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Abstract

We analyze the information content of narrative speech samples from individuals with mild cognitive impairment (MCI), in

both English and Swedish, using a combination of supervised and unsupervised learning techniques. We extract information units

using topic models trained on word embeddings in monolingual and multilingual spaces, and find that the multilingual approach

leads to significantly better classification accuracies than training on the target language alone. In many cases, we find that aug-

menting the topic model training corpus with additional clinical data from a different language is more effective than training on

additional monolingual data from healthy controls. Ultimately we are able to distinguish MCI speakers from healthy older adults

with accuracies of up to 63% (English) and 72% (Swedish) on the basis of information content alone. We also compare our

method against previous results measuring information content in Alzheimer’s disease, and report an improvement over other

topic-modeling approaches. Furthermore, our results support the hypothesis that subtle differences in language can be detected in

narrative speech, even at the very early stages of cognitive decline, when scores on screening tools such as the Mini-Mental State

Exam are still in the “normal” range.

� 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Dementia is a progressive cognitive impairment due to neurodegenerative disease, affecting more people each

year as the average lifespan increases (Prince et al., 2013). The most common cause of dementia is Alzheimer’s dis-

ease (AD), although other types of dementia exist. In many cases, before the impairment is severe enough to be clas-

sified as dementia, an individual may experience a phase of subjective cognitive impairment (SCI; characterized by

an individual’s subjective experience of cognitive decline, but with no measurable deficit observed on standardized

tests), or mild cognitive impairment (MCI; characterized by a mild but clinically observable deficit in at least one

cognitive domain) (Gauthier et al., 2006; Reisberg and Gauthier, 2008). Detecting potentially incipient dementia in
I This paper has been recommended for acceptance by R. K. Moore.
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these prodromal or preclinical phases can help patients and their families prepare and allow for early intervention.

Sensitive screening tools are also of crucial importance in selecting participants for clinical trials, as current research

suggests that disease-modifying medications are most likely to be successful at the earliest stages of dementia (Pos-

ner et al., 2017).

Current methods of early detection, such as positron emission tomography (PET) and magnetic resonance imag-

ing (MRI), are expensive and invasive (Nensa et al., 2014). However, recent work has suggested that analysis of

speech and language may lead to the discovery of sensitive and non-invasive behavioural biomarkers of dementia

and MCI (Szatloczki et al., 2015; Laske et al., 2015; Alberdi et al., 2016; Alm, 2016). Spontaneous speech produc-

tion is a complex task involving multiple cognitive domains, such as memory, attention, and planning, in addition to

language itself. As a result, subtle changes in language have been observed years or even decades before dementia is

diagnosed (Snowdon et al., 1996; Garrard et al., 2004; Cuetos et al., 2007; Clark et al., 2009; Le et al., 2011; Ahmed

et al., 2013a).

Numerous studies have made use of a machine learning approach to automatically classify text and/or speech

samples from individuals with cognitive impairment (for example, Thomas et al., 2005; Roark et al., 2011; Jarrold

et al., 2014; Rentoumi et al., 2014; Garrard et al., 2014; Orimaye et al., 2014; Prud’hommeaux and Roark, 2015;

K€onig et al., 2015; Fraser et al., 2016; Asgari et al., 2017; Masrani et al., 2017). However, a major challenge in this

line of research has been the relative scarcity of high-quality, clinically-validated language data on which to train

such machine learning models. In this paper, we consider two possible solutions to the data scarcity problem, as it

applies to the topic-modeling1 stage in our automated processing pipeline: (1) to augment the training set with addi-

tional monolingual normative data, or (2) to augment the training set with additional multilingual clinical data. In

the latter case, we take advantage of recent advances in multilingual word embeddings to generate novel multilingual

information units. We then evaluate the resulting topic models on the task of distinguishing MCI speakers from

healthy controls in two different languages, on the basis of the information content of participants’ narrative speech.
2. Related work

Many studies have examined the relationship between cognitive decline and various measures of speech and lan-

guage. In the following, we review the findings regarding the use of a picture description task to elicit speech for the

purpose of detecting dementia and MCI, focusing in particular on the so-called “Cookie Theft” picture. We then

review manual and automated methods for measuring the information content of the elicited narratives.

2.1. The Cookie Theft task

The Cookie Theft picture is part of the Boston Diagnostic Aphasia Examination (Goodglass and Kaplan, 1983). In

the picture, a woman is seen drying some dishes while looking away absent-mindedly, not noticing that the sink is

overflowing with water. Behind her back, a boy and a girl are stealing cookies from a cookie jar placed in a kitchen

cupboard. The boy is standing on a stool and is about to fall down. The Cookie Theft picture is used for eliciting nar-

rative speech, primarily when diagnosing speakers with different types of language and communication disorders.

