
Interactive correction of speech recognition errors:
implementation and evaluation for English and Swedish

Peter Ljunglöf, J. Magnus Kjellberg

Department of Computer Science and Engineering
University of Gothenburg and Chalmers University of Technology

peter.ljunglof@cse.gu.se, magnus.kjellberg@chalmers.se

1. Introduction
In the MUSTE project we explore how to make quick
fixes to simple texts using as few interactions as possible
(Ljunglöf, 2011). There are several situations where this
could be useful, such as when you are driving (and don’t
have access to a keyboard), if your device is too small for
a proper keyboard (such as a mobile phone), or if you have
a communicative disability (e.g., cerebral palsy, visual im-
pairment, or something else).

Assume that the user dictated a text message in their
phone, and the speech recogniser got most of the message
correct, but there were a few words that turned out slightly
wrong. In the system that we envision, the user would point
at the incorrect words, and the phone would then suggest
possible substitutions based on phonological, syntactic and
semantic properties. The suggestions for substitutions are
presented in a menu from which the user can select the cor-
rect choice, or ask for a new menu of suggestions. The
sentence can be further modified in small steps to finally
reach the intended text.

At SLTC in 2016, we presented a very limited study to
see if it would be interesting to investigate the approach fur-
ther (Ljunglöf, 2016), and now we report on a larger-scale
study that we conducted during spring 2018. The main goal
of our study is to see if this kind of editing interface can be
useful: how probable is it that the system suggests the in-
tended correction, and what parameters are important for
the system when calculating good suggestions? We present
how the experiment system works, how we have evalutated
its performance, and the evaluation results, for both English
and Swedish speech recognition error correction.

2. Related work
Suhm et al. (2001) give an overview of strategies for speech
error correction. One of the main strategies for correct-
ing a misinterpreted word is to select from a list of al-
ternatives, which is what we use in this project. The ap-
proach we are using is based on ideas from multimodal text
editing (Ljunglöf, 2011), but we are using statistical mod-
els instead of grammars to suggest replacements. Liang
et al. (2014; 2015) use a similar approach to ours, but
they have a slightly more complicated interface with dif-
ferent editing operations, and they only evaluate Japanese.
The Parakeet system (Vertanen and Kristensson, 2010) uses
even more complex editing operations, making it possible
to correct several errors at once, but on the other hand in-
creases the cognitive burden on the user.

Previous evaluations of interactive speech input correc-
tion systems have mainly been performed on human sub-
jects (Cuřín et al., 2011; Kumar et al., 2012; Suhm et al.,
2001; Vertanen, 2006). In contrast, our evaluation is purely
corpus- and lexicon-based and does not involve human sub-
jects, which can be a promising complement to expensive
evaluations on human subjects.

3. Implementation
When the selects the incorrect word(s), the system must
come up with a reasonable list of substitution words. There
are several possible approaches, more or less advanced. In
this study we have chosen an approach in the middle when
it comes to complexity.

3.1 Datasets
We use the following datasets in our system, for training
the algorithms and for evalutation (see table 1):

Language model corpus: A large monolingual corpus
for calculating n-gram frequences and language models.
We used the English and Swedish Wikipedia,1 containing
approx. 1900m tokens (for English) and 370m tokens (for
Swedish), respectively.

Parallel error correction corpus: A parallel corpus with
speech recognition errors and their corrected counterparts.
To create this corpus, we used a corpus for speech recog-
nition training which consists of recorded utterances paired
with gold-standard transcriptions. We automatically tran-
scribed each recorded utterance with speech recogniser,
and if the transcription differed from the gold-standard we
added this transcription pair to our parallel corpus.

We created the English corpus from two open-source
datasets, the VoxForge speech corpus2 and Mozilla Com-
mon Voice,3 totalling 270k recorded and transcribed ut-
terances. We used the CMU Sphinx speech recognition
toolkit4 to transcribe the recordings. 32% of the utterances
were recognised incorrectly, so our English parallel corpus
contains 87k utterances.

The Swedish corpus is created from the dataset collected
by Nordisk Språkteknologi (NST), freely available from the
Norwegian Språkbanken,5 containing 477k recorded and

1Wikipedia downloads, https://dumps.wikimedia.org
2VoxForge project, http://voxforge.org
3Mozilla Common Voice, https://voice.mozilla.org
4CMU Sphinx, http://cmusphinx.sourceforge.net
5NST database, https://www.nb.no/sprakbanken/repositorium

mailto:peter.ljunglof@cse.gu.se
mailto:magnus.kjellberg@chalmers.se
https://dumps.wikimedia.org
http://voxforge.org
https://voice.mozilla.org
http://cmusphinx.sourceforge.net
https://www.nb.no/sprakbanken/repositorium


Dataset English Size Swedish Size
Language model corpus English Wikipedia 1900m tokens Swedish Wikipedia 390m tokens
Parallel error corpus VoxForge + Mozilla 171k errors NST database 39k errors
(transcribed with) (CMU Sphinx) (Google speech)
Phonetic dictionary CMU pronouncing dict. 123k entries KTH phonetic dict. 938k entries

Table 1: Datasets used for training and evaluation.

