
Teaching mobile robots

to use spatial words

�
Simon Dobnik

The Queen’s College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Hilary 2009

In loving memory of my father Ivan

Acknowledgements

This work would not have been possible without the support of friends and col-

leagues whom I would like to thank here.

Firstly, I would like to thankmy supervisor, Professor Stephen Pulman, for his sup-

port throughout, for his comments and advice at important stages in the development

of this thesis and for arranging regular meetings to read my work. Thanks also goes

to Paul Newman, Dave Cole, Ingmar Posner, Mark Cummins and the rest of the group

for introducing me to mobile robotics and allowing me to work with their equipment

and in their lab.

The Centre for Linguistics provided a stimulating and pleasant research environ-

ment. I would like to thank David Cram, Sandra Paoli, Professor John Coleman and

Professor Mary Dalrymple for allowing me to work there and be part of the academic

community. A special thanks goes to Professor Aditi Lahiri for her incredible kindness,

guidance and encouragement during the most difficult times.

I would also like to thankmy colleagues and friends Jana Sukkarieh, Maria Liakata,

David Wright, Peet Morris, Rada Mihalcea and Miltiadis Kokkonidis with whom I

have spent a significant part of my DPhil life by sharing an office. They were the first

peoplewith whom I discussedmywork and ideas and they also supportedmemorally

when things did not go right. I am also grateful to Lars Larm, Keith Owen, Wolfgang

de Melo, Jakob Leimgruber and Lindsay Weichel for our discussions and friendship.

The first two years of this study were funded in part by the studentships from the

Oxford University Committee for Comparative Philology and General Linguistics, The

Queen’s College and an ORS Award. I am also grateful to the Ad Futura Foundation

i

and Gorenje d.d. for their grants. A special thanks goes to The Queen’s College for

their support in financial hardship, in particular to Jane Langdale and Joyce Millar for

their kind assistance.

My appreciation also goes to my friends and colleagues at the Oxford Univer-

sity Computing Services where I spent a significant time when not working on my

thesis. These are Catherine Craddock, Peter Higginbotham, Stuart Robeson, Annie

Martin, John Howard, Catrin Radcliffe, Andrew Hutchinson, Jeffrey Snyder, Jonathan

Sargeant, Tim Fernando, Samira Kazan, Ranjit Vijayan and many others.

I am grateful to my housemates who made my life happier and richer: Stephen

Patrick, Elizabeth Harre, Penny Grant and Cheryl Ridout. A special thanks goes to

Susanne Sklar, a dear friend and truly an exceptional person.

I could also count on the unfailing support of my family, in particular my mother

Milena, my grandmother Roza, Matej and Viljem. The biggest thanks goes to Lidija.

For many years she has believed in me, supported me and loved me.

ii

Abstract

The meaning of spatial words can only be evaluated by establishing a reference to

the properties of the environment in which the word is used. For example, in order

to evaluate what is to the left of something or how fast is fast in a given context, we

need to evaluate properties such as the position of objects in the scene, their typical

function and behaviour, the size of the scene and the perspective from which the scene

is viewed.

Rather than encoding the semantic rules that define spatial expressions by hand,

we developed a system where such rules are learned from descriptions produced by

human commentators and information that a mobile robot has about itself and its envi-

ronment. We concentrate on two scenarios and words that are used in them. In the first

scenario, the robot is moving in an enclosed space and the descriptions refer to its mo-

tion (“You’re going forward slowly” and “Now you’re turning right”). In the second

scenario, the robot is static in an enclosed space which contains real-size objects such

as desks, chairs and walls. Here we are primarily interested in prepositional phrases

that describe relationships between objects (“The chair is to the left of you” and “The

table is further away than the chair”). The perspective can be varied by changing the

location of the robot. Following the learning stage, which is performed offline, the sys-

tem is able to use this domain specific knowledge to generate new descriptions in new

environments or to “understand” these expressions by providing feedback to the user,

either linguistically or by performing motion actions.

If a robot can be taught to “understand” and use such expressions in a manner

that would seem natural to a human observer, then we can be reasonably sure that

iii

we have captured at least something important about their semantics. Two kinds of

evaluation were performed. First, the performance of machine learning classifiers was

evaluated on independent test sets using 10-fold cross-validation. A comparison of

classifier performance (in regard to their accuracy, the Kappa coefficient (κ), ROC and

Precision-Recall graphs) is made between (a) the machine learning algorithms used to

build them, (b) conditions under which the learning datasets were created and (c) the

method by which data was structured into examples or instances for learning. Second,

with some additional knowledge required to build a simple dialogue interface, the

classifiers were tested live against human evaluators in a new environment. The results

show that the system is able to learn semantics of spatial expressions from low level

robotic data. For example, a group of human evaluators judged that the live system

generated a correct description of motion in 93.47% of cases (the figure is averaged

over four categories) and that it generated the correct description of object relation in

59.28% of cases.

iv

Contents

1 Introduction 1

2 Research background 7

2.1 Introduction . 7

2.2 Descriptions of object relations . 7

2.3 Natural language and situated robots . 18

2.3.1 Grounding . 19

2.3.2 Instruction-based learning (IBL) 25

2.3.3 Embodied robotic systems . 27

2.4 Our tools . 31

2.4.1 The MOOS . 31

2.4.2 The world as seen by a mobile robot 35

2.4.2.1 Motion of a robot . 37

2.4.2.2 The robot within its environment 39

2.4.3 Machine learning . 45

2.5 Conclusion . 49

3 Machine learning 51

3.1 Introduction . 51

3.2 Data collection . 52

3.2.1 Linguistic and non-linguistic data 52

3.2.2 Experiment set up . 55

v

3.3 Creating instances for machine learning 61

3.3.1 Combining log entries to instances 61

3.3.2 Normalising non-numeric data . 66

3.3.3 Extracting linguistic data . 67

3.3.4 Creating Weka datasets . 71

3.4 The learning algorithms . 79

3.4.1 Naive-Bayes learner . 80

3.4.2 Decision tree learner (J48) . 86

3.5 Results . 96

3.5.1 Classifier evaluation measures . 97

3.5.2 Classifier accuracy . 105

3.5.3 Classifier accuracy excluding chance 107

3.5.4 Improving classifier performance on motion classes 115

3.5.5 How many nominal classes from numeric attributes? 122

3.5.6 The performance of classifiers per class 128

3.6 Conclusion . 133

4 From classifiers to an interactive system 137

4.1 Introduction . 137

4.2 General structure of pDescriber and pDialogue 138

4.3 Configuring and starting the systems . 143

4.4 pDescriber . 148

4.4.1 pDescriber in general . 148

4.4.2 Describing motion . 150

4.4.3 Working with Weka classifiers . 151

4.4.4 Describing relations between objects 152

4.4.5 Asking for evaluations . 155

4.5 pDialogue . 155

vi

4.5.1 pDialogue in general . 155

4.5.2 Preparing pDialogue . 157

4.5.3 Parsing user linguistic input . 161

4.5.4 Matching user linguistic input to word patterns 167

4.5.5 Responding to user . 171

4.5.5.1 Generating motion . 172

4.5.5.2 Locating objects . 173

4.5.5.3 Confirming an object description 174

4.5.5.4 Finding objects . 175

4.5.5.5 Referencing an object . 176

4.5.6 Asking for evaluations . 176

4.6 Conclusion . 178

5 Evaluation by humans 181

5.1 Introduction . 181

5.2 Evaluation of pDescriber . 182

5.2.1 Experiment design . 182

5.2.2 Evaluator agreement . 183

5.2.3 Classifier performance and system performance 193

5.2.4 System performance excluding chance 198

5.2.5 Qualitative evaluation of the system’s performance 205

5.2.5.1 Ambiguity of heading and direction 205

5.2.5.2 Object shape . 207

5.2.5.3 Switching the perspective 209

5.2.5.4 Descriptions of objects outside the field of vision 211

5.2.5.5 Competing descriptions 212

5.2.5.6 Final remarks . 213

5.2.6 Summary . 214

vii

5.3 Evaluation of pDialogue . 215

5.3.1 Evaluation in general . 215

5.3.2 Experiment design . 217

5.3.3 Evaluator agreement . 221

5.3.4 System performance . 226

5.3.5 Differences in performance . 233

5.3.5.1 t-test . 233

5.3.5.2 Pearson’s Chi-square test 235

5.3.5.3 The effect of the field of vision 237

5.3.5.4 Projective and topological relations 239

5.3.5.5 Choice of the reference frame 242

5.3.5.6 Discretised and nominal concepts 243

5.3.6 Summary . 245

5.4 Conclusion . 247

6 Conclusion 249

Appendix A: Classifier performance per class 255

References 261

viii

List of Figures

2.1 Where is the table? . 8

2.2 “Ideal” regions denoted by projective descriptions depending on the

choice of a reference frame . 10

2.3 Spatial template for “above” . 13

2.4 Two orientation components . 16

2.5 Dialogue in IBL . 25

2.6 MOOS topology in general . 32

2.7 The iRobot ATRV-JR robots used by the MRG group 36

2.8 The structure of the odometry variable . 38

2.9 SLAM: building a global map from relative observations 41

2.10 Building a SLAMmap with MOOS . 42

2.11 Grounding objects . 43

2.12 An extract from the weather dataset . 47

3.1 The MOOS topology used during data collection 57

3.2 Descriptions from the perspective of the robot 59

3.3 An extract from asynchronous MOOS log files 60

3.4 The basic algorithm for creating instances 62

3.5 Finding stop points . 64

3.6 Matching description time codes and odometry time codes 65

3.7 Finding a delay . 66

3.8 An extract from the lexicon . 70

ix

3.9 An excerpt from an ARFF file . 73

3.10 A decision tree for the concept Heading . 87

3.11 Subtree replacement . 93

3.12 Subtree raising . 94

3.13 Accuracy is not a good indicator of classifier performance 100

3.14 A confusion matrix . 102

3.15 The relationship between Precision and Recall 104

3.16 The estimated accuracies of classifiers trained on Simple and All 106

3.17 The performance of classifiers according to κ trained on Simple and All . 112

3.18 The relative difference in κ contributed by time-shifting for the J48 clas-

sifiers . 119

3.19 The relative difference in κ contributed by time-shifting for the Naive-

Bayes classifiers . 121

3.20 The average accuracies of classifiers with differently discretised target

concepts . 123

3.21 The average κ values of classifiers with differently discretised target con-

cepts . 125

3.22 A confusion matrix for Relation (J48, All) 129

3.23 ROC and Precision-Recall graphs for Relation 130

3.24 ROC and Precision-Recall graphs for Verb 131

3.25 F-Measure per class of Relation . 132

3.26 F-measure per class of Verb . 132

4.1 Integration of linguistic applications with MOOS 138

4.2 pDescriber state file . 140

4.3 pDialogue state file . 140

4.4 General structure of linguistics applications 141

4.5 Weka classifier output . 143

x

4.6 The topology of a system running pDescriber 144

4.7 The topology of a system running pDialogue 144

4.8 An overview of pDescriber . 150

4.9 An overview of pDialogue . 157

4.10 An outline of argument parser/3. 163

4.11 Possible interpretations of the verb “is” 164

4.12 Matched interpretations of the verb “is” 167

4.13 A linguistic pattern . 169

5.1 J48-Simple: evaluator agreement as correlation coefficients per fold . . . 191

5.2 J48-All: evaluator agreement as correlation coefficients per fold 191

5.3 J48-Simple: system performance and classifier performance 195

5.4 J48-All: system performance and classifier performance 196

5.5 J48-Simple: κ per category for each evaluator-system pair 200

5.6 J48-All: κ per category for each evaluator-system pair 200

5.7 J48-Simple: expected agreement, observed agreement and κ per category

for each evaluator-system pair . 203

5.8 J48-All: expected agreement, observed agreement and κ per category for

each evaluator-system pair . 204

5.9 Two meanings of “right” . 206

5.10 “Moving backward” or “moving forward” 207

5.11 Where is the wall, the chest, the bin? . 208

5.12 Reference frame and properties of objects 210

5.13 Which reference frame? . 211

5.14 Descriptions of objects outside the field of vision 212

5.15 Competing descriptions . 213

5.16 The evaluation environment for pDialogue 219

5.17 Evaluator agreement per fold . 225

xi

xii

List of Tables

2.1 The values of the ORIG and ORIENT parameters for different reference

frames . 13

3.1 Controlled vocabulary used in the Simple dataset 52

3.2 Free vocabulary and sentence constructions used in the All dataset . . . 53

3.3 Extracted vocabulary used in the All dataset 54

3.4 Attributes and their values for different learning tasks 79

3.5 An example Bayesian classifier . 83

3.6 Where to split the Delta-Heading attribute? 90

3.7 The estimated accuracies of classifiers trained on Simple and All 105

3.8 The κ values ranked by the learning method 110

3.9 The ranks of the κ values by concept . 111

3.10 Classifier accuracies for the motion concepts on three datasets 117

3.11 The performance of J48 classifiers according to κ on motion concepts on

three datasets . 118

3.12 The performance of Naive-Bayes classifiers according to κ on motion

concepts on three datasets . 120

3.13 The accuracies of classifiers with differently discretised target concepts . 124

3.14 The κ values of classifiers with differently discretised target concepts . . 126

3.15 Bins with the highest κ value per concept 127

5.1 J48-Simple: accuracy per individual words 185

xiii

5.2 J48-All: accuracy per individual words . 186

5.3 Pearson’s product moment correlation coefficients 188

5.4 Pearson’s product moment correlation coefficients excluding evaluator b 189

5.5 Spearman’s rank correlation coefficients 190

5.6 Spearman’s rank correlation coefficients excluding evaluator b 190

5.7 J48-Simple: system performance and classifier performance 194

5.8 J48-All: system performance and classifier performance 196

5.9 The κ values per category for each evaluator-system pair 199

5.10 The expected agreement per category for each evaluator-system pair . . 201

5.11 Questions that were asked at each location 221

5.12 Evaluator agreement per fold . 223

5.13 Evaluator agreement per fold for two evaluator groups 224

5.14 System performance and classifier accuracy 228

5.15 pDialogue’s performance answering question type B 229

5.16 The scores for Location 1&2 against the scores for Location 3 235

5.17 System performance (in %) per question type on descriptions of “visi-

ble” (Location 1&2) and “non-visible” objects (Location 3) 237

5.18 System performance (in %) per question type on descriptions with pro-

jective (Location 1&2&3) and topological relations (Location 4) 240

5.19 The scores for answers to question types C and D for Location 1&2&3

against Location 4 . 241

5.20 The scores for question type C at Location 1 against Location 2 243

xiv

Chapter 1

Introduction

Natural languages contain a number of words whose meaning is underspecified. In

order to fully determine the meaning of expressions such as slowly, turning and left in

the examples below, additional semantic representations must be constructed.

(1) a. Marge is slowly turning left.

b. The green Mini is slowly turning left.

(2) a. The table is to the left of the chair.

b. The library is to the left of the theatre.

The reference of these expressions is resolved by relying on human perception

(Miller and Johnson-Laird, 1976). One needs to examine the scene that the descrip-

tions refer to visually to derive their truth conditions – a task known as grounding (Roy,

2002). If the hearer cannot examine the scene, the speaker must provide extra natural

language descriptions which provide enough information for the hearer to construct

a mental representation of the scene. Such expressions thus have some properties of

deictic referents (Levinson, 1983, page 79ff.) and (Maillat, 2003, page 39ff.).

For example, in order to determine the reference of “slowly” in (1) one needs to

evaluate the size of the objects (Marge, the greenMini) and the size of the environment

in which themoment takes place (the room, the street). If wemeasure the speed of both

vehicles referred to by the descriptions, we may conclude that the speed of Marge, a

1

mobile robot typically used in indoor environments, is considerably lower (≈ 0.3m/s)

than the speed of the green Mini (≈ 5.56m/s = 20km/h), although the same descrip-

tion “slowly” is used in both cases. The region denoted by the relation “to the left

of” in (2) is underspecified in the same way: it is also constrained by the size of the

objects (the table, the chair, the library and the theatre) and the size of the scene (the

room, the street). Furthermore, it may also be constrained by the location and size of

the other objects in the scene, their shape and their typical function (Herskovits, 1986).

The description, also known as a directional (Maillat, 2003), must also be interpreted

in relation to a particular frame of reference. Are the speaker/hearer sitting in the chair

when the speakermakes the utterance or are they observing the scene from some other

location in the room? Similarly, in (1), are they inside the green Mini or observing the

scene from the pavement?

The descriptions in (1) refer to dynamic or motion scenes whereas descriptions in

(2) refer to static scenes. However, since the reference of both is fixed by some prop-

erties of the physical space, we group them under the same broader category of spa-

tial expressions. They differ in one important aspect: the semantic representations of

dynamic scenes require yet another conceptual component: a one-dimensional path

along which the entities move (Miller and Johnson-Laird, 1976, page 405ff). Thus left

in (1) denotes a relation between two locations of a single entity, one at the time t and

the other at the time t + 1, whereas left in (2) denotes a relation between the locations

of two entities both at the time t.

Psycholinguistic and anthropological research agree (Miller and Johnson-Laird (1976,

page 375), Talmy (2000, page 177ff.) and Levinson (2003, page xvii)) that spatial cog-

nition represents the core of human cognition. It not only allows humans to reason

and refer to space in which they live but it has been extended to other cognitive areas

as evidenced by many spatial metaphors that we use, for example in diagrams.1 It

1The point where opinions diverge is whether spatial concepts are universal (Miller and Johnson-
Laird, 1976; Talmy, 2000) or whether they are culturally specific (Levinson, 2003).

2

is therefore no surprise that spatial cognition is one of the core areas that has been

researched by artificial intelligence and computational linguistics when developing

robotic systems or embodied agents which interact with humans and their environ-

ment in a natural, human way, for example, Shakey: Nilsson (1984), Shrdlu: Winograd

(1976), Vitra: Stopp et al. (1994), Godot: Theobalt et al. (2002) and Bos et al. (2003) and

CoSy: Zender et al. (2008). Because such agents connect language with their percep-

tion of environment and hence must combine different representations and modes of

reasoning they are also known as multi-modal agents. They provide a great practical

utility: for example they are used as assistive aids focused on individual tasks such as

navigation or they can be explorers of dangerous environments.

Of course, such systems do not attempt to re-create artificially the actual cognitive

processes that take part in the human brain when perceiving and evaluating the en-

vironment, the mechanisms that constitute human competence, but they focus on re-

creating human behaviour resulting from such competence, thus human performance.

In doing so, they rely on methods and instruments that were developed by physical

sciences to describe the world. Descriptions of space created using these methods are

quite different from human descriptions. All measures introduced by physical sciences

are continuous in nature. For example, the location of two points can be described by

introducing a two-dimensional coordinate system with a fixed point of origin and by

specifying their coordinates from the scale of real numbers. On the other hand, nat-

ural language expressions use discrete reference to refer to events and objects. They

partition space into regions such as near, back and left, and degrees of motion to slowly,

moderately and fast. While non-linguistic reference can be made with a high degree

of accuracy, the reference to spatial descriptions is ambiguous and vague (Mukerjee,

1998). Thus, the problem is yet another case of a well known problem in computational

linguistics: how to pair ambiguous and compact (and hence expressive) descriptions of

natural language with unambiguous but consequently syntagmatically more complex

3

(and hence inexpressive) descriptions created by different formalisms of knowledge

representation (for a study see Sukkarieh, 2000). Whereas in such cases the challenge

is to find a mapping between two symbolic systems, in spatial reasoning the mapping

must be done between a non-symbolic and a symbolic system.

The mapping between the domains is commonly performed by first identifying

some parameters of the physical world on the basis of psychological evidence and then

integrating them into customised functions (Regier and Carlson, 2001). In contrast, our

approach starts with a simple representation of space that is available to us through the

sensory data of a mobile robot and through structured non-symbolic maps produced

by a technique known as simultaneous localisation and map building or SLAM (Smith

and Cheeseman, 1986). The data in this representation is not specifically tailored to

the task. We rely on machine learning algorithms to induce associations between such

simple representations and linguistic expressions. The models that the classifiers build

automatically are considerably different from the models designed by humans. They

depend on the structure of the input data and the chosen classification method. For

the learning we use the Weka toolkit (Witten and Frank, 2005) which provides us with

a range of classifier implementations and a common framework to represent the data

and evaluate the results. The objective of the learning is to show that models induced

by machine learning are able to replicate human linguistic performance in new envi-

ronments. This way we can be sure that we captured some important facts about their

semantics. To demonstrate a human-like performance, the classifiers must be inte-

grated in a systemwhich is capable of some basic interaction with humans. Two kinds

of evaluation were performed: the evaluation of the classifiers on similar datasets from

which they were built and the evaluation of the system containing these classifiers by

human observers in a real environment.

Our work is practical in nature. Learning and generation of natural language refer-

ential descriptions is integratedwith a system that navigates and drives a mobile robot.

4

Workingwithmobile robots has a number of benefits which can also be viewed as chal-

lenges. Firstly, it gives us the opportunity to work in a natural environment with real

size objects such as chairs, desks and cupboards. Virtual environments may be suited

for theoretical studies of spatial cognition where the parameters must be carefully con-

trolled (Maillat, 2003). However, any practically useful system should be able to deal

with real environments which also present the ultimate challenge for its performance.

Secondly, the variety of sensory data available to us gives us a very accurate repre-

sentation of the state of the robot and its surrounding environment which we would

otherwise not have. Experiments on real environments may thus reveal important in-

sights and challenges for spatial cognition that have been overlooked before. Thirdly,

any system that drives a mobile robot must be multi-modal. It must contain a compo-

nent that collects and processes information from its sensors and a component which

provide the robot’s response through its actuators, for example, by moving its wheels.

Thus, an interesting research question is how such modalities can be integrated, what

information can be exchanged andwhat are the optimal mechanisms of such exchange.

This thesis is organised as follows. In Chapter 2 we discuss the concepts, ap-

proaches and tools related to our work. In Chapter 3 we describe how datasets of

linguistic and non-linguistic observations were collected and used for machine learn-

ing, what algorithms were employed and how successful the learning was. Chapter 4

describes how classifiers were integrated into two systems that provide basic interac-

tion with humans. Chapter 5 discusses the evaluation of these systems by humans in

real environments. The last chapter gives some concluding remarks.

5

6

Chapter 2

Research background

2.1 Introduction

This chapter contains an overview of topics related to our work. We start with a dis-

cussion of semantics and pragmatics of descriptions of object relations which receive

considerable attention in the literature. We continue with approaches that attempt to

link language with robotic perception of the world. Finally, we describe the tools that

we have at hand: the robotic system, the data available to the robot through its sensors,

and how generalisations about such data can be made using machine learning.

2.2 Descriptions of object relations

In (1) the descriptions “to the left of” and “near” refer to a relation between two entities

“the table” and “the chair”. The location of the second entity “the chair” is assumed

to be known and is used to describe the location of the first entity “the table”. For this

reason, the literature refers to these entities as referent and relatum (Miller and Johnson-

Laird, 1976), figure and ground (Talmy, 1983) or the located object (LO) and the reference

object (REFO) (Herskovits, 1986; Gapp, 1994a).

(1) a. The table is to the left of the chair.

b. The table is near the chair.

7

There are two subgroups of descriptions of object relations which have different se-

mantic properties. The description “to the left of” is known as a projective relation or a

directional because it also includes the notion of a reference frame as a part of its seman-

tics. The reference frame is not required by topological relations such as “near” which

refer to a proximal region spanning around the reference object. The presence of the

reference frame in directionals is evidenced by the fact that these relations are not sym-

metric: from (1a) we cannot infer (2a), whereas from (1b) we can infer (2b).

(2) a. The chair is to the left of the table.

b. The chair is near the table.

The reference frame of directionals can be fixed in three different ways. Consider

the following examples all of which describe the same spatial scene shown in Fig-

ure 2.1.

(3) a. The table is behind the chair.

b. The table is to the left of the chair.

c. The table is north of the chair.

N S

E
W

Figure 2.1: Where is the table?

In this scene (3a) is interpreted according to the intrinsic reference frame. The location

of the table is specified in respect to the reference frame defined by the reference object

“the chair”. This is possible because the chair has an identifiable front, its sitting area,

and a back. However, this cannot be taken as a general rule. Maillat (2003, page 50ff.)

8

points out that the ability of objects to ground a reference frame cannot be attributed

to their innate characteristics, but is assigned to them through a complex cognitive

process in which the relevant features of the object are identified. When a description

is interpreted according to the intrinsic frame, the locations of the speaker and hearer

do not affect the truth conditions of the sentence. This means they can freely move or

rotate around the room without affecting its interpretation.

(3b) is true in respect to the scene in Figure 2.1 if the sentence is interpreted accord-

ing to the relative reference frame. This reference frame is fixed by a third point in the

scene called a viewpoint (VPT) (Maillat, 2003, page 54) different from the located object

and the reference object. The location of the viewpoint is often taken as the location of

the speaker or the hearer, but this is not necessarily the case. The sentence in (3b) can

be followed by any of the following phrases.

(4) a. . . . from my/your point of view.

b. . . . from the robot’s point of view.

c. . . . from there.

Most frequently the viewpoint is linguistically unspecified. Instead, the commu-

nication participants rely on pragmatics to resolve the location of this third variable

which can potentially be any point in the environment. When a relative reference

frame is intended, changing the location of the viewpoint around the array contain-

ing the reference and the located object will affect the truth conditions of the sentence,

whereas with the intrinsic reference frame they should remain unchanged. This crite-

rion can be therefore used as a test to determine which reference frame is intended in

the interpretation of a description (see Levinson, 1996a, Maillat, 2003, page 47).

Furthermore, since the intended reference frame is also not specified in a sentence,

a description such as (3b) can be interpreted either in respect to the intrinsic or the rel-

ative reference frame and depending on this a different spatial region will be referred

9

to. Figure 2.2 shows how descriptions “left”, “right”, “front” and “back” idealistically

partition space around the reference object depending on the choice of the reference

frame. It can be seen that the regions denoted by “left” and “right” are reversed, a

phenomenon known as a lateral shift (Maillat, 2003, page 60, attributing the description

of phenomena to Vandeloise, 1986 and Herskovits, 1986). However, the lateral shift is

not present in all languages that have the above projective descriptions. For example,

in Hausa and Tamil (cited in Maillat, 2003, page 60) the same projective is used to refer

to the region regardless which of the two reference frames is used.1

front

back

right left

back

front

left right

VPT

REFO REFO

intrinsic reference frame relative reference frame

Figure 2.2: “Ideal” regions denoted by projective descriptions depending on
the choice of a reference frame

Finally, (3c) must be interpreted according to the absolute reference frame when re-

ferring to the scene in Figure 2.1. The absolute reference frame is fixed to a secondary

reference ‘object’ which in this case is the North Pole. It follows that the truth condi-

tions of the sentence are unaffected if the reference object or the viewpoint are rotated.

The truth conditions only change if we rotate the secondary reference object around

the extended array containing the reference object, the located object and the viewpoint

(Maillat, 2003, page 68).

The projective descriptions “north”, “south”, “east” and “west” unambiguously

imply this reference frame. On the other hand, the pair “above” and “below” is poten-

tially ambiguous between all three reference frames (Maillat, 2003, page 65ff.). How-

1Interestingly, the order of the regions denoted by projectives around the centre of the REFO is different
between the Indo-European languages, Hausa and Tamil.

10

ever, the interpretation in respect to the absolute reference frame is by far the most

common since in most cases the relative and the intrinsic reference frames coincide

with it. This is because the absolute reference is fixed by the Earth’s core or the gravity

which in turn fixes the vertical location of other objects and viewpoints.

Descriptions such as (3c) are fairly unusual for speakers of English, but there are

nonetheless some specialised situations where descriptions using this reference frame

are more frequently used. Maillat (2003, page 65) points out that directions in US cities

are described relative to an absolute grid, and also that Lake Michigan may be used

as an absolute landmark in the Chicago area. On the other hand, Levinson (1996b)

describes two languages where the absolute framework is the predominant one. In

Guugu–Yimithirr, an Australian aboriginal language spoken in North Queensland, the

absolute reference frame is fixed to the North. In Tzeltal, a Mayan language spoken in

Mexico, the absolute frame of reference is fixed by an uphill-downhill inclined plane

corresponding to a fall of terrain from the South to the North. Thus, even if the two

objects are on a flat surface, the one closer to the north will be described as “downhill”.

Examples in (3) describe static scenes. However, directionals such as “left”, “right”,

“forward”, “backward”, “up” and “down” can also be used in dynamic scenes that

involve movement as in:

(5) Marge is moving forward and to the left.

Such descriptions add another conceptual component: a temporal dimension. Whereas

in static scenes “left” denotes a relation between locations of two different entities at

time t and the location of one entity (the REFO) is used to describe the location of the

other (the LO), in dynamic scenes it denotes a relation between two locations of a sin-

gle entity at times t and t + 1. Maillat (2003, footnote 23, page 51) points out that in

dynamic scenes motion, which is directed, adds an intrinsic orientation to objects. For

this reason such expressions can only be interpreted in respect to the intrinsic reference

frame. The interpretation with the relative reference frame is blocked.

11

The literature presents various models that attempt to account for the preceding

facts related to spatial reference frames. Here we briefly outline the proposal in (Mail-

lat, 2003) whose distinguishing characteristic is that it attempts to identify only the

minimal conceptual elements that such a model requires.2 According to this proposal,

the reference frames contain the following primitives: (i) a set of three orthogonally

arranged and intersected axes, (ii) a point of origin, and (iii) an orientation vector.

The set of axes represent the three dimensions along which directionals can very:

the frontal, the lateral and the vertical. The axes intersect in the point called the ori-

gin (ORIG). According to Maillat (2003) this is always fixed by the reference object,

regardless of the reference frame. This is in contrast to approaches such as (Levinson,

1996a; Herskovits, 1986; Talmy, 1983; Vandeloise, 1986) who assume that in the relative

framework there are in fact two origins: one projecting from the reference object and

the other projected from the viewpoint. The former is subordinate to the latter since

the speaker must “translate” the set of axes with a centre on the viewpoint onto the

set of axes centred on the reference object. Maillat (2003) argues that there is no need

for such a complex model. Instead, he proposes that in the relative reference frame the

viewpoint only assigns the orientation of the axes projected from the reference object

(ORIENT) rather than an entire new set of axes.

The model that defines the framework only presupposes two variables: ORIG and

ORIENT. Table 2.1, adapted from (Maillat, 2003, Table 5, page 112), shows their values

with various reference frames. Since ORIG always corresponds to REFO, it is always

linguistically salient but also has no effect on the choice of the reference frame. Instead,

this is dependent on the value of the ORIENT parameter. In English and other Indo-

European languages, the ORIENT parameter is only partially linguistically realised.

It can be recovered from our lexical knowledge of the REFO or it is a part of lexical

specifications of some words such as “south” and “east”. However, in the presence

2For the relation of this proposal to other proposals, in particular to (Levinson, 2003), the reader is
referred to (Maillat, 2003, Chapter 3: Primitives and Unification, page 71ff.).

12

of the VPT it must be pragmatically resolved from the context. Since the VPT is not

linguistically salient it contributes to the ambiguity of sentences as (3a) and (3b).

ORIG ORIENT

Absolute REFO landmark
Intrinsic REFO REFO
Relative REFO VPT

Table 2.1: The values of the ORIG and ORIENT parameters for different
reference frames

Resolution of the reference frame for a particular description with a directional

contributes only half of its meaning. Directionals also have a semantic value: they

denote a two- or three-dimensional field projected in space that is constrained by the

dimensions of the reference frame. In the literature, such fields are known as spatial

templates or spatial maps (Logan and Sadler, 1996, page 496). The fields are not uniform

but are graded. The grades show how acceptable it is to relate each of the points to

the REFO by the specified relation. Logan and Sadler (1996) generalise them to three

discrete grades of acceptability: areas containing good examples, areas containing less

good but nonetheless acceptable examples and areas containing unacceptable exam-

ples. Figure 2.3 shows a two-dimensional spatial template for the description “above”.

Bad

Acceptable

REFO

Acceptable Good

Figure 2.3: Spatial template for “above” (Logan and Sadler, 1996, page 497)

In most cases, spatial templates are derived experimentally. For example, Logan

and Sadler conduct experiments where participants are presented with images con-

13

sisting of a frame representing a spatial scene. The frame is subdivided into a grid

consisting of 7 columns by 7 rows which is not shown to the participants. In each

case, the mid-cell of the grid (4,4) is occupied by an “O” representing the REFO. The

participants have to rate the appropriateness of a given spatial description relating the

“O” (REFO) and an “X” (LO) which is randomly placed in one of the remaining 48

cells of the grid using a 10 point scale. Subsequently, the mean rating is calculated for

each of the 48 cells and the results are generalised as in Figure 2.3.3 Logan and Sadler

also show that the highest ratings are consistent with results obtained in the produc-

tion task in which the participants had to mark the location of an X given a spatial

description such as “Draw an X above the box”.

This experimental design is quite popular in literature (see for example Kelleher

and Costello, 2005). However, it has one shortcoming, namely it does not use real three-

dimensional space but its projection onto a two-dimensional plane. This is overcome

in the work of Maillat (2003) who uses computer-generated three-dimensional images

of a virtual environment. The environment consists of a chequered surface with two

marbles also referred to as snooker balls. The marble that is used as the REFO is gener-

ated at the centre of each three-dimensional scene. The other marble, representing the

LO, is generated so that is appears equidistant to the REFO between the scenes, but in

each scene of a sequence it is rotated by some increment of degrees around or above

the REFO. The angular value can be converted to the x and y dimensions of a plane

using the sine and cosine functions (see Maillat, 2003, page 156).

Logan and Sadler do not see spatial templates just as semantic models of spatial re-

lations but as psychological concepts that humans employ in their apprehension. They

argue, for example, that in order to check whether a particular spatial relation applies

to describe two objects, humans map its spatial template within the reference frame

projected from the REFO and ascertain the goodness of fit of the LO. If a particular

3Logan and Sadler also give three-dimensional representations of spatial templates where the mean
ratings are represented as values on the z axis.

14

LO falls within the field of two spatial templates, then the template with a better fit is

chosen (Logan and Sadler, 1996, page 497).

There is a distinct asymmetry between good/acceptable and bad regions in Fig-

ure 2.3. This can be explained by the fact that spatial templates are fixed on the axes of

a reference frame which constrains the frontal and the lateral dimensions. Because they

cover an entire dimension, Maillat (2003) refers to them as maximal templates. Within

each dimension spatial templates show a graded transition from good to acceptable

regions. This means that two templates such as “to the right of” and “in front of” in-

evitably overlap in one quadrant of the reference frame. Both facts are confirmed by

Maillat’s experimental work. He shows that the templates provide the best fit around

the corresponding axes and that one template smoothly transits into another as the

rotation progresses (Maillat, 2003, Figure 14, page 149).

Up to now the spatial templates were only defined in geometrical terms and for

this reason only abstract objects were used in the experiments. However, the function

of objects and the way they interact with each other and the way we interact with them

may also be important in determining the appropriateness of an expression. Coventry

(2003) discusses experiments4 where participants had to rate descriptions containing

objects with a function, for example, an umbrella held by aman at angles of 0, 45 and 90

degrees anti-clockwise from the vertical plane. It was shown that although the overall

acceptability ratings of “above” decreased with increased rotation, the highest overall

ratings were given for a set of scenes where the umbrella was providing protection

from the rain. These were followed by the ratings of scenes with no rain and finally

by the ratings of scenes with the rain but where the umbrella was not providing pro-

tection (Coventry, 2003, Figure 13.2, page 260). Furthermore, Coventry also refers to

experiments that show that function and geometry affect spatial relations to a different

degree: a certain relation may be influenced more by one manipulation than the other.

4These are described in detail in (Coventry et al., 2001).

15

The ways in which geometric and functional information may be integrated in a model

is still a matter for future research.

There are also proposals of models that generate spatial templates (Olivier and Tsu-

jii, 1994; Gapp, 1994a,b, 1995; Regier, 1996).5 A model is a set of functions that predict

acceptability ratings for each point of space surrounding the REFO. This is why in

such cases spatial templates may be referred to as potential fields (Olivier and Tsujii,

1994, page 306). The parameters of models vary between different approaches and

include some measure of distance and angle of orientation between the objects. For

example, Regier (1996, page 82ff.) considers proximal orientation and center-of-mass ori-

entation between the LO and the REFO to be important. The proximal orientation is

the angle defined by the lines between the closest points between the objects and one

of the axes of the reference frame, whereas the center-of-mass orientation is the angle

defined by the lines between the centre points of objects and one of the axes, as shown

in Figure 2.4. The angles measure deviations from the axes of the reference frame that

mark the perfect acceptability of a particular expression. This means that for “above”

or “behind” the relevant axis is the positive vertical axis, whereas for “right” this is the

positive horizontal one.

REFO

LO

proximal orientation

center−of−mass orientation

Figure 2.4: Two orientation components

5See also the discussion of the “overlap theory” and the “quadrant theory” in (Maillat, 2003, page
133ff.).

16

Regier and Carlson (2001) perform empirical validation of the most common mod-

els found in the literature. They also propose and validate a new model which they

call the attentional vector sum model (AVS) which combines the intuitions behind the

previous models. The model is built of two components both of which, as the authors

claim, have grounding in biological systems. Following the work of Logan (1994, 1995)

they propose that the apprehension of spatial relations is an active process which re-

quires attention. Therefore, the spatial templates are not predefined but instead are

constructed during the perception of a scene. In the AVS the attention is modelled as

an attentional field, a graded beam fixed at the point of the REFO which is closest to

the LO. The attentional field is distributed over the REFO and thus some parts, those

closest to the beam’s origin, receive more attention than the others. The second com-

ponent of the model is the notion of a vector sum. For each point of the REFO the model

defines a vector pointing toward the centre of the LO. Each vector is weighted by the

attention of its point of origin. In the case of “above” the sum of the vectors is then

compared with the positive vertical axis (Regier and Carlson, 2001, Figure 5, page 278).

The attentional vector sum thus combines the effects of proximal and center-of-mass

orientations. In addition, the AVSmodel also incorporates two other features proposed

in othermodels, namely the effect of the grazing-line6 and the distance between the ob-

jects. Its experimental validation shows that it performs better than its predecessors.

For topological descriptions a different model is required. Kelleher et al. (2006)

present a model of proximity for “near”. The model evaluates the proximal distance

between the REFO and each point of the grid weighted by the REFO’s visual and dis-

course salience. The proximity of the REFO to a point is expressed relative to the prox-

imity of other competing REFOs to that point. In this way, the best REFO to describe

the proximity of a point can be selected.

6This is the line that for “above” runs across the top of a rectangular REFO, thus the side that is closest
to the LO. High acceptability ratings are given to points just above this line, and considerably lower
acceptability ratings are given to points just below this line.

17

2.3 Natural language and situated robots

Natural language is an expressive and efficient way by which humans share infor-

mation. A robot that can interact with humans in a natural language is thus of great

practical utility, especially if human users are not expert roboticists. The literature de-

scribes many such systems, for example (Winograd, 1976, Stopp et al., 1994, Theobalt

et al., 2002 and Zender et al., 2008) to name just a few. The key feature of a conversa-

tional robot is that its language must be situated. The robot must be able to refer to

and resolve references to the environment in which it is located with its human con-

versational partner. Since every real environment is uncertain or changing, machine

learning plays an important role in building both linguistic and non-linguistic repre-

sentations.

Robots perceive the environment differently than humans do. The conceptual rep-

resentations resulting from the robotic perception are intended primarily for tasks such

as localisation and navigation and not for generating and understanding linguistic de-

scriptions. Both non-linguistic tasks may be accomplished by considering clouds of

points represented in a two- or three-dimensional space obtained by laser scans. Lin-

guistic descriptions on the other hand refer to higher-level conceptual elements such

as directions, regions or even confined units of space such as rooms. Of course, ro-

botic perception can be enriched by adding different types of sensors. However, these

produce different conceptual representations of the environment which must be fused

somehow. For example, a video camera provides colour images which only cover two,

the horizontal and the vertical, of the three dimensions perceived through a three-

dimensional laser scan. The dimension of depth is missing from the video. In sum,

different robotic systems operate with different conceptual representations of space.

Sometimes only one level is used in isolation, at other times these are layered on each

other.

18

Linguistic representations are layered too. Theymay be individual words, syntactic

structures (sentences) or elements of discourse (utterances in a dialogue). Different

approaches in the literature concentrate on different levels of linguistic description. In

the following pages we review some of these approaches and discuss their relevance

for our own work. We start with the discussion of the concept known as grounding.

2.3.1 Grounding

Connecting symbolic descriptions to non-symbolic properties of the physical world

is known as grounding (Harnad, 1990). It is accomplished bottom up from sensory

projections which Harnad calls iconic representations through categorial representations

to symbolic representations. Categorial representations consist of selections of features

that are invariant between the sensory representations of objects or events with which

they can be identified. They are still non-symbolic representations (Harnad, 1990, page

342). They become symbolic when they are attached a name and are used as elemen-

tary symbols in syntactic compositions which make propositions. The compositions

inherit grounding from the elementary symbols which means that all linguistic repre-

sentations are deeply embedded in the physical world.

A practical challenge for a system using grounded representations is how to com-

bine information from different modalities to achieve a responsive behaviour. Horswill

(1998) describes an architecture which represents sensory data and the attentional state

of the robot with a subset of modal logic with indexicals. This representation allows

a very efficient implementation on hardware. It was implemented on Kludge, a robot

that responds to natural language requests to fetch and follow objects.

(Roy, 2005) proposes a knowledge representation according to which grounded

representations or beliefs are made part of semiotic schemas which are represented as

structured network projections. In the schemas the beliefs are linked to other primi-

tives: sensors and actions which connect them to the physical world, transformers and

categorisers which change the knowledge contained by the beliefs, intentional projections

19

which mark beliefs to be interpreted relative to speech acts, and generators which turn

categorial beliefs to analogue signs as in speech synthesis.

For example, objects are represented as schemas which encode their affordances

and their properties. The affordances are actions that can be performed with them. In

the case of a robotic arm (Roy et al., 2004) they can be detected visually or by touch.

Their properties are encoded as expected values from sensors (Roy, 2005, Figure 12,

page 190). The agent believes that it found an instance of an object at some location if

such schema can be verified against that location. Similar schemas are also introduced

for describing scenes containing objects or for describing relations between them (page

192). Schemas may also contain guides to control action which allow agents to pursue

goals. This is important for representing speech acts of utterances such as “Pick up

the blue one” (pages 196–198). The definition of grounding reflected in the semiotic

schemas is therefore broader than in (Harnad, 1990). Grounding is not only a causal

mapping between a referent and a belief, for example a cup, but also involves a pre-

diction of agent’s actions in respect to that cup (Roy, 2005, page 177).

The semiotic schemas combine information from different modalities at a single

level and in a common representational form. This is in contrast to other integrated

robotic systems where multi-level representations are frequently proposed (see Zen-

der et al., 2008). The information is represented with a set of seven primitives which

simplifies interfacing different modalities. Both motor actions and speech acts are rep-

resented in the same way, as actions in pursuit of some goal. This means that a plan-

ning mechanism can refer to them uniformly. Some of these ideas can be found in our

own work. For example, schemas resemble the way pDescriber and pDialogue gener-

ate and interpret utterances and motion (Chapter 4). In particular, the schemas have

a correspondence in the pDialogue’s response modules which model speech acts. They

contain a sequence of checks, categorisations and actions to provide a response to a

user’s question.

20

Both (Harnad, 1990) and (Roy, 2005) agree that categorisers which form categorial

representations or beliefs are learned. The former assigns this task to the connectionist

framework and the latter to machine learning. Roy (2002) describes how lexical words,

word categorial information and syntactic structure can be learned from human de-

scriptions of computer generated images of two-dimensional scenes containing rec-

tangles of varying size and colour. The DESCRIBER system (Roy, 2002) starts with a

sequence of words in natural language and a vector of real-valued features represent-

ing the scene in the image. Descriptions are generated by a human describer and are

classified as simple “the brightest green rectangle” or complex “the yellow rectangle

to the left of the large green square” depending on whether they contain exactly one

object or not. All words in a description are taken as a bag of words which means

that every word from the sequence could be associated with any of the features. The

features referring to rectangles include the red, green and blue component of the RGB

colour, their height to width ratio, surface area, the x and y position of their upper left

corner and a ratio between their maximum and minimum dimensions.

The learning procedure is performed separately for simple and complex phrases.

For each type of phrase it is accomplished in stages. In the first stage the classes of

words are learned. The intuition behind learning word classes is that words belong-

ing to one class have similar syntactic and semantic properties. For example, words

that co-occur in the same utterance most likely belong to different classes. Also, words

belonging to one class are grounded in a similar set of features. Both principles are

implemented in a tailored clustering algorithm (Roy, 2002, pages 360–366). In the sec-

ond stage visual features are associated with words (pages 366–367). The features of

a word class are taken as the union of the features of its members. For each word a

multi-variate Gaussian distribution of the subset of features selected for the word’s

class is estimated. This model is used to ground the word in the physical world. In

the third stage, the word order of simple phrases is modelled as a statistical bigram

21

model based on the previously determined word classes (P(Ci+1|Ci)). A set of bigrams

is represented as a statistical finite state automata (FSA). The statistical models can be

used to generate the best referring expressions for a pre-specified object in the scene.

The generation takes into account syntactic (order of categories), semantic (selection of

words for categories) and contextual constraints. The latter are used to pick out a gen-

erated phrase that maximally distinguishes the selected object from the other objects

in the scene.

While simple phrases refer to objects, complex phrases refer to relations between

two objects. The FSA for simple phrases is integratedwith the FSA for complex phrases

and the transition probabilities between the networks are tweaked so that the parser

based on the Viterbi algorithm prefers to stay within the network for a simple phrase.

This adds the notion of phrase structure and recursion to the learning procedure. The

reference object and the located object can be grounded from the description (page

375) and using the probabilities of the combined FSAs and some pre-specified thresh-

old, structures such as “LO PHRASE to the left of REFO PHRASE”7 can be tokenized.

To learn the meaning (a multi-dimensional Gaussian distribution of features) of the re-

maining words which represent spatial relations, Roy uses the features from (Regier,

1996): the proximal distance, proximal orientation and center-of-mass orientation between

the reference and the located object. The learning process includes the same sequence

of procedures as for simple phrases.

As before, the generation of descriptions is driven by the principle that they must

maximally distinguish the object that they ground (LO) from other objects in the scene.

First, the system determines if a simple or complex description is required to ground

the LO. Then, it selects REFOs that can be grounded unambiguously enough with a

simple description. Finally, the best fitting spatial expression is chosen to relate the

LO and each of the candidate REFOs. The REFO in the syntactic structure that max-

7Note that Roy (2002) uses the terms target and landmark respectively.

22

imises the probability according to the FSA is chosen. The sequences of words, the

LO phrase, the spatial phrase and the REFO phrase are combined using the FSA for

complex phrases.

Learning grounded semantic representations is also the focus of our own work.

To achieve this we also use machine learning, yet in our case the learning is accom-

plished by general purpose classifiers rather than algorithms that are tailored for the

task. Even though the approach in (Roy, 2002) is striving for automatic assignment of

features to particular linguistic structures, this is not entirely the case. For example,

the features involved in learning of simple phrases describing objects are not involved

in learning the phrases describing object relations and vice versa. The latter are also

very specific features that have been shown to be relevant for the semantics of object

relations through the experimental work of Regier (1996). The syntactic structure is

learned in two stages separating simple and complex phrases to avoid the difficulty

of learning recursive structures. Thus, importantly, the approach is, just as ours, a

supervised machine learning approach since the learning process has been guided by

knowledge pre-specified by a human. There is no real measure to evaluate how much

learning supervision was included in each case.

The approach uses computer generated scenes containing rectangular objectswhereas

our approach uses low-level spatial representations of real life scenes. In the case of the

generated scenes the number of features can be enriched or reduced as desired. How-

ever, the features in our system are limited by the number of sensory subsystems that

are employed on the robot. Each of these subsystems is complex and requires a re-

search project on its own (see the CoSy project below). For example, object shape is

important for the interpretation of spatial relations but sadly such a recognition mod-

ule was not available on the robotic system that we used. Finally, the choice between

a generated scene or a real scene also influences the accuracy of the collected linguistic

information. In the generated scene the experiment designer can strictly control the

23

reference frame and the way the observer sees the scenes since the scene is already

abstracted. In a real environment we rely on each individual informant to derive such

an abstraction of the scene on their own.

The work following (Roy, 2002) extends the learning of grounded representations

to real life scenes. Gorniak and Roy (2004) describe grounding of descriptions in com-

puter generated three dimensional scenes containing cones. Although the scenes have

been generated, the visual information for grounding is not based on the knowledge

that generated them. Instead it is extracted from the images themselves by a synthetic

vision component. Roy et al. (2004) describe a system that drives a robotic arm which

can manipulate objects on a table top and uses an active vision component which gen-

erates full 3-dimensional representations of objects from 2-dimensional camera images.

In both cases the learning of grounded descriptions is accomplished as in (Roy, 2002).

In addition Gorniak and Roy (2004) build on the syntactic aspect of grounding and

propose a grounded semantic composition to generate best referring expressions of the

scene, and Roy et al. (2004) propose a mental model for grounded representations (see

also Mavridis and Roy, 2006). This is a knowledge representation which allows the

robot to generate imagined views. These can be used to change the frame of reference

while generating object descriptions or to refer to objects currently not in view.

Grounding at the level of discourse, the highest level of linguistic representation,

is described in (Steels and Baillie, 2003). They argue that grounding of natural lan-

guage expressions is a shared activity and can be established through language games.

Each agent in communication has access to its own internal state and representation

of environment obtained through its perception. An agent describes to another agent

some event in the world. The hearer can verify whether the description is true against

its own internal knowledge. The communication between the speaker and hearer is

open ended. The speaker can invent new meanings or new expressions which are

subsequently negotiated with the hearer. This is possible because the descriptions are

24

grounded.

2.3.2 Instruction-based learning (IBL)

Lauria et al. (2001) and Lauria et al. (2002a) present a method where mobile robots

learn from natural language descriptions and their perception of environment through

instruction. The setting for the learning experiments is a miniature town (170 × 120

cm) which consists of an arrangement of buildings and roads closely resembling a real

town. A small mobile robot (8× 8 cm) is able to navigate in this town by relying on

natural language instructions from its human conversational partner. The instructions

are in the form of route descriptions and they can vary in complexity, depending on

the knowledge of the robot. For example, in the first dialogue in Figure 2.5 the human

must give the robot detailed instructions on how to reach the post office. The robot

represents the knowledge contained in a description of a sequence of action chunks

as a description of a new complex action which can be reused in the dialogue with a

human as shown in the second dialogue. This way the robot can execute increasingly

more complex tasks.

H: Go to the post office! H: go to the post office at the post
R: How do I get to the post office? office turn left take a right at
H: Er head to the end of the street. the crossroads tescos is on the

Turn left. Take the first left. Er go left hand side of the street
down the road past the first right and
it’s the next building on your right.

Figure 2.5: Dialogue in IBL taken from Lauria et al. (2002b)

Not all actions are learned though. The robot starts with a set of primitive actions

such as ‘follow the road’ and ‘turn left’ (for a list see Lauria et al., 2001, Table 1, page 41)

each of which has been manually associated with sensory motor procedures. The set

of primitive actions has been determined through experiments in which human partic-

ipants generated route descriptions with no restrictions on the words they could use.

25

From this corpus a set 14 primitive actions was identified.8 Each action is conceived as

a triplet SiAijSj where Si is the pre-condition state for the action Aij and Sj is the state

resulting from applying the action Aij to Si. In a sequence of actions the final state of

the first action must match the precondition of the next action. This way the system

can verify whether a particular complex action can be executed before executing it. If

not, it can query the user for more information.

The system works with two main components: a dialogue manager and a robot

manager. The dialogue manager acts as an interface between the robot manager and

the user. The system interacts with users through speech recognition and speech syn-

thesis. The acoustic signals from speech recognition are analysed, parsed and rep-

resented as logical forms. The logical forms are turned into underspecified discourse

representation structures (UDRSs) and later, when the ambiguities from the context are

resolved, to full DRSs (Kamp and Reyle, 1993). The dialogue is modelled as a sequence

of dialogue moves such as acknowledgements and questions which are represented

within the same DRSs. Both the ambiguity resolution and dialogue management re-

quire inference which is provided by a theorem prover. The DRSs corresponding to the

robot’s response are turned into strings and pronounced by a speech synthesiser.

The robot manager interprets the DRSs from the dialogue manager and controls

the robot through three main processes: execute, learn and stop. It also maintains a

database of all action procedures which are represented as Python code. During the

learning phase of an a new action procedure, the robot manager identifies commands

and explanations within a given DRS. Actions and their arguments are extracted from

them and for each action a check is made if a corresponding action procedure already

exists in the database. If it does, the call to that procedure is added to the code for the

new action that is being built. If not, the robot does not understand the instruction,

8This categorisation evolved throughout the project. For example, Kyriacou et al. (2005) give a modi-
fied list of 13 primitive actions.

26

the learning is put on hold and the robot manager triggers the dialogue manager to

resolve the missing information.

The intuition behind IBL is that robots used in domestic environments must be

able to adapt to humans. Since most of their users will not be expert roboticists who

are skilled in programming the robot, the adaptionmust be accomplished in a way that

is natural to humans: through dialogue in natural language. The system mediates be-

tween natural language descriptions and Python programming code that drives the ro-

bot. Thus, what it does is grounding but at a higher structural level than the grounding

described in (Roy, 2002) and our ownwork. The system starts with primitive actions as

innate procedures. These resemble semiotic schemas of Roy (2005) and therefore could

be learned along the same lines. Finally, the robot does not use an independent plan-

ning component as in the CoSy system described below. Instead, it relies on a human

conversational partner to communicate the plan.

2.3.3 Embodied robotic systems

One of the most recent embodied robotic systems which can interact with its environ-

ment and humans in natural, human-like way was developed within the Cognitive

Systems for Cognitive Assistants (CoSy) project9. The linguistic part of research (Kru-

jiff et al., 2007; Zender et al., 2008) was carried out at the Language Technology Lab

of the German Research Center for Artificial Intelligence (DFKI) in Saarbrücken. The

hardware, the system design and the environment that the robot interacts with is very

similar to ours. The group works with an ActivMedia PeopleBot mobile robot which

is equipped with a SICK laser10 and a pan-tilt-zoom camera. Wheels are the sole ac-

tuators of the robot. The robot is equipped with a speaker which is connected to a

speech synthesiser and humans can communicate to it using a headset connected to a

9The project was active between September 2004 and August 2008. Its webpage can be found at
http://cognitivesystems.org. Its successor CogX (Cognitive Systems that Self-Understand and Self-Extend,
http://cogx.eu) started in May 2008 and it will complete in July 2012.