Over the years, the Cookie Theft picture has been used to elicit speech in many different languages (e.g. Japanese

(Choi, 2009); Norwegian (Lind et al., 2009); Chinese (Lai et al., 2009); Hebrew (Kav�e and Goral, 2016)), suggesting
its potential for cross-linguistic comparison studies.

A number of studies have reported that performance on the Cookie Theft description task is affected in AD, and in

particular marked by a reduction in the amount of information that is conveyed. Croisile et al. (1996) compared writ-

ten and spoken Cookie Theft descriptions from 46 French participants; 22 with AD and 24 controls. They found that

the written narratives were more diagnostically useful, but that in general the AD descriptions were always shorter

and less informative than the control descriptions. They measured information content by scoring the narratives

against a list of 23 expected information units. (Here, an information unit refers generally to a concept in the image,

such as woman, sink, or overflowing.)
1 Note that we use the term topic model in the generic sense of an unsupervised method for discovering topics in text data, rather than specifically

methods based on latent Dirichlet allocation, for example.
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Forbes et al. (2004) compared written descriptions from AD participants and controls on a simple picture (in half

of cases, the Cookie Theft picture) and a complex picture. Participants with mild AD were distinguished from con-

trols on the basis of reduced information content and the production of fewer pictorial themes, while participants

with more severe AD also suffered difficulties in the production of writing (e.g. stroke and case errors). In subse-

quent work involving oral as well as written picture descriptions, Forbes-McKay and Venneri (2005) found that par-

ticipants in the early stages of AD differed from controls on measures of information content, pictorial themes, word

finding delays and the response given to word finding delays. For the Cookie Theft picture, they list 7 pictorial

themes, each involving at minimum a subject and a verb (e.g. boy stealing cookies, woman washing/drying dishes).

Pekkala et al. (2013) compared written English Cookie Theft descriptions from 23 participants with AD and 24

healthy controls. They generated a list of “target words” by compiling the 22 most common words (and their mor-

phological variants) from the control data, and an additional list of somewhat lower-frequency words from the con-

trol sample. They found that the AD group produced significantly fewer words from both lists. They also found that

cognitive deficits were evident from the Cookie Theft analysis 7�9 years prior to death, while deficits on other lan-

guage tasks (namely the Boston Naming Test and the letter verbal fluency task) were evident only 2�4 years prior

to death.

Ahmed et al. (2013b) analyzed Cookie Theft narratives from 18 English-speaking participants in the early stages of

AD and 18 matched controls. They extracted the same 23 information units as Croisile et al. (1996), as well as measures

of idea density (i.e. the number of information units per word in the narrative) and efficiency (i.e. the number of infor-

mation units per unit time). They found that the AD participants produced significantly fewer information units overall,

and in particular fewer subjects and actions (in contrast to objects and places). Idea efficiency was also reduced.

Landfeldt and S€oderb€ack (2009) analyzed 141 Cookie Theft narratives written by Swedish-speaking persons with

SCI, MCI, and dementia. In addition to syntactic variables, they calculated the number of propositions and the idea

density (defined as number of propositions divided by total number of words), but did not include idea density in

their statistical analysis. They did find a significant difference between the number of propositions produced by the

participants with dementia, relative to both MCI and SCI participants.

However, the usefulness of the Cookie Theft picture in detecting dementia in the prodromal phase is unclear.

Some studies have reported a reduction in information content in preclinical dementia. Cuetos et al. (2007) used the

Cookie Theft task to elicit speech from 19 Spanish-speaking carriers of the E280A mutation (which inevitably leads

to AD, so these participants were assumed to be in an asympotomatic preclinical stage) and 21 noncarrier family

members. There was no significant difference on the number of sentences produced or mean sentence length, but the

carriers of the mutation did produce significantly fewer “semantic units” and “objective situations”, both measures

of information content. Ahmed et al. (2013a) reported deficits in various aspects of connected speech in 15 English

MCI participants who later went on to develop AD, although the deficits were heterogeneous, representing impair-

ments ranging from speech production and fluency to syntactic complexity and semantic content. However, the most

common profile was characterized by an increase in the production of pronouns, and a decrease in total information

units and idea efficiency. This pattern of impairment continued to worsen as the disease progressed and a dementia

diagnosis was made.

