, Categorial Grammars and Natural Language Structures
pages 417{442. Foris, Dordrecht.

Teitelbaum, T. and Reps, T. (1981). The Cornell Program Synthesizer: a
syntax-directed programming environment. Communications of the ACM,
24(9):563{573.

Tomita, M. (1986). E cient Parsing for Natural Language . Kluwer Academic
Press.

Valiant, L. (1975). General context-free recognition in less than cubic time.
Journal of Computer and Systems Sciencesl0(2):308{315.

Vijay-Shanker, K. and Joshi, A. (1985). Some computationalproperties of tree
adjoining grammars. In 23rd Meeting of the Association for Computational
Linguistics, pages 82{93, Chicago, lllinois.

Vijay-Shanker, K. and Weir, D. (1990). Polynomial parsing of combinatory
categorial grammars. In28th Meeting of the Association for Computational
Linguistics, pages 1{8, Pittsburgh, PA.

Vijay-Shanker, K. and Weir, D. (1993a). Parsing some constained grammar
formalisms. Computational Linguistics, 19(4):591{636.

Vijay-Shanker, K. and Weir, D. (1993b). The use of shared foests in tree adjoin-
ing grammar parsing. In Meeting of the European Chapter of the Association
for Computational Linguistics, pages 384{393, Utrecht, Netherlands.

Vijay-Shanker, K. and Weir, D. (1994). The equivalence of fairr extensions of
context-free grammars. Mathematical Systems Theory 27:511{546.

Vijay-Shanker, K., Weir, D., and Joshi, A. (1987). Characterizing structural
descriptions produced by various grammatical formalisms.In 25th Meeting of
the Association for Computational Linguistics.

Weir, D. (1988). Characterizing Mildly Context-Sensitive Grammar Formalisms
PhD thesis, University of Pennsylvania, Philadelphia, PA.

Wien, M. (1992). Studies in Incremental Natural-Language Analysis PhD
thesis, Linkeping University, Link eping, Sweden.

Younger, D. H. (1967). Recognition of context-free languags in time n3. Infor-
mation and Control, 10(2):189{208.

154

	Introduction
	Motivation for this thesis
	Expressivity and parsing complexity
	Expressive power
	Complexity of parsing
	Storing parse results

	Separating abstract and concrete syntax
	Linguistic advantages
	Comparison with some grammar formalisms
	Generalized context-free grammar
	Grammatical Framework
	An introductory example

	Overview and main results of the thesis

	Background
	Preliminary definitions
	Sequences, languages and grammars
	Data types and elements

	Parsing as deduction
	Soundness and completeness of algorithms
	Examples of context-free parsing algorithms
	Possible implementations
	Space and time complexity

	Grammatical Framework
	Abstract syntax: dependent type theory
	The context-free backbone
	Concrete syntax
	Resource syntax
	Linearization terms
	The module system
	Canonical linearizations
	A note on the syntax of gf grammars

	Generalized context-free grammar
	Abstract grammar
	Concrete interpretation
	Variable-free notation for linearizations
	Subclasses of gcfg
	gf with a context-free backbone

	Parallel multiple context-free grammar
	Variable-free notation for pmcfg grammars
	Comparison with gf
	Linearity and nonerasingness

	Representations of syntactical information
	Syntax trees or abstract terms
	Syntax forests or charts
	Equivalence and simulation of grammars

	Summary

	Reducing context-free GF to PMCFG
	Paths and -normal form
	Converting to table normal form
	Converting to a pmcfg grammar
	Non-deterministic reduction
	Coercions between categories

	Tables with anonymous variables
	Constraints and anonymous variables
	More coercion functions

	Summary

	Parsing algorithms for context-free GF and PMCFG
	Ranges
	Range-restriction
	Ranges and linear gf grammars

	Polynomial parsing for context-free gf
	An active version of the algorithm

	Parsing through context-free approximation
	Creating a context-free approximation
	Converting context-free items to pmcfg items
	Soundness and completeness
	An active version of the algorithm

	Active parsing of pmcfg
	Different prediction strategies

	Parsing of erasing and suppressing pmcfg
	Removing erasingness from a grammar
	Using the restriction grammar for parsing

	Incremental pmcfg parsing
	Alternative strategies
	Erasing and suppressing grammars

	Summary

	Extensions of concrete syntax
	Intersection (&)
	A strict extension
	Conjunctive pmcfg describes the polynomial languages
	Parsing of conjunctive pmcfg

	Intensional disjunction (|)
	A non-strict extension
	Parsing of intensionally disjunctive pmcfg

	Extensional disjunction (|)
	A strict extension
	Parsing of extensional disjunctive pmcfg

	Interleave ("026B30D)
	Active parsing of interleaved pmcfg

	Summary

	Non-context-free abstract syntax
	Higher-order functions
	Removing higher-order functions from a grammar
	Higher-order functions as arguments

	Dependent types
	Type checking as proof search
	Dependent types and higher-order functions

	Limitations of the approach in this chapter
	Function definitions
	Lambda-abstractions in typings

	Summary