Utterances Substitutions involving at most 2 words on either side
with errors total 1-0 2-0 0-1 0-2 1-1 2-1 1-2 2-2

English 87,307 76,009 6% 2% 8% 2% 40% 14% 12% 15%
Swedish 38,526 41,941 3% <1% 6% <1% 58% 17% 8% 8%

Table 2: Statistics for the parallel error corpora.

transcribed utterances. We transcribed 51k of the record-
ings using Google cloud speech recognition.6 Google
speech returns an n-best list, so we picked a transcription
randomly from the 5 best candidates, to increase the num-
ber of incorrect transcriptions. Our final Swedish parallel
corpus contains 39k utterances.

Table 2 shows the distribution of the different kinds of
errors in the parallel corpora. In total there are 76k errors
involving at most 2 words on either side for English, and
42k errors for Swedish. Most notable is that the by far most
common error is a 1-1 word substitution.

Phonetic dictionary: A dictionary for converting be-
tween written text and their phonological representations.
For English we used the CMU pronouncing dictionary,7

containing 123k entries; and for Swedish we used the pho-
netic dictionary from the KTH Royal Institute of Technol-
ogy,8 containing 938k entries.

3.2 Workflow
After the system has recognised an utterance, it presents
the sentence to the user. The user can then select a word,
which is interpreted by the system as a request to replace
the word with another word. The system does this by re-
ordering a large internal dictionary, according to how prob-
able it is that the new word is what the user originally in-
tended when dictating the utterance. After reordering, the
n topmost suggestions will be presented to the user, where
n depends on the available space for presenting suggestions
but in our evaluation we assume n = 10.

The system first uses an intitial filtering method to se-
lect the 10,000 most promising candidates from the starting
dictionary. It is important that the initial filter is both effi-
cient and selects good candidates, so we have tested three
different methods for performing the first filter.

The candidates are reordered in a second phase. We use
five different methods for calculating the probability that
a dictionary word is a good substitution for the selected
word. Logistic regression is used to combine the methods,
and the candidate words are sorted by their final probabil-
ity. For evaluation of logistic regression we used 10 times
cross validation. The workflow is shown is figure 1.

6Google speech, https://cloud.google.com/speech-to-text
7CMU-dict., http://www.speech.cs.cmu.edu/cgi-bin/cmudict
8KTH Swedish ASR models, https://www.speech.kth.se/asr

starting
dictionary

filter

filtered
candidates

word
frequency

edit
distance

stochastic
edit dist.

word
embeddings

language
model

logistic
regression

sorted
candidates

input sentence +
selected word(s)

Figure 1: Workflow of the system

3.3 Models for error correction
To estimate the probability that a given dictionary word is
the intended word, the system takes into account (1) how
common the substitution is according to some corpus, (2)
how similar the substitution is to the original word, and (3)
how probable it is that the substitution blends in with the
rest of the utterance. In our investigation we have imple-
mented and tested five different methods for (1–3).

One of the intentions with our work is to investigate
which methods work best for suggesting substitutions for
misinterpreted words and phrases. We have implemented
and evaluated the following five methods.

Word probability: All the substitution suggestions are
taken from a large dictionary which is calculated from the

https://cloud.google.com/speech-to-text
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://www.speech.kth.se/asr


language model corpus. As an initial ranking of the words
and phrases, we calculated unigram and bigram frequen-
cies. To reduce the size of the database, we filtered out all
bigrams with frequency less than 5. Finally we transformed
all words into their phonological representations, using the
dictionary. This resulted in an English frequency distribu-
tion for 123k unigrams and 3200k bigrams. For Swedish
the corresponding figures are 185k unigrams and 1430k bi-
grams.

Word similarity: To measure the similarity between the
selected word and the substitution, we use a phonologi-
cal similarity score. This is measured by calculating the
Levenshtein edit distance (Levenshtein, 1966) between the
phonological transcriptions of the erroneous word and the
correct word. Since the initial dictionary is so large, we
need to be able to quickly filter the words that are close to
the erroneous word. For this we pre-calculate a similarity
index using SymSpell9 (a similar algorithm is described by
Bocek et al. (2007)). When building the similarity index,
we have used a maximum edit distance of 5.