In contrast, Bschor et al. (2001) found that German participants with AD, MCI, and no cognitive impairment all

produced the same number of words in their Cookie Theft descriptions, but that those with AD described signifi-

cantly fewer people, objects, and places than healthy controls. However, they found that MCI participants performed

similarly to controls in terms of the number of information units produced. Similarly, Tyche (2001) investigated sub-

tle language impairments in Swedish-speaking persons with MCI, and found that the persons with MCI did not differ

significantly from healthy controls on language tests or on semantic aspects of the oral Cookie Theft narratives,

although some qualitative differences were seen with regards to the structure of the narrative, in that the persons

with MCI for example tended to be more repetitive.
2.2. Automated analysis of information content

Given the time-intensive nature of manually annotating picture description narratives for information content,

there has been some effort to automatically extract relevant features, using text analysis and natural language

processing.
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One approach to scoring information content was developed by Prud’hommeaux and Roark (2015), and involves

selecting a picture description from the control group to act as the “source narrative”, and then using a graph-based

alignment algorithm to determine how well each other narrative in the corpus recalls the story elements from the

source narrative. Using a subset of the DementiaBank2 corpus (130 AD samples and 130 control samples), they

achieve a best accuracy of 83%. However, this method may be better suited to situations where a single, gold-stan-

dard source narrative exists, such as in a story-recall task.

Pakhomov et al. (2010) analyzed Cookie Theft narratives from 38 English participants with frontotemporal lobar

degeneration (FTLD). In addition to other speech and language variables, they computed a “Correct Information

Unit count” for each narrative based on a manually compiled list of unigrams, bigrams, trigrams, and 4-grams. The

complete list (available in the Appendix of their paper) contains 135 items, although some are simply morphological

variants (asking for cookie, asking for a cookie, asking for cookies, ask for cookie, and so on). However, the number

of correct information units was not found to differ significantly between subtypes of FTLD.

Fraser et al. (2016) employed a similar approach to extract information units from Cookie Theft narratives from

participants with AD. For each of the 23 information units described in Croisile et al. (1996), they used WordNet to

semi-automatically generate a set of possible synonyms. They then extracted 23 binary-valued information units by

searching for those words in the texts. Additionally, they computed integer-valued frequency counts for each of the

relevant words contributing to the information units, allowing them to capture potentially relevant lexical variation

in how the information units are described. In combination with other linguistic and acoustic features, they reported

a best accuracy of 81% on the task of distinguishing between 240 AD narratives and 233 control narratives from the

DementiaBank corpus.

There are many limitations to simply searching for a pre-computed list of keywords or n-grams. First, it requires

the set of expected information units to be defined — apparently not a trivial task, given the number of different pos-

sibilities described in the literature above. In particular, determining the level of specificity can be difficult: perhaps

the woman counts as a single information unit, but what about her shoes, her dress, her apron? Are these separate

pieces of information, or do they all refer essentially to the woman?

Second, the information units must be operationalized in some way, generally by compiling a list of likely syno-

nyms (the boy could also be referred to as the son, child, etc.). In this process, there is always the possibility that a

reasonable word choice will be omitted. Additionally, it is not always obvious how to differentiate the information

units without context (e.g. the dish and plate information units from Croisile et al. (1996), which appear to be largely

differentiated only by their location � on the counter versus in the woman’s hand). Furthermore, it can be difficult to

generate keywords that capture more complex information units, such as the woman’s indifference towards the

children.

Finally, it is obvious that any list of keywords will be both picture- and language-dependent. Having the ability to

present different picture stimuli is critical for longitudinal monitoring, where familiarity with the image may induce

a so-called “practice effect” (Forbes-McKay and Venneri, 2005; Goldberg et al., 2015). Being able to assess people

in their dominant language is also essential to get an accurate evaluation of their language abilities, and the possibil-

ity to use different images makes it feasible to evaluate all languages in multilingual individuals, since it is not cer-

tain that all languages of an individual are affected equally in dementia (Stilwell et al., 2016).

Recent work has attempted to avoid some of these issues by using unsupervised learning techniques to automati-

cally generate information units directly from the data. Yancheva and Rudzicz (2016) used k-means clustering to

generate topic models from the AD and control narratives in DementiaBank. In this case, a “topic” refers loosely to

the same concept as an “information unit”. With k ¼ 10; they were able to recall 97% of the human-annotated infor-

mation units (with some of the human-annotated units being clustered into a single topic). Using a small set of fea-

tures extracted from these topic models, they were able to classify AD versus control narratives with an F-score of

0.74, and by combining those features with lexical and syntactic features, the F-score improved to 0.80.

Sirts et al. (2017) applied a similar methodology and reproduced the results of Yancheva and Rudzicz (2016) on

DementiaBank (with an F-score of 0.73 using a slightly different set of cluster features), and also applied it to a data-

set of open-ended spontaneous speech data from participants with and without AD, where they report an F-score of

0.85.
2 http://dementia.talkbank.org/.

http://dementia.talkbank.org/
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Here, we propose to combine the idea of fully automated generation of information units with recent work on

multilingual word embeddings to create multilingual information units. One major challenge in the area of clinical

language analysis has been that data is very scarce, and predominantly English. The multilingual approach allows us

to learn better information units by augmenting the topic model training data with datasets outside of the target lan-

guage, and therefore leverage the few publicly available datasets (such as DementiaBank), even in languages where

such resources are not available.
3. Methods

We first describe the different data sets and participant groups involved in the study, then provide details of the

clustering, feature extraction, and classification procedures.