10SICK is a company based in Germany specialising in industrial sensors.

27

speech recognition system. The software controlling the robot is run on the on-board

computer and various other machines, all of which are connected through wireless

networking. The environment with which the robot interacts is the office environment

of the DFKI building.

The project concentrates on the perception of larger environments such as parts

of buildings containing corridors and offices. These areas also contain objects such

as sofas, desks and coffee machines. In terms of language, the research concentrates

on a situated dialogue between a human instructor and a mobile robot. The human

instructor takes the robot on a guided tour around the building during which the robot

builds up a multi-modal spatial representation of the environment both through its

sensors and through a situated dialogue with a user. The representations are built up

on-line and incrementally, as the robot explores the environment.

The perception part of the system includes a SLAMcomponent, place classification,

object recognition and people tracking. The SLAM component (Folkesson et al., 2005)

builds a geometric representation of the environment which is used for localising and

navigating the robot. The features extracted by the SLAM are lines which correspond

to walls. The place classification (Stachniss et al., 2005) uses the data from laser scans

to classify locations as doorways, corridors or rooms. Doorways indicate transitions

between different regions that a robot can pass through, corridors and rooms are dis-

tinguished by their geometrical features. The classifiers are trained offline through su-

pervised machine learning. The object recognition component recognises objects from

images captured by the pan-tilt camera. Again, the instances of objects are learned

offline. Since the quality of images from the built in camera is quite low (320 × 240

pixels), only larger objects can be recognised this way. To solve this problem, a two

stage process is proposed. During the first stage the location of objects in the scene

is detected, in the second, the camera zooms in to that location and the objects are

identified (see Zender et al., 2008, page 495ff.). The people tracking component uses

28

laser scan data to recognise dynamic objects. The location of the human tutor is medi-

ated to the navigation component so that the robot follows the user but also keeps an

acceptable distance.

The natural language part of the system (Krujiff et al., 2007) includes components

for speech recognition and synthesis, utterance parsing and generation and dialogue.

The output text from the speech recognition is parsed with a Combinatory Categorial

Grammar (CCG) parser. The parses are subsequently represented as logical forms of

Hybrid Logics Dependency Semantics (HLDS) (Baldridge and Krujiff, 2002). In this

formalism, the logical forms consist of elementary predicates, sets of semantic fea-

tures, which introduce discourse referents or define relations between the referents.

More importantly, the logical forms are assigned ontological sorts which indicate, for

example, the type of the propositional content specified by them (object/endurant or

movement), or the intention of content toward other modalities (question, assertion

and command). The information from logical forms must be interpreted against the

situated context, within the context of the dialogue and in relation to different modali-

ties (Krujiff et al., 2007, page 128ff.).

Each of themodalities produces a different representation of space. The representa-

tions are layered on top of each other and are increasingly more abstract. For example,

at the lowest level there is a SLAMmap which consists of lines representing walls. The

next layer is a navigation graph which comprises of connected navigation nodes that

are created each time the robot passes a certain distance. Navigation nodes are also

assigned semantic labels (doorways, corridors or rooms) by the place classification

component and also contain information about the near-by objects identified by the

object-recognition component. A further layer is a topological map which is created by

combining navigation nodeswith the same label to areas which are separated by nodes

labelled as doors. Finally, the highest level of abstraction is the conceptual map. This

is partly pre-specified (Zender et al., 2008, Figure 9, page 498) and partly acquired. The

29

pre-specified part is the ontology of indoor office environment containing is-a and has-a

relations. The first define semantic specialisation of areas such as area.room.kitchen, the

second define containment of objects by these areas. During the robot’s operation, the

ontology is further specialised with knowledge that has been acquired through sensors

(area1 = room) or asserted through dialogue (“This is the kitchen”). Furthermore, the

reasoner can use the ontology to infer new knowledge (for details see Zender et al.,

2008, page 498 and Krujiff et al., 2007, page 134).

In sum, the system builds and uses representations of space at different layers

which are created by different modalities. The system is driven by natural language

interpretation of dialogue. The information between the modalities is mediated by the

BDI (Beliefs, Desires and Intentions) component of the dialogue system (Krujiff et al.,

2007, Figure 6, page 134). A human instructor can issue the robot commands such as

“Come with me” to start exploring the environment and “Have a look around” to start

object identification. The robot can extract semantic information from sentences such

as “This is the office” and “This is a bookcase” to update its ontological knowledge.

This task is known as human augmented mapping (HAM). The robot can also reason

using the ontology to answer questions about locations and objects such as “Where is

the bookcase?”. The linguistic interaction may be initiated by the robot. It can generate

clarification questions to resolve uncertainties, for example “Is there a door here” to re-

solve whether a narrow opening in the SLAM map can be classified as a door (Kruijff

et al., 2006). Finally, Zender and Kruijff (2007) describe how the ontology can be used

with the algorithm of Dale and Reiter (1995) to generate contextually most appropriate

description of location, for example “the hall” if both the robot and the area referred to

are on the same floor, or “the hall on the second floor” if the robot is on the first floor.

Compared to our work, the CoSy project concentrates on a different level of lin-

guistic representation: a dialogue which involves descriptions of room locations and

containment of objects within the rooms rather than semantics of words referring to

30

robotic motion and relations between objects. The dialogue operates at the level of

logical form and abstracted representations of space. Our work is similar to the place

classification module which produces one type of such representations: it links the

information from the low level robotic representations to the individual words using

machine learning. The CoSy project does not contain a module which learns semantics

of the linguistic descriptions which we are proposing to learn. Due to the similarity of

architectures, our representations could be integrated with the spatial and conceptual

representations of the CoSy system which would extend its linguistic competence.

2.4 Our tools

The preceding discussion demonstrates the dependence of a natural language compo-

nent of a robotic system on other modalities to which it must link. In this section we

describe the robotic systemused in our work and themodalities that it provides. I have

been privileged to use the equipment and software belonging to the Mobile Robotics

Group (MRG)11 at the Department of Engineering Science, University of Oxford. The

group is led by Paul M. Newman who is also the author of the software called MOOS.

The MOOS is middle-ware that mediates between the modalities that run a mobile ro-

bot. Its particular design allows a simplified integration of our language modules with

other modalities, most of which were written by the same author as well.

We intend to usemachine learning to discover relations between the structures pro-

duced by these modalities and words from linguistic descriptions. There are different

ways in which such relations can be induced. We use a set of classification learning

algorithms. Thus we also briefly outline the main concepts behind this method.

2.4.1 The MOOS

MOOS stands for Mission Oriented Operating Suite (Newman, 2006) and its core rep-

resents a set of libraries and executables that run a mobile robot. Its development was

11Webpage: http://www.robots.ox.ac.uk/∼mobile.

31

started by Paul M. Newman at the Department of Ocean Engineering at MIT and was

later continued at the Department of Engineering Science at Oxford University. Re-

cently, the core system has been made open source with intention to promote its use

and development within the mobile robotics community.12

Its main advantages are that the system is platform independent – it can run on var-

ious flavours of Unix andWindows – and that it is conceived as amodular systemwith

a star-like topology as shown in Figure 2.6. Each process in the figure is independent of

other processes and provides a certain function. This means that components written

by different researchers can be added to the “MOOS community” each of which may

reflect an individual coding style of the author, may have a different internal structure

or may even be written in a different programming language altogether. Secondly,

since the components do not interact with each other directly, it means that they can be

developed and changed independently of one another and authors can maintain their

own code bases. The independence of components also means that they will be more

stable and that potential difficulties with one component will not have an impact on

another (Newman, 2006, pages 6–7).

pLogger
logs values

from MOOSDB
iRemote

manual control

pAntler
starts processes

publishes the
odometry info

iAGV/iPlatform

MOOSDB

Figure 2.6: MOOS topology in general

The core of the MOOS system is a MOOS database (MOOSDB) which serves as a

central repository of information, a kind of a blackboard. Communication can only be

12It is released under the GPL2 and it can be obtained at svn://login2.robots.ox.ac.uk/MOOS/trunk.
The repository also contains the latest version of (Newman, 2006).

32

established from the client to the database. It is never established from one client to

another or from the database to the client. One client has no knowledge of another.

However, the database has the knowledge of the currently connected clients each of

which requires a unique name.13 The communication between a client and the data-

base is in the form of messages. Each message contains information about the name of

the data (a MOOS variable), its value, the name of the client sending the data, the time

of the data at which it is valid, the type of the data (either string or double) and the

message type.14 Other than this, there are no additional restrictions on the data that is

sent to the database. Thus, any client can publish data under any name. Furthermore,

unlike a blackboard, the database not only holds the most recent value of the variable

but also its history.

From the client side, messages can be of three types (Newman, 2006, page 12ff.).

They can be notifications to the database about the value of some variable; they can be

registrations or subscriptions to receive notifications which are typically published by

other clients; or they can be incoming notifications from the database that have been re-

quested. When a client issues one of the first two messages these are not sent to the

MOOSDB straight away. The communications API on the client puts them into an out-

box. Messages in the outbox are grouped together in a single packet and transmitted

to the MOOS database at a pre-specified frequency such as 10Hz. Immediately after-

wards, the database returns another packet containing messages that are intended for

that client.15 The messages from the packet are put into the inbox of the client where

they can be retrieved by the client’s collection method.

An important consequence of this information exchange is that a change in infor-

13There is a naming convention whereby each process name is prefixed by a letter which indicates its
function. Thus, iName indicates interface processes (iRemote, iVoice), pName indicates pure applications
that do all the work and only interact with other applications (pSMSLAM, pLogger), and finally uName
indicates utility applications which are not required for the system to run but may be useful otherwise
(uSMSView).

14More recent versions ofMOOS allow interaction of multipleMOOS communities and hence the name
of the source community is also sent (see Newman, 2006, page 10).

15A special NULL message is created if there is nothing to transmit.

33

mation in the database does not trigger the information to be transferred to the client

automatically. Instead, the following mechanism is implemented (Newman, 2006,

pages 14–15). When a client registers to receive notifications it also requests a rate

at which it wants to receive them (Rr). Another client publishes the requested infor-

mation at a different rate (Rp). A MOOS client and the database exchange information

at the rate Re. Since the database keeps a history of variable values, it can return to the

client upon connection a set of values not just the last one. The number of returned

messages corresponds to n = f loor(Re/R) where R is either Rr or Rp, whichever is

the greatest. The mechanism for the information exchange is thus driven by change

in time rather than change in the variable value. It follows, that a series of messages,

each with a different time stamp, may be returned but all of which contain an identical

value for the requested variable. Notifications thus contain sampled descriptions of

states valid at some time.

Apart from the common communication framework the system also provides a set

of processes that are useful in experimental work. One of the most important ones is

pLogger which we use in our work extensively. pLogger can be configured to log any

variable from the MOOS database at some pre-specified interval. It writes the data to

two kinds of logs both of which are stored in plain text files from which information

can be extracted later. Each line of a synchronous log contains the values of all vari-

ables that are being logged at some temporal interval. Their order is defined by their

columns. The values can only be numeric (double) and therefore less useful for our

work. In asynchronous logs, on the other hand, the value of each variable is recorded

in a separate line and it may be either string or double. Depending on the interval set,

an asynchronous log can record every change of a variable in the database. Entries

are only made to the log once, when the variable is written. An interesting feature of

asynchronous log files is that they can be played back using the uPlayback tool. This is

useful when we want to simulate data from sensors during design of applications. In

34

this case we only select playback of variables published from sensors. Alternatively,

entire sessions can also be played back, for example for a qualitative evaluation or a

demonstration of the system.

Another useful tool is uMSwhich displays the current state of the MOOS database

as a table. We can examine which processes are writing what variables at what fre-

quencies and also their current values. Furthermore, the tool also allows us to change

the value of any variable by entering it through a computer keyboard. This is useful

during development of applications.

Finally, the last tool central to the operation of the system is pAntler. Its sole purpose

is to launch other processes that constitute the current MOOS community. When run

it expects a .moos file where these processes must be listed in its own configuration

block. However, .moos files also contain configuration blocks of other processes in

the community and pAntler passes the name of the .moos file to each of the processes

launched. A .moos file thus encapsulates configuration of the entire community which

becomes important later when data is analysed and we must refer to the conditions

under which it was collected. In fact, a copy of a .moos file is automatically stored with

a set of log files created by pLogger.

The integration and interoperability of systems built by different researchers presents

one of the greatest challenges for practical research work, especially if this, as in our

case, spans different fields. The MOOS provides one of the best platforms for research

in mobile robotics in terms of system integration, stability and the ease at which in-

formation can be exchanged. Of course, as any system it comes with a few limitations

which we will discuss as we describe our own contribution to it.

2.4.2 The world as seen by a mobile robot

The MOOS available under the GPL does not provide components that interact with

hardware or include software related to a particular field of research. It is meant to be

35

a general framework to run software for mobile robots. The robots owned by the Mo-

bile robotics Group at University of Oxford are ATRV-JR designed by iRobot who are

well known for their research, industrial and military robots. In brief, a robot consists

of an on-board computer with standard communication interfaces such as com ports,

ethernet and wifi interfaces running a distribution of the Linux operating system. The

basic machines have been further customised by the MRG with various sensors. In

particular the robot that we have been using called Marge has a fixed 2-dimensional

and a nodding 3-dimensional SICK laser, a sonar, a GPS receiver and wheel encoders

to monitor the path and orientation of wheels. The machines are powered by a battery

which provides enough power for a few hours of operation and are rugged enough to

be used outdoors.

Figure 2.7: The iRobot ATRV-JR robots used by the MRG group

In addition to the hardware our work also uses software that runs it. This was

chiefly designed by Paul M. Newman and is used for projects within the group. This

internal branch of MOOS is known as OxMOOS. In the following two sub-sections we

describe the two applications that we use in our work which provide us information

about the state of the robot and the environment.

36

2.4.2.1 Motion of a robot

In MOOS the motion properties of a robot are commonly referred to as its odometry.

Usually, the term “odometry” specifically refers to a distance that a body has travelled

and which is measured by an odometer. However, in the MOOS system this conven-

tional meaning is extended to include properties such as the following:

x : the current x coordinate of the robot measured in m relative to its origin (the loca-

tion where the robot started when the system was turned on);

y : the current y coordinate of the robot pointing toward its front, measured in m and

relative to its origin;

h : the current heading of the robot in rad relative to its heading at its origin: 0 degrees

indicates north, negative headings indicate the robot is turned to the right and

positive that it is turned to the left – this is because h really indicates yaw;

vx : the current velocity of the robot in the global x direction measured in m/s;

vy : the current velocity of the robot in the global y direction measured in m/s;

vh : the current angular velocity of the robot relative to its heading at its origin in

rad/s;

speed : the current speed of the vehicle calculated from vx and vy by Pythagoras
√

vx2 + vy2

which therefore only gives positive values.

All this information is considered “odometry” because it can be inferred from the

same source: the steering and motion of the robot’s wheels as described in (Newman,

2003, Topic 6: Vehicle Models and Odometry). In the earlier versions of MOOS, the

component calculating these values from thewheel encoders was known as iAGV. This

was later redesigned and renamed to iPlatform. Although the value of the “ROBOT-

NAME ODOMETRY” variable is considerably different depending on which process

37

publishes it, the content is almost exactly the same (see Figure 2.8). iPlatform groups

the values for x, y and h as a triple called Pose and the values for vx, vy and vh as a

triple Vel.

(a) iAGV

MARGE_ODOMETRY: x=-2.982,y=1.160,h=2.398,vx=-0.008,vy=-0.009,vh=0.258, \
speed=0.012,time=1105983174.213

(b) iPlatform

MARGE_ODOMETRY: Pose=[3x1]{0.0000,0.0000,0.0000},Vel=[3x1]{0.0000, \
0.0000,0.0000},Raw=[2x1]{54.8000,13.3611}, \
time=1151679972.51128792762756,Speed=0.00000000000000

Figure 2.8: The structure of the odometry variable

For linguistic descriptions of robot’s motion the most informative measures are the

current speed of the robot and its current angular velocity which tells us its heading.

Also important is the direction in which the robot is travelling: is it going forward

or reversing. This is not directly contained in the odometry information and must be

determined separately by taking a dot product of the velocity vector and the direc-

tion vector derived from the angular velocity. Note that the angular velocity must be

negated because it is a measure of yaw as discussed above. The sign of the resulting

scalar tells us whether the robot is moving forward (+) or reversing(−). We append

the sign to the value of speed.16

v1 = [vx, vy] (6)

v2 = [sin(−vh), cos(−vh)] (7)

v1 · v2 = vx× sin(−vh) + vy× cos(−vh) (8)

16I thank Alastair Harrison from the MRG for this calculation.

38

2.4.2.2 The robot within its environment

The location of the robot and other objects in the environment is determined by simul-

taneous localisation and map building (SLAM) (Smith and Cheeseman, 1986; Leonard

and Durrant-Whythe, 1991; Dissanayake et al., 2001). Using this technique, a robot

starts in an unknown location and in an unknown environment and uses its relative

observations from its sensors to gradually build an absolute map of the environment

which it can use, for example, for navigation. This makes the robot autonomous since

none of the knowledge about the environment needs to be pre-specified. The technique

is particularly important for navigation in environments for which it is impossible to

provide a precise global map in advance. This includes most real environments, but in

particular the research is important for exploration of hazardous environments such as

oceans and space.

To give a rough illustration of the problem in general, imagine a situation in which

person A takes a few photographs of a 3 dimensional scene such that each photograph

is made from a slightly different location and captures a different part of the scene. He

gives these photographs to person B who is unfamiliar with the scene and has to use

some inference mechanism to create her mental representation of the scene. She may

notice that a particular landmark in the scene appears in more than one photograph

and thus the photographs may depict a continuous section of the scene. Even for a

human this is not an easy task. The visual information provided in the photographs

is not perfect: it may contain noise mostly because B is not able to infer precisely the

location from which A took the photograph and because the image is distorted by the

camera lens.

In amobile robot setting (Dissanayake et al., 2001) we have amoving robot in an en-

vironment containing stationary landmarks also referred to as features. The two terms

are interchangeable because landmarks are not higher level abstractions but low level

representations created by sensors available to the system. In our case, the sensory

39

data consists of distances between the robot and landmarks which are represented as

points.

The global location of the vehicle and the features is modelled as follows. The

true location or the state of the vehicle at time k in the global co-ordinate frame is

represented as a vector of real numbers xv(k). When the robot transitions to a new

state xv(k + 1) at time k + 1, the new state is modelled as being dependent on the

previous state, the transition model, the controls that moved the robot to the new state,

and the process noise. Since the landmarks (i ∈ N) are stationary, their state at k + 1

remains the same or xi(k + 1) = xi(k) = xi. Therefore, in the global co-ordinate frame

all states at time k are represented as a vector xk = [xv, x1 . . . xN]. When a robot makes

a relative observation z of some landmark i, this is related to the vector of states xk, in

particular to its items xv and xi, by some observation model. The observation is also

affected by the noise with which it made.

Using these process and observation models the task of SLAM is to find an estimate

of the location of the robot and the features in the global reference frame at time k by

relying on the estimate of the state at k − 1 and the observations as shown diagram-

matically in Figure 2.9 adapted from (Dissanayake et al., 2001, Figure 1). The estimate

is a probability distribution with mean [x̂v(k), x̂1(k) . . . x̂n(k)] and covariance P(k). It

is determined recursively by a technique known as the Kalman filter. The algorithm

proceeds in three phases: Predict, Observe and Update.

During the Predict phase it uses the process model and the final estimate of the

state from the previous time step, x̂(k− 1|k− 1) and P(k− 1|k− 1), to generate the first

estimate of the state at the current time step, x̂(k|k− 1) and P(k|k− 1). It also generates

a prediction of the observation for the iTe landmark for the current time step ẑi(k|k −

1). In the Observe phase an observation zi(k) of the ith landmark is recorded. This

observation contains information about the true state of the robot and the landmarks

x(k). A difference between the true observation zi(k) and the predicted observation

40

robot’s relative observation

global state of a landmark

global co−ordinate frame

landmark−2

origin

landmark−1

robot

x

xv

z
z

1
2

x1
2

Figure 2.9: SLAM: building a global map from relative observations

ẑi(k) is calculated. This difference is known as innovation ỹi(k) with covariance matrix

Si(k). In the third phase called Update the innovation ỹi(k) is used to improve the state

estimate and the associated covariance giving us the estimates x̂(k|k) and P(k|k).

Dissanayake et al. (2001) show proofs based on the properties of the state covari-

ance matrix P(k|k) that as the robot is moving and making more observations under

the above model, the map that the algorithm builds, represented by the relationships

between the landmarks, converges. Firstly, they show that as successive observations

are made the uncertainty of the state estimates reduces monotonically. When the num-

ber of observations approaches infinity the uncertainties of the relative locations of

landmarks converge to zero. This means that with successive observations the states

of landmarks become increasingly correlated and when the limit is reached they be-

come fully correlated. Thus, if we know the location of one landmark with some un-

certainty we can determine the location of another one with an identical uncertainty.

Finally, they prove that with increasing observations the error of absolute location of

every landmark on the map converges to the error equal to that with which the first

observation is made.

The algorithm outlined here demonstrates the basic concept of SLAM. However,

in practical applications several extensions to it have been introduced (Newman and

41

Durrant-Whyte, 2001; Newman and Leonard, 2003). The OxMOOS implements a pose

based formulation of the SLAMalgorithm based on Bosse and Zlot (2008) in the process

known as pSMSLAM. In contrast to the SLAM component used in the CoSy project,

pSMSLAM produces a map which is a set of n-tuples 〈x, y〉 or 〈x, y, z〉 depending

whether a 2-dimensional or 3-dimensional laser is used. The x, y and z coordinates

are expressed relative to the origin of the robot which is the point in the environment

where the robot started. The map can be viewed graphically using the uSMSView tool

as shown in Figure 2.10.

Figure 2.10: Building a SLAMmap with MOOS. We can see a series of
screen-shots from the MOOS utility uSMSView taken while the robot
“explored” the environment and incrementally built a map. Although objects
can be quite easily discernible to a human eye it is important to note that for
the system they are only sets of points in a 2-dimensional coordinate space.

pSMSLAM can be used in two modes of operation. In the SLAMmode the module

builds a map incrementally from its observations as it moves around the room and

localises the robot on the map as shown in Figure 2.10. The map can be saved to a file

42

and reloaded to pSMSLAMwhen run in the localisation mode. In this mode the system

tries to match its current observations from laser scans with the map that was supplied

to it. If the system can determine the current location of the robot on the map it also

means that it has knowledge of the location of all other points in the environment. The

localisation mode is particularly useful in experimental work since this eliminates the

need to rebuild the map between different runs of the system. Of course, the map can

only be reused if the scene has not changed in the meantime.

Objects appear to the system only as clouds of points rather than discrete entities

and we have to identify them manually. A small addition to the uSMSView was im-

plemented which gives us, for every point that we choose on the graphical map, the

coordinates 〈x, y, z〉 relative to origin of the robot. We represent every object as a point

defined by its central axis and a name as shown in Figure 2.11. Such a representation

ignores the shape of objects: it is suitable for objects that are round or square but less

suitable for objects that are long and thin. We chose this representation to keep the

features for learning as simple as possible with the fewest abstractions.

Figure 2.11: Objects were grounded as points of their central axis

The names of objects and their absolute locations are not saved with the SLAM

43

map. Instead they are a part of the configuration of the iCommentary application17

which monitors the location of the named points and publishes them to the MOOS

database at some pre-specified interval. The information is published as a set of 4-

tuples 〈object-name, x, y, z〉 under two different variables. “COMMENTARY LOCATIONS”

contains 4-tuples with absolute coordinates of object locations which are static and are

just replications of the coordinates which we identified the objects on the map with.

“COMMENTARY RELATIONS” on the other hand contains 4-tuples with coordinates

of object locations relative to the current location of the robot.

The model of projective spatial relations (Maillat, 2003) discussed in Section 2.2,

page 12 proposes that the origin of the coordinate system is always fixed by the ref-

erence object regardless whether intrinsic, relative or absolute reference frame is in-

tended in their interpretation. The orientation of the coordinate frame is determined

by different contextual parameters (Table 2.1). Projective descriptions in English are

ambiguous in their interpretation according to intrinsic and relative reference frames.

Apart from projective descriptions our dataset may also contain topological descrip-

tions such as “near” whose reference does not require a coordinate frame or the orien-

tation parameter but only considers the distance between the two objects.

Howmuch information from the model should be integrated in the dataset for ma-

chine learning? In order to apply the complete model, the coordinate system that de-

fines the coordinates in “COMMENTARY RELATIONS” would have to be transposed

onto the reference object. Then, it should be determined whether a particular descrip-

tion of a relation is topological or projective. In the latter case the coordinate system

should be rotated according to the intended viewpoint parameter which would have

to be determined from the context or from the discourse. The coordinate frame of

coordinates in “COMMENTARY RELATIONS” is already orientated according to the

robot and hence no rotation would be required if the relative reference frame is in-

17I thank Paul M. Newman for implementing this application.

44

tended and the descriptions are made from the robot’s point of view. For the intrinsic

reference frame one would have to know the orientation of the reference object which

would have to be specified for each object manually. It follows that the application of a

full model requires a lot of information which is simply not available from the SLAM

map.

Of course, if a full model is applied, machine learning is redundant. It would

only learn spatial templates which can be determined with a far more straightforward

method (Logan and Sadler, 1996). On the other hand, if completely random informa-

tion is given to learners, nothing useful will be learned. Therefore, a compromise was

made to use the coordinates of objects without transposition as given in “COMMEN-

TARY RELATIONS”. These express the locations of objects local to the current position

of the robot without assuming a particular model. The describers were asked to make

descriptions from the perspective of the robot. In most cases, when the reference ob-

ject is another object in the scene, this requires the application of the relative reference

frame. However, if the reference object is the robot itself, then the relative and intrinsic

reference frames coincide. We expect these distinctions will be learned by the learners.

The way the robotic system perceives the environment is much different from the

way humans perceive it. It uses primitive low level information which is extremely

accurate. Such information is well suited to navigate and localise a mobile robot. Hu-

mans on the other hand refer to their environment using abstract concepts which are

quite vague (van Deemter, 2006). The challenge of this work is to show that the low

level information from the robotic system can also be used for abstracting the concepts

through which humans perceive their environment. If we are successful, then it can be

concluded that the robots can simulate some human behaviour.

2.4.3 Machine learning

Automatic extractions of useful information from datasets is commonly known as ma-

chine learning or data mining. However, there are a few different techniques of ma-

45

chine learning that are employed. They differ in the type of data that they can handle

and what generalisations about the data are made. We have already discussed one of

the techniques when discussing SLAM. Estimation is a sub-case of numeric prediction

where given some attributes (the variables in the transition and observation models)

a numeric value is predicted which describes the state of the robot or a feature in the

global coordinate frame.18 Classification learning is similar to numeric prediction except

that instead of predicting a numeric value a nominal value is returned. Yet another

kind of learning is association learning. This does not return any particular numeric or

nominal value but finds any associations between the attributes that are passed to it.

Finally, clustering finds examples that appear similar in terms of their attribute values

and groups them in a cluster.

For our task numeric prediction and classification appear to be the most suitable

methods. Rather than implementing the algorithms ourselves, we chose to use Weka

(Witten and Frank, 2005) which stands forWaikato Environment for KnowledgeAnaly-

sis and is developed at the University of Waikato. This contains a ready implementa-

tion of many popular machine learning algorithms and associated tools and is written

in the Java programming language. Although some machine learning algorithms such

as the Naive-Bayes are not too difficult to implement independently, the main advan-

tage of Weka is that it provides a unified toolbox for preparing and manipulating in-

put datasets, performing learning on them, using the learned knowledge to make new

predictions on unseen datasets and evaluating the performance of the learning tasks.

Weka introduces a unified format of input files known as the Attribute-Relation File

Format (ARFF). Datasets written in this format can be used with any machine learning

algorithm included. This makes a comparison of their performance a straightforward

task. Furthermore, it also includes a learning evaluation component which provides

common evaluation techniques such as stratified 10-fold cross-validation and calcu-

18This corresponds to the localisationmode of the pSMSLAM process which uses the map created in the
estimation step to navigate the robot or, as in our case, to locate the objects.

46

lates many popular evaluation metrics such as the F-measure. Finally, because the

software is written in Java it can be easily extended with new classifiers or compo-

nents.

Weka algorithms cannot make generalisation from any unstructured dataset. Infor-

mation must be organised into instances. One can think of an instance as an observa-

tion of a set of variable values. In Weka terminology variables are called attributes and

hence an instance is a vector of attribute values. A typical example dataset used in the

machine learning literature (and also in Witten and Frank, 2005) is the weather dataset

which contains observations of various weather attributes and whether people played

some sporting game as shown in Figure 2.12.

Outlook Temperature Humidity Windy Play
sunny 85 85 false no
rainy 70 96 false yes
sunny 75 70 true yes

Figure 2.12: An extract from the weather dataset

A collection of instances can thus be represented in a table. As previously men-

tioned, the task of a machine learning algorithm is to uncover relations between the

attribute values that correctly generalise all instances in the training set. Importantly,

however, the generalisations can only be made on relations between attribute values

and not across different instances. Instances are independent and represent different

examples of the same generalisation or the concept that is learned. This contrasts to the

estimation problem in SLAM where observations of the robot’s motion and observa-

tions of the environmental features are also temporally dependent.

The independence of instances may sometimes be problematic. Witten and Frank

(2005, page 46) give an example where an ancestral tree is conflated to a table of in-

stances where the attributes are simply Name, Gender, Parent1 and Parent2. If instances

are given in this way, it would be impossible for the learning algorithms to make any

47

useful ancestral generalisations such as “mother of” since all of these relations are en-

coded between instances and not within the instances in terms of attribute values. For-

tunately, there are ways to transform such datasets to a table of independent instances

by introducing new attributes. However, this means that their size becomes larger

which increases the cost of computation and storage. It may also create spurious rela-

tions which we are are not interested in uncovering since they reflect the structure of

the original data which is already known to us. Another difficulty in representing an

ancestral database in a table of independent instances is that ancestral generalisations

are infinite which is something that cannot be represented in a finite table.

The information encoded in instances only tells the algorithms that a certain ob-

servation is true. It is impossible to encode knowledge that something is not true as

expressed by the proposition “the outlook is not sunny”. Instances can only encode

positive knowledge. All instances that could have been formed from the remaining

combinations of attribute values are explicitly assumed to represent negative knowl-

edge. This is known as the closed world assumption.

Different machine learning methodswill make different generalisations. In the case

of classification the goal of a machine learning algorithm will be to predict the value

of one attribute which in Weka terminology is known as the target class. Returning to

the weather dataset, the target class will be the attribute Play since we are interested in

creating a classifier that will predict whether a game is played or not given the current

weather conditions. In terms of the classification algorithms there is no restriction on

which attribute can be the target concept – one could also choose Outlook for exam-

ple. However, a classifier that predicts whether it is sunny or rainy given that people

are playing the game is probably not very useful to us. Sometimes very strange and

unintuitive generalisations can be made. The algorithms have no knowledge which at-

tribute is the most appropriate target class – instead this must be decided by a human.

For this reason classification is known as a supervised method of machine learning.

48

Although the input knowledge to the learning algorithms is standardised in Weka,

there is no standard form of the output knowledge. Instead this depends on each par-

ticular learning algorithm employed. For example, Naive-Bayes produces probabilistic

knowledge, whereas a decision tree learner produces knowledge in the form of a de-

cision tree. Of course, in both cases the knowledge is used to make a classification but

the steps leading to it may be quite different.

2.5 Conclusion

This chapter gave an overview of some of the ideas, approaches and tools related to

our work. We are now ready to start the discussion of how the learning of descriptions

was performed and its success evaluated.

49

50

Chapter 3

Machine learning

3.1 Introduction

In this chapter we discuss how we use machine learning to learn the grounded mean-

ings of spatial words. The process of machine learning can be divided into various

stages. First, a corpus of suitable observations must be collected which serves as the

training data from which generalisations are made. The observations must be struc-

tured in a particular way to form instances which can be fed to machine learning clas-

sifiers. Importantly, the observations are assigned category labels which constitute

additional knowledge in the machine learning process. This is why such method is

known as a supervised method. We structure instances according to our assumptions

and theories about the data. There is no guarantee that these aid the discovery of the

true underlying relations in the data if these exist at all. Another important factor is the

algorithm used for learning. Different algorithms make abstractions about the data in

different ways and thus give different results. We use two algorithms: a symbolic and

a probabilistic one. In the final section we discuss the success of learning. In particular

we contrast the classifier performance relative to the various choices that we took in

the preceding steps.

51

3.2 Data collection

3.2.1 Linguistic and non-linguistic data

The objective of our machine learning experiment is to find meaningful associations

between (i) odometry or topological data representing the state of the robot or the

environment, and (ii) natural language data obtained from human descriptions. Each

observation used for machine learning will contain a set of values consisting of either

odometry information or topological information, and natural language information.

We collected two datasets of observations which were made under slightly differ-

ent conditions: a small development dataset and a larger final dataset. We refer to

these datasets as Simple and All. The datasets differ in regard to how linguistic infor-

mation was sampled. The Simple dataset was created from descriptions provided by

a single human describer. The describer did not have to generate full sentences, but

he chose the words to create descriptions from a pre-defined list that was displayed

on a computer terminal. The vocabulary was thus controlled. It only contained the

most frequent descriptions of motion and object relations as summarised in Table 3.1.

We grouped the words describing motion into four different categories which in our

intuition correspond to human conceptual classes.

Category Words

Verb moving, stopped
Direction backward, forward, none
Heading right, left, none
Manner fast, moderately, slowly, none
Object box, chair, chest, desk, pillar, shelf, table, tyres, you
Relation behind, in front of, to the right of, to the left of

Table 3.1: Controlled vocabulary used in the Simple dataset

The All dataset was collected from descriptions of four describers, two native and

two non-native but proficient speakers of English. The vocabulary was not restricted

in any way. The describers were instructed that they can use any descriptions of mo-

52

tion or location of objects that they consider natural as speakers of English. Table 3.2

shows a selection of descriptions that the describers used. In the majority of cases

the describers used mono-clausal descriptions containing words belonging to the four

basic categories identified in Table 3.1. There is also some variation in the structures

produced. Some describers were more creative than others. They used complex de-

scriptions (“The table is in front of you and to your left”), adverbial modification (“You

are directly behind the box”, “The chair is slightly to the right of you” and “You are

somehow between Homer and the box”) and even negation (“The shelves are not close

to you”). However, such descriptions were relatively rare.

Category Descriptions

Motion Moving forward left.
Reversing right.
Stopped.
Moving backward very slowly.
Turning to the left.
Turning clockwise.
Moving forward and turning right quite slowly.
Turning on the spot to the left.
Very gently turning to the right and then moving
forward into the right at medium pace.

Object relations The table is to your left.
The desk is in front of you.
The nearest object to you is the table.
Homer is in front and to the left of you.
The barrier is to your left further away than the table.
The box is directly to your left.
The table is between you and the chest.
The chest is to the right of the table.
You are closer to the table than the shelves.
Flakey is directly behind the box and to your right.

Table 3.2: Free vocabulary and sentence constructions used in the All dataset

As described later in Section 3.3.3, a set of words was collected from these utter-

ances and each word was assigned one of the categories Verb, Direction, Heading, Man-

ner and Relation. If a word did not fall into any of them, it was discarded. The names

of the objects did not have to be tagged because their names can be extracted automat-

53

ically from the locational data. The data collected in the Simple dataset was also added

to the All dataset. The tagging procedure resulted in the vocabulary given in Table 3.3.

With the exception of object names, these are the words whose grounded meanings

will be learned.1

Category Words

Verb going, edging, continuing, reversing, creeping, turning,
moving, stopped

Direction spot, backward, forward
Heading anticlockwise, clockwise, straight ahead, hard, straight line,

around, straight, 180, right, left
Manner quickly, walking pace, imperceptible, tightly, gently, rapidly,

fast, moderately, slowly
Object barrier, bin, box, chair, chest, cupboard, desk, Flakey, Homer,

origin, pillar, shelves, table, tyres, wall, you
Relation next to, after, near, parallel to, opposite of, facing,

in front of, far, to the right of, to the left of, behind, close

Table 3.3: Extracted vocabulary used in the All dataset

The odometry information that was used in learning includes the estimation of

speed (Speed) and orientation of the robot (Delta-Heading) as discussed in Section 2.4.2.1.

The topological information contains the x and y coordinates of objects in a two-dimensional

coordinate space relative to the current location of the robot as discussed in Section 2.4.2.2.

Descriptions of objects only refer to pairs of objects, the located and the reference object,

and hence only the coordinates of these two objects are relevant for learning descrip-

tions of relations between them. We represent them as attributes LO x, LO y, REFO x

and REFO y.

The nature and the detail of odometry and topological information is the same in

both datasets. However, the scale of their numerical values may be affected by the

maximum speed and rotation that the robot can achieve in a given environment and

the size of the room which all varied between the scenes in which the datasets were

1For attributes Direction, Heading and Manner a value “none” is also learned which corresponds to a
case where no word of that category is encountered in the utterance. For more details see Section 3.3.3,
page 71.

54

created. We return to this problem in Section 3.3.2.

In sum, our learning datasets contain eleven attributes, four linguistic (Verb, Direc-

tion, Heading, Manner and Relation) and six non-linguistic (Speed, Delta-Heading, LO x,

LO y, REFO x and REFO y). Each learning task consists of building a classifier that pre-

dicts the values of one of these attributes by relying on the values of other attributes.

Not all attributes are used in each learning task. We give an overview of input at-

tributes for each learning task in Section 3.3.4. Because the robot is mobile and may

change locations, and because each type of data is collected from a different source, it

is important to ensure that the collected linguistic and non-linguistic observations are

temporally synchronised before they are written as attribute values of instances. We

address this issue in Section 3.3.1.

3.2.2 Experiment set up

For both Simple and All datasets the descriptions of motion and object relations were

collected in separate sessions. During the first session, the operator guided the robot in

an enclosed space trying to display various types of motion that the robot is capable of.

Human commentators were asked to describe the motion while the robot was moving.

During the second session, the operator first moved the robot to a certain location

in a room containing various objects and then human commentators were asked to

describe the location of the robot and the location of the surrounding objects as if the

descriptions were from the perspective of the robot.

The reason why the two types of descriptions were collected separately is mainly

practical. In order to generate a variety of motion a considerable space is required

which would be further restricted if objects were also present. It follows from this ex-

perimental setup that odometry information and information about the locations of

objects will never be present together in any machine learning task. This decision is

reasonable since we do not expect that properties such as the speed of the robot will

55

influence the choice of a description of object relation. On the other hand, we can ex-

pect that a presence of an object in some region around the robot may be related to a

description such as “moving right”. However, the robot’s speed and heading are far

more accurate sources of data fromwhich the grounded representations of descriptions

of motion can be learned. If certain properties are irrelevant for learning a certain type

of description, the learning algorithms should be able to exclude the contribution of

such attributes automatically as shown in the experiments of Roy (2002) discussed on

page 21. However, this assumes that the descriptions are learned from a large dataset

where every value of the irrelevant attribute is found with every value of the target

concept at least a few times. Otherwise, spurious relations may be discovered. Inclu-

sion of irrelevant attributes therefore increases the data requirement and if this is not

satisfied it has a negative effect on the success of learning.

The system was set up slightly differently in each data collection session as shown

in Figure 3.1. While collecting the motion data the operator used iRemote to move the

robot around the room and iAGV provided odometry information. To ensure that each

human describer would be given an opportunity to describe a broad range of motions,

the operator had a list of possible motions that he referred to while guiding the robot.

This list, however, was not disclosed to the describers. Roughly, the motion types in-

cluded forward and backward motion with various velocities and turning left or right

under acute and obtuse angles, rotating the robot on the spot and stopping. iRemote ac-

cepts commands from a standard computer keyboard: the values of the desired rudder

and desired thrust can be incremented in steps of 2. They are percentages of the max-

imum rotational and transport velocities that the vehicle is allowed to achieve which

in turn are measured in metres per second and radians per second respectively. The

desired rudder and thrust are taken as instructions to iAGV of what percentage of the

maximum velocities the vehicle should achieve at any given moment. The maximum

velocities can be defined by the operator for every session. The typical values that we

56

used were 0.6 and 0.4 m/s and 0.8 and 1.0 rad/s. We varied these while collecting

the Simple and All datasets to change the responsiveness of the robot. These parame-

ters became part of the dataset: while creating instances we normalised the observed

angular velocities and speed to these values.

pLogger
logs values

from MOOSDB

iAGV
publishes the
odometry info

iRemote
manual control

Language input
method

pAntler
starts processes

iLinguistics

MOOSDB

pLogger
logs values

from MOOSDB
iRemote

manual control

Language input
method

pAntler
starts processes

iLMS200
provides laser

scan data

pSMSLAM
localises the robot

iCommentary
relativises object coordinates

to the robot
iLinguistics

MOOSDB

(a) Motion data (b) Object relations data

Figure 3.1: The MOOS topology used during data collection

The linguistic datawas collected using two different language inputmethods. While

compiling the Simple dataset, the user was presented with a list of word choices on a

terminal window. He generated scene descriptions by entering the numbers associated

with each each word that best described the scene. The words were grouped into cate-

gories and the describer could only choose one word per each category. The benefit of

this input method is that it restricts the describer to a small core vocabulary which we

were planning to collect and that entering descriptions is very fast which was partic-

ularly important in the case of motion descriptions. Because the robot was moving in

an enclosed environment it was difficult to sustain a particular motion for a prolonged

period of time. If the describer was too late in generating a description, either because

it took time for him to decide on the description or because he was limited by the input

method or the system and the motion of the robot would have changed in the mean-

time, the resulting description would be incorrect. This means that considerable error

could be introduced to the dataset.

When collecting the All dataset we did not want to limit the describers to a partic-

57

ular vocabulary and hence the previous input method became unsuitable. Instead we

choose speech recognition2 which has proven to be the fastest and the most accurate

method of collecting linguistic data. The speech recogniser did introduce some errors

by incorrectly recognising certain words, but these were consistent and could be easily

corrected manually later. Using a speech recogniser also meant that each participant

in the experiment had to train the recogniser first to their speech which took approxi-

mately 15 to 20 minutes. Alternatively, one section of a dataset from one describer was

collected without a speech recogniser where the describer entered the descriptions by

typing them on a computer keyboard. The intention of this experiment was to allow

for a rough comparison of both input methods to see which one gives instances of

higher quality containing fewer errors.

In the second set of sessions where we were collecting a dataset of object relation

descriptions we set up an environment with real-size objects such as a chest, a box, a

table, a pillar, a stack of tyres, a chair, a desk, shelves, etc. A portion of this environ-

ment including the robot is shown in Figure 3.2. The system was configured as shown

in Figure 3.1b. The non-linguistic data is provided by pSMSLAMwhich is responsible

for localisation and map building and iCommentary which makes the coordinates of

objects relative to the current location of the robot. pSMSLAM relies on the iLMS200

process which controls the laser and returns the scan data. As previously described,

the map is built in two stages. In the first stage we set pSMSLAM to the SLAM mode

and navigated the robot manually around the room until a map with sufficient detail

was built. We identified and named the objects on the map and declared their names

and their absolute coordinates in the iCommentary configuration block of the .moos file.

When an experiment started, pSMSLAMwas set to the localisation mode and was con-

figured to use the map that it has previously built. The size and the shape of the room

were different during the creation of the Simple and All datasets. We assume that the

2We used Dragon Naturally Speaking 8 by Nuance Communications, Inc. which we linked with our
own code to the MOOS system.

58

size is important for the interpretation of the meaning of spatial relations. The size can

be extracted from the MOOS map and therefore the map becomes a part of the dataset.

We discuss the normalisation of object coordinates to the size of the environment in the

following section.

Figure 3.2: The describers were asked to describe the scene from the
perspective of the robot: the table is to the right of the box and the tyres are to
the left of the robot.

We logged both linguistic and non-linguistic data using the standard MOOS log-

ging tool known as pLogger. As described in Section 2.4.1 of the previous chapter, logs

can be synchronous or asynchronous. Unfortunately, the synchronous logs can only

be used to log MOOS variables that are numeric. However, none of our variables are

numeric but complex string attributes that contain a list of comma separated feature-

value pairs as shown in Figure 3.3. This means that only asynchronous logs could

be used. The difficulty that arises with these logs is how to match their entries each

of which has a different time stamp. Sometimes there are multiple qualifying entries

for a certain variable as in the case of “MARGE ODOMETRY”, in other cases the dif-

ference in time stamps between the two qualifying variables is quite wide as in the

case of “COMMENTARY RELATIONS”. Again, in certain very rare cases, the variable

59

may not be logged at all in the required time interval. We return to these issues in the

following section.

66.230 DESIRED_THRUST iRemote 6
66.230 DESIRED_RUDDER iRemote -4
67.255 MARGE_ODOMETRY iAGV x=0.454,y=2.964,h=1.097,vx=-0.052, \

vy=0.027,vh=0.052,speed=0.059,time=1132139182.726
67.363 MARGE_ODOMETRY iAGV x=0.449,y=2.967,h=1.103,vx=-0.041, \

vy=0.021,vh=0.041,speed=0.046,time=1132139182.834
67.428 VOICE_INPUT iLinguistics moving forward slowly
67.471 MARGE_ODOMETRY iAGV x=0.443,y=2.970,h=1.110,vx=-0.048, \

vy=0.024,vh=0.059,speed=0.054,time=1132139182.942
...

627.602 COMMENTARY_RELATIONS iCommentary Vehicle-Wall= \
[3x1]{-1.388,-2.974,-0.2557},Vehicle-Pillar=[3x1]{-3.694, \
1.944,-0.2557},Vehicle-Desk=[3x1]{-0.9161,3.673,-0.2557}, \
Vehicle-Shelves=[3x1]{3.622,3.339,-0.2557},Vehicle-Cupboard= \
[3x1]{3.547,1.963,-0.2557},Vehicle-Homer=[3x1]{-0.8307,2.022, \
-0.2557},Vehicle-Table=[3x1]{-1.198,0.02526,-0.2557}, \
Vehicle-Chair=[3x1]{1.688,2.268,-0.2557},Vehicle-Box=[3x1]{1.92, \
0.08886,-0.2557},Vehicle-Flakey=[3x1]{2.111,-1.253,-0.2557}, \
Vehicle-Bin=[3x1]{2.029,-2.756,-0.2557},Vehicle-Barrier= \
[3x1]{-3.158,-0.1599,-0.2557},Vehicle-Chest=[3x1]{-2.762,-1.607, \
-0.2557},Vehicle-Tyres=[3x1]{0.5896,-1.243,-0.2557},Vehicle-Origin= \
[3x1]{-0.3618,-1.781,-0.2557},

641.112 VOICE_INPUT iLinguistics the table is to your left

Figure 3.3: An extract from asynchronous MOOS log files. Note that odometry
and locations of objects were not logged together as they were collected in
separate sessions.

Before starting collecting descriptions of either type, describers were familiarised

with the environment. For motion data, the operator showed them briefly what types

of motion the robot is capable of. For descriptions of object relations, the operator

explained to them the names of the objects in the room that they could refer to. The de-

scribers were instructed to produce descriptions from the perspective of the robot and

to clarify what is meant by this, the operator gave them a few simple examples. They

were asked to walk around the room to build their mental representation of space.

They were also allowed to do this while making descriptions of object relations once

the experiment has started as this helped them to visualise the scene better from the

perspective of the robot. It soon became evident that the describers were making a

considerable number of mistakes related to the perspective: they switched to their own

60

perspective or to the perspective of the reference object if it had an identifiable front.

This presented another source of error for our dataset. Once the describers exhausted

the description possibilities that could be generated from one robot location, they were

instructed to inform the operator to move the robot to another randomly chosen loca-

tion. The data collection experiment was not limited in time but the participants spent

approximately 1.5 hours in total in the lab.

3.3 Creating instances for machine learning

The algorithms in the Weka toolkit (Witten and Frank, 2005) that we use are super-

vised methods of machine learning. They cannot process just bags of data of various

types to induce meaningful theories. Instead they require a set of observations known

as instances which are lists of values of a predefined and fixed set of attributes. Each

attribute defines a category of observations. The decisions that are introduced by a hu-

man in preparing a learning dataset represent an important knowledge in the process

of finding the theories that describe the data and are thus significant for the outcome

of learning as already discussed on page 56. We model our data with attributes which

we believe are related and the goal of learning is to find this relation. In this section we

describe how the robotic and natural language data was structured and prepared for

machine learning.

3.3.1 Combining log entries to instances

We created our raw datasets with pLogger which creates for each variable value logged

a separate time-stamped entry. This means that linguistic data is logged separately

from non-linguistic data. In most cases, the variable values are lists of complex feature-

value pairs. To create instances containing both kinds of information wemust therefore

find a related set of log entries, extract the relevant attribute data from it, and rewrite

the data as a single instance containing these attribute values 〈Val1, Val2, Val3. . . 〉.

The procedure must be accomplished automatically because of the large number of

61

observations. Also, non-linguistic descriptions are meaningless to humans and hence

no value would be added if instances were created manually.

The way we combine log entries to instances becomes particularly important in the

case of motion data because the conditions were changing fast while describers were

making descriptions and it was possible that the data became unsynchronised. We

used two algorithms to extract the data from logs and to create instances. We compare

the performance ofmachine learning classifiers built from the instances created by each

algorithm and discuss the differences in their performance later in this chapter.

In general we assume that a human describer makes a description after observing

the environment around them. Thus, a linguistic description made at dtime will al-

ways temporally follow the descriptions of the environment and the state of the robot

made at ptimes. Thus, we should look for non-linguistic descriptions that immediately

precede the linguistic ones in terms of their time stamps. Figure 3.4 outlines the algo-

rithm.3 In item (1(a)iv), the ptime may not be found if dtime occurs at the beginning of

a log file where a linguistic description may precede the logging of environment prop-

erties or in rare cases where two linguistic descriptions would follow one another with

no intermediate description of the environment.

create instances: takes an ordered list of description time codes DTimes and an ordered list of environ-
ment/robot property time codes PTimes.

1. Take dtime as the first member of DTimes.

(a) find property time: using dtime and PTimes find ptime.

i. Take ptime to be the first member of PTimes.

ii. If ptime ≤ dtime and (next(ptime) > dtime or next(ptime) = {}), add the pair
(dtime, ptime) to the output list DTimesPTimes and stop.

iii. Else recurse (1a) on the tail of PTimes.

iv. Fail if PTimes = {}.
2. Recurse (1) on the tail of DTimes until DTimes = {}.
3. Return the list DTimesPTimes.

Figure 3.4: The basic algorithm for associating linguistic description time
codes with environment/robot property time codes to create instances from
MOOS logs.

3The algorithms were implemented in Prolog (Bratko, 2001) and thus we also write them in a way
which resembles its coding style.

62

We already mentioned that we observed a notable delay from the time when a user

observed the motion of the robot and until the description became logged to a file. The

describer has to decide on the description, select options on the computer keyboard

or generate an utterance, the utterance must be recognised by the speech recogniser,

sent to the MOOS database, retrieved by pLogger and finally written to a log file. This

delay is not constant during the session of one describer. There is also a considerable

difference in the detail and richness of linguistic and non-linguistic information. Non-

linguistic information is logged at small intervals at a couple of milliseconds, carefully

reflecting the state of the robot and the environment. On the other hand, linguistic in-

formation is published every couple of seconds when a describer has something to say.

It follows that the previous attempt to take the immediately preceding non-linguistic

log entry for every linguistic entry may not be the optimal one: there may be better

entries to choose from.

The only time when we can be sure that linguistic descriptions are matched with

descriptions of the state of the robot in a log file is when the robot is stationary and

the describers refer to its state with the word “stopped” or its variant. We collect a

list of time codes of these entries as shown in Figure 3.5. To this list we also add the

time code of the last entry of the log file if this is not already a description contain-

ing “stopped”. To match the description “stopped” with a description of the robot’s

state (Figure 3.6) we use the basic matching strategy given in Figure 3.4. If both entries

correspond as expected, the linguistic descriptions are not delayed and our work is

done. On the other hand, if the robot is not stationary, the descriptions are delayed.

The delay can be estimated by regressing on the list of time codes of odometry entries

until we find an entry when the robot is stationary (Figure 3.7). The time difference

between the description “stopped” and this odometry entry is taken as our estimation

of delay. We use this delay to shift the time codes of all linguistic descriptions preced-

ing the “stopped” description. The method thus splits log entries from one session to

63

find stop points: takes an ordered list of linguistic description time codes DTimes, a list of natural lan-
guage words that describe a non-moving robot StopWords and an ordered list of all time codes in the log
file LTimes.

1. Using DTimes and StopWords.

(a) Take dtime as the first member of DTimes.

(b) Extract a list of wordsWords from the entry with dtime: words(dtime) = Words.

(c) sentence contains stopped: try to match the members of StopWords toWords.

i. Take stopword as the first element of StopWords and check if stopword ∈ Words. If true,
stop.

ii. Else recurse (1c) on the tail of StopWords.

iii. Fail if StopWords = {}.
(d) If sentence contains stopped is true: add dtime to StopTimes and recurse (1) on the tail of

DTimes.

(e) If sentence contains stopped is false: recurse (1) on the tail of DTimes.

(f) When DTimes = {}, return StopTimes.

2. Using LTimes.

(a) Find last = last(LTimes).

(b) If last ∈ DTimes Then

i. words(last) = Words

ii. If sentence contains stopped(StopWords,Words) is true, stop.

iii. Else append last to the tail of StopTimes.

3. Return StopTimes.

Figure 3.5: Finding stop points: a stop point is either a time code of a linguistic
description which contains the word “stopped” or its variant or the last entry
of the log file.

64

segments, each of which concludes with an entry containing a linguistic description

“stopped” and for each of which a different delay is calculated. Finally, we use our

basic matching algorithm to match the shifted time codes of linguistic descriptions to

the time codes of the odometry information.

create segment instances: takes an ordered list of stop point time codes StopTimes, an ordered list of
description time codes DTimes and an ordered list of odometry time codesOTimes.