A slightly more advanced similarity measure is the
stochastic edit distance which uses different weights for
different phoneme pairs (Ristad and Yianilos, 1998). To
train the weights we have used 10% of the parallel corpus.
The implementation is much slower than SymSpell, so we
can only perform this in the later reordering phase.

Utterance probability: We train a KenLM language
model (Heafield, 2011) from the language model corpus.
This language model is used for querying the syntactic
probability of an utterance when replacing the selected
word with an alternative.

Finally, we use word2vec word embeddings (Mikolov et
al., 2013) trained from the language model corpus, as a se-
mantic probability measure for the substituted utterance.

3.4 Replacing several words
It is possible that a selected word should be split in two or
more shorter words (e.g., “awake” vs “a week”). It is also
possible that two consecutive words should be merged into
one (e.g., “camp fang” vs “campaign”), or even replaced
with two other words (e.g., “her die” vs “heard I”). Our
system is able to handle both 1- and 2-word substitutions,
but the complexity increases when we want find a pair of
words to suggest. E.g., the size of the English initial dic-
tionary increases from 123k to 3200k, so the initial filtering
method has to process more candidates, and the risk of sug-
gesting bad substitutions increases. Nevertheless, we did
conduct an initial study on some two-word substitutions.

4. Evaluation
We performed two evaluations: different methods for the
first filtering phase, and different methods (and combina-
tions) for the second reordering phase. These correspond
to the pink ellipses in figure 1.

Our main evaluation has been on the most common cor-
rections, where one word is replaced by one word. This is
the 1-1 error type in table 2. An initial estimate tells that
the accuracy of the other error types are worse, and our

9SymSpell, https://github.com/wolfgarbe/SymSpell

Correct substitution. . . English Swedish
. . . is in intitial dictionary 99% 96%
. . . remains after first filter

– SymSpell 84% 56%
– KenLM 67% 29%
– word2vec 82% —

Table 3: Utterances where the correct suggestion remains
after the first filtering phase.

methods and workflow will probably need more thinking to
improve correction of 1-2, 2-1 and 2-2 errors.

4.1 First filter
We tried three different methods for filtering out the first
10k candidates: SymSpell, KenLM and word2vec. The
evaluation was made on 1000 random utterances from the
parallel corpus, and we measured for how many utterances,
the correct suggestion still remained after the first filtering
phase. As seen in table 3, SymSpell and word2vec both
performed quite well for English, whereas KenLM fared
worse. For more than 80% of the utterances, the correct
candidate remained until the second phase. This suggests
that the speech recognition errors are normally quite simi-
lar to the intended utterance, both with respect to phonol-
ogy (SymSpell) and semantics (word2vec). We did not try
to combine the three methods into a unified first filter, but
that is of course a natural next step.

For Swedish the results are worse, and we have not done
any investigation as to why this is. But one factor could
be that the training corpora are smaller than their English
counterpart. We did not have time to evaluate word2vec as
first filter, for Swedish.

In addition we performed a limited evaluation of the er-
ror types 1-2, 2-1 and 2-2 for English. We only tested Sym-
Spell, and the accuracy drops to 20–30% for these error
types. We did not evaluate the second reordering phase for
these error types.

4.2 Reordering the candidates
After filtering out the 10k most promising candidates, we
reorder them. The n topmost candidates in this ordered
list can then be presented to the user, where n depends on
the available space for presentation. In this evaluation we
assume that n = 10.

We tried all possible combinations of our five ranking
methods. Table 4 shows the most important results: ALL
means that we combine all five methods, ¬m means that
all methods except m are combined, and m means that we
only used method m. The methods are abbreviated in the
table: wf (word frequency), ss (SymSpell), sed (stochastic
edit distance), klm (KenLM), and w2v (word2vec). The
evaluation was made on 1000 random utterances from the
parallel corpus, and we measured for how many utterances,
the correct suggestion was among the top-10 suggestions
after the second reordering phase.

Not surprisingly, the more methods we combine the bet-
ter the accuracy. KenLM is the method which contributes
the most, which is shown by the drop of accuracy when

https://github.com/wolfgarbe/SymSpell


First filter The correct substitution is among the top-10 suggestions
(SymSpell) ALL ¬wf ¬ss ¬sed ¬klm ¬w2v wf ss sed klm w2v

English 84% 44% 45% 41% 44% 31% 42% 15% 23% 17% 36% 11%
Swedish 56% 38% 37% 32% 37% 35% 37% 8% 29% 9% 16% 2%

Table 4: Utterances where the correct suggestion is among the top-10 after the second sorting phase. The abbreviations are:
wf (word frequency), ss (SymSpell), sed (stochastic edit distance), klm (KenLM), w2v (word2vec).

we leave it out, and the high accuracy when we only use
KenLM. Stochastic edit distance seems to not be better than
SymSpell, perhaps the weights are trained on too little data.
Apart from that, it is difficult to draw conclusive conclu-
sions. 44% of the English errors got the correct substitution
among the top-10 candidates. For Swedish the results are
in general 5–10 points lower, which probably partly has to
do with smaller training data.