3.1. Participants

We make use of three datasets, all based on the Cookie Theft picture: the Gothenburg dataset, the Karolinska

dataset, and the DementiaBank dataset. The Gothenburg dataset was collected within the present project; the others

are existing datasets from external sources. The properties of the datasets are summarized in Table 1, with the group

labels “MCI” indicating participants diagnosed with mild cognitive impairment, and “HC” indicating healthy con-

trols. The Mini-Mental State Examination (MMSE) is a general test of cognitive status with a maximum score of 30

(Folstein et al., 1975), and a score above 24 is considered normal (Grut et al., 1993).
3.1.1. Gothenburg

The Swedish participants recorded in Gothenburg are recruited from the ongoing Gothenburg MCI Study (Wallin

et al., 2016). The Gothenburg MCI Study is a longitudinal in-depth phenotyping study of patients with different

forms and degrees of cognitive impairment (i.e., from very mild to manifest dementia, but also including cognitively

normal controls) using neuropsychological, neuroimaging, and neurochemical tools. The study is clinically based

and aims at identifying neurodegenerative, vascular and stress related disorders prior to the development of demen-

tia. All participants in the study undergo baseline investigations, such as neurological examination, psychiatric eval-

uation, cognitive screening (e.g., memory and visuospatial disturbance, poverty of language and apraxia), MRI

imaging of the brain and cerebrospinal fluid collection. At biannual follow-ups, most of these investigations are

repeated. The overall Gothenburg MCI Study is approved by the local ethical committee review board (reference

number: L091-99, 1999; T479-11, 2011); while the currently described study is approved by the local ethical com-

mittee (decision 206-16, 2016).

A total of 31 MCI patients and 36 healthy controls were included in the present study, according to detailed inclu-

sion and exclusion criteria (Kokkinakis et al., 2017). The participants in the current study all provided written

informed consent. They were audio recorded while describing the Cookie Theft picture and performing some addi-

tional linguistic tasks not considered here. Participants were instructed to describe what they could see and what was

happening in the picture. They were also told that they could talk for as long as they wanted and that they would not
Table 1

Demographic data for the different data sets included in the MCI analysis. *MMSE scores missing for 3 participants.

In-domain Out-domain

Dataset Gothenburg DementiaBank Karolinska DementiaBank

Group label MCI HC MCI HC HC HC

N 31 36 19 19 96 78

Age (years) 70.1 (5.6) 67.9 (7.2) 66.7 (8.5) 66.4 (9.2) 57.2 (19.9) 63.9 (7.8)

Educ. (years) 14.1 (3.6) 13.1 (3.4) 14.9 (3.1) 14.2 (2.3) 13.0 (4.0) 13.9 (2.5)

Sex (M / F) 15 / 16 13 / 23 9 / 10 9 / 10 44 / 52 30 / 48

MMSE (/30) 28.2 (1.4) 29.6 (0.6) 27.4 (1.8) 29.1 (1.2) � 29.1 (1.1)*

Task type Spoken Spoken Spoken Spoken Written Spoken

Language Swedish Swedish English English Swedish English



Table 2

Demographic data for the DementiaBank AD analy-

sis. *MMSE scores missing for 2 participants.

yMMSE scores missing for 3 participants.

Group AD HC

N 166 97

Age (years) 71.9 (8.3) 64.4 (8.1)

Education (years) 12.0 (2.7) 14.0 (2.4)

Sex (M / F) 55 / 111 39 / 58

MMSE (/30) 18.8 (5.1)* 29.1 (1.1) y
Task type spoken spoken

Language English English
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be interrupted. The recorded narratives were subsequently manually transcribed by experienced transcribers accord-

ing to guidelines provided by the authors.
3.1.2. Karolinska

The Karolinska corpus was collected by Cromnow and Landberg (2009) and contains only samples from healthy,

Swedish controls. The 96 participants were divided into two groups depending on age (20�64 and 65�88 years

old). The majority of the older participants in the dataset were members of Swedish retirement associations such as

the “Pensioners’ National Organization” (PRO) and “Active Seniors”, whereas the younger participants were

recruited through convenience sampling. The main criteria for participation in the Karolinska study were that sub-

jects had Swedish as a first language, absence of clinical manifestations of linguistic impairment (such as dyslexia or

aphasia) and absence of neurological disease.

The participants were instructed to produce a written description of what was happening in the Cookie Theft pic-

ture, while having the picture in front of them. They were given a time limit of 5 minutes, and wrote with pen on

paper. The texts were manually transcribed into digital text files for the current study, using a set of guidelines to

ensure consistency.