1. Using StopTimes, DTimes and OTimes.

(a) Take stoptime as the first element of StopTimes.

(b) Using stoptime and OTimes find delay delay.

(c) Match descriptions with odometry using delay, stoptime, DTimes and OTimes.

i. Take dtime as the first element of DTimes.

ii. shi f ted dtime = dtime− delay

iii. For shi f ted dtime and OTimes use find property time to find the immediately preced-
ing odometry time otime.

iv. Add the (dtime,otime) pair to the output list DTimesOTimes.

v. Recurse (1c) on the tail of DTimes and OTimes while dtime ≤ stoptime.

(d) Return the DTimesOTimes list and the tail of DTimes.

2. Create instances from the DTimesOTimes pairs.

3. Recurse (1) on the tail of StopTimes, the tail of DTimes and OTimes.

4. When StopTimes = DTimes = ∅, stop.

Figure 3.6: Matching description time codes and odometry time codes for
each stop segment defined by the stop points, taking into account the delay of
linguistic descriptions and creating instances from the matched pairs.

The disadvantage of this approach is that it assumes that the delay is the same in

each segment which may not be the case. On the other hand, it is the best estimation

that can be made. The procedure also allows separating instances into two sets: a clean

set where the time codes of descriptions have been shifted by a zero delay and a set

of instances where the time codes of descriptions have been shifted by a delay grater

than zero. Note that time-shifting was only used for creating motion instances where

the timing is crucial but not for the instances of object relations where delays were not

experienced.

65

find delay: takes stoptime and an ordered list of odometry time codesOTimes.

1. Using stoptime, OTimes and find property time find the immediately preceding odometry time
otimei.

2. Extract speed from the otimei entry.

3. If speed = 0.0, then delay = 0.

4. Else, using Otimes, otimei and stoptime.

(a) otimei−1 = preceding(otimei,OTimes)

(b) If for otimei−1 speed = 0.0 then delay = stoptime− otimei−1.

(c) Else recurse (4) using OTimes, otimei−1 and stoptime.

(d) If otime0 is reached, delay = error.

5. Return delay.

Figure 3.7: Starting at a description time code stoptime, the algorithm
regresses to find a preceding odometry entry with a time code otime at which
speed is 0. The delay is the difference between the stoptime and otime.

3.3.2 Normalising non-numeric data

The configuration of the system and the environment was slightly different while col-

lecting data for the Simple and All datasets. Because Simple is taken as a subset of All,

this means that its properties relative to the environment and the configuration of the

robot would not have a comparable representation inAll and hence a lot of noisewould

be added for machine learning. Furthermore, our aim is to use the theories learned in

new environments and under new conditions and thus normalisation of data is neces-

sary.

The simplest normalisation steps are required for speed and angular velocity. The

system constrains the speed and the heading of the vehicle depending on the value

given in the iAGV/iPlatform block of the MOOS configuration file. Thus, when creating

instances we simply divide every speed and every angular velocity value with the

maximum values defined there. Note that because both maximum values are meant as

constraints on movement, the vehicle may achieve slightly higher values before these

constraints are applied by the system. This means that occasionally we may encounter

66

normalised values just above 1, particularly in the case of speed.

The normalisation of object coordinates is slightly more involved. We assume that

the distances in the room are relative to the size of the room which also defines the

maximum distance that can be encountered. The size of the room can be estimated

from the SLAM map which contains, as previously shown, coordinates of mapped

points relative to the origin of the robot. To find the room size it is not enough to

find the extreme value in either positive or negative dimension of the x or y axis on

the map. This would only be an estimation of one half of the size of the room on

each axis, and when both axes are taken together, only one quarter of its size. There

is no guarantee that the origin of the robot is in the centre of the room, and hence

multiplying the above values by 2 would also give an incorrect estimation. In fact,

the procedure is quite simple. In addition to the maximum value we also need to

find the minimum value, thus both extremes, and then calculate the distance between

them (d = abs(Max − Min)). The dx and dy that we obtain define a rectangle that

encompasses all the points on the map. Thus, to normalise the coordinates of objects

we divide every x coordinate by dx and every y coordinate by dy.

3.3.3 Extracting linguistic data

In MOOS logs linguistic data is represented as sentences or their parts. However, for

machine learning we require that words are assigned to one of the attributes Verb, Di-

rection, Heading, Manner and Relation. We also need to identify objects in descriptions

so that we can extract their locations for attributes LO x, LO y, REFO x and REFO y.

For the Simple dataset the task is nearly complete. The describers were restricted to

pre-specified categories and lexical entrieswhich can be easily extracted from the struc-

tured log files. However, in the All dataset the describers could generate any sentence

or its part.

We could use an automatic POS tagger to assign words to these categories. How-

ever, this was not really necessary. First of all, the number of words used in each

67

context is relatively small and they are used in a non-ambiguous way. Secondly, many

descriptions are incomplete fragments and contain significant errors created by the

speech recogniser. Such data would obstruct the tagger. Finally, the categories that we

want to tag the descriptions with do not correspond to the typical categories found in

POS taggers such as nouns, verbs, adjectives, adverbs and prepositions but are their

semantic specialisations which fix the denotation of a particular word to the perception

of the environment.

Each such lexical entry is only interpretable in a particular class of situations. For

example, in our case we must distinguish two entries for “left”, one referring to the

direction in which the robot is moving one describing the location of objects. Cran-

gle and Suppes (1994) propose such context-fixing semantic grammars for interpreting

natural language commands to robots. The denotations of words are pre-specified pro-

cedures similar to semiotic schemas of Roy (2005). For our corpus of descriptions the

denotations are learned associations between the attribute values used in each learning

task.

To create such lexicon from human descriptions we designed an automated tool

called TagWords. This ensures that a human tagger only needs to assign a category to

each new word form used in a particular setting once. In the first step the tool extracts

all words from a given set of log files. Log files containing descriptions of motion and

descriptions of object relations are always processed separately. In the extracted set

each word is represented once but its representation also contains a count of its occur-

rence in the log files. The collected words are compared to the words in the lexicon

that has been created so far. The lexicon is represented as a set of Prolog predicates

(Bratko, 2001) called lexical entry/1 as shown in Figure 3.8. The predicate takes one ar-

gument which is a list of feature-value pairs. If the collected word, for example “mov-

ing”, already exists in the lexicon, if there exists a lexical entry/1 predicate with a pair

form=moving on its list, then only the count feature on its list is updated with the count

68

from the log files, for example 32. If the word is not found in the lexicon, the system

prompts a human tagger to assign it one of the predefined categorieswhich correspond

to our machine learning attributes. Each category imposes a set of lexical feature-value

pairs, for example [cat=v,sem type=movement, arg list=[direction,heading,manner]]. To-

gether with the pairs form=moving and count=32 these are written as a list argument

of a new lexical entry predicate. The user also has a chance to assign no category to a

given word if the word does not belong to any of the categories that we intend to learn.

If a word has been incorrectly recognised by the speech recogniser, the user can

specify its correct form. For example, the second lexical entry/1 predicate in Figure 3.8

defines a word “morning” as a verb. The predicate spelling correction(morning,v,moving)

defines that the form “morning” is in fact “moving”. This mechanism is sometimes

used to rewrite a variant of a word to consolidate the class labels for machine learning.

As shown in Figure 3.8 “moved” is rewritten as “moving” and “left” as “to the left of”.

Once the lexicon is built, it can be used to extract words of the relevant category

from log file descriptions such as “Now you’re moving forward left”. We tokenise

sentences as lists of words. Using the lexicon we first find the main predicate from

each list of words. For motion descriptions the main predicate is the verb (cat=v), for

descriptions of object relations this is the relation (cat=p). If the main predicate cannot

be found, then the sentence is not an interesting description and hence the instance

can be discarded. Once “moving” is identified in the sentence above, its lexical entry

in Figure 3.8 tells us what arguments we should find together with it on the list of

utterance words. This information is encoded in the value of its arg list feature. The

names listed here correspond to the semantic types of other words in the lexicon. Ac-

cording to the arg list of “moving” we should find three words whose sem types are

direction, heading and manner respectively. We check the list of words for a word with

a matching sem type and return the form of this word. Using the lexicon in Figure 3.8

this search extracts “forward” for direction and “left” for heading. We stop the search for

69

lexical_entry([form=moving,cat=v,sem_type=movement,
arg_list=[direction,heading,manner],count=811]).

lexical_entry([form=morning,cat=v,sem_type=movement,
arg_list=[direction,heading,manner],count=5]).

lexical_entry([form=moved,cat=v,sem_type=movement,
arg_list=[direction,heading,manner],count=2]).

lexical_entry([form=forward,cat=adv,
sem_type=direction,arg_list=[],count=282]).

lexical_entry([form=left,cat=adv,
sem_type=heading,arg_list=[],count=739]).

lexical_entry([form=slowly,cat=adv,
sem_type=manner,arg_list=[],count=495]).

lexical_entry([form=left,cat=p,sem_type=relation,
arg_list=[object,object],count=65]).

lexical_entry([form=table,cat=n,sem_type=object,
arg_list=[],count=46]).

lexical_entry([form=chair,cat=n,sem_type=object,
arg_list=[],count=21]).

spelling_correction(morning,v,moving).
spelling_correction(moved,v,moving).
spelling_correction(left,p,to_the_left_of).

Figure 3.8: An extract from the lexicon

70

a word when the first candidate is found. If no word is matched as in the case of the

manner argument, we return the word “none” instead. In all cases if the lexical entry

is associated with a spelling correction, then the corrected form is returned instead of

the original form. In sum, the procedure extracts the following attribute values from

the sentence above: Verb: “moving”, Direction: “forward”, Heading: “left” and Manner:

“none”.

Instead of returning “none” if no word for a category/attribute is found, we could

also treat such cases as missing attribute values which Weka algorithms can success-

fully deal with. However, this would not be appropriate for linguistic descriptions. A

non observed linguistic description does not mean that the value is missing but that it

has been omitted for the reasons of linguistic relevance. For example the “The robot

is moving slowly” does not mean that its heading is unknown but that it is moving

in a default direction such as “straight ahead”. Thus, there exists a good reason to

use a special value such as “none” rather than the missing values. However, this only

applies for the adverbial categories of motion descriptions. If the name of one of the

objects in a description of object relations is not found, then the description is invalid

and the instance should be discarded.

The word extracting procedure only extracts one predicate and its arguments from

a string of words and therefore can only deal withmono-clausal descriptions ofmotion

and object relations which represent the majority of descriptions in our corpus. If it en-

counters a complex description such as “Flakey is directly behind the box and to your

right” from Table 3.2, then only the first predicate “behind” is extracted. We manually

checked the accuracy of word extraction on a sample of corpus and we concluded that

it gives reliable results.

3.3.4 Creating Weka datasets

In the preceding section we discussed how observations were matched and extracted

from the MOOS log files. In order for us to be able to use this information with Weka

71

learners, it must be represented as a set of instances as discussed in Section 2.4.3. An

instance is an independent example of a concept that we want to learn. Each instance

is defined by a set of attributes, that is some observed properties and measures. All

instances in a dataset have to have the same number of attributes and their values

must be compatible. A dataset can be represented as a table where the columns define

the attributes and the rows the instances.

For Weka the datasets of instances must be in the Attribute-Relation File Format

(ARFF). This is a text file with a strictly defined structure. Figure 3.9 shows an example

of a learning task from our Simple dataset. The file consists of two parts: the header

section and the data section. The header defines the attributes and their data types.

The data types that can be handled by Weka are nominal or categorial data, numeric

data, string data or date. These are quite general categories, for example, the statisti-

cal literature usually distinguishes numeric data that is ordinal, interval or ratio. The

reason for this is that not all classifiers can handle all data types, but if they do, they

may not handle them in the same way. Thus, further checks of the consistency of data

types are made at the level of the individual classifiers. Also the human preparing the

experiment must be confident that a particular data-classifier combination will give

sensible results. For attributes that are nominal, we have to declare a list of their possi-

ble values. The last attribute declared is interpreted as the concept to be learned, unless

specifically configured otherwise in the learning process. The data section contains a

comma separated list of attribute values for each instance. The consistency of a file is

checked when it is loaded into one of the Weka programmes.

Although Weka contains a number of tools that assist the conversion and filtering

of data into the ARFF (see Witten and Frank, 2005, page 380ff.), we have chosen to im-

plement our ownmethod of creating such files from the instance files produced by our

instance creators. This method allows us to create various configurations of attributes

and subsets of instances on the fly and almost entirely without human intervention.

72

@relation object_relation

@attribute lo_x numeric
@attribute lo_y numeric
@attribute refo_x numeric
@attribute refo_y numeric
@attribute relation {behind, in_front_of, \

to_the_right_of, to_the_left_of}

@data
-0.2223, -0.0115, 0, 0, to_the_left_of
0.1834, 0.0005, 0, 0, to_the_right_of
-0.1037, 0.1157, 0, 0, to_the_left_of
0.0862, 0.2081, 0, 0, in_front_of
0.1834, 0.0005, 0, 0, to_the_right_of
...

Figure 3.9: An excerpt from an ARFF file from the Simple dataset to learn the
meanings of object relations

This way, the entire learning procedure can be made automatic. Our instance creators

create instances as Prolog predicates and hence it is quite straightforward to implement

various selection and search mechanisms and subsequently write the data as comma

separated text files.

The instances are prepared for Weka with Arff writer. This works in three stages.

In the first stage a set of instance files is loaded and the values of nominal attributes

in these files are automatically collected. These are later declared in the header of the

arff file. During the second stage, user input is required. The user is presented with a

list of possible attributes from which they can select the ones that they want to write

to a file. By convention, the last attribute must be the target concept to be learned. The

user is also queried whether they want to write out all the instances or only those for

which the time-shifting algorithm found a zero delay. We call the resulting datasets

Time-shifted and Zero-Time-shifted. Of course, this only applies to instances that were

created with time-shifting. If no time-shifting is applied during dataset creation, we

call such a dataset Not-Time-shifted. Finally, the user has to choose the name of the

73

arff file to which the data will be written. In the third stage, Arff writer writes out the

file. Following the recommendations of the Weka authors, we include human readable

comments preceding the header: we record the source instance files from which the

datasetwas produced, the date and time of the generation, and a statementwhether the

data is Time-shifted, Zero-Time-shifted or Not-Time-shifted. This information is intended

to help the identification of a dataset. The header and the data are then automatically

formatted and written out, but only for the attributes and the instance subset selected

by the user.

The learning algorithms that we chose for the learning tasks (see Section 3.4) are

classification algorithms and cannot handle numeric prediction. For example, they

predict a nominal class rather than a rational number. However, we would also like

to build classifiers that would predict a number, for example, what speed should the

robot achieve if a user requests “go forward slowly”. Although there are learners that

can handle numeric prediction, for example the linear regression learner, we chose not

to use them, mostly to ensure a comparison between all our learning tasks. Instead,

we discretised the numeric continuum into discrete intervals and matched each rational

number with one of them. We thus ended up with nominal attributes which could be

used with the classification learners. The discretisation step was added as an option to

Arff writer.

But how many nominal classes should be created? Without a doubt, a consid-

erable amount of information is lost in discretisation since exact numeric values are

transformed into generalised nominal categories. Thus, classifiers predicting nominal

classes rather than discrete numeric values will be less accurate in referring to the state

of the real world. In this respect, it is desirable to create a large number of nominal

classes which approximate better the underlying numeric continuum. On the other

hand, we expect that the relation of the numeric attribute to other nominal attributes is

not random. This means, that if the numeric attribute is discretised to a large number

74

of classes, the relation will be blurred. Suppose that we created two classes from one

natural class which we do not know. The classifier would create two separate clas-

sification paths where in a perfect situation one would suffice and hence the learned

theorywill be unnecessarily more complex and would appear less readable to humans,

if this is one of the priorities of our learning. The increased number of classes also cre-

ates sparse data. With a large number of classes, only a few instances would fall under

each nominal class and the learner would be less successful in making generalisations

about them. From the perspective of the learner a small number of nominal classes is

preferred. Ideally, this would just be a single nominal class which would make classifi-

cation extremely straightforward as the classifier would assign the same class to every

instance and be accurate 100% of the time. However, such classification would be use-

less. Thus, considerable care is needed when choosing the number of classes when

discretising a numeric attribute to balance between the richness of the predictability

and the performance of the trained classifiers.

How the intervals span across the numeric continuum is also important. For exam-

ple, if the minimum and the maximum value are identical but their signs are reversed,

then creating an even number of intervals will leave us with 0 as the interval boundary.

This may not be desirable because we expect that certain attribute values, for example

the description “stopped”, will show a relation with the values of the numeric attribute

clustering around 0, for example Speed = 0. If we discretise the numeric attribute this

way, the zero category is lost. Therefore, if both the minimum and the maximum value

are identical but with reversed signs, an odd number of intervals is preferred. This cre-

ates intervals of equal width and also ensures that one of them spans across the zero

value with equal interval boundaries in the positive and in the negative dimension.

To find the extreme value of a numeric attribute, its minimum and maximum, we

implemented two methods. In most cases the extreme value is known to the user, es-

pecially since numeric values are normalised during instance creation and thus their

75

values are either −1 or 1. The user can enter such values manually. The system as-

sumes that the negative and the positive extremes are identical and hence only one

number is required. However, taking absolute extreme values for the lower and up-

per limits of intervals may not be an ideal choice. Experience shows that in certain

cases the sampled values are not equally spread through the range and may never ap-

proach such extremes. The majority of values usually lie in the bottom quarter of the

range. Thus, when using a small number of intervals it may happen that all the val-

ues are assigned to one or two categories with a consequence that significant attribute

information is lost. To counter this difficulty we implemented another method where

the discretisation procedure determined the extreme value from the current values of

each attribute. The extreme value is either the negative or the positive extreme found,

whichever is greater in terms of its absolute value. As before, this value is taken as

both the minimum and the maximum for creating intervals. It is this method that was

used for discretising numeric attributes for datasets in our learning experiments.

The class labels of discretised numeric attributes preserve the values of interval

boundaries in their names. Thus, after we use classifiers to predict one of these nom-

inal classes, we can extract the interval boundaries from its value and generate a real

number in that range. We return to this issue when describing the properties of pDia-

logue in Chapter 4.

Table 3.4 lists all attributes and their values for both Simple andAll datasets for each

learning task created with Arff writer. The last attribute in each section of the table is

the target concept that is learned. In this particular case all numeric attributes have

been discretised to 7 bins when used as target concepts.

Attributes Values

Verb
Simple Delta-Heading numeric

Speed numeric
Verb moving, stopped

All Delta-Heading numeric
Speed numeric
Verb going, edging, continuing, reversing, creeping,

76

Attributes Values

turning, moving, stopped

Direction
Simple Delta-Heading numeric

Speed numeric
Direction backward, forward, none

All Delta-Heading numeric
Speed numeric
Direction stopped, spot, backward, forward, none

Heading
Simple Delta-Heading numeric

Speed numeric
Heading right, left, none

All Delta-Heading numeric
Speed numeric
Heading anticlockwise, clockwise, straight ahead, hard,

straight line, around, straight, 180, right, left, none
Manner
Simple Delta-Heading numeric

Speed numeric
Manner fast, moderately, slowly, none

All Delta-Heading numeric
Speed numeric
Manner quickly, walking pace, imperceptible, tightly,

gently, rapidly, fast, moderately, slowly, none

Relation
Simple LO x numeric

LO y numeric
REFO x numeric
REFO y numeric
Relation behind, in front of, to the right of, to the left of

All LO x numeric
LO y numeric
REFO x numeric
REFO y numeric
Relation next, after, near, parallel, opposite, facing,

front, far, right, left, behind, close
Delta-Heading, 7 bins
Simple Verb moving, stopped

Direction backward, forward, none
Heading right, left, none
Manner fast, moderately, slowly, none
Delta-Heading -0.6001. . . -0.4286, -0.4286. . . -0.2572, -0.2572. . . -0.0857,

-0.0857. . . 0.0857, 0.0857. . . 0.2572, 0.2572. . . 0.4286,
0.4286. . . 0.6001

All Verb edging, continuing, creeping, reversing, going,
turning, moving, stopped

Direction spot, backward, forward, none
Heading straight ahead, hard, straight line, around, 180,

anticlockwise, straight, clockwise, right, left, none
Manner quickly, walking pace, imperceptible, tightly,

gently, rapidly, fast, moderately, slowly, none
Delta-Heading -0.8791. . . -0.6279, -0.6279. . . -0.3768, -0.3768. . . -0.1256,

-0.1256. . . 0.1256, 0.1256. . . 0.3768, 0.3768. . . 0.6279,
0.6279. . . 0.8791

Speed
Simple Verb moving, stopped

Direction backward, forward, none
Heading right, left, none

77

Attributes Values

Manner fast, moderately, slowly, none
Speed -1.0055. . . -0.7182, -0.7182. . . -0.4309, -0.4309. . . -0.1436,

-0.1436. . . 0.1436, 0.1436. . . 0.4309, 0.4309. . . 0.7182,
0.7182. . . 1.0055

All Verb edging, continuing, creeping, reversing, going,
turning, moving, stopped

Direction spot, backward, forward, none
Heading straight ahead, hard, straight line, around, 180,

anticlockwise, straight, clockwise, right, left, none
Manner quickly, walking pace, imperceptible, tightly,

gently, rapidly, fast, moderately, slowly, none
Speed -1.0742. . . -0.7673, -0.7673. . . -0.4604, -0.4604. . . -0.1535,

-0.1535. . . 0.1535, 0.1535. . . 0.4604, 0.4604. . . 0.7673,
0.7673. . . 1.0742

LO x, 7 bins
Simple Relation behind, in front of, to the right of, to the left of

REFO x numeric
REFO y numeric
LO x -1.0. . . -0.7143, -0.7143. . . -0.4286, -0.4286. . . -0.1429,

-0.1429. . . 0.1429, 0.1429. . . 0.4286, 0.4286. . . 0.7143,
0.7143. . . 1.0

All Relation next to, after, near, parallel to, opposite of,
facing, far from, close to, behind, in front of,
to the right of, to the left of

REFO x numeric
REFO y numeric
LO x -1.0. . . -0.7143, -0.7143. . . -0.4286, -0.4286. . . -0.1429,

-0.1429. . . 0.1429, 0.1429. . . 0.4286, 0.4286. . . 0.7143,
0.7143. . . 1.0

LO y, 7 bins
Simple Relation behind, in front of, to the right of, to the left of

REFO x numeric
REFO y numeric
LO y -1.0. . . -0.7143, -0.7143. . . -0.4286, -0.4286. . . -0.1429,

-0.1429. . . 0.1429, 0.1429. . . 0.4286, 0.4286. . . 0.7143,
0.7143. . . 1.0

All Relation next to, after, near, parallel to, opposite of,
facing, far from, close to, behind, in front of,
to the right of, to the left of

REFO x numeric
REFO y numeric
LO y -1.0. . . -0.7143, -0.7143. . . -0.4286, -0.4286. . . -0.1429,

-0.1429. . . 0.1429, 0.1429. . . 0.4286, 0.4286. . .
0.7143, 0.7143. . . 1.0

REFO x, 7 bins
Simple Relation behind, in front of, to the right of, to the left of

LO x numeric
LO y numeric
REFO x -1.0. . . -0.7143, -0.7143. . . -0.4286, -0.4286. . . -0.1429,

-0.1429. . . 0.1429, 0.1429. . . 0.4286, 0.4286. . . 0.7143,
0.7143. . . 1.0

All Relation next to, after, near, parallel to, opposite of,
facing, far from, close to, behind, in front of,
to the right of, to the left of

LO x numeric
LO y numeric
REFO x -1.0. . . -0.7143, -0.7143. . . -0.4286, -0.4286. . . -0.1429,

-0.1429. . . 0.1429, 0.1429. . . 0.4286, 0.4286. . . 0.7143,

78

Attributes Values

0.7143. . . 1.0

REFO y, 7 bins
Simple Relation behind, in front of, to the right of, to the left of

LO x numeric
LO y numeric
REFO y -1.0. . . -0.7143, -0.7143. . . -0.4286, -0.4286. . . -0.1429,

-0.1429. . . 0.1429, 0.1429. . . 0.4286, 0.4286. . . 0.7143,
0.7143. . . 1.0

All Relation next to, after, near, parallel to, opposite of,
facing, far from, close to, behind, in front of,
to the right of, to the left of

LO x numeric
LO y numeric
REFO y -1.0. . . -0.7143, -0.7143. . . -0.4286, -0.4286. . . -0.1429,

-0.1429. . . 0.1429, 0.1429. . . 0.4286, 0.4286. . . 0.7143,
0.7143. . . 1.0

Table 3.4: Attributes and their values for different learning tasks

3.4 The learning algorithms

We chose two popular algorithms from the Weka toolkit to train on our data: Naive-

Bayes and J48. The latter is the Weka’s implementation of the ID3/C4.5 decision tree

learner developed by Quinlan (1986, 1993). Each algorithm forms hypotheses about the

data quite differently. Naive-Bayes is a statistical learner based on the Bayesian rule of

conditional probability (Bayes, 1763), whereas the decision tree learner is primarily

a symbolic learning technique. The choice thus reflects a well-known opposition be-

tween statistical and symbolic techniques in computational linguistics in general. The

learners vary significantly in their complexity and the complexity of structures that

they build. Naive-Bayes is a very simple approach, even simpler than the most basic

variant of the decision tree learner known as ID3. This has been further improved by

various optimisation techniques and is consequently known as C4.5. Experience shows

that Naive-Bayes can often compete in performance with other more complex systems.

A comparison between the learners is useful because different machine learners

use different methods of generalisations and output knowledge representations which

may not be suitable for every dataset. For example, a technique such as a decision tree

79

learner which assigns a particular target class to every instance based on the values of

other attributes may be less successful if the dataset contains regularities only between

subsets of attributes. Consequently, certain regularities may be missed, or in the best

case, the output classification structure may be very complex and non-intuitive.

In the following two subsections we give an overview of both approaches. We

base our discussion on two standard textbooks. Naive-Bayes classifier is described in

(Mitchell, 1997, Chapter 6) and (Witten and Frank, 2005, Section 4.2). The ID3/C4.5/

J48 algorithm is described in (Mitchell, 1997, Chapter 3) and (Witten and Frank, 2005,

Section 4.3 and Section 6.1).

3.4.1 Naive-Bayes learner

Naive-Bayes learnermodels probabilistic knowledge. It assumes that the attribute data

is governed by probability distributions and that learning involves estimating these

distributions from the learning dataset. Once the distributions are determined, they

can be used on new data to predict the best or the most probable classification.

Let us first consider how the Bayes theorem can be used for machine learning in

general. If h is the hypothesis that we want to learn and E is the evidence on which

the hypothesis is based, then the relation between the two can be expressed as a condi-

tional distribution P(h|E). According to the Bayes theorem this can be calculated from

the following equation:4

P(h|E) =
P(E|h)P(h)

P(E)
(1)

P(h|E) is also called posterior probability of h because it expresses the probability

of h after evidence E is examined. On the other hand, P(h) and P(E) are known as

prior probabilities. For machine learning P(h) is particularly useful, because it allows

integrating background knowledge for that hypothesis. Background knowledge is the

4The notation P(A) denotes the probability of the event A and P(A|B) denotes the probability of event
A given event B.

80

knowledge that we may have about the validity of the hypothesis before the evidence

is examined. It follows from Equation 1 that the posterior probability P(h|E) increases

while increasing P(E|h) and P(h) and decreases while increasing P(E). The latter is

because the more likely we are to find the evidence E independently of h, the less

influence has E on h.

In a classification learning task we represent each value of the target concept as a

separate hypothesis h. Together they form a set of hypotheses H. The task of classi-

fication is to find the most probable hypothesis h in this set using the data from the

instance that we want to classify. We calculate the posterior probabilities for every hy-

pothesis in H and choose the one with the maximum value. This hypothesis is also

known as a maximum a posteriori hypothesis (MAP).

hMAP ≡ argmax
h∈H

P(h|E) (2)

One of the benefits of a statistical method is that the classification not only deter-

mines a class of an instance but also gives the probability with which this instance

belongs to that class. However, if we are only interested in the class, Equation 1 can be

further simplified by excluding P(E) which is constant for each h in H. Furthermore, if

all hypotheses have the same a priori probability, then P(h) can be excluded too giving

us the form

hML ≡ argmax
h∈H

P(E|h) (3)

P(E|h) is the probability/likelihood of E being produced by the hypothesis h. For

this reason hML is often called a maximum likelihood hypothesis.

The Bayes theorem can be applied tomachine learning tasks inmany different ways

as described in (Mitchell, 1997, Chapter 6). Here we are interested in a method known

as Naive-Bayes. According to this method we apply the Bayes theorem directly to

the values of the instance attributes to predict our hypothesis or the target class. The

81

evidence E in Equation 1 and 2 is in this case simply an ordered list of attribute values

〈a1, a2...an〉. The hypothesis h is the value of the target class that we want to predict.

Both equations can be rewritten as follows:

vMAP ≡ argmax
vj∈V

P(vj|a1, a2...an) (4)

vMAP ≡ argmax
vj∈V

P(a1, a2...an)P(vj)

P(a1, a2...an)
(5)

≡ argmax
vj∈V

P(a1, a2...an|vj)P(vj) (6)

We estimate P(vj) by finding the percentage frequency with which the value vj oc-

curs in the training set. To estimate P(a1, a2...an|vj) in the same way we would have to

count howmany times a sequence of attribute values a1, a2...an occurs with a particular

target value v. The number of terms to count equals the number of combinations of a

sequence a1, a2...an (n!) times the number of values of v. In practice this is almost never

possible because our dataset is never big enough to observe each term a number of

times. Instead, we naı̈vely assume that the attributes a1, a2...an are conditionally inde-

pendent in which case the probability P(a1, a2...an|vj) equals to ∏i P(ai|vj). In this case

the number of terms to count equals the total number of values of all attributes times

the number of values of v. Hence, a Naive-Bayes classifier is defined as follows:

vNB = argmax
v∈V

P(vj) ∏
i

P(ai|vj) (7)

Let us consider a simple example. Assume that we have a training dataset of 20

instances that are defined by three attributes: a linguistic category Verbwhich can take

the values “moving”, “reversing” and “stopped”, another linguistic category Manner

with the values “none”, “slowly” and “fast”, and a category Speed representing the

speed of the robot. This numeric attribute has been discretised to nominal categories

S1, S2 and S3 and represents the target class that we want to learn. The learning step

includes establishing counts and the associated probabilities represented in Table 3.5.

82

The table cross-tabulates the value of each attribute with each target class value to give

us the estimates of P(ai|vj). The numbers in brackets contain the actual counts. The

second row of the table contains the counts and the associated probabilities of the times

each target class value occurs in the dataset regardless of the attribute value. These are

our prior probabilities of the target class values P(vj).

Attribute Value S1 S2 S3
0.3 (6/20) 0.2 (4/20) 0.5 (10/20)

Verb moving 0.5 (3/6) 0.25 (1/4) 0.8 (8/10)
reversing 0.333 (2/6) 0.25 (1/4) 0.1 (1/10)
stopped 0.167 (1/6) 0.5 (2/4) 0.1 (1/10)

Manner none 0.333 (2/6) 0.5 (2/4) 0.3 (3/10)
slowly 0.5 (3/6) 0.25 (1/4) 0.5 (5/10)
fast 0.167 (1/6) 0.25 (1/4) 0.2 (2/10)

Table 3.5: An example Bayesian classifier

What is the predicted value of Speed if the linguistic description is “moving fast”?

To find the most likely value S we need to read off the estimated probabilities from

Table 3.5 and apply them to Equation 7. The predicted target class value S is the one

that maximises P(S) = P(S)× P(moving|S) × P(f ast|S). As shown in Equations 8–10,

this target class is S3.

P(S1) = 0.3× 0.5× 0.167 = 0.025 (8)

P(S2) = 0.2× 0.25× 0.25 = 0.013 (9)

P(S3) = 0.5× 0.8× 0.2 = 0.08 (10)

The assumption about the independence of attributes has a negative effect on the

performance of classifiers. If the values of two attributes correspond completely to

one another, a certain value of the first attribute a1 will always co-occur with a certain

value of the second attribute a2. If this is so, one of the attributes is redundant, as the

target value v can be predicted equally well just by knowing either the value of a1 or

83

a2. Thus, for the purpose of learning the target value, the attribute pair 〈a1, a2〉 func-

tions as a single attribute. The probability P(a1|vj) is equal to the probability P(a2|vj)

and when both probabilities are multiplied in Equation 7, the weight of the attribute

pair is squared. The attribute pair wrongly receives more weight than other truly in-

dependent attributes contributing to the prediction of the target value and the learning

is skewed toward that pair. The problem can be overcome by carefully selecting the

attributes for the learning process and ensuring that they are independent.

We may encounter another difficulty using Equation 7 when a certain attribute

value does not occur with a target value at all. This is because we estimate P(a|v)

with the fraction
nv,a
nv

where nv is the number of instances where the target value is v

and nv,a is the number of instances where the target value is v and the value of the

attribute in question is a. If the latter is 0, it follows that P(a|v) is also 0. When this is

applied to Equation 7, the overall probability defined by the product turns out 0 too,

regardless of the other probabilities in the product. The difficulty can be resolved by

assuming that each P(a|v) has some small a priori probability and so an attribute value

whose count is 0 does not receive a zero probability. This can be done by changing the

fraction as follows:

P(ak|v) =
nv,ak + mp

nv + m
(11)

ak indicates a member of the set of values of attribute a, K. m is an arbitrary con-

stant. The same value of m must be applied when calculating P(ak|v) for all members

ak∈K. The values of p must sum up to 1 for all members ak∈K. If we assume that the

prior probabilities are equal for all ak∈K, p must be equal to 1
k . Once enough data is

considered, the priors are adjusted accordingly to reflect the true probabilities of val-

ues of ak∈K in the dataset. The size of m affects the importance of the priors: the larger

its value, the more weight the priors receive. The intuition behind Equation 11 is that

m are virtual samples of the values ak∈K that are distributed according to p. The more

84

virtual samples with equal distribution of values we add, the greater is the effect of

these samples on the true distributions reflected in the data. However, with a reason-

able amount of newdata, the virtual sampleswill have very little effect and themethod

performs well in practice. Frequently, k is taken for the value of m which ensures that

the initial count in the nominator is 1 rather than 0 (mp = k× 1
k). This method is known

as the Laplace estimator (Witten and Frank, 2005, pages 91–92).

Our data also includes attributes that are numeric and cannot be used with Equa-

tion 11 to determine the probabilities P(a|v). One solution is to discretise the numeric

interval to nominal classes as discussed before. Another, better solution is to model

the attribute values by some statistical distribution and use standard statistical estima-

tion techniques for that distribution. Most frequently it is assumed that the values of

a numeric attribute a that occur with each target class v are samples of an underlying

normal distribution. If so, we can determine their sample mean µ and their sample

standard deviation σ which concludes the learning step. For classification, to calculate

the probability that a particular value x of a numeric attribute a predicts the target class

v (P(ax|v)), we apply the probability density function for normal distribution which is

as follows (see Witten and Frank, 2005, page 93):

f (x) =
1√
2πσ

e
(x−µ)2

2σ2 (12)

This function returns the probability of a particular value x being drawn from the

underlying normal distribution with a sample mean µ and standard deviation σ.

Finally, let us consider how the Bayesian approach deals with missing attribute val-

ues. If an instance contains an attribute ai whose value is missing during classification,

then P(ai|vj) for ai is simply omitted from the product in Equation 7. Since it is omitted

from calculating the probabilities for all v ∈ V, the attribute ai makes no influence on

predicting the class v. If an attribute value is missing during training, then it is simply

not included in the count in Equation 11. Adding more observations to training can

85

incrementally increase and decrease the probability of vj. The statistical approach is

thus very flexible in handling data.

3.4.2 Decision tree learner (J48)

J48 is a Weka’s implementation of the ID3 algorithm and its successors C4, C4.5 and

See5/C5.0 developed by Quinlan (1986). A decision tree is a data structure in which

each branch node represents a choice or a test and each leaf represents a decision. In de-

cision trees created by machine learning, branches correspond to attributes and leaves

to their values. To classify an instance we check the values of its attributes against the

attributes in the tree by following the path from the root node to the final terminal

node. The value of the terminal node is the value of the target class. A decision tree

can also be represented as a set of if-then rules or a set of conjunctions and disjunctions

of constraints on the attribute values of instances. The attributes in a path from the

root node to the terminal leaf form a conjunction of constrains, whereas the attributes

of the neighbouring branches at the same level represent a disjunction of constraints.

Figure 3.10 shows a simple decision tree to predict a linguistic description Heading

(“straight”, “left” or “right”) that we induced from one of our datasets also rewritten

as a set of constraints. If a robot is moving with Speed 0.6 and Delta-Heading −0.2 then

the predicted description of heading is “right” by following the leftmost path in the

tree.

A decision tree is learned by taking an attribute and creating a leaf for each of its

values. This splits instances into subsetswhich have an identical value of that attribute.

The procedure is repeated recursively on each subset of instances by selecting another

attribute. A tree is built when all the training instances at the leaf have the same target

value,5 or when all attributes have been used in that particular path of a tree. Since

the algorithm does not use any backtracking it is an example of a greedy search which

only explores a single search path for the best candidate tree.

5With noisy data this may not be possible and hence this criterion must be relaxed.

86

left
DeltaHeading

DeltaHeading

> 0.024<= 0.024

<= −0.11 > −0.11

right straight

(Delta-Heading ≤ .024 ∧ Delta-Heading ≤ −.11 ∧ Heading = right)
∨ (Delta-Heading ≤ .024 ∧ Delta-Heading > −.11 ∧ Heading = straight)
∨ (Delta-Heading > .024 ∧ Heading = left)

Figure 3.10: A decision tree that predicts a description for Heading also
rewritten as rules

The choice of attributes for the root node and all subsequent branches is crucial

for producing good classification trees. The trees should separate training instances in

such a way that in an ideal case all instances that reach terminal nodes have the same

target class. We also prefer trees that are small, with the shortest path from the root

node to the terminal leaves. Both requirements are satisfied by a statistical property

called information gain which is used by ID3 to create each branch of a tree.

The purity/impurity or homogeneity of a set of instances in respect to their target

value is measured by information value or entropy which was adopted by the ID3 algo-

rithm from information theory. If S is a set of instances which have binary target values

(⊕⊖), then the entropy of S is defined as

Entropy(S) ≡ −p⊕ log2 p⊕ − p⊖ log2 p⊖ (13)

p⊕ and p⊖ are the proportions of positive and negative examples in S – for example

11/16 and 5/16. The reason why the terms in Equation 13 are prefixed by a minus is

that the logarithms of fractions are negative and hence this ensures an overall positive

value of entropy. The value of the entropy function ranges from 0 to 1. If all members

87

of S are either positive or negative (p⊕ = 1, p⊖ = 0 or p⊕ = 0, p⊖ = 1), the entropy

is 0.6 If the number of positive and negative examples is equal (p⊕ = p⊖ = 0.5), the

entropy is 1. If the number of positive and negative examples is not equal, the entropy

is between 0 and 1. The entropy approaches 0 when the proportion of one of the values

increases from 0.5 to 1.

Entropy is used in information theory to measure the amount of information in a

transmitted message or how many bits on average is required in a transmission to en-

code the value of a randommember of S.7 If p⊕ or p⊖ = 1, the value of the transmitted

member of S is known in advance and thus no bits are required to encode the message.

If p⊕ = p⊖ = 0.5, the value of each transmitted member has to be specified separately

and thus each will take up 1 bit. If either ⊕ or ⊖ is greater than 0.5, the occurrence of

its values is more likely and hence a group of messages can be encoded together. This

means that on average less than 1 bit is required to transmit each individual message.

Entropy can be also calculated for a set of members whose values are not binary. In

this case Equation 13 becomes

Entropy(S) ≡
c

∑
i=1

−pi log2 pi (14)

where c is the number of classes and pi is the proportion of members of S belonging to

each class c. As before p1, p2...pn must sum to 1.

As said before, when selecting an attribute to create a branch of a decision tree, we

prefer the attribute that creates the purest or the most homogeneous classes in respect

to the target value of instances. The homogeneity can be determined by evaluating the

difference in entropy of target class values of a set of instances before the attribute is

applied to create a branch and the entropy of subsets that are created after the attribute

is applied. The attribute that provides the highest reduction in entropy is the preferred

candidate for creating a branch. The reduction of entropy is also called information

6The approach assumes that 0 log 0 = 0 rather than being undefined.
7This is why logarithm base 2 is used in Equation 13.

88

gain. The reason for this naming is that it tells us how much information was gained in

encoding the value of the target class given that we know the value of one particular

attribute. It can be formalised in the following equation:

Gain(S, A) ≡ Entropy(S) − ∑
v∈V(A)

|Sv|
|S| Entropy(Sv) (15)

S is the set of instances before the attribute is applied and Sv are sets that are created

by partitioning S by attribute A according to its value v. The average entropy of these

sets can be determined by weighting each Entropy(Sv) by the proportion of instances

of S that belong to each Sv and summing all the weighted entropies.

One of the problems with information gain is that it is biased toward highly branch-

ing attributes. These create smaller sets which are more likely to be homogeneous.

Consider the extreme case where each instance has a unique value of some attribute

such as ID or date. The entropy of each subset containing exactly one member de-

termined with Equation 13 will be 0. Such attribute perfectly predicts the target class.

Thus, when information gain is calculated with Equation 15, this will simply beGain(S, A) ≡

Entropy(S), a maximally attainable value. The attribute would be the preferred at-

tribute to create a branch on but the tree would not be a very informative one. It would

be completely flat.

Various improvements have been suggested to replace the notion of information

gain (for an overview see Mitchell, 1997, page 74). Quinlan (1986) introduces the gain

ratio. This measure incorporates a penalty for increased number of splits based on

the attribute values and a penalty for uniform assignment of instances into the split

subsets. Both properties can be captured by entropy. The approach simply calculates

the entropy of a set S in respect to the values of the attribute under consideration (v ∈

V(A)) using Equation 14 which we rewrite as Equation 16.
|Si|
|S| is the proportion of S

having a particular value v of attribute A. Note that this calculation is unrelated to the

89

calculation of entropy for the purposes of information gain. There we evaluated the

entropy of a set in respect to the value of the target class.

Entropy(S, A) ≡
v

∑
i=1

−|Si|
|S| log2

|Si|
|S| (16)

The gain ratio is defined as the relationship between the information gain and the

information value of the attribute:

GainRatio(S, A) ≡ Gain(S, A)

Entropy(S, A)
(17)

Given a constant information gain Gain(S, A), the greater the entropy Entropy(S, A),

the smaller the GainRatio(S, A). The attribute with the highest gain ratio is the pre-

ferred one. The gain ratio becomes problematic in cases where all or almost all mem-

bers of S have an identical value of the attribute A in which case |Si| ≈ |S|. In

these cases the value obtained by Equation 17 becomes undefined or very large when

Entropy(S, A) = log21 = 0 or approximately 0. The latter results in preferring an at-

tribute just because its intrinsic information value is very low. The solution proposed

by Quinlan (1986) is to choose an attribute with the highest gain ratio but only if its in-

formation gain is greater than or equal to the average information gain of all attributes

considered.

The decision tree in Figure 3.10 contains splits on theDelta-Heading attribute which

is numeric but we have not yet discussed how such splits are made. We want to cre-

ate binary splits. Creating a split discretises a continuous numeric attribute at some

threshold t into two categories A ≤ t and A > t. A useful threshold to split on is such

that creates discrete categories with the highest information gain.

Delta-Heading -1 0 1 2 3 4
Heading right straight straight left left left

Table 3.6: Where to split the Delta-Heading attribute?

90

Table 3.6 shows simplified data which gives rise to a decision tree similar to the one

in Figure 3.10. We first sort instances according to the ascending value of the attribute

we want to split (Delta-Heading). Since we do not want to split items of the same target

class, we are only left with two possible positions for the split which correspond to the

points where the target class changes. To determine the threshold t the mean of the

neighbouring values is taken. This gives us t1 = (−1 + 0)/2 = −0.5 and t2 = (1 +

2)/2 = 1.5. Then, entropy is calculated for both scenarios and the split that minimises

its value is the preferred one.8 In our case this is t2 as shown below. The square brackets

contain the counts of each target class value (“right”, “straight” and “left”) in each

partition created.

t1 : Ent([1, 0, 0], [0, 2, 3]) = 1/6× Ent([1, 0, 0]) + 5/6× Ent([0, 2, 3]) = 0.809 bits

t2 : Ent([1, 2, 0], [0, 0, 3]) = 3/6× Ent([1, 2, 0]) + 3/6× Ent([0, 0, 3]) = 0.459 bits

The discretised numeric attribute subsequently competes for selection in the same way

as any other nominal attribute. Nominal attributes can only be used once to create a

branch in each path of a tree. Numeric attributes, on the other hand, can be used

again to create another split, provided that the split maximises information gain as

exemplified in Figure 3.10. This may create trees that are difficult to read, especially if

the splits on the numeric attribute do not occur together.

There are a few solutions to how to treat instances with missing attribute values

when building decision trees. One of them is to consider missing values as a special

value of that attribute. In our case the missing values are processed using this method

already before the data reaches the learner. Another possibility is to replace themissing

attribute value in a particular instance with the value of that attribute that is most

common among instances at the branch we are considering. Even better, we can assign

8We do not need to calculate information gain in this case. The entropy of the set before either of the
two split scenarios is applied is constant and hence the scenario with the lowest information value will
also contribute to the highest information gain.

91

it the value of that attribute that is encountered with instances that have the majority

target class at that branch. In C4.5 (Quinlan, 1993) a more sophisticated method is

implemented. First, for each value of the selected splitting attribute we estimate its

proportion/probability in the set of instances that have reached that branch. Then we

split the instance with the missing value according to these probabilities along each

leaf of the branch. The information gain is calculated as usual, but with fractions of

instance counts rather than complete counts. Missing values have no effect on the

calculation of information gain of their own attribute. However, the instance with a

missing attribute value is distributed in proportions along the leaves created by the

attribute branch and so it is allowed to make a contribution to the selection of other

attributes for subsequent branches but for which it is not missing a value. The same

procedure can be used to classify an instance with a missing attribute value using an

existing decision tree. In this case the target class is the most probable class in respect

to the weights at the leaf node.

A central issue when building any classifier is to ensure that it not only perfectly

classifies the training data but also that it performs well on new data that it has not

encountered before. The difference in performance is particularly striking if the train-

ing data contains noise in the form of incorrect classifications or when the training

set of instances is too small and thus unrepresentative of the true relations between

the attributes. In this case it is said that the classifier over-fits the training examples.

Assuming that there are relations between the values of the attributes that can be rep-

resented as a tree, errors in the training data will increase the number of branches in

a tree thus making trees unnecessarily complex. More splits have to be introduced

to accommodate the variations. It can be demonstrated that although building more

complex trees increases the accuracy of the classifier on the training data, introducing

new branches after some threshold has a negative effect when the classifier is applied

on the new data (see Mitchell, 1997, page 67, Figure 3.6).

92

The optimisation of decision trees is known as pruning. Pruning can be done either

at the stage when the tree is built (pre-pruning or forward pruning) or after it has been

built (post-pruning or backward pruning). The latter proves to be more successful in

practice. This is because it is more difficult to decidewhen to stop building a tree rather

than build a tree and optimise it later. It may also occur that certain attributes make

informative classifications only in combination with other attributes which would not

be discovered if the tree would be pruned at that point.

A

B ...

C

32

1

A

B ...

1 3

(a) (b)

Figure 3.11: Subtree replacement: the subtree C is replaced with a leaf 3. This
leaf now combines instances that were previously classified under leaves 2
and 3. The class 3 is chosen for this leaf because this is the most common class
among the instances that reach it.

Post-pruning can be done using one of the two methods. According to the first

method we start at the bottom of a tree, check each decision node and replace the subtree

defined by that node with a single leaf as shown in Figure 3.11. The class of the leaf

is determined by examining the training examples that reach that leaf and choosing

the most frequent class. According to the second method a subtree is raised to replace

another subtree that was removed as demonstrated in Figure 3.12. The instances that

were classified under different paths of the subtree that is removedmust be reclassified

to the paths of the raised attribute.

Pruning is controlled by comparing the error rate that both trees make. The pruned

tree is preferred if it performs as well as or better than the original tree. We do not

need to evaluate the error rate of the entire tree but we only look at the local error rates

created by the nodes or leaves before and after one of the above pruning techniques

93

is applied. This is because each path in a tree is independent of other paths. Nodes

that contribute to the greatest increase in performance are pruned first and the process

stops when the performance of the tree cannot be further improved.

A

B

C
1

2

...

3

A

...C

32

(a) (b)

Figure 3.12: Subtree raising: subtree B was removed from the tree and subtree
C was raised to its position. The instances that were previously classified
under 1 are now classified either 2 or 3.

The performance of both trees cannot be evaluated on the data that was used to

build the original tree. The original tree was fit to this data and it would thus always

outperform the pruned tree. A standardway to evaluate the trees is to split the original

dataset to a training set used to build the trees (2/3 of data) and a validation set on

which the error rates are estimated (1/3 data). This is known as a holdout procedure.

If random noise affected the induction of the original tree, this will perform less well

on new data because it is unlikely that it will contain the same kind of noise. The

disadvantage of this approach is that it requires a large dataset in order to ensure that

both subsets contain a complete range of data. Quinlan (1993, page 37) refers to this

approach as “reduced error pruning”.

To overcome this difficulty C4.5 (Quinlan, 1993, Chapter 4) attempts to estimate

the error of trees on the training data itself using a heuristic based on statistics.9 The

observed error rate of a node is determined by considering instances N that reach that

node and by assuming that their correct target class is the majority class at that node.

Instances with other classes are errors E. The observed error rate is thus f = E/N. It is

9The approach is not entirely statistically valid because of the way it estimates the error rate from the
training set, assumes that errors have a normal distribution and uses a 25% confidence interval to estimate
the interval boundaries of the true error rate.

94

assumed that the occurrence of error among N instances follows a binomial/Bernoulli

distribution which is used to estimate the true error rate. With a certain level of con-

fidence, the true error rate lies within some interval around the observed error rate.

The size of the interval is dependent on the number of observations. If N is large, the

observed error rate will be close to the true error rate and hence the interval will be

small. If N is small, the interval has to be increased to ensure the same confidence of

estimation. A 95% confidence means the likelihood to find the true error rate in that

interval. This value is standardly used in statistic estimation. C4.5 on the other hand

uses a 25% confidence. This means that the confidence level in the predicted interval

will be small but the interval will be narrower than with a 95% confidence. The upper

limit of this interval is taken as a pessimistic estimate of the true error rate. There is no

particular reason why 25% is chosen except that it ensures a satisfactory performance.

Reducing this parameter encourages more pruning since smaller error is estimated.

How are the estimated error rates compared? In the case of subtree replacement

shown in Figure 3.11 the error rate is first estimated individually for both leaves 2

and 3. Their combined estimated error rate is determined by taking the weighted sum

of both estimated error rates. The weights are the proportions of examples that are

classified under each leaf. The error rate of the parent node C is estimated by con-

sidering instances that have reached that node. The node C is replaced with a leaf

representing the most frequently occurring class among instances reached that node if

the estimated error rate of the node C is less than the combined estimated error rate of

the leaves. Similar steps are taken to compare the error rates in subtree raising shown

in Figure 3.12 except that here the combined estimated error rate of leaves 1, 2 and 3 in

the first tree is compared with the combined estimated error rate of leaves 2 and 3 in

the second.

95

3.5 Results

Understanding how classifiers work we can now turn to a discussion of their perfor-

mance on our datasets. Our interest is twofold. We want to compare how the individ-

ual classifiers perform in our domain in general. Secondly, we want to compare their

performance on the individual subsets of data from the domain. These subsets reflect

different choices that we made while creating the system. We collected the data in two

environmental settings (descriptions of robotic motion and descriptions of object rela-

tions), we controlled the complexity of linguistic description (Simple and All datasets),

we used different instance creation methods (Time-shifted instances, Zero-Time-shifted

instances and instances that were Not-Time-shifted, see page 73), and finally numeric

attributes were discretised to different numbers of nominal categories. The estimated

performance would tell us which of our choices is the optimal one.

Throughoutwe use theWeka implementations (Witten and Frank, 2005) of the algo-

rithms discussed in the previous section with their default options. Naive-Bayes does

not require any additional configuration. For J48 we can choose whether we want to

use “reduced-error pruning” for which we can specify the size of the training and test

datasets, or whether we want to estimate the error rates for pruning from the training

dataset. We use the latter method with the default confidence level of 25% as sug-

gested by Quinlan (1993). We can also specify whether subtree raising is used or not.

By default this option is turned on. Finally, we can specify the minimum number of

instances per leaf which controls the integration of noise. This value is set to 2. The

command line options for J48 are thus -C 0.25 -M 2.

Before presenting and discussing the performance of classifiers in numbers we dis-

cuss different measures of performance.

96

3.5.1 Classifier evaluation measures

Evaluating the classifiers induced by machine learning is as important as creating

them.10 This is because of the problem of over-fitting to the dataset from which they

were built. The classifiers are a theory about the training data. If the training data is

unrepresentative of the data the classifier will encounter in the future either because

the data is biased, deficient or contains errors, the classifiers will not perform well on

the newdata. Testing a classifier on the original dataset should hopefully give very few

errors, also known as re-substitution errors. However, this figure will be over-optimistic

of the true performance of the system, for example, when the robot is used in a new

environment. In order to be a reliable estimate of the true system’s performance, any

performance figure that we come up with has to conform to the statistical criteria for

making estimates from population samples.

If data is readily available we can collect three datasets under identical conditions.

We use one for training, the second for validation, and the third for testing. The obtained

level of error or accuracy is then applied to a statistical test which treats correct and

incorrect classifications as a series of Bernoulli trials, to predict the confidence intervals

which indicate how reliable the estimate is (for details seeWitten and Frank, 2005, page

146,ff.). In this case the reliability of the estimate is solely dependent on the size of the

test set.

Unfortunately, in practice the luxury of having three datasets is rarely possible.

The information is scarce and the cost of obtaining information is high. To return to

our setting: although the numeric data sampled from the robotic sensors is abundant,

the amount of training data is limited by the number of linguistic descriptions that a

human describer can produce in one session. Experience shows that in an hour session

a human can generate approximately 100 descriptions. Human describers easily get

10We use the term “classifier” somehow loosely to refer to three related concepts: (i) the classification
algorithm, (ii) its implementation, and (iii) the theory about the data that has been learned using this
implementation.