5. Discussion and future work
One conclusion to draw from this evaluation is that almost
half of all 1-word speech recognition errors can be cor-
rected using this touch-friendly method. With better rank-
ing methods, better combination of the methods, and more
training data, we are convinced that the accuracy can in-
crease substantially.

Our next goal is to also increase the accuracy for 1-2, 2-1
and 2-2 substitutions, and perform a serious evaluation of
those too. After that there are several possible paths:

• To improve the first filter by combining all methods,
and perhaps add more methods – the important issue
here is that the methods we use for first filtering must
be very efficient.

• Investigate more ranking methods for the second
phase, such as morphology or syntax. If available,
context could be used for increasing the retrieval rate,
e.g., topics and words from previous utterances and
conversations. Bidirectional LSTM or other neural
network architectures are also possible.

• Improve the datasets – if the main application is to cor-
rect text messages, we want to make use of a corpus
of text messages.

• The pronunciation dictionaries can be improved, e.g.,
by using the recent CMU Sphinx G2P toolkit.10

• It would probably be very useful to use the internal
information from the speech recogniser. Either the n-
best list of results, or the internal states.

6. Acknowledgements
This research is funded by Chalmers ICT Area of Advance,
and the Swedish Research Council (Vetenskapsrådet).

References
Thomas Bocek, Ela Hunt, and Burkhard Stiller. 2007. Fast

similarity search in large dictionaries. Technical report,
Department of Informatics, University of Zurich, April.
http://fastss.csg.uzh.ch/.

Jan Cuřín, Martin Labský, Tomáš Macek, Jan Kleindienst,
Holger Quast, Hoi Young, Ann Thyme-Gobbel, and Lars

10G2P toolkit, https://github.com/cmusphinx/g2p-seq2seq

König. 2011. Dictating and editing short texts while
driving: Distraction and task completion. In Automo-
tiveUI 2011, 3rd International Conference on Automo-
tive User Interfaces and Interactive Vehicular Applica-
tions, Salzburg, Austria.

Kenneth Heafield. 2011. KenLM: faster and smaller lan-
guage model queries. In Proceedings of SMT 2011, the
EMNLP 2011 Sixth Workshop on Statistical Machine
Translation, pages 187–197, Edinburgh, Scotland, UK.

Anuj Kumar, Tim Paek, and Bongshin Lee. 2012. Voice
typing: A new speech interaction model for dictation
on touchscreen devices. In Proceedings of CHI 2012,
SIGCHI Conference on Human Factors in Computing
Systems, Austin, Texas, USA.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710.

Yuan Liang, Koji Iwano, and Koichi Shinoda. 2014. Sim-
ple gesture-based error correction interface for smart-
phone speech recognition. In Proceedings of Interspeech
2014, Singapore.

Yuan Liang, Koji Iwano, and Koichi Shinoda. 2015. Er-
ror correction using long context match for smartphone
speech recognition. IEICE Transactions on Information
and Systems, E98–D(11):1932–1942.

Peter Ljunglöf. 2011. Editing syntax trees on the surface.
In Nodalida’11: 18th Nordic Conference of Computa-
tional Linguistics, Rı̄ga, Latvia.

Peter Ljunglöf. 2016. Towards interactive correction of
speech recognition errors. In SLTC’16, 6th Swedish Lan-
guage Technology Conference, Umeå, Sweden.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Pro-
ceedings of NIPS’13, 26th International Conference on
Neural Information Processing Systems, pages 3111–
3119.

Eric Ristad and Peter N. Yianilos. 1998. Learning string
edit distance. In IEEE Transactions on Pattern Analysis
and Machine Intelligence, volume 20, May.

Bernard Suhm, Brad Myers, and Alex Waibel. 2001. Mul-
timodal error correction for speech user interfaces. ACM
Transactions on Computer-Human Interaction, 8(1):60–
98.

Keith Vertanen and Per Ola Kristensson. 2010. Intelli-
gently aiding human-guided correction of speech recog-
nition. In Proceedings of AAAI’10, the Twenty-Fourth
AAAI Conference on Artificial Intelligence.

Keith Vertanen. 2006. Speech and speech recognition dur-
ing dictation corrections. In Proceedings of Interspeech
2006, Pittsburgh, Pennsylvania, USA.

https://github.com/cmusphinx/g2p-seq2seq