Because of the differences between this corpus and the Gothenburg corpus (most significantly, the lack of MCI

participants, the wider range of ages, and the written modality), we consider this data to be “out-of-domain” with

respect to the classification task, although the topic of the narratives is the same.
3.1.3. DementiaBank

Our English Cookie Theft data comes from DementiaBank, which is part of the TalkBank project (MacWhinney,

2007). These data were collected at the University of Pittsburgh as part of the Alzheimer Research Program. Detailed

information about the original study is available from Becker et al. (1994). All participants received an extensive

neurological, neuropsychological, psychiatric, and physical assessment.

Although the corpus primarily includes participants with AD (and healthy controls), we identified 19 participants

who had been diagnosed with MCI. We then selected the 19 control participants who were a close match in terms of

age, education, and sex. These comprise our English “in-domain” data. We then consider the remainder of the avail-

able control data (78 participants) to be our additional normative, or “out-of-domain” English data. Although many

participants have contributed multiple samples to the DementiaBank database, we consider only the first available

sample from each participant, so as to not bias the topic models or classifiers toward participants with multiple

samples.

Additionally, to compare with the results previously reported by Yancheva and Rudzicz (2016) and Sirts et al.

(2017), we consider the full DementiaBank corpus3 comprising the 97 control participants and 166 participants with

possible or probable AD. Participant demographics for this dataset are summarized in Table 2.

The DementiaBank data has been transcribed using the CHAT transcription protocol (MacWhinney, 2000).
3 Version downloaded on November 22, 2013.



Table 3

Seed words used to initialize clusters.

English boy, girl, woman, cookie, stool, sink, overflow, fall, window, curtain, plate, cloth, jar, water,

cupboard, dish, kitchen, garden, take, wash, reach, attention, see

Swedish pojke, flicka, kvinna, kaka, pall, diskho, rinna, ramla, f€onster, gardin, tallrik, handduk, burk,

vatten, ska
�
p, fat, k€ok, tr€adga

�
rd, ta, diska, str€acka, m€arka, se
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3.1.4. Group comparisons

Considering only the in-domain datasets, a multi-way ANOVA reveals no significant difference between the

groups in terms of age or level of education. There is a significant main effect of MMSE (p< 0.001). Post-hoc tests

reveal a significant difference between the Swedish MCI and HC groups (p< 0.001) and the English MCI and HC

groups (p< 0.001). In each case, the HC group has the higher MMSE. However, we note that in general the average

MMSE scores in the MCI groups are within what is considered the “normal” range (Grut et al., 1993), illustrating

the very subtle impairment present at this stage. There is no significant difference in MMSE between the English

and Swedish MCI groups, nor between the English and Swedish controls.
3.2. Clustering

Given the raw transcripts, we first pre-process the texts to remove filled pauses (e.g. um or uh), phonological frag-

ments (e.g. he’s re- reaching), and other non-lexical items (e.g. laughter). We part-of-speech (POS) tag and lemma-

tize each word, using the Stanford POS-tagger and NLTK WordNet Lemmatizer for English (Toutanova et al.,

2003; Bird et al., 2009), and Sparv for Swedish (Borin et al., 2016). We then extract all nouns and verbs for the clus-

ter analysis, following the assumption of the previous works that these word classes carry the most semantic infor-

mation. Each extracted word is represented as a 300-dimensional vector using the pre-trained FastText word

embeddings (Bojanowski et al., 2017). The FastText embeddings are based on the skip-gram model (Mikolov et al.,

2013), but rather than learning word-level representations directly, character n-gram level representations are learned

first, and then combined to generate word representations. The benefit of this approach is that it takes into account

word morphology. This allows the sharing of subword information across related words, and means that representa-

tions can be obtained for words that did not occur in the training set. At the time of writing, pre-trained word vectors

are available in 294 languages4.

We chose this representation (in contrast to the GloVe embeddings used by Yancheva and Rudzicz (2016)) pri-

marily due to the availability of transformation matrices for the alignment of FastText embedding spaces in any of

78 different languages, including English and Swedish5. Details of the transformation procedure are given by Smith

et al. (2017). A dictionary of translations for 5000 frequently occurring words in the two languages is automatically

generated, and the embedding spaces then rotated such that the mean cosine distance between translation pairs is

minimized. This is accomplished by using a singular value decomposition to learn a linear transformation between

the two embedding spaces. The assumption is that if the rotation aligns the 5000 known translation pairs, then the

other vectors in the rotated space should lie close to their translations as well, based on the underlying structure of

the embedding spaces. This transformation allows our English and Swedish word vectors to be represented in the

same space, while preserving the relationships between words in the underlying monolingual models.