97

bored or may not be prepared to devote extensive time to the experiment. But even

if we have a reasonably sized dataset that can be split into two or three statistically

representative subsets, we may nonetheless want to devote as much data as possible

to training as this helps to induce the best possible model.

As discussed previously, a good compromise is the holdout procedure but for esti-

mating the performance of classifiers rather than optimising them. We do not have to

split the dataset into 2/3 for training and 1/3 for testing or estimate the true classifier

performance on the basis of a single accuracy figure. The procedure can be repeated

several times. The estimated classifier performance is taken as the mean performance

over all iterations. At each iteration we randomly sample instances and place them in

each subset. Since an instance is removed from the sampling set after it has been sam-

pled it can never happen that the same instance would occur simultaneously in the

training set and the test set. It may be the case that random sampling does not create

representative subsets. The estimated classifier performance suffers if instances of a

certain class are completely missing in either of the subsets. In parallel, this means that

these instances are over-represented in the other subset which leads to a pessimistic

estimate of the true performance. To ameliorate this situation we can use random sam-

pling with stratification which ensures that equal proportions of the target class are

represented in both subsets.

Random sampling from the previous method ensures that the same instance is not

used for both training and testing in one run but it does not ensure that each instance

is used for training and for testing exactly once across all the runs. If sampling is not

random, the estimates from the iterations may be biased if certain instances are more

likely to be chosen for testing than for training. Cross-validation is a special case of the

holdout procedure where this bias is overcome. The instances for the training set and

the test sets are not picked individually at each iteration. The procedure first splits the

entire dataset into n partitions which are also referred to as folds. During each iteration

98

the classifier is trained on n− 1 folds and tested on the remaining fold. The procedure

is repeated n times and the estimate of true classifier accuracy is obtained by averaging

the accuracies obtained in each fold. The most commonly used number of folds is 10

which is shown by experience to give good estimation results. The procedure is known

as stratified 10-fold cross-validation.

Kohavi (1995) compares the cross-validation method with another method known

as the 0.632 bootstrap method (for details see Witten and Frank, 2005, page 152 ff.) on

a variety of real-world datasets using the C4.5 and Naive-Bayes classifiers. He con-

siders the bias of error estimation methods such as pessimistic or optimistic and the

variance of estimates between different runs. He concludes that a ten-fold stratified

cross-validation provides the best estimates of error. This method is also the most

commonly chosen method for testing classifiers and therefore we also use it here.

It is important to note that in Weka and also in other machine learning implementa-

tions the training step and the testing step are independent. At the end of each training

and testing Weka prints out information which includes the model that was learned

followed by various performance measures estimated from the stratified 10-fold cross-

validation. Looking at this information it is easy to conclude that the models that are

created in each fold of the validation are combined and the integrated model is out-

put. This is not the case. The model that is output and which we subsequently used

to generate new linguistic and non-linguistic behaviour of the robot is created on the

entire training set. The model is optimised during a separate optimisation step. The

models created in iterations of the testing step are approximations of the output model

and their quality of approximation or their stability is dependent on the size and the

structure of the dataset. After being used for testing in each iteration, these models

are discarded. They are only used to gather statistics which are averaged and output.

They are not integrated into the original model.

We discussed how the performance or the error rate can be statistically estimated

99

in the case of a limited dataset but we said nothing about what the measure of the

performance may be. Assuming that a classifier predicts a nominal class, the most

straightforward way to measure its performance is to count the number of times it

predicts a correct value or the number of times it predicts an incorrect one. The count

is subsequently divided by the total number of test classifications. In the first case we

get classifier accuracy or success rate, in the second, we get its error rate.

The two rates are not always a good indicator of classifier performance. Figure 3.13

shows confusion matrices for two classifiers whose accuracy was estimated to be 99%

and error rate 1%. A confusion matrix is a table in which the predicted target class

values are cross-tabulated with the actual class values. Each cell contains the number

of instances that had a particular predicted and actual value. The counts are sums

from all 10 folds of a stratified 10-fold cross-validation and their total sum equals the

number of instances in the dataset used for training the classifier.

Predicted
yes no

Actual
yes 50 0
no 1 49

Predicted
yes no

Actual
yes 99 0
no 1 0

(a) Classifier A (b) Classifier B

Figure 3.13: A 99% accuracy or 1% error rate is not always a good indicator of
performance.

When classifiers are trained and tested they treat all target class values equally.

Consequently, all errors made on them are considered equal as well. Because training

is optimised on these errors the classifiers that are built do not differentiate between

different costs of predicting the wrong value. The target class values are not equal in

their distribution in the training set. For example, Classifier Awas trained on a set con-

taining an equal proportion of “yes” and “no” classes. On the contrary, Classifier Bwas

trained on a dataset where the majority of instances belonged to the class “yes”. The

confusion matrices built during the evaluation of the classifiers show that Classifier A

100

can predict both classes with a similar degree of accuracy and hence overall 99% accu-

racy is a good estimate of its performance, whereas Classifier B has a good accuracy

on the “yes” class but fails completely when predicting the “no” class. Thus, the 99%

accuracy is not a very informative measure of its actual performance. As demonstrated

byWitten and Frank (2005, pages 161–162) with the dairy herd example, in practice we

are often interested in predicting the less frequently occurring class.

Target class values are not equally important to us. Imagine a simplified situation

in which we want to predict whether the robot should make a specific move or not.

False predictions are necessarily associated with cost. Since the predicted target values

are not equally important, the cost of predicting the wrong, in this case the opposite,

value is also different. For example, if we wrongly predict that the robot should make

a move (false positive) it may crash into a wall, whereas if we wrongly predict that

it should not move (false negative) we may only end up with a frustrated user com-

plaining that the systemhas not recognised their command. Different costs of incorrect

predictions may also occur when predicting linguistic categories such as Verb or Rela-

tion but here the the cost is dependent on the lexical semantics of words belonging to

these classes. For example, if the two words are exact synonyms (“going”, “moving”)

or antonyms (“going”, “stopped”) then the cost of incorrectly predicting the opposite

class is identical for making either error. In the first case the cost will be zero and in

the second case the cost will be maximal. However, if there is hyponymy/hypernymy

relation between the words where the words establish a synonymous reference only

in a subset of cases (“forwarding”, “going”), then the costs of predicting a different

category will be different too.

If costs are known they can can be taken into account either at training or classifi-

cation (see Witten and Frank, 2005, Section 7.5). In the present work we do not attempt

to provide cost-sensitive learning or classification. Nonetheless, we will consider some

measures of classifier performance per class calculated by the Weka evaluation compo-

101

nent which give us some idea what the costs would be when a particular classifier

is used. All the estimates are calculated from a confusion matrix created in a strat-

ified 10-fold cross-validation. Figure 3.14 shows a confusion matrix with labels that

are commonly used to refer to different kinds of classifications.11 If the target class

has more than two values, the confusion matrix will be wider and deeper depending

on the number of values. In this case, for the purposes of calculating the evaluation

measures below, “positives” refer to instances belonging to the class in question and

“negatives” refer to instances of all other classes.

Predicted
yes no

Actual
yes true positives (TP) false negatives (FN)
no false positives (FP) true negatives (TN)

Figure 3.14: A confusion matrix showing different classification possibilities

The Accuracy (Equation 18) and the Error rate (Equation 19) are general measures

of classifier performance on a particular target concept as discussed before. They are

included here to show how they relate to other class-specific measures. The TP Rate

(Equation 20) expresses the percentage of instances belonging to the class C that the

classifier assigned correctly to the class C. On the other hand, the FP Rate (Equation 21)

expresses the percentage of instances belonging to other classes that the classifier as-

signed to the class C. For example, if in a two-class situation the FP Rate for the class

“yes” is 0.6, this means that the classifier is performing less well on the “no” class since

more than half of the “no” instances were classified as “yes”. Thus, a good classifier

would have a high TP Rate and low FP Rate for every value of the target class. For a

two class target concept the TP Rate of the class C and the FP Rate of the class ¬C sum

to 1.

11In statistical literature false rejections (FN) are also known as Type I errors and false acceptances (FP)
are known as Type II errors.

102

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(18)

Error rate = 1−Accuracy (19)

TP Rate =
TP

TP+ FN
(20)

FP Rate =
FP

FP+ TN
(21)

Precision =
TP

TP+ FP
(22)

Recall = TP Rate (23)

Fallout = FP Rate (24)

F-Measure =
2× Recall× Precision

Recall+ Precision
(25)

=
2× TP

2× TP+ FP+ FN

TP Rate is sometimes referred to as Recall (Equation 23) and FP Rate is also known

as Fallout (Equation 24). The term Recall originates in Information Retrieval (IR) where

it is compared to Precision (Equation 22). Manning and Schütze (1999, Figure 8.1, page

268) illustrate the notion of Precision and Recall with a diagram in Figure 3.15. The

selected set (FP + TP) includes the items that the retrieval method selected, the target set

(TP + FN) represents the relevant items that should be selected. Precision and Recall are

the ratios of TP in either of the sets: Precision is the proportion of TP in the selected

set and Recall is the proportion of TP in the target set. Precision tells us how exact the

results of the retrieval method are and Recall tells us how thorough or complete is the

system returning the relevant items.

There is a trade off between the two measures. We get a high Precision and low

Recall if the classifier is conservative and classifies only a subset of instances belonging

to class C as class C. For example, we have a classifier which takes the coordinates

of the located (LO) and reference (REFO) objects and finds the description of relation

between them. If the classifier assigns the class “in front of” only to those instances

where the located object is perfectly aligned with the reference object at 0 degrees north

103

selected target

TN

TP FNFP

Figure 3.15: The relationship between Precision and Recall

relative to the origin of the robot and where LOy < REFOy, all such instances would

be correctly classified as “in front of” and Precision would be 100%. However, such

classifier would also create a lot of FNs which the Precision measure does not consider,

instances that should be classified as “in front of” but did not match the strict criteria

and were incorrectly identified as “to the right of” or “to the left of”. As a result, the

Recall would be low. Alternatively, a 100% Recall and a low Precision on the class “in

front of” would result from a situation in which the classifier assigns all instances to

this class. This is because this ensures that all instances belonging to this class are

classified as this class. However, there would also be a lot of FPs, instances of other

classes that were misclassified as this class. Recall does not take them into account but

they are important for Precision. A good classifier would thus give us high Precision

and high Recall for every value of the target class.

Precision and Recall can be combined in a single measure known as the F-Measure

(Equation 25) which is attributed to van Rijsbergen (1979).12 The F-Measure is a weighted

harmonic mean of Precision and Recall which is just one of the ways to average num-

bers in mathematics (for details see Rennie, 2004). In the F-Measure we lose the trade

off between FP and FN expressed by Precision and Recall. However, the F-Measure is

still informative as it maximises with TP. It thus tells us how good the classifier is in

12Manning and Schütze (1999, page 269) point out that the F-Measure is a variant of the E-Measure from
van Rijsbergen (1979) where F = 1− E.

104

selecting that class.

The evaluation component of Weka calculates both sets of measures (TP Rate/FP

Rate and Precision/Recall) on the basis of a stratified 10-fold cross-validation. We dis-

cuss these measures in respect to our classifiers in Section 3.5.6. We start with a discus-

sion of the classifier accuracy.

3.5.2 Classifier accuracy

As discussed in Section 3.2 we collected two datasets: a developmental dataset called

Simple which was collected under restricted conditions (one human describer, con-

strained unambiguous vocabulary, automated data entrymethod to prevent errors due

to delay), and a full dataset called All where all of these conditions were relaxed. A

classifier was trained on each dataset and for each target concept using both J48 and

Naive-Bayes learning methods. The estimated accuracies of the resulting classifiers are

shown in Table 3.7 and Figure 3.16.

Concept Instances J48 Naive-Bayes

Simple
Verb 82 89.02 78.05
Direction 82 87.80 78.05
Heading 82 97.56 98.78
Manner 82 70.73 71.95
Relation 278 75.90 80.58

All
Verb 1435 48.22 37.49
Direction 1435 55.68 44.46
Heading 1435 60.77 49.41
Manner 1435 54.70 45.57
Relation 625 69.12 67.20

Table 3.7: The estimated accuracies using stratified 10-fold cross-validation of
5 classifiers trained on Simple and All datasets

It can be seen straight away that both J48 and Naive-Bayes perform better on the

Simple dataset (marked in red) than on the All dataset (marked in blue). For example,

the mean and the standard deviation for classifiers trained with the J48 learner are

105

x̄ = 84.20%, s = 9.64 for the Simple dataset, and x̄ = 57.70%, s = 6.97 for theAll dataset.

The figures for Naive-Bayes are x̄ = 81.48%, s = 9.10 (Simple) and x̄ = 48.83%, s = 9.96

(All). The difference in performance of classifiers on both datasets is considerable and

is expected. While collecting the Simple dataset we deliberately eliminated all factors

that could have introduced external and thus undesirable irregularities to the dataset.

We can thus treat the estimated accuracies from this dataset as accuracy upper bounds:

they are the accuracies the two learners can achieve in an ideal situation conditioned

only by the complexity of the learning task. An accuracy above 80% for the upper

bound is an encouraging performance. However, the accuracies below 50% for the

classifiers trained on the All dataset are less encouraging.

Figure 3.16: The estimated accuracies using stratified 10-fold cross-validation
for 5 classifiers trained on Simple (red) and All (blue) datasets

The classifiers for the motion classes (Verb, Direction, Heading and Manner) built on

the All dataset are performing considerably worse than the classifiers for Relation (J48

Motion: x̄ = 54.84%, s = 4.46, J48 Relation: 69.12%; Naive-Bayes Motion: x̄ = 44.23,

s = 4.30, Naive-Bayes Relation: 67.20%). One would assume that learning descriptions

of object relations is a more difficult task than learning descriptions of motion as they

106

are semantically more complex. The difference in the classifier accuracy can thus per-

haps be attributed to the problem of synchronising entries with observations of robotic

motion and entries with natural language descriptions as discussed in Section 3.3.1.

Here, all classifiers for the motion classes were trained on instances that were created

without the time-shifting mechanism. We return to the discussion of classifier perfor-

mance on datasets where this mechanism was introduced in the following section.

The four curves in Figure 3.16 follow a similar pattern which confirms that not all

categories are equally easy to learn. For example, Verb appears to be a more difficult

category to learn than Heading. Note that this is not linked to the number of the target

classes of each concept: in the All dataset Verb has eight target classes and Heading has

eleven.

Finally, Figure 3.16 shows that J48 classifiers perform better than those based on

Naive-Bayes. Naive-Bayes only outperforms J48 on the Simple dataset for the Relation

class by 4.68%. The improved performance of J48 over Naive-Bayes is most prominent

in the case of the motion categories of the All dataset (around 10%), yet it is partially

also observable on the Simple dataset. For the Relation category the difference in the

estimated accuracy on the All dataset is small: only 1.92%. Overall, the results con-

firm that Naive-Bayes, a conceptually very simple method of machine learning, may

perform comparably to other more complex systems.

3.5.3 Classifier accuracy excluding chance

Accuracy is expressed as the percentage of hits between the value predicted by the

classifier and the actual value of a test instance. It is measured as agreement between

the predicted value and the actual value. The standard measure of agreement used

in computational linguistics is the kappa coefficient (κ) which was introduced by Cohen

(1960) and later brought to the attention of the computational linguistics community

by Carletta (1996). The coefficient was designed for measuring agreement between

107

coders in annotation tasks such as annotating dialogue and discourse structure. Be-

cause of high subjectivity involved in these tasks, there is a considerable variation in

performance between different annotators and hence a measure that accounts for an-

notator bias was required.

A human annotator or a classifier may be biased by assigning the majority class to

all instances or by assigning all target class values with identical probability distribu-

tions and still achieve good accuracy rates. However, such a classifier does not add any

knowledge or benefit to classification since the same results could be obtained with-

out it. The accuracies produced by these theoretical classifiers are commonly taken as

baselines to which the accuracies of true classifiers are compared. By calculating the κ

coefficient we include an implicit comparison of classifier performance to both of these

baselines.

The basic principle behind the κ coefficient is expressed by the following equation:

κ =
Ao − Ae

1− Ae
(26)

where Ao is the observed agreement and Ae is the expected agreement or agreement by

chance. It follows that 1− Ae is themaximum agreement attainable excluding the agree-

ment by chance and Ao − Ae is the actual agreement obtained excluding the agreement

by chance. The range that κ can take is between−Ae/1− Ae, when there is no observed

agreement, and 1, when there is a perfect observed agreement.

A few different versions of the agreement coefficient are offered in the literature

all of which follow Equation 26. Different proposals differ along two dimensions: (i)

whether they calculate the agreement for two coders or multiple coders, and (ii) in

the method by which the expected agreement Ae is estimated. Some coefficients also

take into account the extent of disagreement between a particular pair of categories.

For a review of different coefficients see Artstein and Poesio (2005). The evaluation

component of Weka calculates the κ coefficient as proposed in Cohen (1960).

108

The expected agreement must be estimated from the observed data because we do

not know the independent prior distributions of items to categories. We assume that

when coders assign tags, they do so independently. It follows that the probability of

two coders agreeing by chance is P(k|c1)× P(k|c2) where c1 and c2 stand for coders and

k is the category or the tag or class assigned. The expected agreement is the probability

of coders agreeing on any category or

Ae = ∑
k∈K

P(k|c1) × P(k|c2) (27)

Cohen’s κ assumes that each annotator follows a unique distribution of items into

categories and that items are not assigned to categories uniformly. Therefore, to calcu-

late the expected agreement Ae, we need to find for each coder c, the classifier and the

human describer(s) who produced the dataset, the number of assignments to k or nck

and dividing it by the number of all assignments i by that coder.

P(k|c) =
nck

i
(28)

The κ coefficient is rarely used to compare the performance of classifiers in machine

learning. Ben-David (2007) argues that it should be adopted instead of accuracy since

it is a better indicator of the classifier merit and since different (statistical) conclusions

about the performance of classifiers may be reached depending on which measure is

considered. His study compares the performance of five well-known classifiers from

Weka including J48 and Naive-Bayes on fifteen datasets. The results show that on aver-

age about 35% of successful classifications measured as accuracy are random hits. The

ranking of 5 classifiers according to accuracy and according to κ was different in 8 out

of 15 datasets. This is because some classifiers are more likely to generate random hits

than others even when they are used on the the same dataset.

Table 3.8 shows the estimated κ values for the J48 andNaive-Bayes classifiers trained

on both datasets. These are graphically represented in Figure 3.17. Following Ben-

109

Concept κ(J48) RA Rκ κ(Naive-Bayes) RA Rκ

Simple
Verb 0.7738 1 1 0.5699 2 2
Direction 0.7758 1 1 0.5170 2 2
Heading 0.9479 2 2 0.9744 1 1
Manner 0.2523 2 1 0.2102 1 2
Relation 0.6747 2 2 0.7379 1 1

All
Verb 0.2852 1 1 0.1639 2 2
Direction 0.2960 1 1 0.1846 2 2
Heading 0.3432 1 1 0.1978 2 2
Manner 0.0859 1 1 -0.0098 2 2
Relation 0.6110 1 1 0.5877 2 2

Table 3.8: The κ values ranked by the learning method

David (2007) we first rank classifiers according to the learning method – J48 and Naive-

Bayes – which gives us ranks 1 and 2 expressed across the table columns. RA indicates

the classifier’s rank relative to accuracy (given in Table 3.7) and Rκ indicates its rank

relative to κ. Rank 1 indicates the best performance. As shown in Table 3.8 the classi-

fiers rank identically relative to accuracy or κ in all but one case: when they are built

from the Simple dataset and when classifying for the conceptManner. Therefore, using

κ rather than accuracy does not change our conclusion that in the majority of cases J48

performs better than Naive-Bayes.

A finer comparison of both measures can be made by examining ranks according

to the concept learned which gives us ranks from 1 to 5 expressed across the rows of

Table 3.9. There are very few differences in the classifier ranking on the Simple dataset:

only in the case of the classifiers for Verb and Direction. Here the ranking of the two

consecutive classifiers is reversed (J48: ranks 2 and 3; Naive-Bayes: ranks 3 and 4).

There is also very little difference between the accuracy and κ values for items with

consecutive ranks (J48 κ: 0.002, J48 accuracy: 1.22%, Naive-Bayes κ: 0.0529, Naive-

Bayes accuracy: 0%).

110

Concept J48 Naive-Bayes
RA Rκ RA Rκ

Simple
Verb 2 3 3.5 3
Direction 3 2 3.5 4
Heading 1 1 1 1
Manner 5 5 5 5
Relation 4 4 2 2

All
Verb 5 4 5 4
Direction 3 3 4 3
Heading 2 2 2 2
Manner 4 5 3 5
Relation 1 1 1 1

Table 3.9: The ranks of the κ values by concept

When classifiers were trained on theAll dataset, the estimated performance of J48 is

different according to the measure under consideration for concepts Verb and Manner

which change ranks 4 and 5. Here the difference between the values of consecutive

ranks is greater (J48 κ: 0.1993, J48 accuracy: 6.48%). The greatest variation in ranks is

observed in the case of Naive-Bayes trained on the All dataset where 3 out of 5 concepts

get ranked differently depending on the measure being used. Thus, the conclusions

made by Ben-David (2007) are also replicated by our results.

One of the most important advantages of comparing the performance of classifiers

with κ rather than accuracy is that with κ a majority based or random classifier always

scores a 0 value and thus any value of κ that we cite contains an implicit comparison

of that classifier to a baseline classifier. As shown in Figure 3.17, for the classifiers that

were trained on the Simple dataset the average value of κ is high (J48: κ̄ = 0.68, s = 0.23,

Naive-Bayes: κ̄ = 0.60, s = 0.25), whereas for those trained on theAll dataset the value

of κ is considerably lower (J48: κ̄ = 0.32, s = 0.17, Naive-Bayes: κ̄ = 0.22, s = 0.20). As

with accuracy, an antisymmetry between the motion concepts and the Relation concept

is observed. The greatest variation in the κ values is observed with the classifiers for

111

Figure 3.17: The performance of classifiers according to κ trained on Simple
(red) and All (blue)

the Motion concepts (Simple J48: κ̄ = 0.69, s = 0.26, All J48: κ̄ = 0.25, s = 0.10, Simple

Naive-Bayes: κ̄ = 0.57, s = 0.27, All Naive-Bayes: κ̄ = 0.13, s = 0.08), whereas the

values for the Relation concept are much more similar (Simple J48: κ = 0.6747, All J48:

κ = 0.6110, Simple Naive-Bayes: κ = 0.7379, All Naive-Bayes: κ = 0.5877). The lowest

κ values are obtained on theManner concept. Taking an average of classifiers based on

both classification methods we get Simple: κ̄ = 0.2313 and All: κ̄ = 0.0761.

The size of the κ coefficient only has a meaning in relation to the task that we are

evaluating, it is relative to the difficulty of the task. Artstein and Poesio (2005) discuss

the various cut-off points that have been proposed in the literature. Among these the

most influential in computational linguistics is the one proposed by Carletta (1996).

There, κ is primarily intended for content analysis where levels of κ > 0.8 are consid-

ered as good reliability indicators, while values that fall within 0.67 < κ < 0.8 are those

from which only tentative conclusions can be drawn. On the other hand, in medical

112

research where κ originated from, levels as low as 0.4 are considered to be adequate.

Artstein and Poesio say that their own experience shows that in annotation tasks a sub-

stantial agreement is obtained at around 0.7 level, but only values above 0.8 assure a

reasonable quality annotation. On the other hand, they claim, that even the lower 0.67

level has often been impossible to achieve.

In the view of Artstein and Poesio (2005), κ should not be seen as an absolute per-

formance measure cited alongside other experimental results but a measure that can

give us an important insight into the task that we are investigating. Knowing that

the true agreement of annotators in a coding task is beyond chance is trivial, since the

aim of the task is to ensure a resource of reasonable quality which is used in further

processing. The values of κ are dependent on how the categories used in annotation

are defined and how well they fit the underlying phenomenon that the coding task is

trying to record. If a value of 0.5 is obtained for a tagging task, then the tag-set that we

are using does not model linguistic data very well, there is just too much disagreement

between the annotators, and hence the dataset may not be of a sufficient quality for

further processing.

For evaluating classifiers though, a value of 0.5, or in fact any value above 0, is a

good result. It tells us that a classifier performs considerably better than a baseline clas-

sifier and thus its usage and the cost of construction can be justified. In this respect,

all but one of our classifiers perform well. The κ value of the Naive-Bayes classifier

for Manner is −0.0098 which means that the classifier is showing a minor (1%) dis-

agreement with the dataset and thus in this case we were better off using a random

classifier.

A relative comparison of κ values for classifiers for different concepts tells us how

difficult is that concept to learn. The number of target class values and their distri-

bution in the dataset should be excluded from such comparison and hence they are

discounted in the calculation of the agreement by chance. Classifiers based on both

113

classification methods are struggling with Motion concepts when trained on the All

dataset, especially with the Manner attribute. This seems to be a particularly difficult

attribute to learn since the performance on it is also relatively low when the classifiers

are trained on the Simple dataset (Manner κ: 0.2523 (J48), 0.2102 (Naive-Bayes), Other

κ̄: 0.7931 (J48), 0.6998 (Naive-Bayes)). The shape of the curves for κ in Figure 3.17

is different than the shape of the curves for accuracy in Figure 3.16 where the worst

performance is estimated on the Verb concept. However, the conclusions about the

general performance of classifiers relative to accuracy are also confirmed relative to κ.

The concepts ofMotion are much more difficult to learn from the All dataset than from

the Simple dataset. The performance on the Relation concept is similar between the

datasets. Its κ value is a very encouraging result. We hypothesised that the decreased

performance on the concepts of Motion is due to the noise that was introduced during

instance creation. The figures discussed here were obtained on instances for which the

time-shifting algorithm was not applied. We return to the discussion of classifier per-

formance onmotion concepts created from instanceswhere the time-shifting algorithm

was applied in the following section.

Finally, let us consider what the κ coefficient tells us about the classifier perfor-

mance on each value of the target concept. In a two class situation where there is an

uneven distribution of values (nyes = 95 and nno = 5), the assignments of items be-

longing to “yes” to “no” have a different effect on the agreement by chance (Ae) than

the assignment of “no”s to “yes”. Let us consider a classifier that incorrectly assigns

3 members of “no” to “yes” and vice versa and calculate the agreement by chance for

each case as shown in Equations 30 and 31.

Ae = P(yes|dat)× P(yes|class) + P(no|dat)× P(no|class) (29)

Ae1 =
95

100
× 98

100
+

5

100
× 2

100
(30)

= 0.93

114

Ae2 =
95

100
× 92

100
+

5

100
× 8

100
(31)

= 0.88

In the first case the 3 misclassified items are multiplied as a proportion of 100 by

the proportion 95/100 rather than 5/100. The resulting κ values that we obtain are

considerably different: κ1 = 0.56 and κ2 = 0.75. Note that in both cases the observed

agreement/accuracy (Ao) is the same: 0.97. If we assign more “no”s to “yes”, the value

of Ae converges to 0.95 when all “no”s are assigned to “yes” (95/100 × 100/100 +

5/100 × 0/100), and if we assign more “yes”s to “no”, it converges to 0.05 when all

“yes”s are assigned to “no” (95/100 × 0/100 + 5/100 × 100/100). Thus, in the first

case the Ae is increasing whereas in the second case it is decreasing with the number of

the opposite assignments. This is intuitively sound: the more items of a minority class

are assigned to the majority class the less sophisticated is the assignment method. On

the other hand, the more items of the majority class are assigned to the minority class,

the more sophisticated is the method since such assignments cannot be attributed to

chance.13

Since increasing agreement by chance results in lower values of κ, this measure

provides a cost sensitive method of estimation of classifier performance. The errors

made on a minority class are penalised heavier or are more costly than the errors made

on the majority class.

3.5.4 Improving classifier performance on motion classes

In Section 3.3.1 we described a time-shifting procedure for combining information from

MOOS log entries into instances in attempt to reduce synchronisation errors that arose

between the components of the MOOS system and human describers when sampling

13Of course in both cases the observed agreement/accuracy also approaches the same extremes which
means that the overall value of κ will approach 0. This is because such a classifier is a majority based
classifier.

115

descriptions of robotic motion. The results from the previous section confirm that clas-

sifiers performed less well on the concepts of motion in comparison to the relation

concept. In this section we examine whether the time-shifting procedure has a positive

effect on the creation of motion instances by reducing noise.

As described on page 73 the procedure allows us to create two datasets which we

call Time-shifted (TS) and Zero-Time-shifted (ZTS). The latter is a subset of the former

and contains instances for which the time-shifting procedure determines that there is

no delay between natural language and environment descriptions. We compare the

performance of classifiers built from these datasets with those built from the datasets

that were created without time-shiftingNot-Time-shifted (NTS). The performance of the

latter was discussed in the previous section. As before, we distinguish between Sim-

ple and All configurations which means that we are comparing classifiers built from six

different datasetswhich are as follows: Simple-Not-Time-shifted (82),All-Not-Time-shifted

(1435), Simple-Time-shifted (83), All-Time-shifted (1446), Simple-Zero-Time-shifted (51), All-

Zero-time-shifted (586). The numbers indicate the number of instances in each dataset.

The reason why Not-Time-shifted and Time-shifted datasets have a different number of

instances is because the time-shifting procedure creates a virtual “stopped” descrip-

tion which corresponds to the last entry of a log file. The estimated accuracies from

a stratified 10-fold cross-validation for both J48 and Naive-Bayes classifiers built from

these datasets are shown in Table 3.10.

In order to compare the performance of classifiers built from various datasets we

introduce a measure which we refer to as “relative difference” (RD). This is a difference

between the estimated performance of a classifier built from the improved dataset (ei-

ther Time-shifted or Zero-Time-shifted) and the baseline dataset (Not-Time-shifted) relative

to the the performance of the classifier built from the baseline dataset as shown in

Equation 32. The relative difference thus gives us the percentage by which the per-

formance of a classifier has increased or decreased by introducing the time-shifting

116

Concept J48 Naive-Bayes
NTS TS ZTS NTS TS ZTS

Simple
Verb 89.02 92.77 98.04 78.05 92.77 100.00
Direction 87.80 72.29 80.39 78.05 61.45 80.39
Heading 97.56 85.54 96.08 98.78 74.70 100.00
Manner 70.73 68.67 70.59 71.95 73.49 66.67

All
Verb 48.22 57.12 56.83 37.49 55.88 52.56
Direction 55.68 64.59 72.35 44.46 41.56 39.76
Heading 60.77 65.63 67.75 49.41 45.78 43.00
Manner 54.70 56.22 63.99 45.57 54.15 42.15

Table 3.10: Classifier accuracies for the motion concepts on three datasets

procedure.

RD =
(TS|ZTS)−NTS

Abs(NTS)
(32)

Following the conclusions from the previous section, we use the κ coefficient as a

better estimate of classifier performance.14 If non-optimal synchronisation of informa-

tion during creation of instances introduced randomness to the dataset, this random-

ness can only be captured by a random or a majority based classifier. Since κ does

not favour such classifiers, an improvement in its estimated values gives us a better

indication whether some randomness has been removed. Table 3.11 shows the esti-

mated κ coefficients for the J48 classifier and Table 3.12 for the Naive-Bayes classifier.

The relative differences RD-TS and RD-ZTS from the last two columns are represented

graphically in Figures 3.18 and 3.19 respectively. As before red lines indicate Simple

datasets and blue lines indicate All datasets.

Considering J48 first (Figure 3.18) we can see that there is an antisymmetry in

the performance of classifiers built from the Simple and All datasets when the time-

shifting procedure is applied. The κ coefficient improves on average by x̄ = 64.22%,

14κ values can be negative and hence Equation 32 must include the Abs function in its denominator.

117

Concept NTS TS ZTS RD-TS RD-ZTS

Simple
Verb 0.7738 0.8552 0.9602 10.52 24.09
Direction 0.7758 0.4086 0.5923 -47.33 -23.65
Heading 0.9479 0.6781 0.9253 -28.46 -2.38
Manner 0.2523 0.0078 -0.0268 -96.91 -110.62

All
Verb 0.2852 0.4139 0.4313 45.13 51.23
Direction 0.2960 0.4466 0.5665 50.88 91.39
Heading 0.3432 0.4470 0.4585 30.24 33.60
Manner 0.0859 0.1981 0.1668 130.62 94.18

Table 3.11: The performance of J48 classifiers according to κ on motion
concepts on three datasets

s = 39.07 in the case of the All dataset. A high standard deviation indicates that the

relative improvement in the value does not affect all concepts equally. The concept

that most benefits from the time-shifting is Manner. It changed from κ = 0.0859 to

κ = 0.1981 which is particularly encouraging (130.62%). The average improvement

in performance of classifiers built from the All-Zero-Time-shifted subset is very similar:

x̄ = 67.60%, s = 25.96.

Contrary to expectations, the time-shifting procedure considerably decreases the

performance of all J48 classifiers except for the Verb if it is applied on the Simple dataset

(Simple-Time-shifted: x̄ = −40.55%, s = 38.66 and Simple-Zero-Time-shifted: x̄ = −28.14%,

s = 50.53). Intriguingly, Figure 3.18 shows that the pattern of improvement is reversed

when compared to the one observed with the All dataset. The decrease in perfor-

mance is the highest on the Direction (Simple-Time-shifted: −47.33%, Simple-Zero-Time-

shifted: −23.65%) and the Manner concept (Simple-Time-shifted: −96.91%, Simple-Zero-

Time-shifted: −110.62%).

The time-shifting algorithm therefore does not perform well on the Simple dataset.

The dataset contains a lot of descriptions “stopped”, 36 out of 82 or 43.90%, which

118

Figure 3.18: The relative difference in κ contributed by time-shifting for the J48
classifiers trained on Simple (red) and All (blue)

are used to delimit the dataset into segments on which time-shifting is performed (see

Section 3.3.1). In comparison, in the All dataset the description “stopped” occurs in

203 out of 1435 instances, thus in 14.15%. In the Simple dataset each segment thus on

average contains only one description other than “stopped”. The more descriptions

“stopped” there are, the more likely it is that these too are not synchronised with the

motion of the robot. The time-shifting algorithm calculates a delay for each segment by

subtracting the time code when the vehicle is stationary, when its speed is 0, from the

time code when the vehicle is described to be stationary. Under normal circumstances

natural language descriptions temporally follow descriptions of the robot’s state. The

algorithm regresses to find a stationary robot as far as it can on the list of odometry time

codes not checking whether it encounters another preceding description “stopped”. In

some cases, especially if there are a series of descriptions of “stopped” which do not

refer to a completely stationary robot, the regression may proceed too far and conse-

119

quently the estimated delay is too large. This causes the descriptions of a segment to

be shifted back too far and matched with completely random odometry information.

A manual investigation of the Simple dataset revealed that this indeed was happening.

The time-shifting procedure is not perfect and it could be improved in two ways.

The regression to find an odometry entry describing a stationary robot could be limited

not to cross into the preceding segment, it should not be allowed to cross a description

“stopped”. If information about a stationary robot cannot be found in any particular

segment, the segment should either not be time-shifted or it should be discarded. An-

other solution would be to relax the condition for a stationary robot. Instead of looking

for zero speed, an arbitrary small number such 0.03 could be used. Whichever heuris-

tic we take, it may improve the creation of instances in certain situations but equally

it may also create new errors in others. The preceding discussion shows that time-

shifting improves the performance of the J48 classifiers based on the All dataset which

was the reason why it was introduced. We attributed the impoverished performance

of the classifiers built from the time-shifted Simple dataset to the fact that it contains an

unusual number of “stopped” descriptions and that the criteria for a stationary robot

may be too strong. Normally time-shifting would not be used on this dataset because

we do not expect it to contain dis-synchronised entries.

Concept NTS TS ZTS RD-TS RD-ZTS

Simple
Verb 0.5699 0.8552 1.0000 50.06 75.47
Direction 0.5170 0.1371 0.5923 -73.48 14.56
Heading 0.9744 0.3854 1.0000 -60.45 2.63
Manner 0.2102 0.2156 0.0586 2.57 -72.12

All
Verb 0.1639 0.3680 0.3607 124.53 120.07
Direction 0.1846 0.1623 0.1426 -12.08 -22.75
Heading 0.1978 0.1763 0.1600 -10.87 -19.11
Manner -0.0098 0.0436 -0.0148 544.90 -51.02

Table 3.12: The performance of Naive-Bayes classifiers according to κ on
motion concepts on three datasets

120

Figure 3.19: The relative difference in κ contributed by time-shifting for the
Naive-Bayes classifiers trained on Simple (red) and All (blue)

The relative difference in performance of Naive-Bayes on various datasets is more

varied (Figure 3.19) but the same overall picture emerges as with J48. On average time-

shifting improves the performance of classifiers based on the All dataset but not those

based on the Simple dataset (Simple-Time-shifted: x̄ = −20.33%, s = 49.78; All-Time-

shifted: x̄ = 161.62%, s = 228.15). On All-Time-shifted the performance only improves

in the case of Verb andManner. The improvement on the latter amounts to 544.90% but

in an absolute value this means only an increase of 0.05. The κ value for this concept is

now positive rather than negative when no time-shifting is applied. The time-shifting

makes the κ values for Direction and Heading worse by 12.08% and 10.87%. The per-

formance of Naive-Bayes on All-Zero-Time-shifted improves less (x̄ = 6.80%, s = 66.56)

than on All-Time-shifted and this is surprising. The classifier for Verb is the only clas-

sifier whose performance improves on All-Zero-Time-shifted. Notably the classifier for

Manner gets worse rather than improves (−51.02%). Perhaps the All-Zero-Time-shifted

subset contains sparse data which performs less well in machine learning. However,

on the Simple dataset the situation is almost reversed. The classifiers for Verb, Direc-

121

tion and Heading improve more on Simple-Zero-Time-shifted than on Simple-Time-shifted.

However, the classifier for Manner gets considerably worse (−72.12%).

Although both J48 andNaive-Bayeswere trained on identical datasets time-shifting

appears to affect them quite differently. It gives rise to a less predictable improvement

in performance in the case of Naive-Bayes compared to J48. Furthermore, as shown

by the contours of the lines in Figures 3.18 and 3.19, in the case of Naive-Bayes the

relative difference, whether positive or negative, is much more extreme. The time-

shifting improved the κ value of both learners on all datasets for the Verb concept. It

had the greatest effect, either positive and negative, on theManner category.

Should time-shifting be used or not? The preceding discussion shows that it has

mostly a positive effect on the performance of classifiers if it is applied when creating

instances from the All dataset. However, it probably should not be used on the Simple

dataset.

3.5.5 How many nominal classes from numeric attributes?

In Section 3.3.4, page 74 we mentioned that we had to discretise numeric attributes

when they were used as target concepts with J48 and Naive-Bayes classifiers to nomi-

nal attributes with classes representing intervals of real numbers. The number of nom-

inal classes had to be determined manually and doing so there is a trade off between

the accuracy of the classifier and its predictive performance. To find the optimal num-

ber of classes for each numeric attribute we conducted an experiment in which we split

our six numeric attributes Delta-Heading (DH), Speed, LO x, LO y, REFO x and REFO y

into various numbers of intervals or bins as described on page 75 and then compared

the performance of J48 and Naive-Bayes on such target concepts. The baseline for

our comparison was the mean performance of the same classifiers used on the same

datasets but on concepts that were truly nominal.

Throughout, we consider the version of the Simple dataset where the instances for

the motion concepts were created without time-shifting (Simple-Not-Time-shifted) and

122

the version of the All dataset where the instances for the motion concepts were created

with time-shifting (All-Time-shifted). When these datasets are considered together with

the datasets for object relations which were never created with time-shifting, we refer

to them only as Simple and All.

The discretisation in which some number of bins is created from an attribute whose

values are real numbers biases the classifiers toward one of the two extremes as dis-

cussed in Section 3.3.4. This is because we do not knowwhat are meaningful categories

for this attribute. These depend on the values of other attributes in the dataset. On one

hand, if only one bin is created, the classifier will inevitably behave like a majority

based classifier. On the other hand, if too many bins are created, for example, so that

each numeric class fits into its own bin, then the classifier will behave like a random

classifier. It is thus here too that a comparison of κ on various datasets will be more in-

structive than a comparison of accuracy. We nonetheless start with a brief comparison

of the various classifiers by accuracy.

Figure 3.20: The average accuracies of classifiers with differently discretised
real-valued target concepts trained on Simple (red) and All (blue). Each bin is a
nominal category of a target concept and represents an interval of values from
the set of real numbers.

123

Figure 3.20 shows how the average accuracies for both J48 and Naive-Bayes clas-

sifiers from Simple and All datasets taken from Table 3.13 change while altering the

number of bins of target concepts. As predicted in Section 3.3.4, the accuracies de-

crease with the number of bins, simply because with an increased number of classes it

becomes more difficult for the classifier to place an instance in the correct class. The

mean accuracy on truly nominal concepts for Simple J48 is x̄ = 84.20, s = 9.64 and

for Simple Naive-Bayes x̄ = 81.48, s = 9.10. As shown in Table 3.13, the closest mean

accuracies on this dataset are already reached with our smallest chosen number of bins

(5). We mark their values in Table 3.13 in bold. On the other hand, the mean accura-

cies on nominal concepts for All J48 are x̄ = 62.54, s = 5.03 and for All Naive-Bayes

x̄ = 52.91, s = 8.88. For these the closest mean accuracies are obtained if real-valued

target concepts are split into 11 bins.

5b 7b 11b 21b 41b
Concept Inst J48 NB J48 NB J48 NB J48 NB J48 NB

Simple
DH 82 86.59 87.80 81.71 80.49 78.05 79.27 71.95 74.39 67.07 68.29
Speed 82 70.73 80.49 74.39 79.27 67.07 63.41 58.54 58.54 52.44 47.56
LO x 278 67.27 60.43 61.51 20.50 48.56 16.91 34.53 11.51 28.42 11.15
LO y 278 79.50 34.17 78.06 27.70 68.35 22.66 52.16 17.27 32.73 14.39
REFO x 278 84.17 78.42 71.58 64.75 64.75 61.51 61.87 56.83 61.15 54.32
REFO y 278 91.01 87.05 87.77 81.65 84.89 76.98 79.14 73.74 69.42 64.75
Mean 79.88 71.39 75.84 59.06 68.61 53.46 59.70 48.71 51.87 43.41
Standard deviation 8.47 18.94 8.24 25.43 11.35 24.72 14.28 25.24 16.03 22.71

All
DH 1444 82.89 78.88 73.48 72.23 69.11 66.90 53.53 52.84 45.64 46.05
Speed 1444 64.89 64.96 58.86 58.24 49.58 48.13 36.29 35.66 29.16 28.19
LO x 625 65.44 63.84 60.16 50.24 48.80 40.00 34.08 16.80 28.96 17.28
LO y 625 80.32 37.28 82.08 33.76 72.80 26.88 57.28 23.52 37.44 18.24
REFO x 625 81.44 80.00 71.52 63.84 65.60 60.80 58.88 57.76 58.88 55.20
REFO y 625 89.92 78.72 85.28 74.56 82.24 69.92 72.32 65.92 65.28 61.76

Mean 77.48 67.28 71.90 58.81 64.69 52.10 52.06 42.08 44.23 37.79
Standard deviation 9.23 14.97 9.94 13.87 12.08 15.33 13.28 18.05 13.94 17.52

Table 3.13: The accuracies of classifiers with differently discretised real-valued
target concepts trained on Simple and All

An interesting picture emerges when we look at the corresponding means of κ val-

ues shown in Table 3.14 and Figure 3.21. For the Simple J48 run the highest average κ

coefficient is obtained with 7 bins, for Simple Naive-Bayes with 5 bins, for All J48 with

124

11 bins and for All Naive-Bayes with 7 bins. Three of four runs (Simple J48, All J48 and

All Naive-Bayes) show an arching curve with a peak between 7 and 11 bins. Thus, if

a choice on the number of bins should be made on the basis of Figure 3.21, 7 bins are

optimal, although a very rough, choice.

Figure 3.21: The average values of κ of classifiers with differently discretised
real-valued target concepts trained on Simple (red) and All (blue)

How do the average κ values of classifiers with differently discretised real-valued

target concepts compare to the average κ values of classifiers with truly nominal target

concepts? When discretisation is applied, the average κ values of classifiers based on

Simple are considerably lower. The mean κ for Simple J48 on nominal target concepts is

x̄ = 0.6849, s = 0.2335 and x̄ = 0.6019, s = 0.2526 for Simple Naive-Bayes. As shown

in Table 3.14 the closest average values of κ for J48 with discretised target concepts are

x̄ = 0.4735, s = 0.1464 for 7 bins and for Naive-Bayes x̄ = 0.3380, s = 0.2738 for 5

bins. These are also the highest average values for all bins under consideration. The

mean κ for All J48 on nominal target concepts is x̄ = 0.4233, s = 0.1320 and x̄ = 0.2676,

s = 0.1909 for All Naive-Bayes. The performance of classifiers with discretised target

concepts comes close to these values (All J48: x̄ = 0.4090, s = 0.0846 for 11 bins; All

125

Naive-Bayes: x̄ = 0.2539, s = 0.1219 for 7 bins). Again, these are the highest values

for all the bins under consideration. The results show that the discretised classes are

not as semantically straightforward as the natural nominal classes of the Simple dataset.

However, the quality of the discretised classes is comparable to the more varied classes

of the All dataset which is a positive result.

5b 7b 11b 21b 41b
Class J48 NB J48 NB J48 NB J48 NB J48 NB

Simple
DH 0.6979 0.7251 0.6168 0.5920 0.5679 0.5904 0.4535 0.4999 0.3921 0.4138
Speed 0.4532 0.6568 0.5659 0.6590 0.4711 0.4366 0.3792 0.3891 0.3045 0.2315
LO x 0.4842 0.3833 0.4703 0.1099 0.3274 0.0796 0.2309 0.0590 0.2116 0.0722
LO y 0.0000 0.0372 0.5750 0.0823 0.4792 0.0665 0.3259 0.0509 0.1838 0.0705
REFO x 0.3765 0.1592 0.1773 0.0848 0.1274 0.1003 0.1602 0.1396 0.0029 0.0851
REFO y -0.0234 0.0664 0.4354 0.1072 0.4859 0.1711 0.3732 0.1294 0.2762 0.1357

Mean 0.3314 0.3380 0.4735 0.2725 0.4098 0.2408 0.3205 0.2113 0.2285 0.1681
St.dev. 0.2615 0.2738 0.1464 0.2505 0.1449 0.2006 0.0980 0.1711 0.1211 0.1232

All
DH 0.0000 0.2722 0.0818 0.3692 0.4456 0.3932 0.2809 0.2831 0.1913 0.2243
Speed 0.4786 0.4731 0.4396 0.4262 0.3737 0.3481 0.2548 0.2299 0.1869 0.1551
LO x 0.4464 0.4023 0.4410 0.3187 0.3396 0.2328 0.2191 0.0999 0.2079 0.1225
LO y 0.0000 0.0605 0.6437 0.1229 0.5301 0.0922 0.3735 0.0926 0.2325 0.0888
REFO x 0.3376 0.1317 0.2241 0.1310 0.2839 0.1560 0.2426 0.1642 0.2357 0.1495
REFO y -0.0024 0.1088 0.4326 0.1554 0.4812 0.1697 0.3094 0.1619 0.2711 0.1625
Mean 0.2100 0.2414 0.3771 0.2539 0.4090 0.2320 0.2801 0.1719 0.2209 0.1505
St.dev. 0.2151 0.1543 0.1792 0.1219 0.0846 0.1070 0.0506 0.0675 0.0291 0.0412

Table 3.14: The values of κ of classifiers with differently discretised
real-valued target concepts trained on Simple and All

In the preceding discussion we compared the average performance of classifiers

for various numbers of bins across all discretised concepts. However, it is quite likely

that different concepts will have a different optimal number of bins, depending on our

conceptualisation of motion and space and thus related to the linguistic descriptions.

Table 3.15 shows the number of bins with the highest scoring value of κ for both learn-

ers and on both datasets. An interesting fact that emerges from this table is that except

in one case (All, REFO x) both J48 and Naive-Bayes achieve the best performance with

the same number of bins. This gives weight to the claim that there is an optimal num-

ber of bins for a particular discretised numeric target concept. Although there is some

correspondence, the number of bins for one target concept is not the same between

126

Simple and All datasets. This can be expected as the datasets do not contain the same

nominal attributes which drive the classification to the discretised classes of the target

concept.

DH Speed LO x LO y REFO x REFO y Mean

Simple
J48 5 7 5 7 5 11 7
NB 5 7 5 7 5 11 5

All
J48 11 5 5 7 5 11 11
NB 11 5 5 7 21 11 7

Table 3.15: Bins with the highest κ value per concept

No doubt the success of discretisation is dependent on theway other attributes split

the data (see Witten and Frank, 2005, Figure 7.4, page 303). An unsupervised method

of finding the optimal number of bins for a numeric concept discussed in Witten and

Frank (2005, Section 7.2, page 298) is entropy-based discretisation which was introduced

by Fayyad and Irani (1993). The approach is almost identical to the way numeric at-

tributes are split into leaves by the C4.5 algorithm described in Section 3.4.2. It requires

that the target concept is a nominal attribute different from the numeric attribute to be

discretised. The numeric attribute is discretised to bins that give rise to the purest sub-

sets of instances in respect to the values of the target concept. This is accomplished by

sorting the values of the numeric attribute from the lowest to the highest and then con-

sidering each point where the target class changes (see Table 3.6 on page 90). For each

possible split an information value is calculated, and the split point that gives rise to

the lowest information value is the onewhere an interval split is introduced.15 The pro-

cedure is further recursed on both intervals until some stopping criteria is reached.16

15This ensures that the information gain which is the difference in information value before the split
and with the split is the greatest. The information value before the split is a constant and can thus be
omitted.

16This is determined in terms of the Minimal Description Length Principle (MDL) by considering
whether the information required to specify the split (the theory) and the target classes according to that
split (the data) is smaller than the information gain introduced by the split. For discussion see (Witten
and Frank, 2005, page 301).

127

Although this method is superior to our manual method based on comparing the final

classifier performance in terms of the κ coefficient we have not implemented it. This

is because we started the task as a practical examination of the effects of different bin

sizes on the performance of classifiers during which reasonable results were obtained.

No doubt, future work should include the implementation of the entropy-based dis-

cretisation.

3.5.6 The performance of classifiers per class

In this section we examine the performance of classifiers per class. As discussed in

Section 3.5.1, there are two measures that are commonly used for this purpose: the

ratio of true positives (TP Rate) to false positives (FP Rate) and the ratio of Precision

against Recall. Since all our concepts are multi-valued rather than binary, negatives

refer to all other classes excluding the class under consideration. Each ratio is calcu-

lated for every target class of a concept and the pairs of ratios are cross-tabulated in

a ROC Space or a Precision-Recall Graph. Because of the limitations of space we cannot

consider each of eleven target concepts in detail. Since they were built on two datasets

and we are examining them for two measures, this would result in 44 graphs in total.

Instead, we chose to discuss the performance of classifiers on two representative target

concepts only—Relation and Verb—and list the evaluation data for all other concepts in

Appendix A, page 255ff.17

All ratios are determined by examining a confusion matrix produced in a stratified

10-fold cross validation such as the one in Figure 3.22. Thematrix shows us what errors

are made by the classifier. For example, the class g “in the front of” was classified

correctly 84 times. However, instances belonging to this class were also classified as i

“to the right of” (15), as j “to the left of” (13), as l “close to” (7), as a “next to” (1), as

f “facing” (1), as h “far from” (1), and as k “behind” (1). Equally, instances of the class

17This also includes the calculation of AUC (Area Under the ROC Curve) for each target class which we
omit in our discussion. For details see (Witten and Frank, 2005, page 168ff.).

128

j “to the left of” were classified correctly 131 times but they were also classified as g

“in the front of” (17), as k “behind” (8), as i “to the right of” (4), and as c “near” (3).

The examples show that the majority of incorrect classifications are on classes whose

denotations or spatial templates partially overlap (“to the left of” versus “in the front

of” versus “to the right of”) as discussed on page 15. For this reason they are also very

hard to distinguish for the classifier.

Predicted

Actual

a b c d e f g h i j k l
0 0 0 0 0 0 1 0 0 0 0 0 a “next to”
0 0 0 0 0 0 0 0 0 1 0 0 b “after”
0 0 2 0 0 0 1 0 2 5 0 5 c “near”
0 0 0 0 0 0 0 0 2 0 1 1 d “parallel to”
0 0 0 0 0 0 0 0 0 1 0 0 e “opposite of”
0 0 0 0 0 4 1 4 0 0 2 1 f “facing”
1 0 0 0 0 1 84 1 15 13 1 7 g “in the front of”
0 0 0 0 0 2 2 4 2 2 0 2 h “far from”
0 0 3 0 0 0 17 1 117 7 9 0 i “to the right of”
0 0 3 0 0 0 17 0 4 131 8 0 j “to the left of”
0 0 2 0 0 3 7 0 13 7 81 1 k “behind”
0 0 4 2 0 0 2 3 1 1 1 9 l “close to”

Figure 3.22: A confusion matrix for the J48 classifier for the concept Relation
built by a stratified 10-fold cross-validation from the All dataset

Figure 3.23 shows the ROC Space and the Precision-Recall graph for the Relation

classifier built from both Simple and All datasets. As concluded previously, the clas-

sifiers based on the Simple dataset are performing well. The points representing the

individual target classes cluster in the top left corner of the ROC graph and in the top

right corner of the Precision-Recall graph. There is a high TP Rate or Recall and a high

Precision. Importantly, the points representing individual target classes are clustered.

This means that the classifiers are performing equally well on all target classes.

For the classifiers built on the All dataset, both the ROC graph and the Precision-

Recall graph show two clusters. The classifiers perform well on some classes but less

well on the others. The better performing cluster appears to correspond to the cluster

found with classifiers based on the Simple dataset. We return to this issue below.

The ROC graph shows that the classes with a TP Rate below 0.4 also have a low

129

(a) Simple dataset (b) All dataset

Figure 3.23: ROC and Precision-Recall graphs for Relation

or zero FP Rate. This means that the majority of instances belonging to these classes

(0.6 or more) are assigned to other classes and that very few instances of other classes

are classified as these classes. The Precision-Recall graph shows that both Precision and

Recall appear to have a similar value below 0.4. This means that in the set of instances

that are assigned a particular class only 40% or less truly belong to that class and that

only 40% or less of that class is retrieved in the set.

