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1 AIms

e Situated agents/robots need to refer to space

e Spatial descriptions: “the chair is to the left
and close to the table” and “go down the cor-
ridor until the large painting on your right, then
turn left”

e Grounded in several modalities

e Shortcomings of DNN approaches to image
captioning when generating them

e We need a modular approach to DNNs

e Combines top down (mechanistic) and bottom
up (phenomenological) approaches

2 Shortcomings of the current
models

e DNNs are suited for learning multi-modal rep-
resentations: discrete (words) and continuous
(word embeddings and visual features)

Encoder Decoder

e Generalised learning mechanisms that learn
with relatively high-level (coarse) supervision
through architecture design: bottom-up or
phenomenological approach

e Pattern recognition is not enough

Generated by (Karpathy and Fei-Fei, 2015)
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a woman riding a horse on a an airplane is parked on the a group of people standing on
dirt road tarmac at an airport top of a beach

“...without intuitive physics, intuitive psychology,
compositionality, and causality.” (Lake et al.,
2016)

3 Multi-dimensionality of meaning of
spatial language
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e Scene geometry

e Functional world knowledge about dynamic
Kinematic routines between objects

e Perspective

e Interaction between agents and with their envi-
ronment

e A theory of how different factors in spatial
language are integrated? (Herskovits, 1987;
Coventry and Garrod, 2005)

4 Modular approaches

e Build a solution in a piece-wise manner and
then integrate

e Deep learning is assisted with domain knowl-
edge expressed as modules that are trained on
data: a top-down or mechanistic approach

5 Promising architectures

e (Regier, 1996): constrained connectionist
network, captures geometric factors and paths
of object motion to predict a description
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The model

e Coventry et al. (2005): interconnected net-
works

—Dynamic visual scenes containing three ob-
jects: a teapot pouring tea into a cup
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— Geometric arrangement (6 locations) vs
function of objects (tea reaches the con-
tainer, misses the container, no tea), degrees
of pouring

— For each temporal snapshot of the scene, op-
timise the appropriateness score of a spatial
description obtained in subject experiments
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— Transfer learning: modules trained indepen-
dently but are connected to encode represen-
tations

— Object recognition: a neurally inspired vi-
sion processing module that deals with detec-
tion of objects (“what”) and motion (“where”)
of objects from image sequences using an at-
tention mechanism
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—Interaction of objects: an Elman recurrent
network that learns the dynamics of the at-
tended objects in the scene over time

—Vision and language fusion: integration of
the grounded visual information (30) with lan-
guage (6 object names and 4 prepositions) to
predict the same visual data, 6 object names,
and ratings for 4 prepositions

e Andreas et al. (2016): sequencing the mod-
ules

— Visual question answering: associate a ques-
tion and visual/database representation with
an answer by finding a sequence of trainable
neural modules using reinforcement learning
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6 Conclusions and future work

e DNNSs allow for a great flexibility in combining
top-down specification (hand-designed struc-
tures and rules) and data driven approaches

e Can be modularised to specialise for a particu-
lar task

e Modules can be pre-trained (even on a different
dataset) and used as feature encoders

e Good at information fusion
e Well-suited for modelling spatial language

e Scale the existing neural spatial language mod-
els to a large corpus of image descriptions (Kr-
ishna et al., 2017)

—distortion of object appearance and geometry
by perspective at which an image was taken

—not all spatial configurations of an object pair
In a temporal sequence are there

— different configurations may appear similar

—no direct human judgements scores

—Dbias to particular kinds of objects and interac-
tions

e Extend the modalities of (Coventry et al., 2005),
e.g. referential games (Lazaridou et al., 2016)
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