One challenge in using pre-trained word vectors in Swedish is the presence of compound words in the narratives,

which may in some cases be generated on-the-fly and thus not have a representation in the vector space. To manage

this issue, for any word which does not have a vector representation, we again use Sparv to analyze its compound

structure, and then check if any of its constituents have vector representations. In this way, for example, a person

who describes the kitchen as a femtiotalsk€ok (1950s kitchen) is still credited with the word k€ok (kitchen), which is

represented in the set of pre-trained vectors.
4 https://github.com/facebookresearch/fastText.
5 https://github.com/Babylonpartners/fastText_multilingual.

https://github.com/facebookresearch/fastText
https://github.com/Babylonpartners/fastText_multilingual


Table 4

Data set combinations for training the cluster models for MCI classification.

In-domain Out-domain

Gothenburg DementiaBank Karolinska DementiaBank

Swedish (in-domain) @ @
Swedish (all) @ @ @
English (in-domain) @ @
English (all) @ @ @
Multilingual (in-domain) @ @ @ @
Multilingual (all) @ @ @ @ @ @
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For clustering, we use the Matlab implementation of k-means, with cosine distance as the distance metric. This

choice of distance metric represents another departure from the methodology described in Yancheva and Rudzicz

(2016) and reproduced in Sirts et al. (2017), but we consider this necessary since the procedure to generate the multi-

lingual embedding space minimizes the cosine distance between translation pairs, rather than the Euclidean distance.

Cosine distance also has some practical advantages over the dscaled measure used in that study in that it is nonnega-

tive, and well-defined for clusters containing a single word type. We consider three possible values for k: 10 (as sug-

gested by the two previous studies), 23 (as Croisile et al. (1996) suggest there are 23 natural information units), and

ksil, where ksil 2 {2, 3, ..., 30} and is chosen fully automatically using the silhouette method (Kaufman and Rous-

seeuw, 2009). We consider two initialization strategies: the first uses standard k-means++ initialization, which we

then let run until convergence or for a maximum of 1000 iterations, and restart 100 times to avoid local minima. In

the second strategy, we explore the effect of adding some expert knowledge by seeding the initial clusters with words

representing the information units from Croisile et al. (1996), and again run for a maximum of 1000 iterations. The

seed words were selected by the authors, in each case a native speaker of the given language, and are shown in

Table 3. Given the variability that can occur in the output of cluster modeling, we generate 10 different cluster mod-

els using 10 different random seeds for each combination of parameters, and then incorporate model selection as

part of the classifier training process (Section 3.4).

The cluster model can be trained on any combination of the available data; to examine more closely the effects of

language and domain, we consider the six cluster model training configurations given in Table 4. When training on

both languages together, the training set is balanced such that it contains the same number of word tokens from each

language.

Additionally, to compare the multilingual approach to the previous work that has been done in English, we apply

our methodology to the DementiaBank classification task, using cluster models trained on the full DementiaBank

dataset (English), as well models trained after adding all available Swedish data (English + Swedish).

3.3. Feature extraction

Once we have the cluster model, we can extract features from the classification data set (either English (in-

domain) or Swedish (in-domain)) using the cluster information. For each narrative, we first apply the same pre-proc-

essing steps as described in Section 3.2, represent the nouns and verbs as vectors, assign each vector to a cluster in

the cluster model, and then extract the features listed in Table 5. The last two features listed in the table are baseline

features, and are independent of the cluster model. We use these features to train our baseline classifiers only. Note

that in the case where no words are discarded in the filtering step (i.e. all nouns and verbs are considered to be rele-

vant to one of the topics), then N+V density is equivalent to information density, and similarly for N+V efficiency

and information efficiency.

3.4. Classification

The main classification task is to distinguish between narratives from MCI speakers and controls. We use a linear

SVM classifier (Pedregosa et al., 2011), and develop separate models for the English and Swedish MCI classification

tasks. In both cases, we use a leave-one-out cross-validation framework, in which one narrative is set aside as the test



Table 5

Features extracted from the Cookie Theft narratives, based on the cluster model.

Cluster features Ci For each cluster i, find the average cosine distance between the centroid and all words assigned to that cluster. This is equivalent to Ci in

Yancheva and Rudzicz (2016), but using cosine distance rather than their dscaled quantity.

Ni For each cluster i, discard any word that lies more than 3 standard deviations away from the mean distance to the centroid in the training set, as proposed by

Yancheva and Rudzicz (2016). (This filtering step is necessary because otherwise every word, no matter how irrelevant, will be assigned to some cluster.)

Then count how many words are assigned to the cluster. The raw frequency count is Ni (indicating how many times a given topic i is mentioned).

Pi For each cluster i, the frequency count Ni (above), divided by the total number of words in the narrative (indicating what proportion of the words produced

belonged to this topic).

Summary features Idea density The number of clusters that are mentioned, divided by the total number of words in the narrative.

Idea efficiency The number of clusters that are mentioned, divided by the total time of the narrative in seconds.