The most likely explanation for this behaviour of classifiers on these classes is data

sparseness. The classifiers were trained on a training set that contained only a few in-

stances with each target class. For example, the confusion matrix in Figure 3.22 shows

that “near” only occurs in 15 out of 625 instances and only 2 have been correctly as-

signed. On the other hand “next to” only occurs once in the entire dataset which means

that it could not be represented in each training and testing set. A few instances are

130

insufficient to separate these classes from other classes. As a result they tend to be

assigned other classes.

(a) Simple dataset (b) All dataset

Figure 3.24: ROC and Precision-Recall graphs for Verb

Figure 3.24 shows the same measures graphed for the concept Verb. The classifiers

perform slightly worse on this concept (see Figure 3.17 on page 112 for a comparison

of their κ values): the dots tend to move further away from the top left (ROC graph)

and the top right corners (Precision-Recall graph). Also, the clusters are slightly less

pronounced but the general pattern of graphs is strikingly similar to the pattern for the

Relation concept.

We discussed the general performance of classifiers per individual classes but we

did not mention which classes are associated with each pattern. Figure 3.25 and 3.26

showhistogramswith class labels on x-axis and their F-Measure on y-axis. As discussed

on page 103, F-Measure is an average of Precision and Recallwhich means that it allows

us to represent them both conveniently on a single axis.

131

(a) Simple dataset (b) All dataset

Figure 3.25: F-Measure per class of Relation

Both sets of histograms confirm that the highest F-Measures are found with those

classes of concepts built from the All dataset that were also chosen as the “core” classes

for the Simple dataset. These are “behind”, “in the front of”, “to the right of” and “to

the left of” for Relation and “moving” and “stopped” for Verb.

(a) Simple dataset (b) All dataset

Figure 3.26: F-measure per class of Verb

In the preceding sections we concluded that the classifiers perform less well on

the All dataset than the Simple dataset. However, the evidence presented here shows

that the fall in performance is not uniform with every value of the target class. The

performance of classifiers on the “core” classes is comparable regardless which dataset

they were built from. This is an encouraging result since it shows that varying the

132

describers while collecting the All dataset did not influence the learning of the “core”

target classes. The diminished performance appears to be due to scarceness of other

classes. This was an inevitable outcome of the experiment in which we wanted the

describers to use freely any vocabulary that they deemed appropriate. It is interesting

from a linguistic point of view that most describers usually opt for a “core” vocabulary

to refer to the environment rather than display creativity. This is most likely because

of a practical point: projective relations such as “to the left of” define the location of

objects far more precisely than non-projective ones such as “close”.

3.6 Conclusion

In this chapter we described how we collected, structured and performed learning on

our two corpora of spatial expressions which we referred to as Simple and All. The

Simple corpus was created by constraining the data collection process with the view of

creating the cleanest possible dataset given the complexity of the task. In contrast, the

All corpus was collected by relaxing these restrictions by allowing multiple describers,

different experimental scenes, un-controlled use of linguistic descriptions and by pro-

viding a more natural way of describing the scenes through speech recognition. Our

objective was to find associations between a relatively low level information that is suf-

ficient to navigate a mobile robot and a higher level symbolic human conceptualisation

of motion and space reflected in natural language descriptions.

While preparing the data for machine learningwe had tomake a number of choices.

For example, we had to choose the kind of information that will be included in learn-

ing, how this will be structured and how information collected in different scenes shall

be integrated. Each of these choices adds positive or negative knowledge to the learn-

ing task and thus biases the learning process. Another challenge that we faced is how to

combine various non-linguistic and linguistic information from time stamped entries

in MOOS log files to coherent instances. This was particularly important for creating

133

a corpus of motion descriptions since the values of entries were constantly changing

and there was a high chance that the information would become dis-synchronised. We

devised a time-shifting procedure which attempts to compensate such errors. Finally,

another challenge was to find a suitable discretisation method to transform continuous

numeric attributes to nominal classes that could be used with our selection of classi-

fiers.

Two popular machine learning algorithms were chosen for the task: a decision tree

learner J48 and Naive-Bayes classifier. Although Naive-Bayes is conceptually a much

simpler classification method, it is commonly reported to achieve comparable results

to other state of the art methods. This was also confirmed by our experiments. The

performance of the classifiers was evaluated with a stratified 10-fold cross-validation

and by considering different evaluation measures. Of these, the accuracy is the most

commonmeasure. We pointed out that the accuracy alone cannot be a conclusive mea-

sure of the classifier performance and chose the κ coefficient in preference to it. Here

again, we confirmed the observations in the literature that different conclusions about

the performance of the classifiers may be drawn depending on the measure being con-

sidered.

Throughout the chapter we compared the performance of the system in respect to

the choices that were made: the classifiers, the use of time-shifting on the subset of

the motion data and the optimal number of bins to discretise numeric attributes. The

general trend that emerged from the evaluation is that the learners performed better on

the Simple rather than the All dataset, that J48 performed better than Naive-Bayes and

that time-shifting improved the performance of classifiers on motion data but only if

this was taken from the All dataset. We argued that the optimal single overall number

of nominal bins for numeric attributes is 7. By considering a detailed performance of

classifiers per class for some target concepts we have shown that the performance of

All may be comparable to Simple on values that were better represented in the dataset

134

and that the overall diminished performance may be due to data sparseness on some

target class values.

Throughout this chapter we discussed the performance of the classifiers relative

to the machine learning task. But can we also say that the learning was successful in

general? How well do the classifiers approximate to the human conceptualisation of

motion and space? No doubt the performance of any natural language systemdepends

on the difficulty of the task and thus directly comparing our results to other systems,

even if they concentrate on learning or generating spatial and motion descriptions,

does not make much sense. For example, in a parsing task an accuracy of 98% is a good

achievement. However, in automatic induction of grammar rules from text an accuracy

of 60% is an excellent result. A much better test of learning would be to examine

whether the learned knowledge can be used to generate actions and descriptions that

appear natural to humans. We constructed a set of experiments toward this end which

we describe and discuss in Chapter 5. Before proceeding to these we first discuss the

construction of two systemswhich integrate the classifiers to basic language generation

and question answering systems with which human observers can interact.

135

136

Chapter 4

From classifiers to an interactive
system

4.1 Introduction

In this chapter we describe how we integrated the classifiers trained in machine learn-

ing to a simple language generation (pDescriber) and question answering system (pDi-

alogue). The purpose of these systems is not to build a state of the art dialogue sys-

tems but to test the performance of classifiers on human observers. The learning tasks

described in Chapter 3 can only be judged successful if the robot is able to use and

understand the acquired expressions in a way that is natural to a human observer.

The systems integrate the classifier knowledge in two different ways. pDescriber

most faithfully replicates the scenes in which the data was collected. The programme

considers the odometry and SLAM information about the environment and produces

natural language descriptions of various categories fromwhich grammatical sentences

are generated. pDialogue, on the other hand, generates answers to user’s questions

about the location of objects and performs motion actions based on user’s commands.

Both tasks require a series of steps in order to generate a response. For example, to

answer a question about the location of objects we need to choose the relevant refer-

ence object in the scene and find a relation between that object and the object we want

to locate. Equally, to generate a requested motion the robot must be issued with com-

mands that bring the robot to the state referred to in the request. In terms of classifiers,

137

the difference between pDialogue and pDescriber is that in pDialogue in many cases the

target concepts are not natural language descriptions but properties of the robot or

environment.

To communicate with other robotic applications pDescriber and pDialogue must in-

tegrate with the MOOS environment. We discuss how this is done in the following

section.

4.2 General structure of pDescriber and pDialogue

Both pDescriber and pDialogue communicate with theMOOS system through awrapper

programme called iLinguistics.1 iLinguistics acts as a proxy between the MOOS system

and the linguistic applications. These send and receive data to iLinguistics by writing

and reading it from structured input and output text files, whereas iLinguistics sends

and receives this data to the MOOS database through the TCP/IP protocol. This is

summarised in Figure 4.1. This set up may not be optimal, but it was chosen because

linguistic applications were designed in Prolog (Bratko, 2001), whereasMOOS applica-

tions are written in C++. The MOOS system already contains libraries that handle data

exchange between MOOS applications and the MOOS database. Creating a simple

wrapper MOOS application was simpler and faster than re-implementing or porting

these libraries to Prolog.

pDescriber_output.txt

pDescriber_input.txt

iLinguistics MOOSDB

TCP/IP

pDescriber

pDescriber_state.txt

Figure 4.1: Integration of linguistic applications with MOOS

iLinguistics runs a linguistic application at a predefined interval. At each run iLin-

guistics retrieves the values of the desired variables from the MOOS database, formats

1I thank Paul M. Newman for implementing this application.

138

them to a particular form and writes them to the input file for the linguistic appli-

cations (pDescriber input.txt). It then runs the linguistic application which reads and

parses the data from the input file, performs the required actions using the data that

it received, formats and saves the data that it wants to send to MOOS to the output

text file (pDescriber output.txt) and exists. The output file is then read by iLinguistics

and the values are submitted as MOOS variables to the MOOS database. A shortcom-

ing of this approach is that a linguistic application must exit before the data is read by

iLinguistics. This means that linguistic applications are run in sessions. During each

session a linguistic application is reinitialised. In order to keep track of the actions that

happened before and also to read-in some settings particular to the current configura-

tion and environment we use a special “state” file (pDescriber state.txt). This contains

feature-value pairs, one per each line. Figures 4.2 and 4.3 show two sample files used

in the evaluation of both systems. Most entries have a straightforward interpretation.

We will explain the others in the forthcoming sections when we discuss the functions

of the systems. Just as the input and output files, the state file is read and parsed when

a linguistic application is launched and it is updated with new information just before

a linguistic application exits.

Through iLinguistics the linguistic applications can read and write the value of any

variable that is published in the MOOS database. The messages exchanged between

the applications and iLinguistics are strings containing feature-value pairs. We imple-

mented two predicates send string(+Variable,+Value) and send numeric(+Variable,+Value)

which format our data to the format expected by iLinguistics.2 New variables can be

created by simply sending a new variable name with some value. MOOSDB keeps

track of the application that set the variable’s value. In our case the application name

is iLinguistics.

2According to a convention in Prolog programming the + symbol with an argument name indicates
that the argument must be specified when the predicate is queried, – indicates that the argument is re-
turned by the predicate, and ? indicates that the argument must either be specified or is returned.

139

vehicle name = MARGE
maximum speed = 0.6
max angular velocity = 1
robot z = 0.5
room x = 9.393
room y = 11.97
odometry source = iPlatform
objects commentary frequency = 3
use moos ispeech = no
ask for judgements = yes
direction = j48|weka.classifiers.trees.J48|all ts direction j48.model. . .
heading = j48|weka.classifiers.trees.J48|all ts heading j48.model. . .
manner = j48|weka.classifiers.trees.J48|all ts manner j48.model. . .
verb = j48|weka.classifiers.trees.J48|all ts verb j48.model. . .
preposition = j48|weka.classifiers.trees.J48|all ts j48.model. . .
delta heading = none
speed = none
lo x = none
lo y = none
refo x = none
refo y = none
said previously = stopped none none none

Figure 4.2: A state file that configures pDescriber for a particular environment
and instructs it to use the J48 classifiers built from the All-Time-shifted dataset.

vehicle name = MARGE
use moos voice input = yes
use moos speech = no
repeat input sentence = yes
room x = 15.173
room y = 11.586
robot z = 0.5
must confirm motion = yes
ask for judgements = yes
binary judgements = yes
direction = j48|weka.classifiers.trees.J48|all ts direction j48.model. . .
heading = j48|weka.classifiers.trees.J48|all ts heading j48.model. . .
manner = j48|weka.classifiers.trees.J48|all ts manner j48.model. . .
verb = j48|weka.classifiers.trees.J48|all ts verb j48.model. . .
preposition = j48|weka.classifiers.trees.J48|all preposition j48.model. . .
delta heading = j48|weka.classifiers.trees.J48|all ts delta heading 11b j48.model. . .
speed = j48|weka.classifiers.trees.J48|all ts speed 11b j48.model. . .
lo x = j48|weka.classifiers.trees.J48|all lo x 11b j48.model. . .
lo y = j48|weka.classifiers.trees.J48|all lo y 11b j48.model. . .
refo x = j48|weka.classifiers.trees.J48|all refo x 11b j48.model. . .
refo y = j48|weka.classifiers.trees.J48|all refo y 11b j48.model. . .
heard previously = Where is the sofa?
evaluate response = no
response in session = -1

Figure 4.3: A similar state file to configure pDialogue.

140

As discussed in Section 2.4.1, page 31ff. iLinguistics does not receive and pass on

all the data from the MOOSDB but only what is interested in. This is accomplished by

subscribing to variables which can be initiated from a linguistic application using the

subscribe(+Variable) predicate. The subscription to MOOS variables must be performed

as soon as the system is launched, when the session count is 0.3 If the session is other

than 0, a linguistic application should already be receiving the information that it sub-

scribed to and and it should proceed to processing it and issuing a response. Figure 4.4

shows Prolog pseudo-code which demonstrates the general framework of linguistic

applications.

start :- main_application :-
get_command_line_arguments, session_count(0),
read_data_from_files, subscribe(Var1),
main_application, subscribe(Var2),
write_data_to_files, ...,
reset_application. .

main_application :-
p_describer.

main_application.

Figure 4.4: General structure of linguistic applications. Very roughly, a colon
followed by a hyphen (:-) can be read as if and a comma (,) can be read as and.
Multiple definitions of the main application/0 predicate indicate alternative
goals that are explored. This happens if the goal in the first definition fails, for
example if session count(1). In this case the goal in the second clause is
explored and so on.

Remember that MOOSDB does not delete any information once it has been re-

trieved by an application. The information remains there until it is specifically altered.

This means that a client application may receive the same variable value each time

it queries the database if this has not changed in the meantime. This is intended by

design. MOOSDB records states of environment and the robot. If the state has not

changed, the response of the system should also not change. However, this behaviour

3The session count is passed from iLinguistics to the linguistic applications as a command line argu-
ment together with the names of the required input and output files. See get command line arguments/0 in
Figure 4.4.

141

may be problematic when considering linguistic descriptions which are acts of speech

rather than states. For example, pDialogue receives linguistic descriptions through a

MOOS variable called VOICE INPUT. This is published by iSpeech, a programme pro-

viding an interface to a speech recogniser. When considering VOICE INPUT pDia-

logue must check whether its value is not the same as in the previous session which is

recorded in the heard previously feature in the state file. If it is, it can be ignored since

the human interactor said nothing new.4

The linguistic applications interface with Weka in a similar way as they interface

with theMOOS system: through text files. Althoughwriting a glue code that would in-

terface with Java classes that make up Weka is easier than interfacing with the MOOS

system, the simplicity of the text file data exchange outweighed these options. Sur-

prisingly, the method provides a very good speed of classification.5 In Weka a clas-

sifier can be saved after training in a model file that can be reloaded later to clas-

sify new instances. This step can be done by running the following command: java

weka.classifiers.trees.J48 -T to-classify.arff -p 5 -l learned.model.

To make a successful classification the following information is required: the name

of the classifier (weka.classifiers.trees.J48), the file with the model (learned.model), an arff

file with instances to classify (classify.arff), and the index of the attribute that is the

target concept (5). The arff file must contain a properly formatted header declaring

attributes and their values as when performing training on them (see Figure 3.9, page

73). This also includes the target concept. Unless we are testing the performance of the

classifier on a test set, the target classes of individual instances will be unknown. In

such cases they are replaced by a question mark (?) which is commonly used in Weka

datasets to designate unknown values.

4An alternative solution would be for pDialogue to set the value of VOICE INPUT to some dummy
value after processing a valid linguistic description and not provide any response in the subsequent ses-
sions until a different value is encountered.

5The longest time in the pipeline is taken by the speech recogniser and later by a speech synthesiser.
Nonetheless, the overall speed of the system is more than satisfactory and the system behaves quite
naturally.

142

0 left 0.75 ?
1 right 0.7272727272727273 ?
2 far 0.95 ?
3 left 0.8813832578243578 ?
4 close 0.9843674373825883 ?

Figure 4.5: Weka classifier output

When running the classification command above the output in Figure 4.5 is ob-

tained. Each line represents one classification. The number identifies instances in the

arff dataset that were classified. The second property is the class predicted by the clas-

sifier model, followed by the prediction accuracy or confidence with which that class

was chosen. The final property is the actual target class of the instance if this is given in

the supplied dataset. This example shows that quite a few pieces of information from

the training are required to classify new instances using an existing classifier model.

We show in the following sections how the continuity of this information is ensured in

our system.

4.3 Configuring and starting the systems

Figures 4.6 and 4.7 show the configurations of processes that are required to run each

system. As expected, they are very similar to the configurations under which the data

was collected shown in Figure 3.1, page 57. The difference is that the systems collect

and process both motion and object relation data simultaneously and that the language

input methods have been replaced by intelligent systems that are able to generate and

analyse linguistic data rather than just collect it. Since the data was collected certain

technical changes have been made to the MOOS system. Most notably, iAGV has been

replaced by iRelayBox and iPlatform which now provide odometry information.

The difference between the configuration for pDescriber (Figure 4.6) and pDialogue

(Figure 4.7) is that the latter includes another process pDialogueEval, a virtual user used

143

for the evaluation which asked predefined questions at specific locations which were

then answered by the system. This process is redundant if the system is running in

a non-evaluation mode and would be replaced by iSpeech, an interface to the speech

recognition system to which a real user can ask a question. The boxes encompass

processes that were running on one computer.

MOOSDB

iRemote
manual control

pLogger
logs values

from MOOSDB

iPlatform
publishes the
odometry info

iCommentary
relativises object coordinates

to the robot
iLMS200

provides laser
scan data

pSMSLAM
localises the robot

pAntler
starts processes

iSpeaker
synthesizes speech

pAntler
starts processes

iRelayBox

Robot/Marge

pDescriber

Weka

Computer1

iLinguistics

Figure 4.6: The topology of a system running pDescriber

MOOSDB

iRemote
manual control

pLogger
logs values

from MOOSDB

iPlatform
publishes the
odometry info

iCommentary
relativises object coordinates

to the robot
iLMS200

provides laser
scan data

pSMSLAM
localises the robot

pAntler
starts processes

iSpeaker
synthesizes speech

pAntler
starts processes

pAntler
starts processes

iRelayBox

Robot/Marge Computer1

pDialogue

Weka

iLinguistics_1

Computer2

iLinguistics_1

pDialogueEval

Figure 4.7: The topology of a system running pDialogue

Before the system can start, the above processes need configuring and the infor-

mation about the environment must be collected and built. The majority of steps are

144

identical to the ones that were required when creating datasets for machine learning.

We briefly summarise them again. First, we need to set up a new environment with

new objects. Once this is accomplished a SLAM map can be built. As stated before,

this is done by guiding the robot manually around the room and setting the pSMSLAM

to the “SLAM” mode in which it builds a coherent map from its observations. When

the map contains enough detail, the pSMSLAM can be restarted in the “localisation”

mode in which the system, based on the current observations, locates the robot on the

map that it previously built. Having the map and its current location, the robot also

“knows” the location of all other sites on the map. The map and the location of the

robot can be displayed on the screen with the uSMSView which we use to point to lo-

cations and ground the objects. The names and the coordinates of objects relative to

the origin of the robot obtained from the uSMSViewmust be saved in the iCommentary

section of a .moos file. This process is subsequently responsible for re-calculating the

global coordinates of these objects to coordinates relative to the current location of the

robot. If we are running an experiment in which data is to be collected then it is cru-

cial that correct MOOS variables are being logged. This can be checked in the pLogger

section of a .moos configuration file.

The linguistic applications must be configured with a few settings in their state

files as shown in Figure 4.2 and 4.3. Some MOOS variables relate to a specific robot

and therefore also contain its name, for example MARGE ODOMETRY. In order to

retrieve these variables, the linguistic application thus needs to know which robot we

are using. This can be specified as vehicle name in their state files and must correspond

to the VehicleName given in the iAGV/iPlatform configuration block of a .moos file.

Equally, the value ofmaximum speed in both state files must correspond to the value

ofMaxTransSpeed in the iAGV/iPlatform configuration block of a .moos file and the value

ofmax angular velocitymust correspond to the value ofMaxRotSpeed. The linguistic ap-

plications must know the maximum speed in m/s and the maximum rotational speed

145

in rad/s that the robot is allowed to achieve. This is because the values of speed and

angular velocity learned by the classifiers are normalised against these values (see Sec-

tion 3.3.2, page 66). To apply an actual value in a current setting, the predicted nor-

malised value must be “de-normalised” using the current maximum value.

The coordinates of objects included in the classifiers have also been normalised.

These too must be “de-normalised” against the current maximum room size. To esti-

mate this we use the same algorithm that we used when we created instances from the

object relations dataset (see page 67). The programme Find-Room-Size takes a map file

created by SLAM for the current room and return the maximum x and y coordinates

which must be saved as room x and room y in the state files.

An important section of the state files is the list of classifiers that the system should

use. Becausewewill be testing the performance of the systemon a number of classifiers

that come in sets such as J48 and Naive-Bayes we need an automated system with

which we can manage them. We designed two programmes to accomplish this task:

Classifier Builder and Classifier Chooser.

Classifier Builder runs every arff instance file (data.arff) found in the current folder

through every Weka machine learning classifier that we specify. It follows the Weka

convention that the last declared attribute is the target class. For each run it generates

a set of files. The first file stores the model that Weka learned and can be re-loaded to

Weka to classify new instances (data classifier-name.model). The linguistic applications

need to know some information about the models before they can apply them inWeka.

Most importantly they need to knowwhat are their attributes and their possible values.

Weka model files are binary and reading them is not straightforward. However, as

shown in Figure 3.9, page 73 all the required information is present in plain text in

the header of each arff instance file. For this reason, we extract these headers and

save them separately (data.header). The printed results from the classifier evaluation

discussed in the previous chapter are also saved (data classifier-name.txt). Finally, we

146

need the information how the set of files was created. The name of the learner, both

a common name and the Java class-path name, and any options that are passed to it

when the model was built must also be passed together with the model to Weka when

classifying new instances. Having the names of the files in a particular configuration

is also very handy. All the above information is saved to a classifier configuration file

(data classifier-name.pl). If a particular classifier needs to be applied, we first consult

this file and refer to the supporting files when processing the data.

While Classifier Builder allows us to quickly create and save classifier configurations,

the purpose of Classifier Chooser is to apply these configurations to the pDescriber or

pDialogue state files automatically to reduce the possibility of an error. The programme

obtains a list of required target concepts and compares it to the definitions already

present in the state file. The user has the option to leave these definitions unchanged,

to delete them, or to provide a new classifier. In the latter case the programme queries

the user to provide a configuration file created by Classifier Builder. Classifier Chooser

first checks the header file from the given configuration if the names of the required

and the supplied target concepts match. If they do not, the supplied classifier configu-

ration is rejected. This prevents the user accidentally specifying a wrong classifier for

a particular target concept. We can save different versions of state files depending on

which set of classifiers we would like to apply in our experiment and quickly switch

them over as required.

Once the preceding options are configured the systems are ready to run. The state

files of pDescriber and pDialogue also allow some other adjustments which we do not

discuss here (see Figure 4.2 and 4.3). In the following sections we turn to the overview

of algorithms that make each individual linguistic application and discuss their func-

tionality.

147

4.4 pDescriber

4.4.1 pDescriber in general

pDescriber is a commentator that replicates the knowledge encapsulated in the classi-

fiers by generating natural language descriptions. If the robot is moving, pDescriber

describes its motion, if it is stationary, it it describes the location of objects in its en-

vironment. The descriptions it generates are full English sentences. Grammatically,

they are quite simple and overall correspond to descriptions that human commenta-

tors produced when collecting datasets for machine learning: “You are going forward

slowly” or “The chair is behind the table”. The variation in these descriptions is quite

small and is mostly restricted to the number of adverbs that we find in descriptions of

motion.

There are a few general requirements according to which the descriptions should

be generated. Firstly, since pDescriber is run in sessions at intervals that occur every

second or so we must make sure that not too many descriptions are generated. This

temporal bottleneck is not due to the speed at which descriptions can be generated

but the speed at which they can be pronounced by the speech synthesiser. It is solved

by limiting pDescriber to generate descriptions in every n-th session only and do noth-

ing in others. This is achieved by keeping a record of a session count. If the current

count is perfectly divisible by n, the programme should proceed with the evaluation

of other predicates or it should exit otherwise (see describe this session/0 in Figure 4.8).

The value of n can be specified as objects commentary frequency in the state file of pDe-

scriber. Experience has shown that a good value is 3. This method of restricting the

number of descriptions is only used when generating descriptions of object relations.

We also do not want the system to generate the same description again and again

but only say something when there is something new to describe. The problem is par-

ticular to descriptions of motion which refer to the state of the robot which may remain

unchanged for a while. A repeated generation of a description “I’m moving forward”

148

is linguistically irrelevant. Generating a description of object relation involves an extra

step of selecting a pair of objects for which the classifiers predict the relation category.

With a relatively large number of objects it is unlikely that the same pair of objects is

picked consecutively twice. We solve the repetition problem with motion descriptions

by remembering each time the motion categories that were generated by storing them

in the state file under the said previously variable. On the subsequent run, we compare

the stored values with the newly generated ones. If at least one category has a differ-

ent value, the generated values are considered, turned into sentences and pronounced,

otherwise they are discarded and no sentence is generated. The method also achieves

that descriptions are not generated too often and hence the method described in the

previous paragraph is redundant when this method is used.

Finally, the system should alternate between generating descriptions of motion and

descriptions of object relations. It is most natural to describe the motion of the robot

while the robot is moving and to describe the relation between the objects when the

robot is stationary. Although this could be determined by examining the odometry

information of the robot, we decided it is much simpler to integrate this check with

the preceding one: a description of object relation is generated when the verb from the

previously generated motion description is “stopped”. Yet there is a price to pay for

this simple design. After classifying and generating a description of object relation, we

also need to classify for the motion categories and save but not pronounce them as the

value of said previously which will be considered on the subsequent run. Otherwise the

system would never stop describing object relations. In this respect the classification

of object relation categories relies on the classification of motion categories. Difficulties

could arise when the latter classifiers were particularly bad and as such they would

never predict the category “stopped”. In practice this has never been observed and the

system always smoothly and promptly changes between the twomodes of description.

Figure 4.8 shows a simplified Prolog pseudo-code that outlines the main structure

149

of pDescriber.

p_describer :-
said_previously(Verb,Direction,Heading,Manner),
decide_what_to_describe(Verb,Direction,Heading,Manner).

decide_what_to_describe(stopped,_,_,_) :-
describe_this_session,
describe_relation(LO,REFO,Relation),
pronounce(LO,REFO,Relation),
...
describe_motion(Verb,Direction,Heading,Manner),
remember_what_i_said(Verb,Direction,Heading,Manner).

decide_what_to_describe(OldVerb,OldDirection,OldHeading,OldManner) :-
describe_motion(Verb,Direction,Heading,Manner),
different_motion_descriptions(OldVerb,Verb,OldDirection,Direction, \

OldHeading,Heading,OldManner,Manner),
pronounce(Verb,Direction,Heading,Manner),
...
remember_what_i_said(Verb,Direction,Heading,Manner).

Figure 4.8: An overview of pDescriber. p describer/0 starts by retrieving the
values for motion categories and queries another predicate
decide what to describe/4. If Verb is “stopped” and this is the nth session in
which a description should be generated (describe this relation/0 is true), we
proceed by generating a description of object relation. The generated
categories are pronounced as a sentence. We also generate descriptions of
motion and save them to the state file so that the verb can be checked at the
beginning of the following session. If Verb is different from “stopped”, new
motion categories are generated and compared whether they differ from the
previous ones. If so, they are pronounced in a sentence and remembered for
the checks in the following session.

4.4.2 Describing motion

The steps required to generate a description ofmotion (describe motion/4 and pronounce/4

in Figure 4.8) involve analysing the odometry information that we receive about the

current state of the robot and sending it to a classifier that predicts a particular cate-

gory, and finally using the categories to form coherent sentences.

The odometry information is processed in the same way as when instances were

created for machine learning. First, the overall speed of the robot is calculated from

the vx and vy components reported by the system. Its sign is determined as described

in Section 2.4.2.1, page 37ff. The obtained value is normalised to the value of maxi-

mum speed defined in the state file. In a similar way the angular velocity (vh) is nor-

150

malised to the value of max rotational speed and the obtained result is used as the value

for the attribute Delta-Heading. The normalisation step is required, since there is no

guarantee that the above maximum values were the same between different runs of

the system.

The two attribute values for Speed and Delta-Heading are subsequently applied to

the four classifiers for the concepts Verb, Direction, Heading and Manner using the clas-

sify/5 predicate which we describe in Section 4.4.3. The predicted values are returned

as the arguments of describe motion/4.

Generating sentences from the predicted motion categories is straightforward (pro-

nounce/4 in Figure 4.8). There are only two grammar rules. If the predicted value of

the the verb category is “stopped” then the sentence “I stopped” is returned. Other-

wise, a sentence is concatenated according to the following pattern: “I’m Verb Direction

Heading Manner”. When creating instances we inserted a category “none” for every

attribute if no word for that attribute could be found in the description. Now we must

replace every predicted “none” with an empty string. Furthermore, some categories

predicated by the classifiers consist of twowords ormore and to keep things simple for

Weka when creating instances we converted spaces to underscores using our spelling

correction mechanism. Here we also remove these underscores and replace them with

spaces. The verb is already in the present continuous ing-form as collected for the

dataset and thus it does not need to be changed.

4.4.3 Working with Weka classifiers

As discussed in Section 4.2 Weka expects properly formatted text files in order to clas-

sify an instance. In our code the interface to Weka classification is handled by a wrap-

ping predicate classify(+Target,+[(attrib,val)],-Class,-Confidence,-Actual). As is suggested

by the notation, the predicate takes the name of the target concept attribute and a list

of pairs consisting of attribute names and their values. The predicate returns the pred-

151

icated class, the classifier confidence and the actual value. In our case the latter is

always unknown but we keep this for the sake of completeness.

The predicate starts by examining the classifier configuration for a given target con-

cept specified in the state file, for example the value of the feature heading in Figure 4.2.

This information contains a full Weka path of the classifier (weka.classifiers.trees.J48) and

the names of the files containing the trained model and the header of the arff file from

which the model was built. We check again whether the last attribute from the header

file corresponds to the target concept to be classified. Then we create an arff file that

will be passed to Weka. There is no need to write the header again: the contents of the

header file can be inserted as the header. For the data section we must write the sup-

plied values from the attribute-value pairs in the same order as defined in the header

file and separate them by commas. This step also ensures that all the attributes that

the classifier expects have been given as attribute-value pairs. Of course, no value is

written for the last attribute which is the target class. A question mark (?) is inserted

instead. Finally, the arff file, the file containing the classifier model, the Weka path of

the classifier and the index of the target concept attribute are all passed to Weka as

command line arguments as shown in Section 4.2, page 142. The Weka output is piped

back to the Prolog code, it is parsed, and the predicted class, the classifier confidence

and the actual value are returned.

4.4.4 Describing relations between objects

Generating descriptions of object relations is very similar to generating descriptions

of motion. First, the data from MOOS must be collected and processed. Two objects

must be selected and their locations are sent to a classifier to find a description of their

relation. All categories are concatenated to a sentence and pronounced.

pDescriber first needs to know what objects there are that can be described. This is

accomplished by parsing the “COMMENTARY RELATIONS” MOOS variable which

is published by iCommentary (Section 2.4.2.2, page 44). Each object is represented as a

152

predicate with four arguments which are the name of the object and its x, y and z coor-

dinates relative to the current position of the robot, for example object(desk,0.7573,0.3421,0).

The objects coordinates are normalised to the size of the room defined in the pDe-

scriber’s state file (room x and room y in Figure 4.2) and the z coordinate is normalised

to the robot’s height also defined there as robot z. Currently, the height of objects is not

considered as a classifier attribute. The option is preserved for the reasons of complete-

ness since it is reported by iCommentary whenever a 3-dimensional laser is used. If we

use a 2-dimensional laser, the reported values of the z coordinate are 0. In addition to

the object definitions that can be retrieved from iCommentarywe also create a predicate

object(robot,0,0,1). All normalised values are rounded to 4 decimal places. Consider-

ing that a typical distance in each dimension is 10 metres, 4 decimal places give us an

accuracy between 1 mm and 1 cm.

To describe the relation between two objects we must choose two objects and then

use a classifier to predict the relation between their coordinates. Currently, the system

randomly chooses any two available objects and checks that they are not identical. For

testing the classifiers this appears to be the most sensible choice. An improvement

would be to select only objects in a certain range around the robot and thus generate

descriptions that are contextually more relevant. Numeric attributes in Weka models

have no limit on their minimum or maximum values. This means that any value of

a numeric attribute returns some classification. If the distance between the objects is

too great, then the strength of discrimination of a classifier to predict the best relation

diminishes since such descriptions were rarely, if at all, encountered in the training

set. It is not unproblematic to determine the optimum distance. It could be done by

trial and error using some x and y distances deemed appropriate by a human operator.

Even better would be to determine an average normalised distance between the objects

from the descriptions in the the training set.

But there are also further factors that influence the choice of objects in a successful

153

description: the shape and orientation of objects if these have identifiable sides, their

individual functions, and finally their relevance in the current discourse. However,

these require inclusion of complex non-spatial knowledge and a detailed represen-

tation of the linguistic discourse, something that we do not yet have available. The

process of interpretation or generation of spatial expressions occurs at different levels.

The base level is the level of physical space. To this, other knowledge is added in the

form of constraints until the expression is disambiguated just to a single pair of objects

or to a single relation. Including these constraints would defeat the purpose of our

experiments which is to test how well the classifiers have internalised the spatial data

obtained from a mobile robot. Since additional knowledge is not negating the spa-

tial knowledge but only constraining the selection of possible candidate expressions,

it means that if our system is compared to a proper generation systems it would over-

generate descriptions rather than generatemalformed ones. As discussed in Chapter 5,

this is indeed the case. The evaluators often comment that they find a generated de-

scription appropriate but not the best choice given the current configuration of the

scene.

Once a pair of objects is selected their x and y coordinates are passed to the clas-

sify/5 predicate (Section 4.4.3) which interfaces with Weka and returns a relation as

follows: classify(preposition, [(lo x,0.3555),(lo y,0.0045),(refo x,0.0678),(refo y,0.5466)], Re-

lation, Confidence,).

The predicated relation and the names of the objects are concatenated into a sen-

tence (pronounce/3 in Figure 4.8) using the following pattern: “The LO is Relation the

REFO”. This may also generate sentences such as “The tyres is. . . ” but this error was

ignored for the moment since objects were rarely used in plural. Again the names of

objects or relations may contain underscores which are replaced by spaces before the

final sentence is pronounced.

154

4.4.5 Asking for evaluations

To evaluate the accuracy of descriptions generated by the system we designed a small

evaluation component (ask for judgements/2 and /5, omitted in Figure 4.8) which queries

a human user about the appropriateness of each generated category, in particular whether

the generated category is a good choice to describe a particular action or relation or

not. Users have the option to answer “yes” or “no”. If a user answers “no”, the sys-

tem further queries them to provide a better description. The data is concatenated to a

parseable stringwhich contains information about the type of evaluation (motion or re-

lation), the predicted value, the evaluator’s judgement (yes or no), the evaluator’s sug-

gestion for improvement and the complete generated sentence. The resulting string is

published to theMOOS database as a variable called “HUMAN JUDGEMENT” which

can be logged together with any other value to create evaluation datasets. The evalu-

ation component can be enabled or disabled using the ask for judgements feature in the

pDescriber’s state file (Figure 4.2).

4.5 pDialogue

4.5.1 pDialogue in general

pDialogue uses the classifier knowledge in more sophisticated configurations than pDe-

scriber. In addition to generating descriptions corresponding to states of the robot or

of the environment, it is able to “understand” the linguistic material provided by a

human user and respond to it: either linguistically or by performing actions. Thus, in

most cases the flow of linguistic and non-linguistic information is reversed. In pDe-

scriber and in data collection it was the linguistic information that reflected the state

of the environment and the robot. However, in pDialogue the system starts with a lin-

guistic description and brings the robot to a state referred to by the description or it

has to find some configuration of environment for which the description is true. Here

155

are some examples of commands, questions and answers that the system is able to

interpret or generate:

(1) What can you do?

– I can follow your commands to move around the room and I can answer

questions about the location of objects.

(2) Go forward slowly.

Go forward right fast.

(3) Where is the table?

– The table is to the left of the chair.

Where are you?

– I’m behind the sofa.

(4) Is the table to the left of the chair?

– Yes, the table is to the left of the chair.

– No, the table is near the chair.

(5) What is to the left of the chair?

– The pillar, the tyres and the wall are to the left of the chair.

(6) What is the chair to the left of?

– The chair is to the left of the table, the desk and the wall.

pDescriber can generate descriptions from unambiguous categories of non-linguistic

information straight away, but pDialogue must first interpret linguistic information

from a human interactor and decide what response should be taken. Therefore, af-

ter starting pDialogue the first step is to obtain the user utterance, parse it and decide

which of the above commands or questions it belongs to. Each of these is handled by

a response module which processes the extracted linguistic information, performs any

156

required classifications and generates a response. The basic structure of pDialogue is

shown as a simplified Prolog pseudo-code in Figure 4.9.

p_dialogue :-
prepare_p_dialogue,
ask_for_judgements,
get_user_utterance(Words),
Words \= [],
respond_to_words(Words).

p_dialogue.

prepare_p_dialogue :-
prepare_classifiers([verb,direction,heading,manner, \

delta_heading,speed,preposition,lo_x,lo_y,refo_x,refo_y]),
create_objects,
generate_lexicon.

respond_to_words(Words) :-
argument_parser(Words,Verb,Parses),
choose_the_most_likely_parse(Parses,Parse),
response_module(Verb,Parse,Words).

Figure 4.9: An overview of pDialogue. p dialogue/0 consists of three parts. First,
we ensure that all the required information is available and that it is
structured in a useful format (prepare p dialogue/0). Then we listen to,
recognise and tokenise the user utterance to words (get user utterance/1).
Finally, we attempt to interpret the utterance, generate an answer and
pronounce it (respond to words/1).

4.5.2 Preparing pDialogue

Before pDialogue is ready it must check whether information that the system will be

processing is available and that it is in the form that can be easily and efficiently ac-

cessed by its procedures. This reduces a lot of redundant work. Consider a situation

where the system successfully performs a number of complex procedures but then it

suddenly fails because the required classifier is missing. Equally, it is often the case

that information such as classifier information is required at more than one place in

the programme. Re-parsing it from the input files creates unnecessary redundancy of

operations and should be avoided. In Figure 4.9 the procedures that prepare the data

are grouped under the predicate prepare p dialogue/0.

157

The predicate prepare classifiers/1 prepares all the information that is required for

work with the classifiers. In pDescriber this is done only just before the classifiers are

applied (Section 4.4.3, page 151) but there this information is not required elsewhere.

The predicate checks whether the names of the target concepts supplied to it in a list

argument are properly associated with Weka classifiers that are defined in the pDi-

alogue state file. As before, this is done by matching each target concept with the

last attribute in the corresponding classifier header file. Secondly, the predicate ex-

tracts the names and the nominal values of attributes from the header files and makes

sure that the order of attributes is preserved. For each classifier a predicate classi-

fier(Target,N,WekaClassifier,ModelFile,AttribsVals) is asserted where Target is the classi-

fier’s target concept, N is its number of attributes, WekaClassifier is its full classifier

class path,ModelFile is the name of the file with the classifier model and AttribsVals is a

list of tuples (attribute,[val1,val2,val3. . .]). If the attribute type is numeric or string, then

this structure is simply (attribute,[numeric]) or (attribute,[string]) respectively.

The predicate create objects/0 asserts object/4 predicates containing the names and

normalised coordinates of objects in the current room from the MOOS data as de-

scribed for pDescriber in Section 4.4.4, page 152. Because users now refer to the robot

as “you”, the predicate object(you,0,0,1) rather than object(robot,0,0,1) is asserted.

The last predicate generate lexicon/0 creates a linguistic lexicon with a simple gram-

mar that pDialogue can use to parse user input. Why does the lexicon have to be cre-

ated rather than be pre-defined? The system can only “understand” or make sense

of those lexical items which are grounded or are associated with non-linguistic infor-

mation. This information changes with context, for example the names of objects that

are present in the room and the range of vocabulary that the chosen classifiers can

deal with. The knowledge is defined in the system but comes in different forms and

from different sources: (i) from the attribute values contained in classifier/5 predicates,

(ii) from the names of the objects asserted in object/4 predicates and (iii) from some

158

pre-specified lexical entries that provide grammatical glue for extracting simple de-

pendency relations from the user input. The task of generate lexicon/0 is to extract this

knowledge and to check its completeness.

An attribute may occur in more than one classifier either as a target concept or as a

regular attribute. For example, in Table 3.4 on page 79 we can see that Relation is one of

the target concepts predicated by the classifiers but it also occurs as a regular attribute

in classifiers for LO x, LO y, REFO x and REFO y. When generating lexical entries from

classifier attribute values it is important that we only create lexical entries for those

values of a particular attribute that are defined for all occurrences of that attribute in

the currently chosen set of classifiers. This is ensured if all classifiers are built from

the same dataset. However, if classifiers from different datasets are combined, a check

must be made. Our intuition is that if a value of a particular attribute cannot be used

by every classifier in the currently applied set, then its reference is incomplete. The

system does not have a coherent knowledge about the meaning of that value. Thus, it

is better to exclude such word from the vocabulary straight away rather than finding

out later that it cannot be interpreted in some cases.

We collect attribute values from which lexical entries are created by examining

members of AttribsVals from the currently asserted classifier/5 predicates. Thus, we

may find tuples such as (relation,[left,right,near]), (relation,[right,near,behind]) and (rela-

tion,[left,right,behind]) as the members of AttribsVals in the classifier definitions for Re-

lation, LO x and REFO x respectively. The set of lexical items for the category relation

is built by finding an intersection between the lists of attribute values across all the

tuples. In this case, the intersected set only contains one member, the value “right”.

Different discretisations of a numeric attribute will create different nominal cate-

gories. Intersecting such sets of values will result in an empty set. We may also come

across the original numeric attribute whose value will be [numeric]which equally gives

an empty intersection. This is not a difficulty: the discretised numeric attributes do not

159

represent linguistic information and hence their values are never used to generate lex-

icon entries and can be ignored.

The collected attribute values must undergo a small morphological modification

before they can be turned into lexical entries. The values of the attribute Verb occur in

classifiers in ing-form since this is how they appear in descriptions from which they

are extracted. In the user input that we want to parse verbs appear as imperatives

and thus the attribute values must be rewritten to their basic forms. This is done by a

simple verb stemmerwhich applies the following character replacement rules on every

value of the Verb attribute: (i) word final “ed”→ “”, (ii) word final “ving” → “ve”, and

(iii) word final “ing” → “”. Another rule is applied on the output of the above rules

which removes all word final duplicated consonants (“stopping” → “stop”), except if

these are “ll” as in “telling” → “tell”. By no means is this treatment of English verb

morphology complete, for example “storing” → “*stor”. It did nonetheless correctly

handle our vocabulary and it was therefore considered appropriate for the task.

The values of theRelation attributemay also require morphological stemming. When

instances were created, they were sometimes rewritten by spelling correction rules

from words such as “left” to forms such as to the left of. These forms were intended

for generating descriptions in pDescriber but are less useful for parsing user questions

and commands. Ignoring our knowledge of language, if one had to choose a single

most identifiable part of such word structures, it would be the longest sequence of

characters delimited by an underscore, thus “left”. If there is a tie between two items

of equal length, the first candidate is taken.

The final step in creating a lexicon from the classifier data involves rewriting at-

tribute values as lexical entries that can be used by our dependency parser. We as-

sign every attribute, for example Relation, a particular lexical pattern such as lexi-

cal template(relation,[cat=p,sem type=relation,arg list=[]]). This is the only knowledge that

is added manually when creating the lexicon. The intersected values of each attribute,

160

for example “right”, are then rewritten as predicates lexical entry([form=right,stem=right

|Features])where Features corresponds to the second argument of lexical template/2, thus

the list [cat=p,sem type=relation,arg list=[]].

There are two cases when no lexical entry/1 is asserted. The first case is when the

attribute value is “none”. This attribute value was used when no word of that cate-

gory was found in the corpus description (Section 3.3.3, page 67ff.). No lexical entry is

also asserted if such entry already exists. This should not happen according to the pre-

ceding processes. The constraint ensures the consistency of the lexicon as some lexical

entries may have been manually added to the lexicon for testing purposes.

Lexical entries for words referring to objects are asserted in the same way except

that the names of the objects are taken from the objects/4 predicates rather than from at-

tribute values stored in classifier/5 predicates. Classifiers contain no attributes with ob-

ject names. The procedure creates predicates such as lexical entry([form=chair,stem=chair,

cat=n,sem type=object,arg list=[]]). Finally, we also assert approximately 15 default lex-

ical entries which include question words (“what” and “where”), prepositions (“to”,

“of”, “by” and “from”) and sentential predicates (“is” and “are”) to which we return

in the following section. Once this is done, the lexicon is complete and ready to parse

user input.

4.5.3 Parsing user linguistic input

pDialogue can only respond to users successfully if it is able to resolve the content of

their questions or commands unambiguously. For representing semantics of sentences

a state of the art system could be used such as (Curran et al., 2007). However, since

the sentences are relatively simple and can be categorised into a small number of cat-

egories, this was deemed unnecessary. In Section 4.5.1, page 156 we have identified

one command (Example 2) and five question types (Examples 1 and 3–6). The task is

similar to the task in which we extracted words from the corpus of descriptions to cre-

ate attribute values for machine learning described in Section 3.3.3. It is slightly more

161

complicated. When extracting attribute values we knew what kind of descriptions are

found in each corpus that we processed. Therefore, we also knew what predicates,

either verbs or object relations, and their arguments we should find in these utterances

as discussed on page 69. However, in pDialogue we may encounter any user utterance

and therefore must also recognise its type.

We assign each type of sentence (2–6) from page 156 a main predicate which iden-

tifies it as shown in (8–12). Lexical entries such as (8) are created automatically from

the values of the Verb classifier attribute as discussed on page 158, whereas entries in

(9–12) are added manually. Having the verb as the main predicate rather than sepa-

rate main predicates for verbs and object relations as in Section 3.3.3 allows us to unify

the argument extraction procedure. It also minimises the size of the lexicon. Rather

than creating lexical items for every description of object relation three times to cover

the sentences in (10–12), we only need to create lexical entries for the verbs “is” and

“are” which gives us only six different entries. The ambiguity between these entries is

resolved by our argument matching mechanism. Overall, the lexical entries are very

similar to those in Section 3.3.3.

(7) What can you do?

Sentences of this type are handled by word matcher/2 described in Section 4.5.4.

(8) Go forward slowly.

lexical entry([form=going,stem=go,cat=v,sem type=movement,

arg list=[direction=0,heading=0,manner=0]]).

(9) Where is the table?

lexical entry([form=is,stem=is,cat=v,sem type=locating object,

arg list=[q where=1,object=1]]).

(10) Is the table to the left of the chair?

lexical entry([form=is,stem=is,cat=v,sem type=object description,

162

arg list=[object=1,relation=1,object=1]]).

(11) What is to the left of the chair?

lexical entry([form=is,stem=is,cat=v,sem type=finding object,

arg list=[q what=1,relation=1,object=1]]).

(12) What is the chair to the left of?

lexical entry([form=is,stem=is,cat=v,sem type=referencing object,

arg list=[q what=1,object=1,relation=1,preposition=1]]).

The extraction of the verbal predicate and its arguments from mono-clausal sen-

tences is handled by argument parser/3 which is outlined in Figure 4.10. The difference

between this argument parser and the one described in Section 3.3.3 is that this argu-

ment parser does not return a single parse but a set of parses, some of which may be

incomplete. Later a heuristic is applied on this set of parses to choose the best candidate

parse (choose the most likely parse/2) which is subsequently supplied to the associated

response module (response module/3) as outlined in Figure 4.9. It may also happen that

no parse is returned for sentences such as (7). However, in order to make pDialogue

cooperative and responsive, such cases must also be covered.

% argument_parser(+Words,-Verb,-Parses)

argument_parser(Words,Verb,Parses) :-
find_verb(Words,Verb),
find_verb_interpretations(Verb,TypeArgs),
process_interpretations(Words,TypeArgs,TypeWords),
reject_incomplete_interpretations(TypeWords,Parses).

Figure 4.10: An outline of argument parser/3.

Let us assume that a user asks the robot a question “Where is the chair?”. The

argument parser first identifies the verb from its list of tokenised words (find verb/2 in

Figure 4.10). The verb is the first Word on the list of the utterance words that unifies

with the predicate lexical entry([form= ,stem=Word,cat=v|]). This identifies the word

163

“is”. We use the stem feature rather than the form feature to match the word because

commands contain verbs in their “bare” form, for example “go” rather “going”. If no

verb covered by our grammar is found, then “none” is returned.

Given our grammar it is likely that the verb that was extracted will match more

than one lexical entry each of which has a unique sem type specification as shown in

(8–12). In the following step (find verb interpretations/2) we compile a list of seman-

tic types Types that are associated in the lexical specifications with a particular verbal

stem. Since each semantic type has a unique argument specification we also extract

this which simplifies the following step. The returned list Types contains tuples of the

form (Type,Args). In the case of the verb “is” the list in Figure 4.11 is returned.

[(locating_object,[q_where=1,object=1]),
(object_description,[object=1,relation=1,object=1]),
(finding_object,[q_what=1,relation=1,object=1]),
(referencing_object,[q_what=1,object=1,relation=1,preposition=1])

]

Figure 4.11: Possible interpretations of the verb “is”

Having a list of possible sentence interpretations defined as predicate-argument

dependencieswemust now checkwhich of these interpretations fits the given sentence

best (process interpretations/2). This is done by checking whether the sentence contains

words that match the arguments in Args of each (Type,Args) tuple in the same way

as described in Section 3.3.3, page 67. Because the same mechanism is used to parse

both descriptions of motion and descriptions of object relations, a distinction between

obligatory arguments such as “chair” in (13a) and non-obligatory arguments such as

“fast” in (13b) must be also taken into account (see page 71).

(13) a. The desk is to the left of the chair.

b. You’re going forward fast.

164

The two kinds of arguments have different syntactic and semantic properties. Oblig-

atory arguments cannot be left out (14a) whereas non-obligatory can be (14b). Another

property of obligatory arguments in English and in other configurational languages

is that they occur in fixed positions in a sentence structure. (15a) is semantically dif-

ferent from (15b). Sentences may contain none or potentially an unlimited number of

non-obligatory arguments of the same semantic type (16a). The only requirement is

that they are semantically compatible (16b). The descriptions within categories Direc-

tion, Heading and Manner all refer to semantically exclusive concepts (“fast” 6= “mod-

erately”) which means that they cannot be used at the same time.

(14) a. *The desk is to the left of the.

b. You’re going forward.

(15) a. The chair is to the left of the desk.

b. The desk is to the left of the chair.

(16) a. Peter read a letter in the evening at eight o’clock.

b. *Peter read a letter in the evening at 3am.

The types of arguments are encoded in the lexical specifications of predicates in

(8–12) with the flags 1 and 0 where 1 means that the argument is obligatory and 0 that

it is not, for example [q where=1,object=1].

The predicate process interpretations/2 considers every tuple (VType,Args) in [(VType,Args)]

and every Arg in Argswhether the Arg can be matched with the sem type feature of any

of the words in the utterance.6 If it can, that word is returned. If the list of words

is exhausted and no word is matched, then “missing” is returned if the argument is

obligatory and “none” if the argument is non-obligatory. The procedure continues to

match words for all remaining Args of all remaining tuples.

6Since there is no parallel check on the category feature (cat), the method implies that semantic
types such as object are not linked to lexical categories such as nouns which linguistically is an over-
simplification. However, for our purposes encoding this feature of grammar is unnecessary.

165

The fixed order of obligatory arguments is taken into account by limiting the list

of words that is supplied to the search. When matching the first Arg of each Args,

the procedure starts with a complete list of tokenised words. It creates a list of words

ArgWords in an identical order to the order of arguments in Args to which they are

matched. If an obligatory argument is matched to a word, then the search of the second

Arg in Args is only supplied with a list of words that follow the matched word on the

original list of words. On the other hand, if a non-obligatory argument is matched

to a word, the search receives the original list of words excluding the word that was

matched. This ensures that non-obligatory arguments can occur on the list of words

in any order and that the same word is not associated with more than one argument.

If more than one word of the required semantic type is present, the first word of that

type is taken and all other words are ignored. If the word for a particular argument is

“missing” or “none”, then an unchanged list of words is used for the next iteration of

the search.

Our treatment of argument search has implications on the order of obligatory and

non-obligatory arguments in Args. In most cases, but also depending on the rule

that we want to encode, non-obligatory arguments should be declared before oblig-

atory ones. For example, went:[manner=0,agent=1,location=1] would parse sentences

“Ann went to the house”, “Slowly, Ann went to the house”, “Ann went slowly to

the house” and “Ann went to the house slowly”. However, a specification such as

went:[agent=1,location=1,manner=0] would only parse the last sentence.

To summarise, the predicate process interpretations/2 rewrites a list possible inter-

pretations of a sentence encoded as a list of tuples in Figure 4.11 to a list of matched

interpretations also encoded as tuples shown in Figure 4.12. Our task is to pick a single

tuple and reject all others. Tuples where “missing” is a member of the matched words

can be rejected straight away since this indicates that an obligatory argument could not

bematched (reject incomplete interpretations/2). In the example in Figure 4.12 this selects

166

(locating object,[where,chair]) as the final candidate. If a sentence is matched to rules that

contain non-obligatory arguments, the tuples may contain one or two occurrences of

“none” depending on how well each rule matches the sentence. In this case, we prefer

a tuple with the fewest occurrences of “none”, or in other words, a tuple with the great-

est number of matched arguments. This is the most meaningful interpretation of such

utterance since it contains the greatest amount of semantic information. If there is a tie

between two candidates, for example if the grammar writer introduced ambiguity, we

simply take the first one. When designing our grammar we made sure that this was

never the case. This type of filtering is performed on the list of interpretations after

they are returned by argument parser/3 (choose the most likely parse/2 in Figure 4.9).