Information density The number of words which are assigned to clusters, divided by the total number of words in the narrative.

Information efficiency The number of words which are assigned to clusters, divided by the total time of the narrative in seconds.

Baseline features N+V density The total number of nouns and verbs, divided by the total number of words in the narrative.

N+V efficiency The total number of nouns and verbs, divided by the total time of the narrative in seconds.
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set, and model selection and training is performed on the remaining data. This allows us to maximize the size of our

training set, given the relatively small number of samples available. On the training set, we run an inner loop of

cross-validation to select the complexity parameter for the SVM classifier, and to choose the cluster model from the

10 generated for each configuration. We report the average accuracy across folds, as well as sensitivity (the true posi-

tive rate) and specificity (the true negative rate). These metrics are particularly relevant in a healthcare context,

where it is desirable to have a test that is both highly sensitive (here, detects most cases of MCI) and specific (here,

does not wrongly flag healthy individuals as having MCI).

Additionally, we consider the task of distinguishing between the AD and control narratives from DementiaBank,

in order to compare our results against those previously reported by Yancheva and Rudzicz (2016) and Sirts et al.

(2017). The methodology is the same as for the MCI classification task.
4. Results

4.1. Monolingual and multilingual data augmentation

The classification accuracies for the two languages under different experimental conditions can be seen in Fig. 1.

In the English classification task (Fig. 1a), the highest accuracy is always achieved using the topic model trained on

the multilingual (all) data. This pattern does not hold in the Swedish classification task (Fig. 1b), where the topic

model trained on multilingual (in-domain) performs better in the case of k ¼ 10; and the Swedish (in-domain) model
Fig. 1. Classification accuracies using features extracted from cluster models trained on different data sets (English, Swedish, and multilingual).

The dashed line indicates the accuracy achieved using the N+V baseline features described in Section 3.3.



Fig. 2. Classification accuracies when the clusters are initialized with k-means++ versus with centroids based on the information units given by

Croisile et al. (1996).
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for the automatically chosen k; however, the overall best accuracy on this task is again achieved using the multilin-

gual (all) data, with a value of 0.72. This is higher than the best accuracy of 0.63 in the English case.

An ANOVA reveals a significant effect of topic model type (multilingual versus monolingual) on accuracy

(Fð1; 18Þ ¼ 7:893; p ¼ 0:01), with the multilingual models leading to higher accuracies. There are no significant

effects of domain (in-domain versus all), test language (Swedish versus English), or number of clusters k.
Table 6

Summary of all classification accuracies, as well as sensitivity and specificity scores for each configuration.

Test set: English Test set: Swedish

Training set k # features seeds? Acc Sens. Spec. Acc Sens. Spec.

English 10 34 False 0.45 0.47 0.42 � � �
(in-domain) 23 73 False 0.39 0.37 0.42 � � �

23 73 True 0.47 0.42 0.53 � � �
2�30 10�94 False 0.42 0.32 0.53 � � �

Swedish 10 34 False � � � 0.42 0.48 0.36

(in-domain) 23 73 False � � � 0.48 0.48 0.47

23 73 True � � � 0.49 0.52 0.47

2�30 10�94 False � � � 0.57 0.52 0.61

Swedish+English 10 34 False 0.47 0.37 0.58 0.61 0.61 0.61

(in-domain) 23 73 False 0.45 0.37 0.53 0.64 0.58 0.69

23 73 True 0.45 0.42 0.47 0.54 0.55 0.53

2�30 10�94 False 0.50 0.53 0.47 0.39 0.35 0.42

English 10 34 False 0.47 0.37 0.58 � � �
(all) 23 73 False 0.42 0.37 0.47 � � �

23 73 True 0.47 0.37 0.58 � � �
2�30 10�94 false 0.47 0.47 0.47 � � �

Swedish 10 34 False � � � 0.55 0.55 0.56

(all) 23 73 False � � � 0.40 0.39 0.42

23 73 True � � � 0.52 0.58 0.47

2�30 10�94 false � � � 0.49 0.45 0.53

Swedish+English 10 34 false 0.63 0.53 0.74 0.51 0.48 0.53

(all) 23 73 false 0.55 0.53 0.58 0.72 0.77 0.67

23 73 True 0.34 0.32 0.37 0.42 0.48 0.36

2�30 10�94 False 0.55 0.53 0.58 0.55 0.58 0.53

Baseline � 2 � 0.47 0.53 0.53 0.54 0.55 0.53
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4.2. Effect of seeding the topics

We now consider the effect of adding some expert knowledge to the cluster model, by restricting k ¼ 23 and ini-

tializing the k-means algorithm with words representing Croisile’s 23 information units. The classification results

for k ¼ 23 with and without the seed words are given in Fig. 2.