[(locating_object,[where,chair]),
(object_description,[chair,missing,missing]),
(finding_object,[missing,missing,chair]),
(referencing_object,[missing,chair,missing,missing])

]

Figure 4.12: Matched interpretations of the verb “is”

There are two situations where the argument parser may not extract any semantic

information from the supplied words. This may arise if no verb that can be matched to

the given lexicon is found on the list of words. Secondly, this may arise if all parses are

incomplete and are thus rejected. In both cases the argument parser returns “none” for

the verb and an empty list [] instead of a list of matched tuples.

4.5.4 Matching user linguistic input to word patterns

The system only contains a fragment of English grammar that is sufficient to parse

questions and commands which can be answeredusing the knowledge from theMOOS

and the classifiers. One of our aims is that our system should be linguistically co-

operative and therefore must handle a few other situations. A user may not know

what the system’s competence is and thus may pose questions that are not handled

167

by our response modules. Sometimes their input may contain words which were mis-

recognised by the speech recogniser. Theymay request for clarification and help on the

system’s performance. All such cases should be handled in a linguistically cooperative

way.

These situations could be covered by argument parser/3. However, in such case the

set of grammar rules would have to be expanded substantially. Furthermore, there is

also a difference in the purpose of both tasks. argument parser/3 strives to provide a

unique unambiguous parse. The accuracy of this parse is crucial since it is expensive

for the system to produce awrong response. This is because irrelevant processeswould

be performed which would give us bad evaluation results or even cause damage to

the equipment. On the other hand, the accuracy is less important for other linguistic

situations. We want to be able to issue a response even if the user input can only be

partially matched. In fact, we may rely on similar meanings of a group sentences and

respond to them in the same way. Answering something is better than not answering

at all.

To this endwe developed a simple patternmatching dialogue interface calledword matcher/2.

This provides a robust handling of variable user linguistic input. As the name implies,

the word matcher takes a list of tokenised words and compares them with words de-

fined in pattern predicates. The patternwith the highest numbers of words in common

with the user input wins and its associated response sentence is returned as the robot’s

reply to the user.

Patterns are defined as three-place predicates pattern(?Id,?[Keywords],?Reply) where

Id is a unique pattern identifier, KeyWords is a list of words that define the pattern and

should be matched, and Reply is the reply that the system gives in case a match with

the user input is made. An important feature of our approach is that KeyWords does

not contain complete sentences but a bag of words all of which are related to a certain

reply as shown in Figure 4.13.

168

pattern(2,[help,what,you,can,do,commands],’I can move around the room
or tell you where the objects are. Just tell me what I should do.’).

Figure 4.13: A linguistic pattern

The choice of KeyWords is important for the accuracy of the system. Frequently

used words such as auxiliary verbs and prepositions are excluded. It is to expect that

by increasing the size of the database of patterns the accuracy of choosing the correct

pattern will be reduced since it is more likely that the same word will occur in more

than one pattern. To counter this difficulty we could extend our count of matches with

a measure of specificity which is known in Information Retrieval as inverse document

frequency (IDF) (Spärk Jones, 1972). IDF is defined as a logarithm of the ratio of the

number of documents in corpus over the number of documents containing at least one

occurrence of the word. It therefore tells us how specific or general the word is in the

collection of documents or in our case in a collection of pattern definitions.

Spi = log
|P|

|{pj : wi ∈ pj}|
(17)

In Equation 17 |P| is the total number of patterns in our database and |{pj : wi ∈

pj}| is the number of patterns that thewordwi appears in (ni,j 6= 0). Instead of counting

each match as 1, we could weight it by Spi and sum the weights. A high weight is

obtained if a particular term occurs rarely in patterns and a small one if the term occurs

frequently.

An alternative measure is the Dice’s coefficient which also comes from Informa-

tion Retrieval (van Rijsbergen, 1979, page 39). This is a measure of similarity which is

defined as the ratio between the number of items of two sets as shown in Equation 18.

sij =
2|I ∩ J|
|I|+ |J| (18)

169

|I ∩ J| stands for the number of terms that the sets have in common. Sij ranges from 0

to 1. sij = 1 indicates that the two sets of terms are identical and sij = 0 that they are

completely different. However, our pattern definitions do not contain utterances that

could be matched to user utterances in this way. Examining the pattern in Figure 4.13 it

can be seen that the list of wordswouldmatch at least three different utterances such as

“Please, help me!”, “What can you do?” or “What commands do you understand?” as

well as any permutation of these. When using the Dice’s coefficient we would have to

define one pattern per each user utterance. On the other hand, our alternative measure

allows us to be more expressive with our definitions of patterns and cover a broader

range of user input.

word matcher/2 takes a list of tokenised words +[Words] and returns an atom or a

string as Reply. First it examines the words and builds a scoreboard which contains

a list of items such as [pattern1=5,pattern3=1] asserted in a predicate scoreboard/1. The

items tell us the number of words in the intersection between the supplied Words and

a particular pattern definition. The scoreboard is initially empty and is incrementally

built as follows. For every word in Words a list of pattern IDs is created which con-

tain that word in their definition, for example the word “how” is found in patterns

[3,6,9,10]. If this list is empty, we can proceed with another word. Otherwise, the items

from the list must be added to the scoreboard. Every pattern ID on the list of matched

patterns IDs increments the score of the same pattern on the scoreboard list by one. If

the pattern is not present on the scoreboard yet, it is added with a score of 1. Hence,

with the above list of patterns IDs a scoreboard such as [1=2,3=4,4=1,6=2,8=1,9=1] is

updated to [1=2,3=5,4=1,6=3,8=1,9=2,10=1].

Once we evaluated all words in the user’s input we need to choose the patternwith

the highest score. If the scoreboard is empty, the pattern ID none is returned which is

reserved for a pattern with a reply such as “I’m sorry, I don’t understand”. If the high-

est score on the scoreboard is shared by more than one pattern, the selection simply

170

prefers the first pattern that is encountered with that highest score and rejects all the

rest. The order of items on the scoreboard reflects the order of words inWords. The pro-

cedure starts with the first word and updates the scoreboard with scores. New items

are added to the scoreboard as heads of the list which means that a preferential bias is

given to words closer to the end of the sentence. This does make sense linguistically

since new information in English sentences is contained in the second part of clauses.

The mechanism is very simple but works surprisingly well in practice. It could be

extended to provide non-linguistic replies or we could use pre-definedword templates

to extract and remember certain types of information from the user input such as their

name and reuse this information as variables in the patterns replied (“Pleased to meet

you, John.”).

4.5.5 Responding to user

In the preceding two sections we discussed how user linguistic input is interpreted.

Now we turn our discussion to how the system is able to generate a response. In gen-

eral, all user linguistic input handled by our system are requests for information. To

provide a response the system must combine the information from a user’s request,

the information that it has about the state of the robot and the environment, and the

knowledge embodied in the classifiers. This is a typical task of dialogue systems or

embodied conversation agents such as CHAT (Weng et al., 2007) and COMPANIONS

(Wilks, 2006) in which the steps required to generate a response are automatically de-

rived from multiple sources by some reasoning mechanism. pDialogue does not imple-

ment automatic reasoning. Instead the steps required to respond to the user are coded

by hand and grouped together as sets of operations called response modules.

There are six response modules, each handling one group of sentences (1–6) on

page 156. We refer to the response modules by the semantic type of the verb that is

identified in the input sentences by our grammar rules as shown in (7–12) on page 162.

Each responsemodule is represented as a predicate response module/3which takes three

171

arguments: Verb, Parse and Words (Figure 4.9, page 157). Note that Parse is a tuple

consisting of a semantic type of verb and a list of the matched argument words, for

example (locating object,[where,chair]). Words is an unparsed list of words in the original

utterance and is only required for the module containing word matcher/2.

4.5.5.1 Generating motion

The movement response module generates robotic motion following user’s linguistic

commands. It takes takes words for Verb (“going”) and Direction, Heading and Manner

from the supplied parse, for example (movement,[none,left,none]), and applies them to

the classifiers for Delta-Heading and Speed. The predicted categories are subsequently

rewritten to commands that bring the robot to the state referred to in the description.

Verbs must be passed to the classifiers in their ing-forms as this is how they have

been learned. pDialogue uses the same interface to Weka classifiers as pDescriber called

classify/5 which we discussed in Section 4.4.3, page 151ff. The classifiers predict Delta-

Heading and Speed as discretised nominal classes, for example “0.0914-0.2742”. These

classes represent intervals of numeric values, in this case 0.0914 < x ≤ 0.2742. By con-

vention accepted during the discretisation step this interval is half-closed (Min,Max].

The minimum and maximum values can be extracted from the interval label. Then a

random number is picked from the interval such that it satisfies the (Min,Max] condi-

tion.

Having the values of Delta-Heading and Speed is not enough to generate motion.

The values describe a robot’s state but we require instructions that bring the robot

to this state. Fortunately, iAGV/iPlatform already includes the required mechanisms.

It accepts commands to generate motion in the form of two MOOS variables “DE-

SIRED RUDDER” and “DESIRED THRUST”which range from 0 to 100. These are also

generated by iRemote when the robot is controlled through a computer keyboard. The

desired rudder and the desired thrust are the percentages of theMaxRotSpeed andMax-

TransSpeed variables of iAGV/iPlatform defined in the .moos file. The values are avail-

172

able to pDialogue through its own variables max angular velocity and maximum speed

(Figure 4.3). The values of Delta-Heading and Speed were normalised to MaxRotSpeed

and MaxTransSpeed of the configuration under which they were collected. Therefore,

the predicted Delta-Heading and Speed values can be applied to iAGV/iPlatform as “DE-

SIRED RUDDER” and “DESIRED THRUST” with minimal adjustments only: they

must be expressed in the range between 0 and 100 rather than 0 and 1 and the sign

of Delta-Heading must be reversed to measure rudder rather than yaw.

Generating motion from classifier data is risky because it is likely that wrong mo-

tion will be generated which may damage the equipment. For this reason we in-

clude a safety mechanism which asks the user whether the generated values of “DE-

SIRED RUDDER” and “DESIRED THRUST” should be sent to MOOS or not. This

safety mechanism can be switched on or off using the must confirm motion feature in

the pDialogue state file (Figure 4.3). If the values are submitted, the motion contin-

ues for the number of seconds specified in the iAGV/iPlatform configuration block of

the .moos file. It changes if the user adjusts the values of rudder and thrust through

iRemote or if they issue a new linguistic command.

In addition to motion the response module also generates a linguistic description

which serves as an acknowledgement that the user input was interpreted properly and

provides another safety mechanism. If a user issues a command such as “Go forward

slowly” and it is parsed correctly, then the robot confirms it with a statement “I’m going

forward slowly”. The mechanism to generate these sentences has been borrowed from

pDescriber.

4.5.5.2 Locating objects

The locating objectmodule provides answers to questions such as “Where is the table?”

and “Where are you?”. The purpose of these questions is to obtain a description of

the location of an object relative to the location of another object, the reference object,

173

which is known. As in pDescriber the answer is generated by randomly selecting an-

other object in the room to serve as the REFO and ensuring that the objects are not the

same. It will happen inevitably that some descriptions will be judged less appropriate

because of the random selection of the REFO (for a discussion see Section 4.4.4).

When the two objects are known, their x and y coordinates are extracted and are

sent as the values of the LO x, LO y, REFO x and REFO y attributes to the classify/5

predicate which applies them to a Weka classifier and returns a relation as shown on

page 154. The relation, the LO and the REFO are concatenated to a sentence which is

pronounced.

4.5.5.3 Confirming an object description

If both the robot and the user are familiar with the scene, a question such as “Is the

table to the left of the chair?” queries the robot whether it agrees with a given relation

to describe a particular pair of objects. The user and the robot may choose different

relations to describe a particular set of objects and the robot’s reply indicates agreement

or disagreement: “Yes, the table is to the left of the chair” or “No, the table is near the

chair”. Note that the user can also deliberately form the question so that the expected

answer is “no”.

The steps involved in generating an answer in the object description response mod-

ule are very similar to the locating object module. Here both objects are already known

and their coordinates can be sent to classify/5 straight away to predict the relation. If

the predicted relation matches the relation from the question, the generated answer is

“yes” otherwise it is “no”. In the sentence that follows the predicted relation is used in

both cases.

In a situation where the user cannot see the scene the intention of the question

would be to help them build a mental image of the scene. In this case the robot would

be more cooperative if it preserved the LO and the relation and reported the applicable

REFO: “No, the table is to the left of the sofa”. We do not concentrate on this scenario.

174

4.5.5.4 Finding objects

The question “What is to the left of the chair?” expects an answer containing a set of

LOs for which it holds that they are close to the REFO “the chair”. The module find-

ing object proceeds by taking the relation “left” and the x and y coordinates of the REFO

and applies them to two classifications to find the nominal classes defining the x and y

ranges of the potential LOs: classify(lo x, [(preposition,left),(refo x,0.0358),(refo y,0.2581)],

LO x, ,) and classify(lo y, [(preposition,left),(refo x,0.0358),(refo y,0.2581)], LO y, ,).

The minimum and maximum values are extracted from the predicted nominal

classes to give two half-closed intervals (Xmin,Xmax] and (Ymin,Ymax]. In the follow-

ing step the object/4 predicates are examined. An object is included on the list of the

returned LOs if it lies in the square region defined by the two intervals. Its x and y

coordinates must satisfy the conjunction of the following constraints: x > Xmin ∧ x ≤

Xmax ∧ y > Ymin ∧ y ≤ Ymax.

Forming sentence descriptions now requires a few extra steps rather than just con-

catenating words (Section 4.4.4). Sentential subjects and objects may contain a list of

items that must be expressed as a conjunction. Although in this response module we

only need to generate descriptionswith conjoined subjects we also consider generating

descriptions with conjoined objects which are required in the referencing objectmodule.

If the subject is a conjunction of names of physical objects, the following verb should

appear in plural (19b) rather than singular (19a). Subjects and objects differ in pronoun

forms. The classifiers refer to the robot with a pronoun “you” which must be rewritten

either as “I” (20b) or “me” (20a) depending on the argument that they represent. If the

list with subject or object names is empty, it must be rewritten as “nothing” as in (21a)

and 21b).

(19) a. The chair is. . .

b. The chair, the table and the sofa are. . .

175

(20) a. The sofa is to the left of me.

b. I’m to the left of the sofa.

(21) a. Nothing is to the left of the chair.

b. The sofa is to the left of nothing.

Items on the list must be added a definite article “the” unless they are a pronoun

or “nothing”. Lists of two items and more must be separated by commas and the

penultimate and the ultimate item must be separated by “and”. If the subject is “I”,

the verb must be “am”. If the subject is a single item ending in “-s” or a conjunction

of items, the verb is ”are”. Otherwise, the verb is “is”. Any underscores used in the

relation names must be replaced with spaces. Then, the subject, the verb, the relation

and the object can be concatenated to a sentence and pronounced.

4.5.5.5 Referencing an object

The last response module referencing object handles questions such as “What is the

chair to the left of?”. These query for a set of objects that can be used in a descrip-

tion as reference points (REFOs) for the LO given in the question, “the chair”. The

steps required to answer these questions are almost identical to the steps for the pre-

vious question type. The difference is that here we are given the LO and the rela-

tion and the classifiers must predict a square region containing the potential REFOs

rather than LOs: classify(refo x, [(preposition,left),(lo x,0.2386), (lo y,0.0571)], REFO x, ,)

and classify(refo y, [(preposition,left),(lo x,0.2386),(lo y,0.0571)], REFO y, ,).

Following the classification, objects are extracted from the obtained intervals and

description sentences are formed just as for the previous type of question.

4.5.6 Asking for evaluations

Collecting human evaluations in pDialogue is also more complicated compared to pDe-

scriber. This is related to the fact that the system is run in sessions (Section 4.2). The

176

main difficulty lies in the fact that motion cannot be evaluated in the same session in

which it is generated but only in the following session. The generated responsemust be

sent to MOOS first but this can only be done when pDialogue exits. When the response

reaches the MOOS database, its values are picked up by the relevant component such

as iAGV/iPlatform which generates the requested motion which the user can observe

and evaluate. A new session of pDialogue is started and the user can now enter their

scores. The challenge is to match the information from the robot’s response with the

scores of the evaluator, a similar problem we faced when matching information for

instances for machine learning.

Each response module submits a list of values used in that module to the MOOS

database together with the name of the response module, the sentence with which

the system replied and the current session number of pDialogue. The latter serves as

an identifier of the entry in the MOOS log file. The variables are concatenated to an

atom with separator characters which help to separate their values later. The atom is

submitted to MOOS database as the value of the “CLASSIFIER ATTRIBUTES” vari-

able. Before completing, the procedure also changes the values of two variables in the

pDialogue state file: evaluate response is set to “yes” and response in session is set to the

current session number.

When pDialogue is run in a new session, the predicate ask for judgements/0 is one

of the first predicates to be evaluated even before new linguistic input is parsed and

interpreted (Figure 4.9). If evaluate response is set to “yes”, there is a pending evaluation

of a pDialogue’s response from one of the previous sessions. If not, the evaluation step

can be skipped and pDialogue can proceed. The evaluation component can be disabled

by setting the value of ask for judgements, another state file feature, to “no”.

The mechanism that collects scores from a human evaluator can be set to accept

binary scores (“yes” or “no”) to answer questions such as “Was this a good answer/

motion?” or graded scores on a 5-level scale, where 1 is inappropriate, 3 is acceptable

177

and 5 is perfect, to answer questions such “How good was the answer/motion?”. The

type of scoring can be selected by adjusting the value of the binary judgements feature in

the state file. Evaluators enter their judgements on a computer keyboard. In addition

to the score, they can also enter a short comment of their choice in the form of free text.

The value of response in session is read from the state file. Normally this corre-

sponds to the number of the previous session in which pDialogue generated a response.

The session number, the score provided by the evaluator and the comment description

are all concatenated to a structured atom and submitted to the MOOS database as

the value of the “HUMAN JUDGEMENT” variable. When log files are processed, the

pairs of entries “CLASSIFIER ATTRIBUTES” and “HUMAN JUDGEMENT” can be

matched by the session number and the consistency of the evaluation data is ensured.

Finally, before completing the evaluation module, evaluate response is set to “no”

and response in session is set to −1 which indicates that on the next run of pDialogue

nothing needs to be evaluated, unless of course a new response is subsequently gener-

ated in the same session in which case the variables are adjusted again. Both features

must be reset to these values in session 0 when starting up to clear any settings from

the previous run of the system (Figure 4.4).

4.6 Conclusion

In this chapter we described pDescriber and pDialogue, our two systems that use the

robot’s knowledge about itself and the environment, the classifiers and some linguistic

knowledge to interact with human observers. When building these systems we had

two objectives in mind. The systems should have a parallel structure which allows us

to compare them. Secondly, the systems should ensure a flow of information. They

must reuse the information that they already have and minimise redundant data as

much as possible. Most lexical categories in our grammar thus only contain words that

were created from the attribute values of classifiers. This reduces the need of manual

178

data input and the occurrence of errors as the consistency of the system’s knowledge

is ensured, no matter with which set of classifiers or in which environment the system

is used.

The systems contain some elements of embodied conversational agents. Building a

complete state of the art conversational agent goes beyond the scope of this work but is

certainly a very compelling topic for future research. The systems have been built with

this in mind so extensions could be implemented without having to change much of

the existent base. Currently, we implemented only those features that are required for

interaction with human evaluators and collecting their judgements in the experiments

that we describe in the following chapter. We turn to these experiments now.

179

180

Chapter 5

Evaluation by humans

5.1 Introduction

The evaluation of machine learning classifiers in Chapter 3 tested the degree to which

they fit the conceptualisations of spatial and motion expressions given a particular

environment and a particular kind of information available. It may tell us quantita-

tively howmany errors the classifiers are making and on which target class but it does

not tell us why the errors are made. Observation of the performance of these classi-

fiers in real scenes will help us to find the answers to this question. Furthermore, the

training datasets may have included systematic errors that have been incorporated in

the learned models and are thus predicted as perfect classifications during classifier

evaluation. Similarly, the datasets may have systematically excluded certain kinds of

observations which make the system either over-generate or under-generate in real

scenes. In the first case descriptions referring to certain configurations are generalised

to all configurations, and in the second descriptions of certain configurations are never

generated. Finally, the evaluation of pDescriber and pDialogue by humans will tell us

how well the models extend when some conditions, such as environment, human ob-

servers and configurations of scenes are varied and whether adjustments such as nor-

malisation were appropriately chosen. The application of the learned classifiers in real

environment is the ultimate test for the success of learning.

181

5.2 Evaluation of pDescriber

5.2.1 Experiment design

For the experiment a group of five subjects identified as a, b, c, d and e were chosen

from a set of volunteers. Three of themwere native and twowere non-native but fluent

speakers of English. Three subjects already participated in the original data collection

experiments and two of them were new to the experiment.

Before starting the experiment a room with objects was set up as in the data collec-

tion stage (Section 3.2.2). Themajority of objects were identical but their placementwas

different. A new SLAM map of the environment was built (Section 2.4.2.2). The max-

imum distances in the x and y dimensions were found from the map and their values

were added to the configuration of pDescriber. Similarly, we also defined the maximum

speed of the vehicle as 0.6 m/s and themaximum angular velocity as 1 rad/s which we

recorded both with iAGV/iPlatform and pDescriber (Section 4.3). pDescriber normalises

all observed values against these maximum values (Section 3.3.2).

Each subject was familiarised with the scene, the names of the objects and the types

of motion that the robot can perform. The subjects were reminded that they should be

careful to evaluate object descriptions from the perspective of the robot rather than

their own perspective or the perspective of the reference object. Examples of descrip-

tions made from each perspective were given to them. Once the data collection has

started, the operator guided the robot around the room. If the vehicle was moving,

pDescriber produced descriptions of motion, and when it was stationary, it generated

descriptions of object relations. The descriptions were pronounced to the evaluator

through a speech synthesiser which attempted to replicate the naturalness of the situ-

ation. After each description was made, the evaluator, sitting at a computer terminal,

was queried whether the categories in a description were good or bad given the cur-

rent state of the robot and the environment. If the description was judged unsuitable,

182

the evaluator also had a chance to provide a more suitable description. This gave us

simple binary data.

In the case of motion descriptions the evaluators were queried to judge the suit-

ability of the verb and direction, heading and manner adverbs, thus the linguistic cat-

egories for which we built the classifiers. In the case of descriptions of object relations

there was only one category to evaluate, namely the relation. The evaluators tended

to give additional qualitative judgements about the system performance which were

noted by the operator.

All classifiers used in the evaluation were created with the J48 learner. During the

evaluation we changed the sets of classifiers between those based on the Simple and

All datasets (Section 3.2.1). The motion classifiers were built from a dataset created

without time-shifting in case of Simple and with time-shifting in case of All. We refer

to the configurations of pDescriber relative to the classifier set that they are using as

J48-Simple and J48-All. Each experimental session took approximately one hour. The

period during which each type of description was produced or when a particular set

of classifiers was applied was controlled only approximately and hence the number of

descriptions of each type may vary.

5.2.2 Evaluator agreement

Before comparing the performance of the classifiers on a test set and the performance

of the “live” system against human evaluators it is important to establish if the latter

are agreeing in their judgements. The agreement between human evaluators tells us

whether they represent a single body for comparison. If the evaluators agree it means

that the system has not been tuned to particular describers who participated in the

collection of the corpora for machine learning but it has captured generalisations that

are applicable elsewhere. A high disagreement would tell us how difficult is for the

classifiers to learn a particular concept.

183

The agreement between evaluators can be measured using a few different mea-

sures. In Section 3.5.3 we discussed the κ coefficient which is commonly used in coding

tasks. However, our experiment is not designed as a coding task but as a measurement

of system performance. To calculate the κ coefficient we need a known list of items

that each evaluator considered. In our experiment the set of evaluation items was dif-

ferent for each evaluator depending on what descriptions the robot produced.1 This

means that we can only calculate the κ coefficient to measure the agreement between

an individual evaluator and the system, but not between individual evaluators.

Inter-evaluator agreement thus cannot be estimated directly on the individual items.

We can nonetheless estimate whether there is some consistent behaviour between our

evaluators. If there is, this would be an indication that some direct agreement would

be found between them as well. The evaluators evaluated the suitability of a closed

set of words produced by the system to describe the current state of the robot and the

environment. We can expect that the agreement of a single evaluator will not be the

same on all the words: some words are more difficult to learn than others given the

chosen methods and parameters. If this is so, the difference in the ratings for words

should be consistent across evaluators. Statistical correlation can be used to determine

how consistent these differences are.

Table 5.1 represents the evaluated accuracies of the system per individual words

using the classifiers based on the Simple dataset and Table 5.2 shows them for the clas-

sifiers based on the All dataset. By accuracy we mean the proportion of cases where the

evaluators a, b, c, d and e agreed with the system on the suitability of a generated word

relative to the total number of generations of that word in each evaluator’s session.

Each numeric column shows the accuracies judged by one evaluator. The last column

All gives us the accuracies per word when all evaluators are considered as a whole.

Note that this is not simply the mean of the accuracies per individual evaluators.

1In the evaluation of pDialogue the evaluators evaluated a pre-defined list of questions and answers
produced by the system under approximately identical environmental conditions.

184

Word Cat a b c d e All

stopped V 100 66.67 100 100 87.50 90.00
moving V 100 100 100 100 100 100
none D 100 66.67 100 100 100 95.00
forward D 100 80.00 100 − 100 94.12
backward D 100 100 − − 100 100
none H 100 70.00 100 100 100 94.00
left H 100 100 100 100 57.14 90.00
right H 100 100 − − 100 100
none M 100 80.00 100 100 100 96.34
slowly M 100 100 100 − 100 100
in front of R 63.89 33.33 75.00 55.88 71.43 58.89
to the left of R 77.78 100 100 100 100 92.31
behind R 64.29 77.78 63.64 57.14 36.36 59.62
to the right of R 83.33 100 66.67 100 − 85.71

Table 5.1: J48-Simple: accuracy per individual words

You may notice that some fields contain a − rather than a numeric value. These

values are missing because that word was not generated by the system during that

evaluator’s session. For the purpose of correlation, we decided to replace the miss-

ing values with the means of the remaining values for that word, thus the scores of

other evaluators in rows rather than the scores of the same evaluator in columns. As

explained below, this equals the second variable in each correlation step. Since the

function to which the variables are compared is f (x) = x, this means that two such

values will be perfectly correlated.

The degree of statistical connectedness between two variables is measured by a lin-

ear correlation coefficient. A perfect linear relation between the variables is described

by a linear function. In this case the value of a linear correlation coefficient is 1 or −1.

If the relationship between the variables is random, the correlation coefficient is 0. A

value between the two extremes tells us howwell the variables fit a linear function. The

sign of the correlation coefficient defines whether the linear relationship is positive or

negative, whether the values of the second variable increase or decrease by increasing

185

Word Cat a b c d e All

moving V 100 83.33 81.82 100 100 94.12
turning V 84.62 66.67 89.47 − − 82.93
stopped V 100 85.71 100 100 100 97.92
reversing V 100 − − − − 100
none D 100 58.33 88.89 100 100 90.91
backward D 75.00 − 100 − 100 88.89
forward D 100 100 94.44 100 100 98.36
spot D 100 0 100 − − 88.89
none H 100 61.54 96.97 100 100 94.50
left H 75.00 100 80.00 − 87.50 85.29
right H 100 0 100 − 83.33 90.00
clockwise H 100 − 100 − − 100
none M 100 62.50 97.30 100 100 94.53
slowly M 100 100 100 100 100 100
gently M − − 100 − − 100
to the right of R 92.86 33.33 91.67 66.67 42.86 77.22
in front of R 82.35 40.00 21.05 64.71 45.45 53.61
to the left of R 60.00 100 77.78 75.00 66.67 72.22
behind R 33.33 54.55 18.52 69.44 23.53 42.45
facing R 100 100 − − − 100
far from R 100 − 100 − − 100
close to R 100 − 100 100 − 100

Table 5.2: J48-All: accuracy per individual words

186

the values of the first one.

Statistical literature describes a few linear coefficients (see Sagadin, 2003, Chapter

8 and Wonnacott and Wonnacott, 1990, Chapter 15) depending on the type of the vari-

ables that are correlated. The two most frequently used are Pearson’s product moment

coefficient (r or rxy) and Spearman’s coefficient of rank correlation (ρ or Rho) which we also

use here. Pearson’s product moment correlation coefficient (Sagadin, 2003, page 110ff.)

determines linear correlation between two variables that are measured on a continu-

ous numeric scale, thus interval and ratio variables. There are two requirements for

this coefficient to be used. The relationship between the variables must be linear and

the values of the variables must be normally distributed. The distributions of values

in Table 5.1 and 5.2 appear to be unimodal, however they are not symmetric since both

datasets show a high frequency of values close to 100%. One reason for this is that

the sample sizes are very small: n = 14 and n = 22 respectively. This has a negative

influence on the linear relationship between the variables.

Pearson’s’ rxy can only evaluate a relationship between two variables. However,

we would like to measure the inter-rater agreement between 5 evaluators. This can

be estimated by correlating the scores of one evaluator with the average scores of all

remaining evaluators, and repeating for all participants. It is thus a form of cross-

correlation.2 Each correlation coefficient expresses the strength of relationship between

one evaluator and the rest of the group. The agreement within the group is estimated

by taking the average of these coefficients. Perhaps a better method would be to calcu-

latemultiple correlation (Sagadin, 2003, page 123) where we find a correlation coefficient

between a dependent variable and many independent variables in one step. A disad-

vantage of this approach is that the calculations for more than three or four variables

can get quite complex.

Table 5.3 shows the Pearson’s correlation coefficients rxy obtained at each fold of

2I thank Rada Mihalcea for suggesting this method.

187

correlation for both sets of classifiers. The last column contains the average correlation

coefficient. The asterisks indicate the statistical significance levels of the coefficients

obtained by a two-tailed t-test (Sagadin, 2003, page 285). * indicates that the correlation

is significant at the 0.05 level, and ** indicate that it is significant at the 0.01 level. “ns”

indicates that the correlation is not significant.

Configuration a:rest b:rest c:rest d:rest e:rest Mean

J48-Simple 0.824** 0.382 ns 0.787** 0.907** 0.636* 0.707
J48-All 0.504* 0.048 ns 0.635** 0.756** 0.662** 0.521

Table 5.3: Pearson’s product moment correlation coefficients

The data in Table 5.1 and 5.2 represent samples of word utterances generated by the

system and the correlation coefficients rxy in Table 5.3 are estimations based on these

samples. The t-test is used to establish whether the sample correlation coefficients are

significantly different from zerowhen the entire population of utterances is considered.

It therefore confirms that there is evidence of association between two variables in

general. The levels of significance indicate the risk that the conclusion may be wrong,

that the population correlation coefficients may nonetheless be zero.

Returning to the values in Table 5.3 we can see that except for the evaluator b there

exists a moderate to high correlation between the scores of an individual evaluator and

the mean scores of the rest of the group. The average correlation coefficient for the J48-

Simple configuration is greater (0.707) than the average correlation coefficient for the

J48-All configuration (0.521). All correlation coefficients, except in the case of evaluator

b are statistically significant at the level α = 0.05 or less which means that the risk of

incorrectly identifying correlation in the population is 5% or less.

What about evaluator b? There is a low positive correlation between the scores of

this evaluator and the rest of the group in the case of the J48-Simple configuration and

there is almost no correlation between b and the rest when the J48-All configuration

is used. It is difficult to speculate about the reasons of this outcome. The occurrence

188

of no linear correlation between evaluator b with both configurations and strong posi-

tive correlation between every other participant and the rest of the group suggest that

evaluator b should be taken as an outlier.

Note that all coefficients presented in Table 5.3 reflect the bias of b because its scores

affect the mean of the group. To show the effects of exclusion of b on the correlation

coefficients, we recalculated themwithout the scores of this evaluator. They are shown

in Table 5.4. The mean scores of the coefficients increased to 0.819 and 0.725 for the J48-

Simple and J48-All configurations respectively and all the coefficients are statistically

significant at the level α = 0.01. The only coefficient that decreased after excluding the

evaluator b is d:rest in case of J48-Simple.

Configuration a:rest c:rest d:rest e:rest Mean

J48-Simple 0.841** 0.862** 0.821** 0.752** 0.819
J48-All 0.608** 0.755** 0.826** 0.712** 0.725

Table 5.4: Pearson’s product moment correlation coefficients excluding
evaluator b

We also calculated Spearman’s rank correlation coefficient or Spearman’s ρ3 (Sagadin,

2003, page 156,ff.) on the data in Table 5.1 and 5.2. Spearman’s ρ is determined in the

same way as the Pearson’s coefficient, the only difference is that it is determined from

ranked or ordinal data (Rx and Ry) rather than interval or ratio data (x and y). This

makes it a non-parametric test. It is standardly used on data which cannot be mea-

sured on a continuous numeric scale and which therefore does not follow a frequency

distribution. The approach assumes that its ranks do.

The data is assigned to ranks such as 1, 2, 3. . . r according to an arbitrary monotonic

function. When arranging items to ranks it may happen that we encounter duplicate

items which should be assigned the same rank. This is achieved by assigning them a

tied rank which is calculated by taking the mean value of the ranks that they would

3The Spearman’s coefficient can be written either as ρS or rS if the general rule in statistics of writing
population parameters with Greek letters and sample parameters with Latin letters is maintained.

189

otherwise jointly occupy on the ranked list. For example, if item 25 occurs twice and

competes for ranks 2 and 3, we assign both items rank 2.5. The next item is assigned

rank 4 and so forth. Table 5.5 shows Spearman’s ρs calculated from the ranks of evalu-

ator accuracies from Table 5.1 and 5.2.

Configuration a:rest b:rest c:rest d:rest e:rest Mean

J48-Simple 0.513 ns 0.173 ns 0.709** 0.610* 0.520 ns 0.505
J48-All 0.355 ns 0.080 ns 0.212 ns 0.679** 0.589** 0.383

Table 5.5: Spearman’s rank correlation coefficients

When comparing these coefficients with Pearson’s coefficients in Table 5.3 it can

be seen that all of their values, with the exception of (J48-All, b:rest), are consistently

lower. This is graphically shown in Figure 5.1 and 5.2. The average Spearman’s corre-

lation coefficient is 0.505 for the J48-Simple configuration and 0.383 for the J48-All con-

figuration. These values indicate moderate to low positive correlation. In comparison,

the average Pearson’s correlation coefficients based on the same same data are 0.707

and 0.521 respectively. Fewer coefficients are statistically significant as confirmed by a

two-tailed t-test.

The same pattern emerges if we exclude the ratings of evaluator b as shown in

Table 5.6. All coefficient values are consistently lower from the Pearson’s coefficients

in Table 5.4. When compared to the same coefficients in Table 5.5 their values are higher

and statistically more significant, except for (J48-All, e:rest). This confirms once again

that the judgements of evaluator b are different to the rest of the group.

Configuration a:rest c:rest d:rest e:rest Mean

Simple 0.667** 0.789** 0.667** 0.622* 0.686
All 0.446* 0.430* 0.755** 0.499* 0.533

Table 5.6: Spearman’s rank correlation coefficients excluding evaluator b

Sagadin (2003, pages 162–163) states that in general ρS is lower than rxy when calcu-

lated on the same data. This is because Spearman’s coefficient is calculated only from

190

Figure 5.1: J48-Simple: evaluator agreement as correlation coefficients per fold

Figure 5.2: J48-All: evaluator agreement as correlation coefficients per fold

191

the ranks rather than the actual interval or ratio values. The advantage of ρ against

rxy is that it reduces the effect of extreme values when these are converted to ranks.

Pearson’s coefficient thus gives a better estimation of correlation for data that can be

measured on a continuous numeric scale. However, such data is not always available

in which case ρS must be used exclusively.

While discussing the κ coefficient, Artstein and Poesio (2005) point out referring to

examples and discussion in Bartko and Carpenter (1976) that correlation coefficients

are not sufficient measures of agreement. They measure association rather than agree-

ment and the two measures are not quite the same. To illustrate this point they give

an example of a situation where one evaluator consistently marks all items higher than

the other and the relation between the scores of both evaluators corresponds to a linear

function. For example, they evaluate the first item (1, 1), the second (2, 4), the third

(3, 6) and so on. Such evaluators disagree on all items, but the correlation coefficients

would predict a perfect correlation of 1.

This does not represent a difficulty in our case because we are not using correla-

tion to measure direct agreement of two evaluators on a set of items. As previously

discussed this is not possible because of the nature of our data. We chose to measure

agreement as association of accuracy scores per word between an evaluator and the

rest of the group. Under this scenario the effect is working to our advantage. If an

evaluator consistently agrees to fewer or more generations of all words than the rest

of the group then such an evaluator is biased. Such bias correctly has no effect on

correlating the accuracy scores.

To conclude, the statistical tests show that there is an association between the ac-

curacy scores of individual words between each evaluator (excluding evaluator b) and

the rest of the group. We can confirm the two questions with which we started the

discussion in this section: (i) the human evaluators do work as a single body to which

the performance of the system can be compared, and (ii) the systemhas not been tuned

192

to particular humans but captures some universal knowledge.

5.2.3 Classifier performance and system performance

Let us now turn to examining the evaluators’ ratings of system performance. Table 5.1

and 5.2 give their accuracy ratings per individual words. Table 5.7 and 5.8 give the

same ratings per individual category. The last column of both tables labelled J48 in-

cludes the estimated accuracies of the classifiers that the systemwas using in the eval-

uation taken from Table 3.7, page 105. Figure 5.3 and 5.4 show the data from Table 5.7

and 5.8 graphically.

How do the results from both evaluations compare? The classifier accuracies are

the average accuracies obtained through a 10-fold cross-validation (Section 3.5.1). The

reported accuracy is the ratio between the number of correct classifications over the

total number of classifications. In system evaluation the accuracy is determined on an

independent test set so to speak. It is the ratio between the number of times a human

evaluator agreed with the generated description over the total number of generated

descriptions. There is a slight difference between the two situations in how a positive

match is made. In classification the correct value of the class is pre-defined and hidden

from the classifier and this is matched with the predicted class. In system evaluation

an evaluator hears the generated description before they give their evaluation. In this

respect it is possible that the system biases the evaluator.4 Most importantly, both eval-

uations do not evaluate quite the same thing. Classifier accuracy evaluates only the

target class predicted by the classifier. On the other hand, system accuracy evaluates

classifier accuracy relative to other choices the system makes when generating a de-

scription (Section 4.4.2 and 4.4.4). For example, in the case of descriptions of object

relations this includes the method by which the objects are chosen.

4The bias may be encouraged by the input method. If the evaluator agrees with the generated descrip-
tion, they answer “yes”. If they do not, they answer “no” and provide an alternative description.

193

Category a b c d e All J48

Motion n = 36 n = 17 n = 14 n = 2 n = 21 n = 90

Verb 100 88.24 100 100 95.24 96.67 89.02
Direction 100 76.47 100 100 100 95.56 87.80
Heading 100 82.35 100 100 85.71 93.33 97.56
Manner 100 82.35 100 100 100 96.67 70.73

Relation n = 65 n = 23 n = 19 n = 53 n = 22 n = 182

Relation 67.69 65.22 68.42 66.04 59.09 65.93 75.90

Table 5.7: J48-Simple: system performance and classifier performance

Let us first turn to the evaluated accuracies of the system using the J48-Simple set

of classifiers (Table 5.7 and Figure 5.3). The scores of the system performance from

evaluator b on the descriptions of motion (the categories Verb, Direction, Heading and

Manner) are lower than the scores of other evaluators. As discussed in the previous

section this is not due to the fact that evaluator b is not correlating or “agreeing” with

other evaluators. Evaluator b could have had consistently lower scores from other eval-

uators and still would have been in perfect agreement with them. The grey line in the

diagram marks the accuracies of the classifiers. Evaluator b judged the performance of

the system on the motion categories Verb, Direction and Heading lower than the accu-

racy of the classifiers producing them. On the other hand evaluators a, c and d agreed

with all motion words generated by the system and hence their lines overlap at 100

per cent. They consider the performance of the system on the descriptions of motion

better than the performance of the classifiers which the system was using. A similar

trend is observed with evaluator e on the categories Verb, Direction andManner but not

on the category Heading. The black line which represents all evaluators confirms that

on the motion categories evaluators tend to judge the performance of the system bet-

ter than the accuracy of the classifiers underlining it. This is particularly evident on

the Manner category where the classifier performs worst but evaluators judge this cat-

egory similar to other categories – the black line is almost flat. Overall, the accuracies

194

for descriptions of motion are very high both for the system and for the classifiers. For

example, the mean accuracy over all categories for the body of evaluators (the column

all in Table 5.7) is 95.56% whereas the classifier accuracy is 86.28%.

Figure 5.3: J48-Simple: system performance and classifier performance

The trend observed with the categories describing motion is not replicated with

the relation category. The classifier can predict the correct relation in 75.90% of cases

but the evaluators considered the system to generate a good description in 65.93% of

cases, thus a decrease of almost 10%. There is not much variation in the judgements of

different evaluators as their values cluster at that value.

To summarise, human evaluators judged that the system performs better than its

underlying classifiers for descriptions of motion and worse for descriptions of object

relations. In the latter case, the system generates a correct description in 2/3 of cases.

This is not an ideal but still acceptable level of performance given the nature of the

task.

Let us now turn to the performance of the system that uses the J48-All configuration

of classifiers (Table 5.8 and Figure 5.4). The graph showsmany of the same trends as the

195

Category a b c d e All J48

Motion n = 53 n = 22 n = 53 n = 7 n = 41 n = 176

Verb 96.23 77.27 88.68 100 100 92.61 48.22
Direction 96.23 72.73 92.45 100 100 93.18 55.68
Heading 98.11 68.18 92.45 100 95.12 92.05 60.77
Manner 100 72.73 98.11 100 100 96.02 54.70

Relation n = 66 n = 28 n = 72 n = 110 n = 58 n = 334

Relation 72.73 57.14 44.44 70.00 43.10 59.28 69.12

Table 5.8: J48-All: system performance and classifier performance

one for the J48-Simple configuration in Figure 5.3. Evaluators a, c, d and e consider the

performance of the system on motion words between 90 and 100%. Evaluator b again

stands out with much lower scores than the rest of the group but these are now higher

than the accuracy of the underlying classifier. The classifier does again least well on

the Manner category (56.30%) , but this is not reflected in the evaluator’s judgements

of the system’s performance (96.02%).

Figure 5.4: J48-All: system performance and classifier performance

There is less consistent behaviour in the judgements of performance on descriptions

196

of object relations compared both to the motion descriptions of the same classifier con-

figuration and descriptions of object relations of the J48-Simple configuration described

previously. Our baseline, the accuracy of the classifier, is 69.12%. Evaluators a and d

judge the performance to be slightly better than the baseline, while evaluators b, c and

e judge it to be worse. Evaluators c and e particularly stand out as their evaluation

figures are as low as 44.44% and 43.10% respectively. If all evaluators are considered

together (all), the evaluated performance of the system is 59.28%, thus again a good

10% lower than the baseline.

The performance of the system using the J48-All configuration of classifiers is thus

similar to the performance of the system using the J48-Simple configuration. Human

evaluators perceive that the system is performing better than its underlying classifiers

on descriptions of motion, but they consider it to perform slightly worse than the clas-

sifier on descriptions of object relations.

A plausible explanation of this outcome is that categories of motion may contain

words that are semantically less restrictive than words locating objects: they are syn-

onyms. For example, the category Verb contains words such as “going”, “moving”

and “continuing” which have a very similar reference for a human but not for a ma-

chine learner. Therefore, there is a higher chance that the generated description will be

acceptable. The categories Direction, Heading and Manner contain words with clearer

semantic devisions but all of them contain the word “none”, a dummy word that was

assigned to a category if no other word of that category was found in the pre-learning

description. We argued that for the purposes of machine learning a null word cap-

tures better the semantics of a description than if the category is marked to contain a

missing value (Section 3.3.3, page 71). Not only does “none” have a distinct meaning,

it has a default meaning and an anaphoric meaning. For example, for the Direction

category “none” has the same meaning as “straight”. On the other hand “none” can

also be interpreted to refer anaphorically to the previous description of Direction in the

197

discourse.

Another explanation of the evaluation results is that learning and generating de-

scriptions of object relations is more complex than learning and generating descrip-

tions of motion. This means that our learning (Section 2.4.2.2) and generation models

(Section 4.4.4) for descriptions of object relations capture human knowledge less well

than the models for descriptions of motion. We return to the qualitative evaluation

of the system’s performance and its shortcomings in Section 5.2.5. As we pointed out

at the beginning of this section, generating descriptions in general requires steps in

addition to classification. For this reason a drop in the system’s performance is quite

expected.

Overall, the figures in Table 5.7 and 5.8 indicate the humans evaluated the system

quite favourably which means that it has reached a good level of performance. There-

fore, we can confirm that machine learning is able to capture the semantics of spatial

descriptions.

5.2.4 System performance excluding chance

We argued that accuracy is not a good indicator of performance because the agreement

between the two standards of comparison, in this case the system and the evaluator,

could be due to chance. Chance is measured as a bias of each standard toward assign-

ing each category, in this case generating a particular word (Section 3.5.3).

Table 5.9 and the associated Figure 5.5 and 5.6 represent the performance of the

system according to the estimated values of the κ coefficient per each evaluator-system

pair. They also include the estimated κ coefficient for the underlying J48 classifier

(Table 3.8, page 110). When comparing both figures to Figure 5.3 and 5.4 from the

previous section which show the performance of the system according to accuracy we

see that both sets of figures reveal identical trends. The differences in κ values both

across different categories judged by one evaluator (the horizontal dimension) and

across different evaluators on the same category (the vertical dimension) appear to be

198

Category a:s b:s c:s d:s e:s all:s J48

J48-Simple
Verb 1 0.8007 1 1 0.9417 0.9523 0.7738
Direction 1 0.6543 1 1 1 0.9312 0.7758
Heading 1 0.7241 1 1 0.7838 0.8939 0.9479
Manner 1 0.6988 1 1 1 0.9260 0.2523
Relation 0.6119 0.5593 0.5935 0.5858 0.4649 0.5730 0.6747

J48-All
Verb 0.9397 0.6504 0.8264 1 1 0.8959 0.2852
Direction 0.9407 0.6086 0.8855 1 1 0.8934 0.2960
Heading 0.9670 0.5048 0.8696 1 0.9251 0.8706 0.3432
Manner 1 0.5661 0.9530 1 1 0.9229 0.0859
Relation 0.6786 0.4599 0.3035 0.6306 0.2747 0.4965 0.6110

Table 5.9: The κ values per category for each evaluator-system pair

more pronounced than the differences in accuracy. The same also holds if we compare

the performance of the J48 classifier with the evaluated system performance.

Following the discussion in Section 3.5.3 the interpretation of the κ coefficient de-

pends on the nature of the task. In classification tasks any value of κ greater than 0 is

a positive result since it indicates that a classifier is performing better than a baseline

classifier which is assigning classes randomly or is only assigning the majority class

(page 111). The same also holds for a system generating descriptions. The mean κ

value for the group of evaluators [a...e] and the system in the J48-Simple scenario is

0.8553, s = 0.1424 and the mean κ value for the same pair in the J48-All scenario is

0.8159, s = 0.1605. According to the literature the evaluator and the system show

a good measure of agreement (κ > 0.8) which is also considerably greater than the

agreement reached by the underlying classifier (J48-Simple: κ̄ = 0.6849, s = 0.2335,

J48-All: κ̄ = 0.3243, s = 0.1684).

The distribution of values is not even across all categories. The agreement κ > 0.8

is only present on the motion categories Verb, Direction, Heading and Manner in both

J48-Simple and J48-All scenarios, whereas the agreement on the Relation category is

199

Figure 5.5: J48-Simple: κ per category for each evaluator-system pair

Figure 5.6: J48-All: κ per category for each evaluator-system pair

200

markedly lower: 0.5730 and 0.4965 respectively. In the same way as accuracy (page

195) these κ values are lower by approximately 0.1 from the κ values of the underlying

J48 classifier. The κ coefficients therefore confirm the conclusions in the preceding sec-

tion. They also favourably indicate that the system is performing well beyond chance.

To calculate the κ coefficient in Table 5.9 we had to estimate probabilities with which

human evaluators and the system generate a word of a particular category (Equa-

tion 28, page 109). The product of these probabilities summed over all words in the cat-

egory represents the estimate of the agreement by chance (Ae) (Equation 27, page 109)5

given in Table 5.10. The estimated probability with which the system assigns a word

to a category is constant in the calculations of Ae across different evaluators. It follows

that the values of Ae when compared between different evaluator-system pairs reveal

the bias of each individual evaluator. We plot them in Figure 5.7 and 5.8. The figures

also include the plots of observed agreement (Ao) or accuracy (from Table 5.7 and 5.8)

and κ (from Table 5.9).

Category a:s b:s c:s d:s e:s all:s

J48-Simple
Verb 0.4239 0.4099 0.3837 0.1156 0.1834 0.3022
Direction 0.3581 0.3194 0.3322 0.3300 0.4166 0.3546
Heading 0.3963 0.3603 0.3964 0.3719 0.3391 0.3711
Manner 0.6325 0.4141 0.7043 0.5140 0.5319 0.5503
Relation 0.1675 0.2108 0.2231 0.1802 0.2355 0.2021

J48-All
Verb 0.3744 0.3498 0.3479 0.1412 0.2370 0.2900
Direction 0.3639 0.3033 0.3408 0.3281 0.4475 0.3604
Heading 0.4278 0.3575 0.4208 0.3831 0.3484 0.3857
Manner 0.5515 0.3715 0.5979 0.4480 0.4808 0.4838
Relation 0.1515 0.2064 0.2023 0.1879 0.2155 0.1913

Table 5.10: The expected agreement per category for each evaluator-system
pair

If we compare Ae between different evaluators and the system for both J48-Simple

5The equation assumes that the system and evaluators assign a word independently of each other.
We mentioned on page 193 that this condition may not be satisfied completely. In such cases Ae are
underestimated.

201

and J48-All configurations of the system, we observe that in many cases there is not

much difference between one evaluator and another: the lines aremore or less flat. This

means that these evaluators distributewords into categories in a similar way which is a

positive result. There are a couple of differences though. For example, on theVerb cate-

gory in both J48-Simple and J48-All scenarios Ae is markedly lower than the Ae for other

evaluators-systempairs between (i) the systemand evaluator d (0.1156 and 0.1412), and

(ii) the system and evaluator e (0.1834 and 0.2370). A similar drop is observable on the

Manner category for the b:s pair (0.4141 and 0.3751). On the other hand there is also

an increase in agreement by chance between the system and evaluator c on the same

category (0.7043 and 0.5979). A drop in Ae for a particular evaluator compared to other

evaluators means that the evaluator is biased toward different vocabulary than other

evaluators, an increased agreement by chance indicates that the evaluator tends to fol-

low the system more than other evaluators. Thus, observed at the level of individual

evaluators, the agreement by chance tells us about the idiosyncrasies of particular sub-

jects when evaluating descriptions. We can expect similar idiosyncrasies also occur

when a corpus of descriptions is collected for machine learning.

Note that almost identical patterns of Ae are observable in both J48-Simple and J48-

All scenarios. This is expected, since changing the scenario, the underlying classifier

that the system is using, does not affect evaluators in any way nor were they explic-

itly told that there was a difference in the system. The actual values of Ae between

the two scenarios are also very similar. In the experiment it could not be ensured that

both coders used the same tag set and this is one of the ways in which our usage of

κ diverges from a standard tagging task. We can be sure that the classifiers from the

J48-All scenario capture most of the words used to generate spatial descriptions since

their corpus was created with no restrictions in vocabulary and from five describers.

In the J48-Simple scenario, the system only has a knowledge of the basic spatial words,

whereas the evaluators judged its performance using their complete linguistic com-

202

(a) Verb (b) Direction

(c) Heading (d) Manner

(e) Relation

Figure 5.7: J48-Simple: expected agreement, observed agreement and κ per
category for each evaluator-system pair

203

(a) Verb (b) Direction

(c) Heading (d) Manner

(e) Relation

Figure 5.8: J48-All: expected agreement, observed agreement and κ per
category for each evaluator-system pair

204

petence. Thus, even if evaluators and the system distribute words uniformly within

each category, in the J48-Simple scenario the probability mass of an evaluator choosing

a word is spread out across more words compared to a situation where the system is

choosing a word simply because evaluators operate with more words. There is an a

priori bias. Consequently, the agreement by chance between the two is expected to be

lower than in the J48-All scenario. Examining Table 5.10, the differences between the

Ae coefficients are minimal. Performing a simple count we can conclude that there

are 60 coefficients in the table. Of these, 12 are lower in the J48-Simple than in the

J48-All scenario and 18 are higher. This means, that the basic vocabulary selected for

the J48-Simple scenario is also the most frequently used vocabulary in the J48-All sce-

nario to which most probability mass is assigned. We made an identical conclusion in

Section 3.5.6.

5.2.5 Qualitative evaluation of the system’s performance

In this section we turn to the qualitative evidence for the performance of the pDescriber

system. This evidence consists of comments and observations of errors made by the

evaluators when interfacing with a working system.

5.2.5.1 Ambiguity of heading and direction

A few evaluators pointed out that the descriptions of direction such as “left” and

“right” are ambiguous when used to describe motion. “Moving right” can mean mov-

ing forward with a heading in the clockwise direction. It can also meanmaking a sharp

turn to the region that is to the right of the current location. This usage is thus identical

to the usage of “right” when describing object relations. Both types of movement are

exemplified in Figure 5.9.

One would expect that the classifiers in machine learning would internalise the

distinction between the two usages provided that the training data is consistent and

there is enough of it. However, this was not the case. Perhaps the projective usage is

205

Robot Robot

Figure 5.9: Two meanings of “right”

too complex to be learned from the available odometry parameters. The interpretation

is also driven by the accompanying verb. For example, if the verb is “edging”, the

adverbial interpretation of direction is more likely. On the other hand, if the verb is

“turning”, the projective interpretation is preferred. Because the system treats each

linguistic category as a separate target concept, such tendencies are not preserved in

the knowledge learned. The consequences of this are that the semantic distinction is

lost, and that the systemmay over-generate descriptions since certain adverbs are used

with verbs that are less likely to occur with in human descriptions.

A similar case is a description “moving backward” which either means (i) that the

vehicle is reversing or moving in the direction that is behind its back (Figure 5.10a); or

(ii) that it has reversed, but is nowmoving forward to the direction that was previously

behind its back (Figure 5.10b). The latter interpretation is more complicated since it in-

volves an action of rotating the vehicle by 180◦. To learn such a description, the learner

would have to abstract over a chart of actions rather than over physical descriptions

of the environment. Therefore the description cannot be learned by the present sys-

tem. Since the scene in Figure 5.10b can be described either with “moving forward”

or “moving backward” and the system cannot take into account complex actions, it

206

may rarely over-generate “moving backward” in cases where only “moving forward”

is applicable.

Robot

rightleft

Robot

leftright

(a) (b)

Figure 5.10: “Moving backward” or “moving forward”

Both Figure 5.10a and Figure 5.10b indicate an intrinsic reference frame for the de-

scriptions “left” and “right”. It was noticed that for the scene in Figure 5.10a descrip-

tions of heading were also generated by the robot in respect to the relative reference

frame fixed on an observer facing the front of the robot in which case “left” and “right”

are reversed. When a scene in Figure 5.10b was described with “moving forward” the

intrinsic reference frame was chosen in most cases.

5.2.5.2 Object shape

Our models for learning descriptions of object relations do not take into account the

shape of the objects. On the SLAM map each object is represented as a point defined

by its centre. While this works reasonably well for most of the objects, difficulties arise

with objects which are not square-shaped and are markedly different in one dimen-

sion such as “the wall” and “the barrier”. Figure 5.11a shows a setting which the robot

non-intuitively describes with “The wall is in front of Flakey” and “The chest is be-

hind the wall”. When one considers that the system only perceives the wall as a point

represented by the black circle, it becomes clear why such descriptions are generated.

There were only a couple of such objects in our environment, most notably the

walls, for which the system generated erroneous descriptions. It may appear that rep-

207

F
la

ke
y

Robot

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Wall

Chest

Robot

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

Bin

Barrier

(a) (b)

Figure 5.11: Where is the wall, the chest, the bin?

resenting objects as a convex hull of their points in a two-dimensional space would

solve the problem. However, the effects of object shape on descriptions are even more

complex than captured by this model as exemplified by the scene in Figure 5.11b which

would be described with a complex description of spatial relation “The bin is close to

the barrier between its two ends”. A system generating such descriptions should be

able to generate complex descriptions and be able to refer to the parts of the objects

and their properties. The issue here is not only grounding the object in the physical

environment, but reasoning about the grounded objects. This is a process which takes

places at a different level of meaning representation.

No doubt, to improve the performance of pDescriber a better treatment of object

shape should be devised and integrated to it. Currently, we avoided the problem al-

together as the information about the object shape is not immediately available from

MOOS which only represents the environment as clouds of points. Abstraction of ob-

jects from points is a difficult problem and would require a research project of its own.

208

5.2.5.3 Switching the perspective

Although evaluators were told that the descriptions are generated from the perspective

of the robot (Section 2.4.2.2, page 45), it was very easy for them to switch from the

relative reference frame orientated relative to the robot to the intrinsic reference frame

orientated relative to the reference object.

Two reasons for such behaviour can be identified. Firstly, it became apparent that

such switches of perspectivewere already unintentionally present in the classifier train-

ing data since the system would occasionally produce descriptions according to the

intrinsic reference frame. In this case the majority of evaluators would judge the de-

scription as acceptable. Only a few would point out that the description is not good if

the speaker’s perspective should be considered. Secondly, the properties of some ob-

jects invite human evaluators or describers to use the intrinsic rather than the relative

reference frame. This is particularly the case if these objects are larger than describer

(walls, barriers and cupboards), have an identifiable front and are animate (another

robot).

Figure 5.12 shows two scenes, one with two robots Marge and Homer who are both

facing north, and the second with the robot Marge and a table. In the first scene, the

switch of the reference frame from being relative to Marge to being relative to Homer

is possible and the description “the tyres are in front of Homer” is valid. On the other

hand, the description “the tyres are in front of the table” to describe the second scene

is unusual, because the table does not have front and back sides and is therefore not a

good object to fix the orientation of the reference frame.

The scene in Figure 5.13a contains three objects: the robot, the table and the wall.

If the robot is the describer and it fixes the orientation of the relative reference frame

then two intuitive descriptions would be “the table is in front of me” and “the table is

in front of the wall”. If the intrinsic reference frame is fixed by the reference object “the

wall” then both of these descriptions are equally acceptable. However, the descriptions

209

Marge

Tyres

Homer

Marge

Tyres

Table

(a) (b)

Figure 5.12: Reference frame and properties of objects

“the wall is behind the table” and “I’m behind the table” are only acceptable under one,

either relative or intrinsic reference frame.

Figure 5.13b shows the same scene but with another object “a stack of tyres” placed

in the proximity of the wall. The same ambiguity applies here but less successfully. A

description “the table and the tyres are in front of me” is acceptable under the inter-

pretation according to either reference frame. The ambiguity can be resolved through

a blocking effect of one object better satisfying the criteria of being “in front of”. If we

are subsequently told that “the tyres are not quite in front of me” then we can be sure

that the orientation of the reference frame is fixed by the robot. Alternatively, if we are

told that “the table is not quite in front of the wall” then the orientation of the reference

frame is fixed by the wall. The disambiguation is achieved by providing additional

information, in the same way as subsequently saying “the tyres are behind the table”.

There is one situation where a description can only be made using the intrinsic

reference frame. This is when the robot is trying to describe its own location and is

therefore the located object itself. This means that it cannot fix the orientation of the

reference frame and consequently there must be another object to do so. The descrip-

tion “I’m in front of the chair” unambiguously means that the robot is located in the

210

Table

������������������������������

Wall

Robot

Tyres

Table

����������������������������

Wall

Robot

(a) (b)

Figure 5.13: Which reference frame?

region around the seating area of the chair.

The preceding discussion shows that there is a substantial ambiguity regarding the

choice of reference frame in scenes that contain three or more objects where the located

object is between the speaker and another reference object. This is especially so if the

latter satisfies the criteria for fixing the orientation of the reference frame better than

the speaker. This ambiguity easily misleads the describer or the evaluator to switch

from the intended relative reference frame to the intrinsic frame and use it also in their

subsequent descriptions or evaluations.

5.2.5.4 Descriptions of objects outside the field of vision

Some evaluators did not like descriptions of objects that were not in the “vision field”

of the robot. Others considered them natural. Figure 5.14 shows two such scenes. Tech-

nically, “the vision field” of the robot is much greater than that of a human observer. It

includes a complete representation of the room and therefore corresponds to a mental

map. Humans too use mental maps for spatial navigation and in such cases are able to

refer to objects that are not in their field of vision. Perhaps then, referring to an object

that cannot be seen is not completely unnatural. A description such as “the wall is in

211

front of the table” referring to the scene in Figure 5.14a cannot be because the system is

over-generating. Typical over-generations would include sentences such as “the wall

is behind the table”. It must be that some describers described the objects in this way

when creating machine learning datasets and such knowledge has been incorporated

into the models that were learned.

��������������
��������������
��������������
��������������Wall

Robot

Table

���������������
���������������
���������������
���������������Wall

Robot

Table

Tyres

(a) (b)

Figure 5.14: Descriptions of objects outside the field of vision

The description “the tyres are to the right of the table” referring to the scene in

Figure 5.14b could be either a result of an over-generation by a human describer or an

over-generation by the system.

5.2.5.5 Competing descriptions

Occasionally, pDescriber fails to generate the best description. When generating de-

scriptions the system must first select a pair of objects. The description is about these

objects and they are chosen because they are relevant in the current discourse. Because

our system does not contain a discourse model it uses a very simple method of object

selection: it chooses a pair at random. The choice of objects involves higher-level con-

textual reasoning and could be added to the system in the future. On the other hand,

the system always attempts to choose the best description of relation between a pair of

objects because this knowledge is contained in the classifiers that were learned.

212

Robot

C
up

bo
ar

d

Chest

Bin

Figure 5.15: Competing descriptions

In some cases the choice of objects was indeed infelicitous. To describe the scene

in Figure 5.15 the systemwould randomly choose “the cupboard” as the located object

and “the bin” as the reference object. The classifier would predict the best description

relating these objects as “left” and the description “the cupboard is to the left of the

bin” would be generated. Human evaluators point out that such descriptions are ac-

ceptable but to describe the location of the cupboard, “the chest” would be a far better

reference object. Descriptions in which a more salient reference object could be chosen

and where the chosen reference object was outside the robot’s vision field were judged

to be considerably worse. This is because it is highly unusual to relate a located object

to a non-salient object outside the vision field when there exists a salient object in the

vision field of the speaker.

5.2.5.6 Final remarks

In the preceding discussionwe summarised the shortcomings that users reportedwhile

interfacing with pDescriber and we attempted to provide explanations for them. In

many cases this included proposing extensions and adjustments of the current system

that are required for a complete system that generates spatial expressions. However,

these go beyond the scope of the current project. With the exception of the perspective,

the evaluators were not instructed that they should ignore evaluating a particular part

213

of the system’s behaviour. The purpose of the experiment was to show how well the

system performs in practice given the restricted representations of the state of the ro-

bot and its environment that we have access to. When the preceding observations are

considered with the results in Section 5.2.3 we can conclude that the system performs

remarkably well without implementing many additional features.

5.2.6 Summary

In this section we discussed the evaluation of pDescriber by humans. The system uses

the classifiers built by machine learners to generate new descriptions ofmotion and ob-

ject relations in real scenes. We started by outlining our experimental design. We pro-

ceeded by measuring the agreement between the evaluators. This was considered im-

portant because it shows us how reliable the judgements are and also confirms that the

system has captured generalisations that are replicated between the individual eval-

uators. We concluded that a sufficient level of evaluator agreement was reached. In

the next step we compared the performance of the systemwith the performance of the

underlying classifiers. It turned out that according to the combined judgements of all

evaluators the systemwas performing better than the underlying classifiers on the mo-

tion categories but slightly worse than its classifiers on the object relation category. We

attributed this to the fact that object relations are more complex than motion categories

and other, not just topological features may be important in their generation. We also

used the κ coefficient to measure the agreement between the evaluators and the system

which gives us better estimates of the true agreement that is not due to chance. Fol-

lowing the quantitative evaluation of the system,we concludedwith a qualitative eval-

uation where we summarised the most typical observations that evaluators reported

during the experiments. These comments point to further improvements of the system

but also, when compared to the quantitative evidence, assure us that the performance

of the system is indeed encouraging.

214

5.3 Evaluation of pDialogue

5.3.1 Evaluation in general

pDialogue responds to linguistic requests for motion issued by humans and answers

questions about the location of objects as outlined in Section 4.5. As pointed out there,

the flow of linguistic and non-linguistic information is in in many cases reversed com-

pared to its flow when it was collected: the classifiers start with a linguistic description

and predict the properties of the robot and the environment corresponding to it. These

properties are not sufficient to generate a response. For example, in the case of motion

they must be converted to commands that bring the robot to the state which they de-

scribe. In the case of descriptions of object relations the properties represent a region

of space from which objects must be selected. One of the questions that the evalua-

tion of pDialogue attempts to answer is whether the knowledge that was obtained from

descriptions of states and scenes can also be used to generate motion and answer ques-

tions about objects.

In Section 4.5.1 we listed questions and requests that the system can handle as Ex-

amples 1–6, page 156. We briefly repeat them below and outline their significance in

evaluation.

Questions such as “What can you do?” in (1) are answered by the component that

matches words to patterns associated with pre-defined responses (Section 4.5.4). The

pattern matcher was introduced to the system for practical reasons: to demonstrate

some simple linguistic interaction with the robot and to deal efficiently with state-

ments and questions that could not be recognised by the main argument parser. This

provided a considerable linguistic robustness of the system. The pattern matching

question answering interface does not have any theoretical value, and hence it was

excluded from the evaluation.

The sentence “Go forward slowly” in (2) is an instruction of motion for the robot

(Section 4.5.5.1). Unfortunately, we were unable to test the live performance of the sys-

215

tem on these commands with human evaluators. This was because it was considered

too dangerous to control the robot purely by linguistic knowledge that was obtained

automatically in a setting where not enough secondary control of the robot’s motion

could be ensured. The environment in which the robot was moving contained objects

and thus its space was limited. The system did not contain an obstacle detection sys-

tem that would stop the robot in case it was approaching an object. Obstacle detecting

must be implemented at the level of navigation either by relying on the laser data, or

even better, the data from sonars. Since a considerable development time would be

involved in designing such system, and because its design would go beyond the scope

of this work, it was decided not to go on with the implementation. The system does

contain a very crude control of motion. The robot stops after three seconds. This was

considered too restrictive for the evaluation where participants were asked to concen-

trate on the naturalness of the system. It did nonetheless allowed us to evaluate the

system qualitatively and the results were encouraging.

To answer questions such as “Where is the table?” (Type A) in (3) the system

chooses another reference object at random and uses a classifier to predict the best

relation between the locations of these objects (Section 4.5.5.2). This setting is identical

to pDescriber. It is a general case and it will tell us how good the system is in predicting

the relation and locating objects. It will also allow us to make comparisons between

the other settings of pDialogue and pDescriber.

Questions such as “Is the table to the left of the chair?” (Type B) in (4) are answered

by taking the locations of both objects and using a classifier to find the best description

of relation between them. If this is the same as the relation from the question, the

answer is “yes”, otherwise it is “no” (Section 4.5.5.3). In the evaluation we placed

the robot and the objects so that the answer would always be “yes” according to our

intuition. Assuming that the classifier is a perfect predictor (which is not), the setting

gives us an indication how good the system is in finding the best description of relation

216

between the two objects.

Questions such as “What is to the left of the chair?” (Type C) in (5) are answered

by finding a square region that corresponds “to the left of” the location of the refer-

ence object “the chair”. The system returns a list of objects found in that region (Sec-

tion 4.5.5.4). Assuming that the underlying classifiers are perfect predictors, the setting

should give us an indication how good is the approximation of space into square re-

gions for different descriptions of object relations.

Finally, questions such as “What is the chair to the left of?” (Type D) in (6) are

answered by returning a set of possible reference object candidates that fall within a

certain square region given that we know the location of the located object and the re-

lation (Section 4.5.5.5). Assuming that the underlying classifiers are perfect predictors,

the test should give us an indication whether the space for reference objects can also be

approximated by a square region and what effect properties of reference objects have

on their selection given that the system is not discriminating between them.

5.3.2 Experiment design

pDialoguewas evaluated by a group of 13 volunteer subjects identifiedwith letters from

a to m, thus more than twice the number of subjects that evaluated pDescriber. Most of

them were new to the experiment. Only three of them have already participated in

the evaluation of pDescriber, and only two of them have participated in the experiment

where data was collected for machine learning. There was a half-half distribution of

native and non-native but fluent speakers of English.

The pre-experiment procedurewas almost identical to that of pDescriber (Section 5.2.1).

Objects were placed at various locations in the experiment room. Their placement was

different from the placements in the previous experiments. A SLAMmapwas built and

the objects were manually grounded on the map. The maximum size of the room and

the maximum speed were found. These are used by pDialogue to normalise its obser-

vations which are subsequently applied to its classifiers. The classifiers that were used

217

were built by the J48 learner on the time-shifted All dataset. Numeric target classes

were discretised to 11 nominal classes or bins. Each participant was first familiarised

with the environment and the names of the objects. They were informed that the pur-

pose of the experiment is to test the quality of the robot’s linguistic response to ques-

tions about the location of objects in the room. Hence, their task was to judge whether

the robot’s answers are good and intuitive descriptions of the scene that the robot is

currently in. A distinction how descriptions can be made relative to different reference

frames was exemplified to them and they were asked to consider the descriptions as

being made by the robot from its own perspective.

Although the robot can answer any question that falls within its knowledge base

at any location, to control the experiment a script of questions was devised that were

asked by every evaluator at the same predefined locations. To speed up the collection

of data, the evaluators did not have to ask these questions themselves, but they were

automatically submitted to pDialogue by pDialogueEval, a MOOS application which we

specifically wrote for this purpose. The operator first placed the robot in one of the lo-

cations. When the evaluator was ready, they first heard a question and then an answer,

both pronounced by the speech synthesiser. They were reminded that they should

consider the question as being asked by them, whereas the answer is returned by the

robot. After each question-answer pair, the evaluator, sitting behind a computer ter-

minal, was prompted to evaluate the answer on a scale ranging from 1 to 5 where 1 is

completely unsuitable, 3 is acceptable but probably there is another better description,

and 5 is a perfect description. After choosing one of these values the evaluators also

had a chance to type in comments about the description or their evaluation that they

considered relevant, for example “ok under the perspective of the other object, did not

include the chair”. This allowed us to collect some qualitative data. Each run of the

experiment took from 45 minutes to an hour to complete.

Figure 5.16 shows the SLAMrepresentation of the environment including the names

218

of the objects. The map also shows the four locations marked as Location 1, 2, 3 and 4

in which the robot was placed when the questions were evaluated.

Location 1

Location 3

Location 4

Location 2

Figure 5.16: The evaluation environment for pDialogue

Table 5.11 shows the questions that were asked at these locations including their

question types. For Location 1 we designed the questions so that the reference object is

always the robot. We did not include question types A and D (“Where are you?” and

“What are you to the left of?”) because here the robot is the located object. Because

the location of the robot is at stake it cannot fix the orientation of the reference frame.

In such cases this must be fixed by the reference object which means that it can only

be an intrinsic reference frame. Such configurations were excluded from learning (see

Section 2.4.2.2, page 45).

Location 2 concentrates on objects that are in the robot’s “field of vision”. Question

type A queries the robot about the location of four such objects which are at different

distances away from it. The system returns the best description of the relation between

219

that object and another randomly chosen object which may not be in the robot’s vision

field. Question types B, C and D concentrate on the four most frequent descriptions of

relation “to the left of”, “to the right of”, “in front of” and “behind”. In question type

B, both the reference and the located object are fixed by the question; in question type

C the reference object is fixed; and in question type D the located object is fixed.

Location 3 concentrates on objects that are not in the robot’s field of vision. The

objects chosen for the answers are not restricted. Otherwise, the nature of questions is

identical to those used in Location 2.

In Location 4we test the three non-projective descriptions of object relations: “near”,

“close” and “far from”. For this reason we exclude the question type A. For each rela-

tion the question types B and C were asked twice: once where both objects (B) or the

located object (C) were in the “field of vision” of the robot and one when they were

not. The question type D was only asked with a located object in the robot’s “field of

vision” because it is not natural to form this question with objects that are not.

Scene Question Type

Location 1 1. Is the sofa to the left of you? B
2. Is the desk to the right of you? B
3. Are the shelves in front of you? B
4. Is the door behind you? B
5. What is to the left of you? C
6. What is to the right of you? C
7. What is in front of you? C
8. What is behind you? C

Location 2 1. Where is the table? A
2. Where is the chest? A
3. Where is the barrier? A
4. Where is the panel? A
5. Is the chair to the left of the trolley? B
6. Are the tyres to the right of the table? B
7. Is the trolley in front of the chest? B
8. Is the trolley behind the tyres? B
9. What is to the left of the barrier? C

10. What is to the right of the chair? C
11. What is in front of the chest? C
12. What is behind the table? C
13. What is the chair to the left of? D

220

Scene Question Type

14. What is Flakey to the right of? D
15. What are the tyres in front of? D
16. What is the chest behind of? D

Location 3 1. Where is the bin? A
2. Where is the pillar? A
3. Where is the table? A
4. Where are the drawers? A
5. Is the user to the left of Homer? B
6. Is the origin to the right of the desk? B
7. Is the bin in front of Homer? B
8. Is the user behind the bin? B
9. What is to the left of the table? C

10. What is to the right of the desk? C
11. What is in front of the pillar? C
12. What is behind the table? C
13. What is Homer to the left of? D
14. What is the table to the right of? D
15. What is the bin in front of? D
16. What is the pillar behind of? D

Location 4 1. Is the table near the origin? B
2. Are the drawers near the sofa? B
3. Is the barrier close to the tyres? B
4. Is the origin close to the user? B
5. Is Flakey far from the chair? B
6. Is the computer far from Homer? B
7. What is near the trolley? C
8. What is near the desk? C
9. What is close to the chair? C

10. What is close to the user? C
11. What is far from the barrier? C
12. What is far from the sofa? C
13. What is the trolley near to? D
14. What is the chair close to? D
15. What is the barrier far from? D

Table 5.11: Questions that were asked at each location

5.3.3 Evaluator agreement

Parallel to the evaluation of pDescriber (Section 5.2.2) we need to establish whether the

evaluators behaved similarly while evaluating the performance of pDialogue. There

221

we used statistical correlation to estimate the consistency of evaluator behaviour. We

also use this method here. We introduced two related linear correlation coefficients:

Pearson’s product moment coefficient (rxy) and Spearman’s coefficient of rank correla-

tion (ρ). We calculated them between a set of values from one evaluator and the mean

of the values from the rest of the group. The set of items that the values represent

must be identical across all evaluators. The procedure was repeated for each remain-

ing evaluator. The mean of the values obtained through each fold was considered as

an estimation of the overall evaluator agreement.

Evaluators behave similarly if they evaluate responses of the system to questions in

the same way. Since the questions that were answered are the same for evaluators, un-

like with pDescriber, the individual judgements of evaluators can be compared directly.

It is important to note that the response of the systemmay not always be the same and

not much more can be done to ensure its consistent behaviour. This adds adds noise to

the estimation. Each judgement was a value on a 1 to 5 ordinal scale. The correlation

can be calculated using either rxy or ρ. In the latter case, the correlation is calculated not

from the actual scores, but from the rank that is assigned to each question depending

on the magnitude of its score in comparison to the scores of other questions. Table 5.12

shows the resulting coefficients for each fold and their overall means and Figure 5.17

represents them graphically. The number of items correlated in each fold is 55 which

corresponds to the number of questions.

As before, the *s in Table 5.12 indicate the level of statistical significance of the co-

efficients obtained by a two-tailed t-test. * indicates that the correlation is significant

at the 0.05 level, ** indicate that it is significant at the 0.01 level and “ns” indicates that

it is not statistically significant. The table shows that the majority of the correlation

coefficients are significant at the level α = 2P = 0.01 which means that the risk of re-

jecting the zero hypothesis which states that there is no correlation between the scores

is less than 1% (Type I error). Both correlation coefficients for the evaluator j are statis-

222

Fold rxy ρ

a:rest 0.617** 0.639**
b:rest 0.398** 0.395**
c:rest 0.613** 0.559**
d:rest 0.591** 0.567**
e:rest 0.719** 0.709**
f:rest 0.770** 0.734**
g:rest 0.263ns 0.389**
h:rest 0.702** 0.708**
i:rest 0.534** 0.537**
j:rest 0.297* 0.321*
k:rest 0.638** 0.604**
l:rest 0.755** 0.779**
m:rest 0.686** 0.674**

Mean 0.583 0.586

Table 5.12: Evaluator agreement per fold

tically significant at the 0.05 level, and only one coefficient, the rxy for the evaluator g

is statistically non-significant.

The t-test confirms that the correlation coefficients are representative measures of

agreement between the evaluators. Now let us turn to their values. Table 5.12 and

Figure 5.17 show a similar situation that was observed when agreement was estimated

for pDescriber. The correlation between the majority of individual evaluators and the

rest of the group is medium (0.40 < r ≤ 0.70, 6 cases) to high (0.70 < r ≤ 0.90, 4 cases)

which indicates a good measure of agreement.6 There are however three cases (b:rest,

g:rest and j:rest) where the correlation coefficients are lower than or equal to 0.40 and

here we can only speak of a low positive correlation (0.20 < r ≤ 0.40). It appears

again that a minority of evaluators (23% here and 20% in the evaluation of pDescriber)

behave differently from the rest of the group. As before, it is difficult to make any firm

conclusions why this is so. The agreement between the 10 evaluators is encouraging

and shows that the system performs uniformly across different human observers. The

6These descriptive categories are based on observations and experience rather than scientific facts as
outlined in (Sagadin, 2003, page 122).

223

remaining three evaluators may have approached the task with different expectations

and consequently their scores are different. The mean correlation coefficients rxy and ρ

are 0.583 and 0.586 respectively.

Fold rxy ρ rxy ρ

Group A Group B
a:rest 0.642** 0.664**
b:rest 0.299*↓ 0.289*↓
c:rest 0.581**↓ 0.537**↓
d:rest 0.639** 0.628**
e:rest 0.751** 0.746**
f:rest 0.803** 0.769**
g:rest 0.228↓ 0.249↓
h:rest 0.674**↓ 0.668**↓
i:rest 0.540** 0.521**↓
j:rest 0.251↓ 0.353**
k:rest 0.608**↓ 0.580**↓
l:rest 0.746**↓ 0.763**↓
m:rest 0.713** 0.686**

Mean 0.670 0.656 0.259 0.297

Table 5.13: Evaluator agreement per fold for two evaluator groups

To further exemplify the differences between the two groups of evaluators, we sep-

arated them into two sets A = {a, c, d, e, f , h, i, k, l,m} and B = {b, g, j} and recalculated

the coefficients per folds as shown in Table 5.13. We expected that excluding evalua-

tors b, g and j would result in improved correlation coefficients. Although the means

of the coefficients rxy and ρ increased to 0.670 and 0.656 respectively, as shown in the

left part of Table 5.13, this does not hold for each coefficient from each fold. The coef-

ficients that decreased in value are marked with ↓ and they represent almost a half of

the coefficients in that part of the table (9/20). We also expected that creating a group

of evaluators b, g and jwould result in an increased agreement within this group. This

assumption has been disproved as the majority of their coefficients (5/6) decreased as

shown in the right part of Table 5.13. The coefficient values therefore suggest that it is

impossible to conclude that there are two groups of evaluators. This means that eval-

uators b, g and j cannot be taken as “exceptional cases” since their agreement was not

224

uniformly different from the agreement of other evaluators.

This is to be expected. The scores that were correlated were evaluations of dif-

ferent tasks/question types and evaluators could have had different bias for each of

them which has a negative effect on the correlation score. This bias was not present

in the estimation of agreement between the evaluators of pDescriber because there the

evaluated descriptions were all of the same type. Furthermore, the bias could also be

due to the system bias on particular evaluation instances. As discussed previously, not

all tasks were the same in terms of the decisions that the system made and also there

was no guarantee that the system responded exactly the same to each task each time.

We did the best we could to keep the conditions for each evaluation run identical, but

they were not completely identical. Overall, we can conclude that there is considerable

agreement between the evaluators which has been estimated as a medium positive

correlation and that the result is good given the nature of evaluation.

Figure 5.17: Evaluator agreement per fold

Before concluding this section let us briefly discuss the difference between the two

correlation coefficients rxy and ρ. In Figure 5.17 we can see that their values are surpris-

225

ingly similar, if not even the same. Why is this so? Whenwe introduced the coefficients

in Section 5.2.2, we explained that Person’s ρ is calculated using the same formula as

Spearman’s rxy, the only difference is that it is calculated from ranks rather than inter-

val or ratio data. The coefficient values are similar because the source data from this

evaluation experiment already reflects the ranks. Each item from the first set of scores

holds an integer value between 1 and 5. When such items are ranked in the calculation

of ρ, the relations between the original values are preserved. For example, suppose

that an evaluator assigned the score 2 to 4 questions from the list and these questions

should occupy places 3, 4, 5 and 6 on the rank scale. Because the items hold the same

score, they are assigned the same tied rank 4.5 ((3+ 4+ 5+ 6)/4). The same holds for

the second set of scores. Most likely each mean will be a unique value. If so, it will

be assigned a unique rank. In both cases the relation between the original scores is

preserved when these are translated to ranks. The coefficients are similar because both

sets of scores are used in the same equation. They are not completely identical, because

the mapping to ranks within one set of scores does not correspond to a linear function

and because the assignment of (tied) ranks depends on the distribution of identical

values within a set of scores.

5.3.4 System performance

The evaluators were asked to provide judgements of the system’s response to four

question types that the system answered at four different locations. Each question

type uses different classifiers in different configurations. The questions made at these

locations distinguished between objects that were in the “vision field” of the robot (Lo-

cation 1 and 2) and those that were not (Location 3). Location 1 differs from Location

2 in questions which always contain the robot as the reference object and thus enforce

the usage of the intrinsic reference frame fixed on the robot. We assumed that this will

help evaluators later to choose the relative reference frame which is also fixed by the

226

orientation of the robot. The choice excludes the question types A and D from Lo-

cation 1. We made a distinction between projective prepositions (Locations 1, 2 and

3) and non-projective prepositions (Location 4). Therefore, the experimental settings

reflect a considerable variation of conditions.

In this section we examine the overall performance of the system which we define

as the ability of the system to generate linguistic descriptions that appear natural to

a human observer as if they were made by another human. Since the performance is

a highly subjective measure we also estimated the agreement between the group of

evaluators. The evaluators judged the responses of the system on a scale from 1 to 5,

where 5 meant the highest and 1 the lowest score. However, here we want to measure

the performance of the system in percentages as we did in the evaluation of pDescriber

in Section 5.2.3. This can be accomplished byweighting each each 1 by 0, each 2 by 0.25,

each 3 by 0.50, each 4 by 0.75 and each 5 by 1. The performance can be expressed as the

sum of the weighted scores over the total number of scores in a particular subset. The

evaluation scores for pDialogue are thus comparable to the binary evaluation scores in

the evaluation of pDescriber, but because they are graded, they allow finer distinctions.

Table 5.14 shows the scores per question type for all locations as evaluated by 13

evaluators compared with the accuracies of the underlying classifiers that were used

in each case. In the case of questions C and D two classifiers are used. The classifier

accuracies were taken from Table 3.7, page 105 for All-J48 and Table 3.13, page 124 for

All-J48-11bins. The estimated pDialogue’s performance is in most cases lower than the

accuracy of the underlying classifiers that the system was using. The only exception is

the performance value for the question type C (54.70%) which is higher than the accu-

racy of one of the underlying classifiers (48.80%). However, it is nonetheless markedly

lower than the accuracy of its second classifier (72.80%).

In Table 5.8 we cited that the estimated performance of pDescriber on the Relation

category is 59.28%. As mentioned before, finding an answer to question type A corre-

227

Question type Accuracy (%) Classifier Accuracy (%)

A 43.51 relation 69.12
B 54.17 relation 69.12
C 54.70 lo x 48.80

lo y 72.80
D 56.92 refo x 65.60

refo y 82.24

Mean 52.33 67.71

Table 5.14: System performance and classifier accuracy

sponds closely to generating a description in pDescriber in terms of the choices that the

system makes. Furthermore, both pDescriber and pDialogue use the same underlying

classifier to predict the relation which has an estimated accuracy of 69.12%. In spite of

these similarities the estimated performance of pDialogue on question type A (43.51%)

is lower by 15.69% from the estimated performance of pDescriber.

One reason for the difference is that both systems have not been evaluated with the

same evaluation metric. In pDescriber evaluators were only queried whether descrip-

tions were acceptable or non-acceptable, wheres a five point scale in the evaluation

of pDialogue allowed them to make finer distinctions. Our weighting of the five-point

scale is conservative compared to the binary tags that discriminate only between “ac-

ceptable” and “unacceptable” descriptions. The scale distinguishes between three dif-

ferent levels of acceptability which are marked by the scores 3, 4 and 5. Under the

binary scheme the score 3 would most likely count as an acceptable case, whereas

weighting it by 0.5 makes it neither “acceptable” nor “unacceptable”. Indeed, if we

simply count all 1s and 2s unacceptable and all 3s, 4s and 5s as acceptable, the es-

timated system performance of pDialogue on the answers to question A improves to

50.96%. This demonstrates the effect of different metrics on the evaluations.

Another reason for the lower performance of pDialogue is that generating a descrip-

tion and answering a question are perhaps not the same. For example, if the system

228

generates a description on its own, a human hearer understands it as a statement about

the scene that both participants are observing. On the other hand, if a human is ask-

ing the system about the location of some object, the answer must be informative or

relevant to the hearer so that they can locate the object in the scene. Choosing a salient

reference object is particularly important. Since pDialogue does not implement a model

of salience, it under-performs in this category of descriptions.

Let us now turn to the performance of the system answering questions of the type

B. Table 5.14 shows that the overall performance of the system on this question type is

54.17% which is comparable to its performance on other questions. However, the eval-

uations of the question type B (“Is the desk to the right of you?”) can be separated into

two sub-cases. The system answers these questions by using the classifier to predict a

relation between the specified located object and the reference object. If the predicted

relation is the same as the relation in the question, the system answers “Yes - the desk is

to the right of me”, otherwise it answers “No - the desk is behind me”, thus reporting

the relation predicted by the classifier. For the experiment we chose such questions so

that in our intuition the answer would always be “yes”. We also considered a reference

to objects that were not in the “vision field” of the robot as acceptable.

Answer Location n Performance (%)

yes all 67 93.28
yes 1, 2 43 98.84
yes 3 24 83.33
yes 4 none none

no all 165 38.64
no 1, 2 60 20.83
no 3 27 37.04
no 4 78 52.88

Table 5.15: pDialogue’s performance answering question type B

The first part of Table 5.15 shows cases where the author of the experiment and

the system agree on the choice of the best relation. It can be seen that in this case the

performance of the system is estimated high - 93.28% in overall. Further it can be seen

229

that evaluators agree almost perfectly with the system and its author on the choice of

the best description in Locations 1 and 2 where the objects were in the “vision field”

of the robot, whereas there is a decrease in the estimated performance for Location 3

(83.33%) where the objects were not in the “vision field” of the robot. This indicates

that some evaluators dislike descriptions referring to objects that are not “visible” to

the robot. We return to this question in the following section.

In Location 4 we were dealing with non-projective/topological descriptions of ob-

ject relations such as “close to” and “far from”. There were no cases where the system

would choose the same relation as the author of the experiment and hence there are no

evaluations in this section. This is because topological descriptions compete with pro-

jective descriptions and according to the classifiers the latter are the preferred ones to

describe the location of objects. A possible reason for this is that projective descriptions

allow a more precise grounding of objects. They include proximity between two ob-

jects and the orientation of the reference frame rather than just the former. Because our

system treats both kinds of object relations in the same way, topological descriptions

are less likely to be generated, if at all. This suggests that each type of descriptions

should be learned separately and that an improved system should choose between the

two kinds of object relations depending on the level of detail that is required for each

generation.

The author of the experiment and the system chose the same best description in

28.88% (67/232) of cases. Table 5.8 shows that the average estimated performance of

pDescriber on the Relation category across 5 evaluators is 59.28%. The scores range

from 43.10% to 72.73%. This is because a certain scene can be described with more

than one description of relation. When generating an answer to a question type B

pDialogue behaves in a more restricted way than humans did when they evaluated

pDescriber. The humans were allowed to hear the robot’s reply before they supplied

their own judgements, whereas pDialogue only relies on its classifiers which predict a

230

single relation. The figure 28.88% is an estimation from a single evaluator and cannot

be taken as representative of the system’s performance. It does however positively tell

us that the system has internalised a considerable degree of human preference for a

single best referring expression of relation for a particular configuration of objects that

maximally distinguishes them from other object configurations.

Most likely, the performance of the system would improve if it considered more

than just one best description. This is confirmed by the figures in the second part of

Table 5.15, by the cases where the system chose a different description of relation than

the author of the experiment. The evaluators most often agree with the alternative de-

scription made by the system in Location 4 (52.88%). This is expected. As mentioned

previously the questions asked at this location contain topological descriptions of rela-

tions that compete with projective descriptions which are also the preferred ones. The

questions for Locations 1, 2 and 3 only contain projective descriptions. Although the

evaluators show a general tendency to dislike the descriptionsmade by the system and

thus agree with the author of the experiment, they also show a considerable preference

– 20.83% and 37.04% respectively – for these alternatives. Furthermore, these figures

are pessimistic estimations as they may have been decreased by the genuine classifier

errors.

To answer the questions type A and B the classifier predicts a linguistic description

which is a discrete symbolic class. However, for the question type C (“What is to the

left of the barrier?”) and the question type D (“What is the chair to the left of?”) the

classifiers predict a region in space. Subsequently, the system finds a set of objects that

belong to that region and generates an answer. In Section 3.3.4, page 74 we mentioned

that the chosen classifiers can only predict nominal categories of target concepts and

not values on a continuous numeric scale. The latter define the location of objects. To

use the location of an object as a target concept, we discretised the environment into

nominal regions each representing an interval. The number of intervals that we chose

231

influenced the measured accuracy of the classifier (Section 3.5.5). The fewer intervals

we chose, the more accurate was the classifier. It meant that there was less probability

that an instance would be assigned to an incorrect class. However, the number of

intervals also influences to what detail the system is able to discriminate regions of

space. For example, the system is able to generate descriptions of objects that are more

meaningful and precise to humans if the space is partitioned into five regions rather

than just two. The number of partitions must be chosen carefully to balance between

both factors.

For the classifiers used in the evaluation of pDialogue we chose 11 bins as the op-

timal number based on their performance. As shown in the right part of Table 5.14

the accuracies of the classifiers whose target concepts were discretised (LO x, LO y,

REFO x, REFO y) are comparable with the accuracies of those classifiers whose target

concepts were genuinely nominal (Relation). However, this trend must also be repli-

cated in the system performance evaluated by humans. The left part of Table 5.14

shows encouraging performance figures on the question type C and the question type

D: 54.70% and 56.92% respectively. They are higher than the performance of the system

on the question type A where the classifier predicts true nominal categories (43.51%)

but the reason for this may be that answering a question A also requires object selec-

tion and not just the application of the classifiers. The performance figures on question

type C and D also approach the value estimated for pDescriber (59.28%). Since both

the classifier accuracy and the system performance are balanced, we can be sure that

choosing 11 bins in the discretisation step was a good choice.

The preceding discussion confirms that overall the system performs well and can

replicate a considerable amount of human competence when generating descriptions.

The performance figure of 50% translates to the evaluation score 3 which indicates an

acceptable performance with a possibility of improvement. Considering that the per-

formance metric used in this evaluation is more conservative than the one used for

232

the evaluation of pDescriber and that the evaluated items were selected to represent a

cross-section of (extreme) cases that the system should deal with, the results are indeed

positive and may be comparable to those from the evaluation of pDescriber. Discussing

the system’s performance on question type B we have seen that there may be consider-

able differences in performance when different sets of conditions, such as the locations

and their associated question types, applied. The purpose of the evaluation was to

show under which conditions the system under-performs. We examine these differ-

ences in performance in the following section.

5.3.5 Differences in performance

We demonstrate the difference in performance of pDialogue under different sets of con-

ditions with two statistical tests.

5.3.5.1 t-test

In Section 5.2.2, page 188 we discussed how the t-statistic can be used to determine

whether a sample correlation coefficient is indicative of the correlation coefficient of the

population. In a slightly more complicated scenario, the t-test can be used to determine

whether two populations, in our case sets of scores, differ in the arithmetic means of

their items (Sagadin, 2003, Chapter 12, page 214ff.). Without performing the test, this

could only be established by examining each item of the population and calculating

the means. This would be quite time consuming or even impossible since the number

of evaluations corresponds to the number of descriptions that can be made which is

potentially infinite. Instead, we collected samples of evaluations from which we can

determine samplemeans. Using the t-testwe can determine if the differences in sample

means are indicative of the differences in population means.

The zero hypothesis for the t-testH0 states that there is no difference in themeans of

the two populations or that Mx1 − Mx2 = 0 or Mx1 = Mx2. In contrast, the alternative

233

hypothesis H1 states that the means are different, Mx1 6= Mx2, or that Mx1 − Mx2 6= 0.

The test is two sided.

To calculate the t-statistic (Sagadin, 2003, Equation 225, page 229) we need to know

the size of the two samples (n1 and n2), their means (x̄1 and x̄2) and their variances

(s21 and s22). The test makes two assumptions which must hold for it to be valid. The

variables x and y must be distributed normally in both populations and with identi-

cal variance σ2 (σ2
1 = σ2

2 = σ2). The latter can be confirmed with the Levene’s test

for equality of variances which was introduced by Levene (1960). The test calculates

another statistic known as the F-statistic (Sagadin, 2003, page 241ff.).7 Because the t-

test requires a confirmation that the variances of both populations are equal, the zero

hypothesis H0 must be confirmed rather than rejected in this case.

The values of t are distributed in a probability distribution known as the t-distribution

with g = n1 + n2 − 2 degrees of freedom. This means that a value of t falls within the

interval −tP to +tP (for g = n1 + n2 − 2 degrees of freedom) with a probability 1− α

and it falls outside this interval with a probability α = 2P. The most commonly cho-

sen critical value P for two-tailed statistical tests is 0.025. If the absolute value of the

calculated t is greater than or equal to tP=0.025, the probability that the zero hypothesis

is true is very small, α = 2P ≤ 0.05. We can reject such a hypothesis, the risk that the

rejection is false is ≤ 5%. If the zero hypothesis is rejected, the alternative hypothesis

is accepted. The risk that the alternative hypothesis is false is ≤ 5%. Therefore, when

reporting results we say that if |t| ≥ tP=0.025 for g = n1 + n2 − 2 degrees of freedom,

the difference of sample arithmetic means is statistically significant at the level of risk

α = 2P ≤ 0.05.

7The F-statistic distributes according to the F-distribution with g1 = 1 and g2 = n1 + n2 − 2 degrees
of freedom.

234

5.3.5.2 Pearson’s Chi-square test

The t-test compares the means of two samples of an interval or ratio variable if they

were drawn from the same or different populations. On the other hand, the Chi-square

(χ2) test (Sagadin, 2003, Chapters 17–19, page 293ff.) compares the frequencies of val-

ues of two nominal variables in a sample. The frequencies are obtained by cross-

tabulating the values of the nominal variables in a contingency table. Each cell of a

contingency table tells us the number of items that had some value of the first vari-

able and some value of the second variable. For example, one of the questions that

we would like to answer is whether evaluator scores collected in locations where the

objects referred to are in the “vision field” of the robot (Location 1 and 2) are different

from the scores collected in locations where the objects are not in the “vision field” of

the robot (Location 3). These values would be represented as in Table 5.16.

Location/Score 1 2 3 4 5 Total

1&2 31 22 34 53 68 208
3 39 30 27 27 33 156
Total 70 52 61 80 101 364

Table 5.16: The scores for Location 1&2 against the scores for Location 3 for a
sample of 364 evaluations

The comparison of frequencies can be made in terms of goodness of fit or to test

their independence. The zero hypothesis (H0) in the χ2 test states that there is no de-

pendency between the frequencies of values of the two variables. In our example, this

would state that there is no difference in scores between the two types of locations. If

H0 is true, then we expect that the distribution of nominal values is the same with both

variables.

For example, the score 5 is assigned to 101 out of 364 evaluations in Table 5.16.

Converted to a ratio this equals to 101/364 = 0.2774. If the zero hypothesis is true,

than the same ratio of the score 5 should be found with Location 1&2 and 3. However,

this is not the case, the ratios are 68/208 = 0.3269 and 33/156 = 0.2115. Using the first

235

ratio we can calculate the expected or theoretical frequency for each cell of Table 5.16.

For example, the observed frequency of the cell (1&2, 5) is 68, the expected frequency

is

ft
208

=
101

364
(1)

ft =
101× 208

364
= 57.7143 (2)

The observed frequency for the cell (1&2, 5) is higher than if there were no dependency

between the variables (68 > 57.71). We can test whether the sample difference be-

tween the observed and the expected frequencies is statistically significant in respect

to the underlying population by calculating the χ2 statistic (Sagadin, 2003, Equation

323, page 296). If H0 is true, then the calculated χ2 distributes in a χ2-distribution with

g = (c− 1) × (r− 1) degrees of freedom.8 H0 is rejected for α = P ≤ 0.05.

To summarise, both statistical tests, the t-test and the χ2 test, allow us to make in-

ferences in the form of statistical significance about the distribution of scores in our

evaluation. They examine the scores in a slightly different way and this is also the

reason why we analyse our data with both. The t-test assumes that scores are interval

or ratio variables and compares the means of these variables between the two sam-

ples, for example the two locations. The χ2 test assumes that scores are categories and

compares how these are distributed between two variables, in our case two locations.

The test determines whether the observed and predicted frequencies of categories are

taken from the same population or not. The χ2 test is a more appropriate statistical test

if we assume that the differences between individual scores are not always equal on a

numeric scale.

8c stands for the number of columns and r for the number of rows in the contingency table.

236

5.3.5.3 The effect of the field of vision

Many evaluators of pDescriber pointed out that they dislike descriptions that are refer-

ring to objects not in the “field of vision” of the robot and they considered the system

to over-generate (Section 5.2.5.4). A comparison of the system’s performance in Lo-

cations 1&2 where the objects were “visible” to the robot and Location 3 where the

objects were behind the robot’s “back” shows that the descriptions of the latter are

indeed evaluated lower (Table 5.17). The only exception are the answers to question

type B which we already discussed on page 229. The statistical tests will showwhether

the evaluator scores in Table 5.17 are different between the two configurations in gen-

eral and not just in the sample. To exclude the influence of other factors we limit our

samples to Locations 1&2 and 3 and question types A, C and D.

Location/Question type A B C D All

1&2 45.19 53.13 63.22 78.85 59.46
3 41.83 58.17 45.67 55.29 50.24

Table 5.17: System performance (in %) per question type on descriptions of
“visible” (Location 1&2) and “non-visible” objects (Location 3)

We first consider the t-test. The size of the sample for Location 1&2 is n1 = 208

and for Location 3 this is n2 = 156. Their corresponding means are x̄1 = 3.50 and

x̄2 = 2.90 and their variances are s1 = 2.019 and s2 = 2.217. In order for the t-test to

be valid, the Levene’s test must be applied first to show that the population variances

are equal (σ2
1 = σ2

2). The calculated F statistic for the samples is 0.852 which is less

than the critical value of FP=0.05 (g1 = 1, g2 = 362) which lies approximately between

3.86 (g1 = 1, g2 = 400) and 3.89 (g1 = 1, g2 = 200). Therefore, we accept the zero

hypothesis on the equality of population variances. The risk of rejecting it is too high

α = P = 0.357.9

9The precise value of P is calculated by the SPSS statistical package. This cannot be determined from
the table of scores of the F-distribution which is standardly used in the manual calculation of the F-
statistic.

237

The t statistic is t = 3.912. This is greater than the critical value t2P=0.001 (g = 362)

which is approximately 3.32 (g = 300 and g = 400). Therefore, the zero hypothesis on

the equality of population means can be rejected with a risk α = 2P = 0.000 < 0.001.

We accept the alternative hypothesis which states that the population means are not

equal.

Because x̄1 > x̄2 it also follows that Mx1 > Mx2. We can estimate the difference be-

tween the population means as a confidence interval with some risk α = 2P (Sagadin,

2003, Equation 257, page 245). The estimated lower and upper bound of this interval

are 0.299 and 0.903 (α = 2P = 0.05). This means that in general the mean of scores of

descriptions of objects that are not in the “vision field” of the robot is with a likelihood

of 95% lower by 0.299 to 0.903 from the mean of scores of descriptions of objects that

are in the “vision field” of the robot. This is considerable considering that the scores

range from 1 to 5.

Let us now test the same dataset with the χ2 test. Its contingency table has already

been given in Table 5.16. One of the conditions for this test is that a theoretical fre-

quency of a cell is not less than 5. This condition is satisfied. The value of χ2 is 16.434.

This is more than the critical value of χ2
P=0.01 (g = 4) = 13.28 and less than the critical

value of χ2
P=0.001 (g = 4) = 18.47. The zero hypothesis that there is no difference in the

frequencies of scores between Location 1&2 and Location 3 can be thus rejected with a

risk α = P = 0.002 ≤ 0.01.

The χ2 test measures contingency or strength of association between two nominal

variables which can be expressed as a contingency coefficient. One of the contingency

coefficients based on χ2 is Cramer’s V (Sagadin, 2003, Equation 338, page 316). V

expresses the association between two variables as a percentage of their maximum

possible variation. A perfect relationship between the variables is the one which is

predictive or ordered monotonically. A null relationship is statistical independence.

The coefficient does not tell us the direction of association. This must be determined

238

separately from the frequencies of a contingency table. Table 5.16 gives us the value

of V as 0.212. The relationship between the variables is most likely negative as the

frequencies of low to high scores decrease when progressing from Location 1&2 to

3. Testing the zero hypothesis in the χ2 test also tests the zero hypothesis that the

population V = 0. The risk of rejecting both zero hypotheses is the same.

In this section we have shown that the difference in scores between Locations 1&2

and 3 is statistically significant at the level of risk α = 2P = 0.000 (t-test) and α =

P = 0.002 (χ2 test). In the case of the t-test we estimated with a confidence of 95%

that in general the mean of scores for descriptions of objects not in the “vision field”

of the robot is lower from the mean of scores for descriptions of objects in the “vision

field” of the robot by 0.299 to 0.903. The χ2 test allowed us to estimate the strength of

association between the description scores and the location which is V = 0.212. Both

tests indicate that the scores between Location1&2 and 3 are considerably different

which means that the system should be adapted to avoid generating descriptions of

objects that are not in the “vision field” of the robot.

5.3.5.4 Projective and topological relations

Projective relations such as “left” and behind’ relate the objects alongside two dimen-

sions: proximity and the orientation of the reference frame. Topological relations such

as “near” and “far” only consider proximity between the objects. Our model for ma-

chine learning treated both in the same way which means that the orientation informa-

tion was also encoded as an attribute when topological relations were learned. It was

hoped that its effect would fade through the number of observations which would

make the classifiers encode this property only in the most general way. During the

evaluation experiment it became evident that considerable errors occurred on descrip-

tions of topological relations because the classifiers also internalised the orientation

component and therefore over-fitted on the training data.

239

In this section we examine if our impressionistic observations of evaluators are

also reflected in their scores in general. The evaluators were given the task to evaluate

topological relations in Location 4. There were no questions of type A in this loca-

tion. Because question type B does not evaluate a single condition, we also exclude

its scores from all locations. This leaves us with question types C and D which can be

compared between Locations 1&2&3 where they were used with a projective relation

and Location 4 where they were used with a topological one. We include Location 3 in

the first set because Location 4 also contained descriptions of objects that were not in

the “vision field” of the robot. In fact, question types C and D are also themost suitable

for this test. In these cases in addition to the classification the system does not need to

make any other decisions when generating answers. Secondly, they test the goodness

of region predicted by the classifiers containing either potential LOs (C) or REFOs (D).

The regions will directly reflect the effect of the orientation component on topological

relations.

Table 5.18 shows the estimated system performance for the chosen configurations.

The scores for Location 4 are lower than the scores for Location 1&2&3. The column

“All” contains the estimated performance over all question types in these locations,

thus also including question types A and B.

Location/Question type C D All

1&2&3 57.37 67.07 55.77
4 49.36 16.35 46.15

Table 5.18: System performance (in %) per question type on descriptions with
projective (Location 1&2&3) and topological relations (Location 4)

We consider the t-test first. The size of the sample Location 1&2&3 is n1 = 260

and the size of Location 4 is n2 = 104. Their means and variances are x̄1 = 3.45,

s1 = 2.008 and x̄2 = 2.64, s2 = 2.289. The Levene’s test of equality of population

variances (σ2
1 = σ2

2) gives us the F statistic of 2.030. This is less than the critical value of

FP=0.05 (g1 = 1, g2 = 362) which lies approximately between 3.86 (g1 = 1, g2 = 400) and

240

3.89 (g1 = 1, g2 = 200). The zero hypothesis on the equality of population variances

thus cannot be rejected (α = P = 0.155). The t-statistic can be calculated which gives

us the value of t = 4.805. This is greater than the critical value t2P=0.001 (g = 362) =

3.32. The zero hypothesis that the population means Mx1 and Mx2 are equal can thus

be rejected (α = 2P = 0.000). Because x̄1 > x̄2 it also holds that Mx1 > Mx2. With 95%

confidence Mx1 is higher than Mx2 in the interval of 0.476 to 1.136.

Table 5.19 represents a contingency table for a sample of 364 evaluations for the χ2

test. None of the theoretical frequencies are below 5 and hence the precondition for the

test is met. The test gives us the value of χ2 = 24.550. This is more than the critical

value of χ2
P=0.001 (g = 4) = 18.47. Therefore, we can reject the zero hypothesis and

accept the alternative one that there is a difference between the scores between the two

locations (α = P = 0.000). The value of the Cramer’s V coefficient of contingency is

0.260 and as exemplified by the scores in the table the association between the variables

is a negative one.

Location/Score 1 2 3 4 5 Total

1&2&3 39 32 41 69 79 260
4 34 22 14 15 19 104
Total 73 54 55 84 98 364

Table 5.19: The scores for answers to question types C and D for Location
1&2&3 against Location 4 for a sample of 364 evaluations

Both tests confirm that the differences between two two sets of scores in terms of

their population means and their frequency distributions are statistically significant at

the level 0.000. The difference between the populations means is considerable. With

95% confidence this lies in the interval of 0.476 to 1.136. Thus, it can be concluded

that including the orientation component in the machine learning data for topological

relations has a negative effect on the performance of the system.

241

5.3.5.5 Choice of the reference frame

In all experiments we asked evaluators to describe the environment and evaluate the

performance of the system from the perspective of the robot. This meant that they

had to use intrinsic reference frame if the reference object was the robot and relative

reference frame if the reference object was another object. The first case enforces the

usage of the intrinsic reference frame. However, in the second case the reference frame

can be changed between the intended relative frame and the intrinsic frame fixed by

the reference object. It was noticed that with these descriptions both describers and

evaluators sometimes changed the reference frame.

We can compare the scores obtained in the first configuration with the scores ob-

tained in the second. The system cannot generate descriptions using an intrinsic refer-

ence frame fixed by a reference object other than the robot. Thus, if human observers

prefer to change the reference frame, they would penalise the system for not doing so.

The reason for the change is either because certain configurations and properties of

objects preferentially select intrinsic reference frame or because the reference frame is

flexible and the evaluators simply get confused. We test if such potential changes in

the reference frame by the evaluators have a significant effect on the overall evaluation

scores.

The robot is used as the reference object in question type C at Location 1. We can

compare these scores with the scores for question type C at Location 2 where the ref-

erence object is different than the robot. The size of the samples are n1 = n2 = 52.

Their corresponding means and variances are x̄1 = 3.79, s21 = 2.054, x̄2 = 3.27,

s22 = 1.847. The usage of the t-test is justified by the Levene’s test. The value of the

calculated F statistic is 0.026 and the corresponding risk for rejecting the zero hypoth-

esis on the equality of population variances for g1 = 1, g2 = 102 degrees of freedom

is α = P = 0.873 > 0.05. Therefore, the zero hypothesis cannot be rejected. The

value of the t-statistic is 1.896. For this value of t and for g = 102 degrees of free-

242

dom the risk of rejecting the zero hypothesis on the equality of population means is

α = 2P = 0.61 > 0.05. The zero hypothesis cannot be rejected. With a confidence of

95% we expect to find the difference between the population means in the interval be-

tween -0.24 to 1.062. Because the population means are equal, the interval spans across

0.

Let us also briefly consider the χ2 test. Table 5.20 shows a contingency table for

our dataset. The table contains no cells where theoretical frequencies are less than 5

and hence the usage of the χ2 test is justified. The test gives the value of χ2 of 7.513.

For g = 4 the risk of rejecting the zero hypothesis that there is no difference in the

frequency of scores between Location 1 and Location 2 for question type C is 0.111.

Since this is greater than 0.05, we accept the zero hypothesis and reject the alternative

one. Finally, the value of the Cramer’s V is 0.269.

Location/Score 1 2 3 4 5 Total

1 7 4 5 13 23 52
2 8 7 11 15 11 52
Total 15 11 16 28 34 104

Table 5.20: The scores for question type C at Location 1 against Location 2 for
a sample of 104 evaluations

By comparing the population means and the frequencies of scores we thus cannot

confirm that the scores differ between the configurationswhere the evaluators were ex-

plicitly forced to use an intrinsic reference frame fixed by the robot or where they could

choose between a relative reference frame fixed by the robot and an intrinsic reference

frame fixed by another reference object. This confirms that the potential changes of

the reference frame by evaluators did not have a statistically significant effect on the

evaluation.

5.3.5.6 Discretised and nominal concepts

In Section 5.3.4, page 231 we discussed the performance of pDialogue using classifiers

whose target classes were nominal intervals created automatically from continuous

243

numeric attributes (LO x, LO y, REFO x and REFO y). These classifiers were used in

question types C and D.We compared the performance of the system on these question

types with its performance on question type A where it was using a classifier whose

target class was genuinely nominal (Relation). We wanted to show that both the human

evaluated performance of the system and the classifier accuracy were balanced in both

scenarios. This would confirm that numeric target classes were discretised to an opti-

mal number of nominal intervals. We claimed that the evaluated performance values

for question types C and D are comparable but slightly higher than the performance

values for question type A. We can use the t-test to support this claim statistically. To

minimise the influence of other factors, we only consider the evaluations from Location

2.

Because we can only compare two sets of scores at once we have to perform the

test twice. First we compare the evaluation scores for question type A with the scores

for question type C. The size of both samples is n1 = n2 = 52. Their means and

variances are x̄1 = 2.81, s21 = 1.963, x̄2 = 3.27, s22 = 1.849. The Levene’s test of

equality of population variances gives the value of F = 0.044. The risk of rejecting

the zero hypothesis for such value of F for g1 = 1 and g2 = 102 degrees of freedom

is α = P = 0.833 > 0.05. The zero hypothesis cannot be rejected and a t-statistic can

be calculated. This is t = −1.705 and its corresponding α = 2P value for g = 102

degrees of freedom is 0.91 > 0.05. It follows that the zero hypothesis of the t-test

cannot be rejected. The difference between the population means Mx1 and Mx2 for the

evaluation scores for question types A and C are not statistically significant. With 95%

likelihood we find the difference in the range between -0.998 and 0.075.

Next we compare the evaluation scores for question type A with the scores for

question type D. Both samples are of size n1 = n2 = 52. Their means and variances

are x̄1 = 2.81, s21 = 1.963 and x̄2 = 4.15, s22 = 1.270. The value of the F statistic

obtained in the Levene’s test is 5.506. Its corresponding value of α = P for g1 = 1 and

244

g2 = 102 degrees of freedom is 0.021 ≤ 0.05 which means that the zero hypothesis can

be rejected. The population variances σ2
1 and σ2

2 are thus not equal and the standard

t-test cannot be performed. However, we can still use an approximation of the t-test

known as theWelch-Satterthwaitemethod (Sagadin, 2003, Section 12.4.6.2, page 258ff.).

According to this method we calculate the t-statistic as before but we label it t′ which

is in this case −5.399. t′ is not compared to the t-distribution for g = n1 + n2 − 2 =

102 degrees of freedom but to a t-distribution with an adjusted degrees of freedom

g′ = 97.526 = 98 (Sagadin, 2003, Equation 259, page 258). For t′ = −5.399 the value

of α = 2P for g = 98 degrees of freedom is 0.000 and hence the zero hypothesis can

be rejected. It follows that the population means Mx1 and Mx2 of scores for question

types A and D are not equal. The population mean Mx2 is greater than the population

mean Mx1. With a probability of 95% we find the difference of population means in the

interval of 0.852 to 1.841. This means that we can expect the means to differ almost by

1 to 2 points.

It follows that the system performs better on question type D than on question

types A and Cwhere the performance is not statistically significantly different. Return-

ing to the question of creating nominal intervals from continuous numeric variables,

we can confirm that the method was well chosen.

5.3.6 Summary

In this part of the chapter we discussed the human evaluation of pDialogue, a sys-

tem that uses the knowledge from the classifiers to perform motion commands and

to answer questions about the location of objects. Due to the technical limitations the

performance of the system on the motion commands could not be tested. The set-

ting of answering questions is linguistically different from the setting of generating

descriptions. We have shown that humans evaluated the performance of the system

comparable to the performance of pDescriber which generates descriptions and which

245

most closely resembles the setting in which the linguistic and non-linguistic data was

collected.

We started our discussion by describing the evaluation experiment which consisted

of a set of pre-defined questions, the answers towhichwere evaluated by 13 evaluators.

The questions and the locations at which they were asked were carefully selected to

concentrate on various properties interesting for the investigation. We proceeded by

measuring the agreement between the evaluators in terms of the correlation of their

scores and concluded that the majority of evaluators showmedium to high agreement

with the rest of the group. There was a group of three evaluators whose agreement

was quite low. A similar trend was also observed in the evaluation of pDescriber. We

concluded that the level of agreement was good, considering that the evaluation task is

difficult and considering that the system does not always generate the same response.

The performance of the system was evaluated at two levels. At the first level we

examined evaluator scores to demonstrate how the performance of the system gener-

ating these descriptions compares to human performance. The varying configurations

in which the robot was placed ensured that all factors influencing the performance of

the system were covered in this test. The evaluated performance of the system is be-

tween 43.51% and 56.92% and is lower than the accuracy of underlying classifiers. It

is also slightly lower than the performance of pDescriber (59.28%). It is important to

bear in mind that each of these measures is slightly different and hence a direct com-

parison is not possible. Discussing the performance on question type B we pointed

out that the system generated the best referring expression of relation between two ob-

jects in 28.88% of cases by only relying on low level representation of the scene. This

is an encouraging result which should be supported by further experiments. Finally,

we have shown that the evaluated performance of the system using classifiers whose

target concepts were automatically converted from continuous numeric to nominal at-

tributes was comparable to the performance of the system using classifiers with orig-

246

inally nominal target concepts. We concluded that the method of discretisation was

appropriate in terms of the number of the nominal categories created.

At the second level we evaluated the performance of the system using statistical

tests, the t-test and the χ2 test, to confirm that the system performs differently across

different configurations. We constructed these configurations so that we could directly

evaluate the performance of the system on issues that evaluators reported problem-

atic during the evaluation of pDescriber (Section 5.2.5). For example, some evaluators

disliked descriptions of objects which were not in the “vision field” of the speaker or

the robot. The statistical tests showed that the difference in evaluator scores between

the two settings is statistically significant. Equally statistically significant proved to be

the difference in scores of descriptions containing projective and topological relations.

We concluded that topological relations should be modelled differently. Another test

was performed to show whether the non-intended shift of perspective from the robot

or the speaker to the reference object had an effect on the evaluation scores. We con-

cluded that the scores from the configuration where the reference frame was fixed and

the configuration where the evaluators could change it to the reference object while

interpreting a description did not differ enough to be statistically significant. Finally,

we examined the population means of scores for different question types. The t-test

has shown that the sample scores for question types A and C are not statistically sig-

nificantly different but those for question types A and D are.

5.4 Conclusion

This completes the evaluation of pDescriber and pDialogue by humans. We have shown

that the performance of the systems is encouraging. The highest performance is achieved

on the motion categories which were evaluated for pDescriber only. It was estimated

to be 93.47% (the mean over all motion categories for all evaluators in Table 5.8). The

performance on these categories turns out higher than the accuracy of the underly-

247

ing classifiers obtained through a 10-fold cross-validation. The system performance

on the Relation category is 59.28% for pDescriber (Table 5.8) and 53.28% for pDialogue

(the mean over all question types in Table 5.14). These figures translate to an accept-

able performance but without doubt with some room for improvement. We discussed

and evaluated the performance issues both qualitatively (pDescriber) and quantitatively

(pDialogue). We concluded that when generating descriptions of relations the system

over-generates in certain situations: this is either because the system does not incor-

porate certain properties of the environment or because of the data sparseness, for

example in the case of topological relations.

The discussion has also shown that the way the classifier and non-classifier knowl-

edge was integrated in pDialogue and pDescriber had a positive effect on the perfor-

mance of the system. Finally, we have shown that the system can perform well in a

different environment from the one in which the datasets for machine learning were

collected and with a different set of humans interacting with it. This means that it is

not tuned to a particular environment or people and is not suffering from systematic

errors arising from it.

248

Chapter 6

Conclusion

The aim of this work was to show how the semantics of spatial expressions can be

learned from low level data that a mobile robot has about itself and about its environ-

ment. We argued that the learning can be considered successful if the robot is able to

replicate the descriptions that it has learned offline in new scenes in such a way that

they appear natural to a human observer. This criteria resembles a simplified Turing

test (Russell and Norvig, 2003, pages 2–3). For this reason, evaluation, both of the

machine learning and the performance of the final systems, is central to our under-

taking. It is also through evaluation that our work is most distinct from other related

approaches where the systems have only been evaluated qualitatively (Section 2.3).

Furthermore, the evaluation results tell us more than just whether our undertaking is

successful. We discuss the performance of the robot by varying certain conditions. The

differences in performance between such configurations of conditions represent valu-

able findings for the future undertakings of interacting robotic and natural language

systems.

In this final chapter we summarise the observations and conclusions that we made

and discuss possibilities for future work.

We started our exploration by outlining the ideas and tools that precede our work.

We gave a summary of lexical semantics of descriptions that we expect our system to

learn. These can be grouped into two categories which we call descriptions of motion

249

and descriptions of object relations. Their common property is that their semantics are

partly indexical which means their full meaning can only be constructed by grounding

them in the physical environment in which they are used. Because their interpreta-

tion relies on human perception of space we call them spatial descriptions. Excluding

their indexical nature, descriptions of motion and topological descriptions of spatial

relations are not semantically ambiguous. However, this is not true for projective de-

scriptions of spatial relations which consistently have two interpretations depending

on the orientation of the reference frame which is an integral part of their semantic

structure.

Rather than using an existing model of semantics of spatial relations we proposed

to learn the model from a corpus of natural language descriptions and representation

of space available to a mobile robot. There are two reasons for this. The theoreti-

cal models of spatial descriptions proposed in the literature may not be immediately

applicable on the data structures that are available to a mobile robot. Secondly, the

decades of research in robotics have shown that pre-defined models of robotic knowl-

edge by humans fail to performwell in a robot that is truly autonomous. This can only

be achieved if the robot is able to learn from the environment so that it can adapt to

its ever changing conditions. For example, the robotic system that we use in our ex-

periments implements a technique known as SLAM through which the robot builds a

global map of its environment based on its observations. An interesting research ques-

tion is whether this approach can be extended to learning of lexical semantics of words.

Can general semantic properties of spatial words and the values of their indexical pa-

rameters be also estimated or learned from the robot’s linguistic and non-linguistic

observations?

The robot’s perception is different from human perception. The former relies on

quantitative representations of space that were introduced by physical sciences. On

the other hand, human perception and cognition which are reflected in the semantics

250

of spatial words operate on concepts such as colours, regions, typical patterns of be-

haviour, most of which are defined associatively. The wealth of information available

to a component such as SLAM is quite poor in comparison to the wealth of information

available to a human. For example, the SLAM component exclusively relies on obser-

vations from laser scans which come as a set of distances between the robot and some

random points in space. These observations are enough to build a coherent map that

can be used for navigation. Such information may be poor, but it is extremely precise.

The challenge of this project is to show whether highly abstract human concepts can

be induced from the poor stimulus available to the robot.

The learning of linguistic concepts is guided or supervised. This means that words

are assigned to categories before they are applied to a learner. The learner therefore

starts with more than just a string of unidentified words or even an acoustic waveform

representing an utterance. Equally, for each learning setting we only include those

properties of the environment and the robot that we consider important for the seman-

tics of words that we want to learn. These properties are taken as they are available on

the robot and were not adjusted to a particular model of spatial expressions. All val-

ues are normalised according to the current maximum values which allows their ap-

plication in different configurations and numeric attributes are discretised to nominal

classes if they are used as target concepts as required by our learners. Linguistic and

non-linguistic observations are matched automatically and represented as instances

which are then supplied to the learners.

We evaluated the performance of the classifiers that were learned using measures

such as accuracy, the κ coefficient and ROC and Precision-Recall graphs. The evalu-

ation was directed toward showing the differences in their performance in respect to

the choices that were brought to the learning experiment. We worked with different

learners (Naive-Bayes and J48), datasets (Simple and All), instance selection and cre-

ation mechanisms (Time-shifted, Zero-Time-shifted, Not-Time-shifted datasets) and num-

251

ber of discretised classes of numeric attributes. For an overall summary of results see

Section 3.6, page 134.

In order to test the performance of classifiers on human evaluators they had to be

integrated in simplified language generation and question answering systems called

pDescriber and pDialogue. The performance of these systems was evaluated at differ-

ent levels. We estimated agreement between the evaluators to measure if they can be

considered as a single body and whether the systems have captured the desired gen-

eralisations. The accuracy of the systems was compared with the accuracies of the

underlying classifiers. We discussed some qualitative observations of cases where the

systems underperformed. Finally, we tested the results from a few configurations with

statistical tests to confirm or reject their difference. The summaries of the results for

both systems are given in Section 5.2.6 and 5.3.6 respectively. Overall we concluded

that the systems have achieved an encouraging level of performance which means that

semantics of spatial words can be learned from low-level robotic data (Section 5.4).

pDescriber and pDialogue perform very well on generating conceptually simpler de-

scriptions of motion but slightly less well on descriptions of object relations where

improvements could be introduced in the future. These improvements can be of two

types. The first type includes improvements related to our model of spatial expres-

sions. The classification of object relations would improve if objects were represented

as richer structures rather than just points in a two-dimensional space. We mentioned

that object shape, height and orientation may also be important for selecting the best

spatial relation (Section 5.2.5.2). These structures could be learned separately from

laser scans by discovering patterns in the arrangements of points.

Learning whether a particular projective relation should be interpreted according

to a relative reference frame or an intrinsic reference frame is a very difficult task be-

cause the reference frame is not distinguished in the properties of the environment

nor linguistically. When a hearer is unsure which reference frame is intended, they

252

resolve this uncertainty by grounding the reference object in the scene and choosing

the interpretation of the relation that best satisfies its semantic and pragmatic con-

straints. Alternatively, they may ask the speaker a clarification question. Therefore,

the intended reference frame can be established not from a description but from the

discourse. Perhaps another set of experiments could be constructed where the de-

scribers would be asked to use linguistic cues such as “from my/your/robot’s point of

view” which would allow us to represent the intended reference frame as a feature in

the learning process.

We concluded that overall evaluators did not like descriptions of objects that were

not in the “vision field” of the robot (Section 5.3.5.3). The system did not over-generate

because of ourmodel of space but because such descriptionswere present in the dataset

from which the classifiers were built. Therefore, this error is not due to the shortcom-

ings of ourmachine learningmodel but due to the differences in human intuition about

the descriptions.

The improvements of the second type include linking the semantic concepts that

were learned by our system with new modalities. A discussion of the design of pDe-

scriber and pDialogue reveals that a correct classification of a relation is not the only

condition for a successfully generated description. Selection of the right objects is also

important. In addition to their spatial properties discussed above, objects would also

have to be represented for properties such as colour, type and typical actions that they

allow (Section 4.4.4, page 154). Ideally, this information should be learned rather than

be pre-specified. Combining information from different sources would require a more

complex knowledge representation. Finally, sometimes reference objects are selected

because they have been discussed in the discourse before, they have been grounded

and therefore they are good candidates to describe the location of another object. This

means that generation of spatial descriptions should be integratedwith a dialogue sys-

tem. Our systems do not attempt to be embodied conversational agents which are able

253

to reason about such rich knowledge. Therefore, they fall sometimes short regardless

how well or bad the underlying classifiers perform. The evaluators consider entire

utterances rather than just categories of words.

Overall, the current systems provide important insight into the issues related to in-

terfacing information from different modalities. For example, we use the information

from localisation andmap building to learn the semantics of spatial relations. The flow

of information could also be reversed. Perhaps the information from linguistic descrip-

tions could be used used by the localisation component if the map of the environment

is incomplete. The project connects robotic and natural language communities both

of which investigate the same topic, inducing representations of space, but approach

it from different perspectives and research goals in mind. Valuable lessons have been

learned but no doubt much still lies ahead for the future.

254

Appendix A: Classifier performance per class

Dataset Class TP Rate FP Rate Precision Recall F-Measure ROC Area
J48 NB J48 NB J48 NB J48 NB J48 NB J48 NB

Verb
Simple-Not-Time-shifted moving 0.957 0.674 0.194 0.083 0.863 0.912 0.957 0.674 0.907 0.775 0.845 0.932

stopped 0.806 0.917 0.043 0.326 0.935 0.688 0.806 0.917 0.866 0.786 0.845 0.936
All-Time-shifted going 0.281 0.103 0.06 0.029 0.406 0.345 0.281 0.103 0.332 0.158 0.715 0.71

edging 0 0 0 0 0 0 0 0 0 0 0.523 0.572
continuing 0 0 0 0 0 0 0 0 0 0 0.399 0.053
reversing 0.221 0.039 0.018 0.007 0.405 0.231 0.221 0.039 0.286 0.067 0.813 0.823
creeping 0 0 0.004 0 0 0 0 0 0 0 0.685 0.736
turning 0.55 0.382 0.163 0.08 0.552 0.635 0.55 0.382 0.551 0.477 0.756 0.761
moving 0.604 0.778 0.272 0.459 0.579 0.512 0.604 0.778 0.591 0.617 0.674 0.686
stopped 0.981 0.972 0.08 0.079 0.682 0.682 0.981 0.972 0.805 0.802 0.951 0.96

Direction
Simple-Not-Time-shifted backward 0.857 0.143 0 0 1 1 0.857 0.143 0.923 0.25 0.929 0.952

forward 1 0.652 0.153 0.068 0.719 0.789 1 0.652 0.836 0.714 0.9 0.878
none 0.827 0.923 0.033 0.467 0.977 0.774 0.827 0.923 0.896 0.842 0.894 0.817

All-Time-shifted stopped 0 1 0 0.195 0 0.007 0 1 0 0.014 0.802 0.826
spot 0.25 0.083 0.023 0.004 0.367 0.5 0.25 0.083 0.298 0.143 0.76 0.817
backward 0.7 0.411 0.052 0.029 0.694 0.702 0.7 0.411 0.697 0.518 0.881 0.864
forward 0.659 0.567 0.189 0.204 0.648 0.595 0.659 0.567 0.653 0.581 0.804 0.784
none 0.664 0.338 0.305 0.421 0.65 0.407 0.664 0.338 0.657 0.369 0.711 0.425

Heading
Simple-Not-Time-shifted right 0.9 1 0 0.014 1 0.909 0.9 1 0.947 0.952 0.95 0.999

left 1 1 0.015 0 0.938 1 1 1 0.968 1 0.993 1
none 0.982 0.982 0.04 0 0.982 1 0.982 0.982 0.982 0.991 0.971 0.996

All-Time-shifted anticlockwise 0 0 0.001 0 0 0 0 0 0 0 0.799 0.797
clockwise 0.238 0 0.003 0 0.556 0 0.238 0 0.333 0 0.726 0.809
straight ahead 0 0 0 0 0 0 0 0 0 0 0.449 0.242
hard 0 1 0 0.196 0 0.004 0 1 0 0.007 0.291 0.871
straight line 0 0 0.001 0.001 0 0 0 0 0 0 0.414 0.388
around 0 0 0 0.001 0 0 0 0 0 0 0.498 0.424
straight 0.013 0 0.01 0 0.071 0 0.013 0 0.021 0 0.575 0.543
180 0 0 0 0.001 0 0 0 0 0 0 0.44 0.573

Continued on next page

255

Continued from previous page

Dataset Class TP Rate FP Rate Precision Recall F-Measure ROC Area
J48 NB J48 NB J48 NB J48 NB J48 NB J48 NB

right 0.535 0.309 0.093 0.05 0.552 0.572 0.535 0.309 0.544 0.401 0.751 0.76
left 0.674 0.402 0.109 0.052 0.619 0.672 0.674 0.402 0.645 0.503 0.793 0.784
none 0.812 0.62 0.344 0.541 0.714 0.548 0.812 0.62 0.759 0.582 0.752 0.589

Manner
Simple-Not-Time-shifted fast 0.2 0.2 0.052 0 0.2 1 0.2 0.2 0.2 0.333 0.7 0.584

moderately 0.2 0.4 0.052 0.104 0.2 0.2 0.2 0.4 0.2 0.267 0.74 0.712
slowly 0.364 0 0.042 0.014 0.571 0 0.364 0 0.444 0 0.71 0.729
none 0.852 0.918 0.619 0.667 0.8 0.8 0.852 0.918 0.825 0.855 0.69 0.604

All-Time-shifted quickly 0.042 0 0.007 0 0.091 0 0.042 0 0.057 0 0.668 0.688
walking pace 0 0 0 0.017 0 0 0 0 0 0 0.447 0.034
imperceptible 0 0 0.001 0.019 0 0 0 0 0 0 0.496 0.903
tightly 0 0 0.004 0 0 0 0 0 0 0 0.494 0.755
gently 0.038 0 0.015 0 0.13 0 0.038 0 0.059 0 0.546 0.579
rapidly 0 0 0 0 0 0 0 0 0 0 0.427 0.714
fast 0.224 0.342 0.022 0.031 0.362 0.377 0.224 0.342 0.276 0.359 0.648 0.78
moderately 0.11 0.011 0.031 0.011 0.192 0.063 0.11 0.011 0.14 0.019 0.563 0.695
slowly 0.38 0 0.142 0 0.436 0 0.38 0 0.406 0 0.701 0.605
none 0.797 0.914 0.591 0.892 0.643 0.578 0.797 0.914 0.712 0.708 0.658 0.588

Relation
Simple behind 0.719 0.754 0.05 0.032 0.788 0.86 0.719 0.754 0.752 0.804 0.873 0.931

in front of 0.638 0.741 0.109 0.073 0.607 0.729 0.638 0.741 0.622 0.735 0.813 0.928
to the right of 0.839 0.816 0.084 0.058 0.82 0.866 0.839 0.816 0.83 0.84 0.879 0.907
to the left of 0.789 0.882 0.079 0.099 0.789 0.77 0.789 0.882 0.789 0.822 0.907 0.941

All next 0 0 0.002 0 0 0 0 0 0 0 0.49 0.821
after 0 0 0 0 0 0 0 0 0 0 0.436 0.436
near 0.133 0.067 0.02 0.015 0.143 0.1 0.133 0.067 0.138 0.08 0.668 0.816
parallel 0 0 0.003 0.002 0 0 0 0 0 0 0.361 0.358
opposite 0 0 0 0 0 0 0 0 0 0 0.484 0.611
facing 0.333 0.333 0.01 0.023 0.4 0.222 0.333 0.333 0.364 0.267 0.77 0.84
front 0.683 0.577 0.096 0.056 0.636 0.717 0.683 0.577 0.659 0.64 0.83 0.903
far 0.286 0.714 0.015 0.051 0.308 0.244 0.286 0.714 0.296 0.364 0.659 0.899
right 0.76 0.727 0.083 0.1 0.75 0.704 0.76 0.727 0.755 0.716 0.857 0.864
left 0.804 0.816 0.08 0.113 0.78 0.719 0.804 0.816 0.792 0.764 0.902 0.908
behind 0.711 0.772 0.043 0.033 0.786 0.838 0.711 0.772 0.747 0.804 0.869 0.907

Continued on next page

256

Continued from previous page

Dataset Class TP Rate FP Rate Precision Recall F-Measure ROC Area
J48 NB J48 NB J48 NB J48 NB J48 NB J48 NB

close 0.391 0.043 0.028 0.01 0.346 0.143 0.391 0.043 0.367 0.067 0.792 0.804
Delta-Heading, 7 bins
Simple-Not-Time-shifted -0.6001. . . -0.4286 0 0 0.025 0 0 0 0 0 0 0 0.941 0.9

-0.4286. . . -0.2572 0.5 0.5 0.038 0.038 0.4 0.4 0.5 0.5 0.444 0.444 0.962 0.949
-0.2572. . . -0.0857 0.6 0.6 0 0.026 1 0.6 0.6 0.6 0.75 0.6 0.66 0.771
-0.0857. . . 0.0857 0.949 0.949 0.043 0.043 0.982 0.982 0.949 0.949 0.966 0.966 0.941 0.928
0.0857. . . 0.2572 0.75 0.625 0.095 0.068 0.462 0.5 0.75 0.625 0.571 0.556 0.941 0.966
0.2572. . . 0.4286 0 0 0.026 0.064 0 0 0 0 0 0 0.934 0.939
0.4286. . . 0.6001 0 0 0 0 0 0 0 0 0 0 – –

All-Time-shifted -0.8791. . . -0.6279 0 0 0 0 0 0 0 0 0 0 0.197 0.367
-0.6279. . . -0.3768 0.067 0 0.001 0.001 0.5 0 0.067 0 0.118 0 0.437 0.786
-0.3768. . . -0.1256 0.047 0.503 0.007 0.088 0.438 0.397 0.047 0.503 0.085 0.444 0.674 0.814
-0.1256. . . 0.1256 0.967 0.812 0.912 0.419 0.751 0.847 0.967 0.812 0.846 0.829 0.61 0.797
0.1256. . . 0.3768 0.101 0.529 0.025 0.103 0.38 0.437 0.101 0.529 0.159 0.478 0.624 0.815
0.3768. . . 0.6279 0 0 0 0 0 0 0 0 0 0 0.621 0.81
0.6279. . . 0.8791 0 0 0 0 0 0 0 0 0 0 0.273 0.695

Speed, 7 bins
Simple-Not-Time-shifted -1.0055. . . -0.7182 0 0 0 0 0 0 0 0 0 0 0.463 0.79

-0.7182. . . -0.4309 0 0 0 0 0 0 0 0 0 0 0.463 0.778
-0.4309. . . -0.1436 1 1 0.038 0.026 0.571 0.667 1 1 0.727 0.8 0.963 0.994
-0.1436. . . 0.1436 0.933 0.933 0.216 0.108 0.84 0.913 0.933 0.933 0.884 0.923 0.88 0.908
0.1436. . . 0.4309 0.714 0.857 0.115 0.098 0.682 0.75 0.714 0.857 0.698 0.8 0.76 0.921
0.4309. . . 0.7182 0 0.143 0.027 0.053 0 0.2 0 0.143 0 0.167 0.447 0.723
0.7182. . . 1.0055 0 0 0.013 0.013 0 0 0 0 0 0 0.559 0.629

All-Time-shifted -1.0742. . . -0.7673 0 0.176 0.006 0.009 0 0.316 0 0.176 0 0.226 0.773 0.895
-0.7673. . . -0.4604 0.37 0.296 0.023 0.016 0.385 0.421 0.37 0.296 0.377 0.348 0.909 0.928
-0.4604. . . -0.1535 0.742 0.735 0.091 0.075 0.452 0.495 0.742 0.735 0.562 0.591 0.892 0.915
-0.1535. . . 0.1535 0.536 0.588 0.072 0.141 0.828 0.728 0.536 0.588 0.651 0.65 0.776 0.78
0.1535. . . 0.4604 0.85 0.756 0.319 0.275 0.534 0.541 0.85 0.756 0.656 0.631 0.795 0.809
0.4604. . . 0.7673 0.277 0.266 0.028 0.037 0.583 0.5 0.277 0.266 0.375 0.347 0.791 0.815
0.7673. . . 1.0742 0.229 0.313 0.011 0.014 0.423 0.429 0.229 0.313 0.297 0.361 0.756 0.818

LO x, 7 bins
Simple -1.0. . . -0.7143 0 0 0 0.59 0 0 0 0 0 0 – –

-0.7143. . . -0.4286 0.353 0.059 0.011 0 0.667 1 0.353 0.059 0.462 0.111 0.889 0.821

Continued on next page

257

Continued from previous page

Dataset Class TP Rate FP Rate Precision Recall F-Measure ROC Area
J48 NB J48 NB J48 NB J48 NB J48 NB J48 NB

-0.4286. . . -0.1429 0.523 0.169 0.117 0.085 0.576 0.379 0.523 0.169 0.548 0.234 0.722 0.714
-0.1429. . . 0.1429 0.784 0.307 0.237 0.068 0.605 0.675 0.784 0.307 0.683 0.422 0.748 0.797
0.1429. . . 0.4286 0.728 0.21 0.132 0.076 0.694 0.531 0.728 0.21 0.711 0.301 0.799 0.768
0.4286. . . 0.7143 0.136 0.045 0.027 0.039 0.3 0.091 0.136 0.045 0.187 0.061 0.733 0.739
0.7143. . . 1.0 0 0 0.004 0.004 0 0 0 0 0 0 0.881 0.631

All -1.0. . . -0.7143 0.286 0 0.002 0.003 0.667 0 0.286 0 0.4 0 0.821 0.688
-0.7143. . . -0.4286 0.204 0.551 0.009 0.123 0.667 0.276 0.204 0.551 0.313 0.367 0.822 0.825
-0.4286. . . -0.1429 0.553 0.14 0.145 0.086 0.546 0.339 0.553 0.14 0.55 0.198 0.754 0.723
-0.1429. . . 0.1429 0.797 0.779 0.283 0.328 0.608 0.567 0.797 0.779 0.69 0.657 0.788 0.777
0.1429. . . 0.4286 0.652 0.6 0.111 0.121 0.66 0.62 0.652 0.6 0.656 0.61 0.799 0.797
0.4286. . . 0.7143 0.086 0 0.012 0.012 0.3 0 0.086 0 0.133 0 0.804 0.783
0.7143. . . 1.0 0 0 0.002 0.002 0 0 0 0 0 0 0.823 0.739

LO y, 7 bins
Simple -1.0. . . -0.7143 0 0 0 0.59 0 0 0 0 0 0 – –

-0.7143. . . -0.4286 0 0 0 0 0 0 0 0 0 0 – –
-0.4286. . . -0.1429 0.656 0.131 0.051 0.069 0.784 0.348 0.656 0.131 0.714 0.19 0.864 0.653
-0.1429. . . 0.1429 0.857 0.371 0.35 0.184 0.806 0.774 0.857 0.371 0.831 0.502 0.754 0.709
0.1429. . . 0.4286 0.643 0.095 0.059 0.013 0.659 0.571 0.643 0.095 0.651 0.163 0.78 0.796
0.4286. . . 0.7143 0 0 0 0 0 0 0 0 0 0 – –
0.7143. . . 1.0 0 0 0 0 0 0 0 0 0 0 – –

All -1.0. . . -0.7143 0 0 0 0.064 0 0 0 0 0 0 – –
-0.7143. . . -0.4286 0 0 0 0 0 0 0 0 0 0 – –
-0.4286. . . -0.1429 0.77 0.204 0.045 0.035 0.791 0.561 0.77 0.204 0.78 0.299 0.889 0.804
-0.1429-0.1429 0.882 0.451 0.286 0.166 0.853 0.836 0.882 0.451 0.867 0.586 0.801 0.733
0.1429. . . 0.4286 0.641 0.039 0.052 0.01 0.71 0.444 0.641 0.039 0.673 0.071 0.831 0.711
0.4286. . . 0.7143 0 0 0 0.505 0 0 0 0 0 0 0.442 0.47
0.7143. . . 1.0 0 0 0 0 0 0 0 0 0 0 – –

REFO x, 7 bins
Simple -1.0. . . -0.7143 0 0 0 0.072 0 0 0 0 0 0 – –

-0.7143. . . -0.4286 0.5 0 0.007 0.004 0.5 0 0.5 0 0.5 0 0.912 0.858
-0.4286. . . -0.1429 0.1 0 0.004 0.024 0.75 0 0.1 0 0.176 0 0.66 0.579
-0.1429. . . 0.1429 0.974 0.922 0.847 0.788 0.723 0.727 0.974 0.922 0.83 0.813 0.632 0.689
0.1429. . . 0.4286 0.079 0 0.013 0.004 0.5 0 0.079 0 0.136 0 0.614 0.54
0.4286. . . 0.7143 0.273 0 0.004 0 0.75 0 0.273 0 0.4 0 0.668 0.774

Continued on next page

258

Continued from previous page

Dataset Class TP Rate FP Rate Precision Recall F-Measure ROC Area
J48 NB J48 NB J48 NB J48 NB J48 NB J48 NB

0.7143. . . 1.0 0 1 0 0.011 0 0.4 0 1 0 0.571 0.923 1
All -1.0. . . -0.7143 0 1 0 0.148 0 0.021 0 1 0 0.042 0.984 0.984

-0.7143. . . -0.4286 0.52 0 0.015 0.003 0.591 0 0.52 0 0.553 0 0.858 0.775
-0.4286. . . -0.1429 0.135 0 0.034 0.005 0.345 0 0.135 0 0.194 0 0.702 0.373
-0.1429. . . 0.1429 0.954 0.897 0.731 0.667 0.755 0.761 0.954 0.897 0.843 0.823 0.663 0.656
0.1429. . . 0.4286 0.044 0.015 0.016 0.004 0.25 0.333 0.044 0.015 0.075 0.028 0.537 0.51
0.4286. . . 0.7143 0.133 0 0.007 0 0.333 0 0.133 0 0.19 0 0.786 0.688
0.7143. . . 1.0 0 1 0.002 0.005 0 0.4 0 1 0 0.571 0.945 0.998

REFO y, 7 bins
Simple -1.0. . . -0.7143 0 0 0 0.072 0 0 0 0 0 0 – –

-0.7143. . . -0.4286 0 0 0 0 0 0 0 0 0 0 – –
-0.4286. . . -0.1429 0.542 0 0.024 0 0.684 0 0.542 0 0.605 0 0.731 0.544
-0.1429. . . 0.1429 0.966 0.954 0.55 0.775 0.913 0.88 0.966 0.954 0.939 0.915 0.724 0.645
0.1429. . . 0.4286 0.063 0 0.023 0 0.143 0 0.063 0 0.087 0 0.599 0.532
0.4286. . . 0.7143 0 0 0 0 0 0 0 0 0 0 – –
0.7143. . . 1.0 0 0 0 0 0 0 0 0 0 0 – –

All -1.0. . . -0.7143 0 0 0 0 0 0 0 0 0 0 – –
-0.7143. . . -0.4286 0 0 0 0 0 0 0 0 0 0 0.465 0.078
-0.4286. . . -0.1429 0.5 0.021 0.019 0.003 0.686 0.333 0.5 0.021 0.578 0.039 0.815 0.579
-0.1429. . . 0.1429 0.95 0.892 0.538 0.585 0.896 0.882 0.95 0.892 0.922 0.887 0.739 0.719
0.1429. . . 0.4286 0.296 0 0.042 0.005 0.4 0 0.296 0 0.34 0 0.684 0.45
0.4286. . . 0.7143 0 1 0 0.148 0 0.021 0 1 0 0.042 0.465 0.875
0.7143. . . 1.0 0 0 0 0 0 0 0 0 0 0 – –

259

260

References

Artstein, Ron, and Massimo Poesio. 2005. Kappa3 = alpha (or beta). Technical report,

University of Essex Department of Computer Science. Available at: http://cswww.

essex.ac.uk/technical-reports/2005/csm-437.pdf.

Baldridge, Jason, and Geert-Jan M. Krujiff. 2002. Coupling CCG and hybrid logic de-

pendency semantics. In Proceedings of the 40th Annual Meeting of the Association for

Computational Linguistics (ACL 2002), 319–326. Philadelphia, PA, USA.

Bartko, John J., and William T. Jr. Carpenter. 1976. On the methods and theory of

reliability. Journal of Nervous and Mental Disease 163:307–317.

Bayes, Thomas. 1763. An essay towards solving a problem in the doctrine of chances.

By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John

Canton, A.M. F. R. S. Philosophical Transactions, Giving Some Account of the Present Un-

dertakings, Studies and Labours of the Ingenious in Many Considerable Parts of the World

370–418.

Ben-David, Arie. 2007. A lot of randomness is hiding in accuracy. Engineering Applica-

tions of Artificial Intelligence 20:875–885.

Bos, Johan, Ewan Klein, and Tetsushi Oka. 2003. Meaningful conversation with a mo-

bile robot. In Proceedings of the 10th Conference of the European Chapter of the Association

for Computational Linguistics (EACL 10), 71–74. Budapest.

261

Bosse, Michael, and Robert Zlot. 2008. Map matching and data association for large-

scale two-dimensional laser scan-based SLAM. The International Journal of Robotics

Research 27:667–691.

Bratko, Ivan. 2001. Prolog programming for artificial intelligence. Addison Wesley: Pear-

son Education, 3rd edition.

Carletta, Jean. 1996. Assessing agreement on classification tasks: the kappa statistic.

Computational Linguistics 2:249–254.

Cohen, Jakob. 1960. A coefficient of agreement for nominal scales. Educational and

Psychological Measurement 20:37–64.

Coventry, Kenny. 2003. Spatial prepositions, spatial templates, and “semantic” versus

“pragmatic” visual representations. In Representing direction in language and space, ed.

Emile van der Zee and Jon Slack, Explorations in language and space, chapter 13,

255–267. Oxford University Press.

Coventry, Kenny R., Mercè Prat-Sala, and Lynn Richards. 2001. The interplay between

geometry and function in the apprehension of Over, Under, Above and Below. Jour-

nal of memory and language 44:376–398.

Crangle, Colleen, and Patrick Suppes. 1994. Language and learning for robots. Stanford,

California: CSLI Publications.

Curran, James R., Stephen Clark, and Johan Bos. 2007. Linguistically motivated large-

scale NLPwith C&C and Boxer. In Proceedings of the ACL 2007 Demonstrations Sessions

(ACL-07 demo), 29–32.

Dale, Robert, and Ehud Reiter. 1995. Computational interpretations of the Gricean

maxims in the generation of referring expressions. Cognitive science 19:233–263.

262

van Deemter, Kees. 2006. Generating referring expressions that involve gradable prop-

erties. Computational Linguistics 32:195–222.

Dissanayake, M. W. M. G, P. M. Newman, H. F. Durrant-Whyte, S. Clark, and

M. Csorba. 2001. A solution to the simultaneous localization and map building

(SLAM) problem. IEEE Transactions on Robotic and Automation 17:229–241.

Fayyad, UsamaM., and Keki B. Irani. 1993. Multi-interval discretization of continuous-

valued attributes for classification learning. In Proceedings of the Thirteenth Interna-

tional Joint Conference on Artificial Intelligence, 1022–1027. Chambery, France: Morgan

Kaufmann: San Francisco.

Folkesson, John, Patric Jensfelt, and Henrik I. Christensen. 2005. Vision SLAM in the

measurement subspace. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA’05), 30–35.

Gapp, Klaus-Peter. 1994a. Basic meanings of spatial relations: computation and eval-

uation in 3D space. In Proceedings of the twelfth national conference on Artificial Intel-

ligence (AAAI’94), volume 2, 1393–1398. American Association for Artificial Intelli-

gence, Menlo Park, CA, USA: AAAI Press/MIT Press.

Gapp, Klaus-Peter. 1994b. A computational model of the basic meanings of graded

composite spatial relations in 3D space. In Advanced geographic data modelling. Spa-

tial data modelling and query languages for 2D and 3D applications (Proceedings of the

AGDM’94), Publications on Geodesy 40, 66–79. Netherlands Geodetic Commission.

Gapp, Klaus-Peter. 1995. Angle, distance, shape, and their relationship to projective

relations. In Proceedings of the 17th Annual Conference of the Cognitive Science Society,

112–117. Mahwah, NJ: Lawrence Erlbaum.

Gorniak, Peter, and Deb Roy. 2004. Grounded semantic composition for visual scenes.

Journal of Artificial Intelligence Research 21:429–470.

263

Harnad, Stevan. 1990. The symbol grounding problem. Physica D 42:335–346.

Herskovits, Annette. 1986. Language and spatial cognition: an interdisciplinary study of the

prepositions in English. Cambridge: Cambridge University Press.

Horswill, Ian Douglas. 1998. Groundingmundane inference in perception. Autonomous

Robots 5:63–77.

Kamp, Hans, and Uwe Reyle. 1993. From discourse to logic: introduction to modeltheoretic

semantics of natural language, formal logic and discourse representation theory. Studies in

linguistics and philosophy. Dordrecht, London: Kluwer Academic.

Kelleher, John, and Fintan Costello. 2005. Cognitive representations of projective

prepositions. In Proceedings of the Second ACL-SIGSEM workshop on the linguistic di-

mensions of prepositions and their use in computational linguistics formalisms and appli-

cations, 119–127. University of Essex, Colchester, United Kingdom: Association of

Computational Linguistics.

Kelleher, John D., Geert-Jan M. Kruijff, and Fintan J. Costello. 2006. Proximity in

context: an empirically grounded computational model of proximity for processing

topological spatial expressions. In Proceedings of the 21st International Conference on

Computational Linguistics and 44th Annual Meeting of the Association for Computational

Linguistics, 745–752. Sydney, Australia: Association for Computational Linguistics.

Available at: http://www.aclweb.org/anthology/P06-1094.

Kohavi, Ron. 1995. A study of cross-validation and bootstrap for accuracy estimation

and model selection. In Proceedings of the Fourteenth International Joint Conference on

Artificial Intelligence (IJCAI), 1137–1143. Montreal, Canada: San Francisco: Morgan

Kaufmann.

Kruijff, Geert-Jan, Hendrik Zender, Patric Jensfelt, and Henrik I. Christensen. 2006.

Clarification dialogues in human-augmentedmapping. In Proceedings of the 1st ACM

264

SIGCHI/SIGART conference on Human-robot interaction, 282–289. Salt Lake City, Utah,

USA: ACM/IEEE International Conference on Human-Robot Interaction.

Krujiff, Geert-Jan M., Hendrik Zender, Patric Jensfelt, and Henrik I. Christensen. 2007.

Situated dialogue and spatial organization: what, where. . . and why? International

Journal of Advanced Robotic Systems 4:125–138. Special issue on human and robot

interactive communication.

Kyriacou, Theocharis, Guido Bugmann, and Stanislao Lauria. 2005. Vision-based ur-

ban navigation procedures for verbally instructed robots. Robotics and Autonomous

Systems 51:69–80.

Lauria, Stanislao, Guido Bugmann, Theocharis Kyriacou, Johan Bos, and Ewan Klein.

2001. Training personal robots using natural language instruction. IEEE Intelligent

Systems 16:38–45.

Lauria, Stanislao, Guido Bugmann, Theocharis Kyriacou, and Ewan Klein. 2002a. Mo-

bile robot programming using natural language. Robotics and Autonomous Systems

38:171–181.

Lauria, Stanislao, Theocharis Kyriacou, Guido Bugmann, Johan Bos, and Ewan Klein.

2002b. Converting natural language route instructions into robot-executable pro-

cedures. In Proceedings of the 2002 IEEE International Workshop on Robot and Human

Interactive Communication (Roman’02), 223–228. Berlin.

Leonard, John J., and Hugh F. Durrant-Whythe. 1991. Simultaneous map building

and localization for an autonomous mobile robot. In Proceedings of IEEE/RSJ Inter-

national Workshop on Intelligent Robots and Systems IROS’91, 1442–1447. Osaka, Japan:

IEEE/RSJ.

Levene, Howard. 1960. Robust tests for equality of variances. In Contributions to proba-

bility and statistics, ed. I. Olkin, 278–292. Stanford University Press, Palo Alto, CA.

265

Levinson, Stephen. 1996a. Frames of reference and Molyneux’s question: crosslinguis-

tic evidence. In Language and space, ed. Paul Bloom, Mary A. Peterson, Lynn Nadel,

and Merrill F. Garrett, 109–169. Cambridge, MA: MIT Press.

Levinson, StephenC. 1983. Pragmatics. Cambridge textbooks in linguistics. Cambridge:

Cambridge University Press.

Levinson, Stephen C. 1996b. Relativity in spatial conception and description. In Re-

thinking linguistic relativity, ed. John J. Gumperz and Stephen C. Levinson, 13–45.

Cambridge: Cambridge University Press.

Levinson, Stephen C. 2003. Space in language and cognition: explorations in cognitive

diversity. Cambridge: Cambridge University Press.

Logan, Gordon D. 1994. Spatial attention and the apprehension of spatial relations.

Journal of Experimental Psychology: Human Perception and Performance 20:1015–1036.

Logan, Gordon D. 1995. Linguistic and conceptual control of visual spatial attention.

Cognitive Psychology 28:103–174.

Logan, Gordon D., and Daniel D. Sadler. 1996. A computational analysis of the appre-

hension of spatial relations. In Language and space, ed. Paul Bloom,Mary A. Peterson,

Lynn Nadel, and Merrill F. Garrett, 493–530. Cambridge, MA: MIT Press.

Maillat, Didier. 2001. Directional PPs and reference frames in DRT. In Proceedings of the

ACLWorkshop on temporal and spatial information processing, volume 13, 1–8. Toulouse:

Université de Toulouse – Le Mirail: Association for Computational Linguistics.

Maillat, Didier. 2003. The semantics and pragmatics of directionals: a case study in

English and French. Doctoral Dissertation, Committee for Comparative Philology

and General Linguistics, University of Oxford, Oxford, UK.

266

Manning, Christopher D., and Hinrich Schütze. 1999. Foundations of statistical natural

language processing. The MIT Press.

Mavridis, Nikolaos, and Deb Roy. 2006. Grounded situation models for robots: where

words and percepts meet. In Proceedings of the 2006 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS 2006), 4690–4697. Beijing, China.

Miller, George A., and Philip N. Johnson-Laird. 1976. Language and perception. Cam-

bridge: Cambridge University Press.

Mitchell, Tom M. 1997. Machine learning. McGraw-Hill Series in Computer Science.

McGraw-Hill.

Mukerjee, Amitabha. 1998. Neat versus scruffy: a review of computational models of

spatial expressions. In Representation and processing of spatial expressions, ed. Patrick

Olivier and Klaus-Peter Gapp, 1–36. Mahwah, N.J.: Lawrence Erlbaum Associates.

Newman, Paul M. 2003. C4B mobile robotics. Lecture notes, University

of Oxford. Available at: http://www.robots.ox.ac.uk/∼pnewman/Teaching/

C4CourseResources/C4BMobileRobots.pdf.

Newman, Paul M. 2006. MOOS – Mission Oriented Operating Suite. Technical report,

Department of Ocean Engineering (MIT), Department of Engineering Science (Ox-

ford University). Available at: http://www.robots.ox.ac.uk/∼pnewman/papers/

MOOS.pdf.

Newman, Paul M., and Hugh F. Durrant-Whyte. 2001. An efficient solution to the

SLAMproblem using geometric projections. In Proceedings of the November 2001 SPIE

conference. Boston, USA.

Newman, Paul M., and John J. Leonard. 2003. Consistent, convergent, and constant-

time SLAM. In IJCAI, ed. Georg Gottlob and Toby Walsh, 1143–1150. Morgan Kauf-

mann.

267

Nilsson, Nils J. (editor). 1984. Shakey the robot. Technical Report 323, SRI International:

Artificial Intelligence Center, Computer Science and Technology Division.

Olivier, Patrick, and Jun-ichi Tsujii. 1994. A computational view of the cognitive se-

mantics of spatial prepositions. In Proceedings of the 32nd Annual Meeting of the As-

sociation of Computational Linguistics, 303–309. NewMexico State University, Morgan

Kaufmann Publishers.

Quinlan, J.R. 1986. Induction of decision trees. Machine Learning 1:81–106.

Quinlan, J.R. 1993. C4.5: programs for machine learning. San Francisco: Morgan Kauf-

mann.

Regier, Terry. 1996. The human semantic potential: spatial language and constrained connec-

tionism. Cambridge, Massachusetts, London, England: MIT Press.

Regier, Terry, and Laura A. Carlson. 2001. Grounding spatial language in perception:

an empirical and computational investigation. Journal of Experimental Psychology:

General 130:273–298.

Rennie, Jason D. 2004. Derivation of the F-measure. Available at: http://people.csail.

mit.edu/jrennie/writing.

van Rijsbergen, C.J. 1979. Information retrieval. London: Butterworths, 2nd edition.

Roy, Deb. 2005. Semiotic schemas: a framework for grounding language in action and

perception. Artificial Intelligence 167:170–205.

Roy, Deb, Kai-Yuh Hsiao, and Nikolaos Mavridis. 2004. Mental imagery for a conver-

sational robot. IEEE Transactions on Systems, Man and Cybernetics–Part B: Cybernetics

34:1374–1383.

Roy, Deb K. 2002. Learning visually-grounded words and syntax for a scene descrip-

tion task. Computer speech and language 16:353–385.

268

Russell, Stuart, and PeterNorvig. 2003. Artificial intelligence: a modern approach. Prentice

Hall series in Artificial Intelligence. Upper Saddle River, New Jersey: Prentice Hall,

2nd edition.

Sagadin, Janez. 2003. Statistične metode za pedagoge. Obzorja, Maribor, Slovenia.

Smith, Randall C., and Peter Cheeseman. 1986. On the representation and estimation

of spatial uncertainty. The international journal of robotics research 5:56–68.

Spärk Jones, Karen. 1972. A statistical interpretation of term specificity and its applica-

tion in retrieval. Journal of Documentation 28:11–21. Reprinted in Volume 60 Number

5 2004, 493-502.

Stachniss, Cyrill, Óscar Martı́nez-Mozos, Axel Rottmann, and Wolfram Burgard. 2005.

Semantic labelling of places. In Proceedings of the International Symposium of Robotics

Research (ISRR). San Francisco, CA, USA.

Steels, Luc, and Jean-Christophe Baillie. 2003. Shared grounding of event descriptions

by autonomous robots. Robotics and Autonomous Systems 43:163–173.

Stopp, Eva, Klaus-Peter Gapp, Gerd Herzog, Thomas Laengle, and Tim C. Lueth. 1994.

Utilizing spatial relations for natural language access to an autonomous mobile ro-

bot. In KI-94: Advances in artificial intelligence, ed. B. Nebel and L. Dreschler-Fischer,

volume 861/1994 of Lecture Notes in Computer Science, 39–50. Berlin, Heidelberg:

Springer.

Sukkarieh, Jana Zuheir. 2000. Natural language for knowledge representation. Doc-

toral Dissertation, Computer Laboratory, Churchill College, University of Cam-

bridge, Cambridge, UK.

Talmy, Leonard. 1983. How language structures space. In Spatial orientation: theory,

research, and application, ed. Herbert L. Pick Jr. and Linda P. Acredolo, 225–282. New

269

York: PlenumPress. Based on the proceedings of a Conference on Spatial Orientation

and Perception held on July 14-16, 1980, at theUniversity ofMinnesota,Minneapolis,

Minnesota.

Talmy, Leonard. 2000. Toward a cognitive semantics: concept structuring systems, volume 1.

Cambridge, Massachusetts: MIT Press.

Theobalt, Christian, Johan Bos, Tim Chapman, Arturo Espinosa-Romero, Mark Fraser,

Gillian Hayes, Ewan Klein, TetsushiOka, and Richard Reeve. 2002. Talking to Godot:

dialogue with a mobile robot. In Proceedings of 2002 IEEE/RSJ International Conference

on Intelligent Robots and System (IROS 2002), 1338–1343. Lausanne, Switzerland.

Vandeloise, Claude. 1986. L’espace en français: sémantique des própositions spatiales. Paris:

Éditions de Seuil.

Vandeloise, Claude. 1991. Spatial prepositions: a case study from French. University of

Chicago Press. English translation of L’espace en français by Anna R.K. Bosch.

Weng, Fuliang, Baoshi Yan, Zhe Feng, Florin Ratiu, Madhuri Raya, Brian Lathrop,

Annie Lien, Rohit Mishra, Sebastian Varges, Feng Lin, Matthew Purver, Yao Meng,

Harry Bratt, Tobias Scheideck, Zhaoxia Zhang, Badri Raghunathan, and Stanley Pe-

ters. 2007. CHAT to your destination. In Proceedings of the 8th SIGdial Workshop on

Discourse and Dialogue, ed. Simon Keizer, Harry Bunt, and Tim Paek, 79–86. Antwerp,

Belgium.

Wilks, Yorick. 2006. Artificial companions as a new kind of interface to the future

Internet. Technical Report 13, Oxford Internet Institute. Available at: http://www.

oii.ox.ac.uk/research/publications/RR13.pdf.

Winograd, Terry. 1976. Understanding natural language. Edinburgh University Press.

Witten, Ian H., and Eibe Frank. 2005. Data mining: practical machine learning tools and

techniques. San Francisco: Morgan Kaufmann, 2nd edition.

270

Wonnacott, Thomas H., and Ronald J. Wonnacott. 1990. Introductory statistics. John

Wiley and Sons, 5th edition.

Zender, Hendrik, and Geert-Jan M. Kruijff. 2007. Towards generating referring ex-

pressions in a mobile robot scenario. In Language and robots: Proceedings from the

symposium (LangRo’2007). Aveiro, Portugal.

Zender, Hendrik, Óscar Martı́nez-Mozos, Patric Jensfelt, Geert-JanM. Kruijff, andWol-

fram Burgard. 2008. Conceptual spatial representations for indoor mobile robots.

Robotics and Autonomous Systems 56:493–502. Special issue “From sensors to human

spatial concepts”.

271