We observe that while in some cases, initializing the clusters with seed words leads to small increases in perfor-

mance, using the seed word initialization never leads to classification accuracies that exceed the baseline. This sug-

gests that the fully automated cluster models are better able to capture patterns in the data which distinguish the two

groups. We will present some examples of this in the discussion, Section 5.2.
4.3. Summary of MCI results

A complete overview of the results presented in the previous sections is given in Table 6, including the sensitivity

and specificity for each configuration. Looking first at the English MCI classification task, we see that even the best

performing model has low sensitivity (not better than the baseline). This is undesirable from the perspective of a

dementia screening tool, as it means that individuals with MCI may be missed. The specificity in the best case is

0.74.

However, in the Swedish MCI classification task, we observe the opposite pattern: in the best result, the sensitiv-

ity (0.77) is higher than the specificity (0.67). An imbalance of this type is typically less problematic, as any individ-

uals flagged as potentially having MCI would be referred to a specialist, who would conduct a more detailed

examination and rule out any false positives.

Considering only the experiments with k-means++ initialization (corresponding to the results reported in Sec-

tion 4.1), we find a significant effect of topic model type (multilingual versus monolingual) on both sensitivity

(Fð1; 18Þ ¼ 4:845; p ¼ 0:04) and specificity (Fð1; 18Þ ¼ 6:418; p ¼ 0:02), with higher values achieved using the

multilingual models. There is also an effect of classification task on sensitivity (Fð1; 18Þ ¼ 5:043; p ¼ 0:04), with
higher sensitivities obtained in the Swedish MCI classification.
4.4. DementiaBank classification

Finally, although the focus of this paper is on MCI rather than AD, we use the same methodology to classify

DementiaBank narratives as belonging to the AD or control groups, and compare against the results reported in the

literature. We compare directly against the results of Yancheva and Rudzicz (2016) and Sirts et al. (2017), since

they use a similar methodology of clustering to identify information units. However, we note that other previous

work has taken alternative approaches to DementiaBank classification, including Prud’hommeaux and Roark (2015)

(83% accuracy) and Fraser et al. (2016) (81% accuracy), described in Section 2.2, as well as Orimaye et al. (2014)

(F-score of 0.74, using lexical and syntactic features), and Orimaye et al. (2017) (AUC of 0.94, using 1000 n-gram

features).

The comparison is not exact, as the previous works used different classifiers and train-test configurations. How-

ever, Table 7 shows that by using our methodology and increasing the number of clusters from 10 to 23, we can
Table 7

F-scores reported in the previous literature and obtained using this method for the classifica-

tion task of distinguishing AD and control narratives from DementiaBank.

Cluster features Cluster features + Summary features

Yancheva and Rudzicz (2016) 0.68 0.74

Sirts et al. (2017) 0.66 0.75

English (k ¼ 10) 0.81 0.83

English + Swedish (k ¼ 10) 0.80 0.80

English (k ¼ 23) 0.80 0.79

English + Swedish (k ¼ 23) 0.85 0.81

English + seeds (k ¼ 23) 0.79 0.78

English + Swedish + seeds (k ¼ 23) 0.77 0.78



132 K.C. Fraser et al. / Computer Speech & Language 53 (2018) 121�139
improve the performance on this task to a best F-score of 0.85. We also consider the effect of including Swedish data

in the topic modeling step, even though we do not have any Swedish AD data data. Using the multilingual data

decreases performance in the k ¼ 10 configuration but increases performance in the k ¼ 23 case, leading to the best

results of F ¼ 0:85 using the cluster features alone. For the sake of comparison, this corresponds to an accuracy of

82%, a sensitivity of 0.82, a specificity of 0.81, and an AUC of 0.89. We also consider the effect of initializing with

seed words, as before, but find that it confers no benefit over the k-means++ initialization. Finally, we note that the

cluster features (first column) appear to be generally more discriminative here than in previous work, suggesting that

either the FastText word embeddings or our modified feature definitions offer some benefit over the previously

reported methodology.

5. Discussion

In the following section we discuss in more detail the implications of the results, including possible factors con-

tributing to the strength of the multilingual approach, examples of the kinds of topics that are learned in the different

configurations, and a comparison of the summary measures of density and efficiency across the MCI and control

groups.

5.1. Why is the multilingual approach effective?

The classification results show that when training the cluster model, it is often more effective to add data from a

different language, rather than more data from the same language. Why could this be? One possibility is that adding

more data from the same language does not actually add any new information. That is, because the picture is rela-

tively simple, after some number of picture descriptions are seen, all the relevant words have been mentioned and

adding additional training data does not improve the topic modeling.

Observing many repeated instances of the same word does not tend to lead to richer topic models, but simply con-

centrates the centroids around those highly frequent words. In the extreme case, where a cluster contains only multi-

ple instances of a single word type, the standard deviation of the distance to the centroid will be zero, and it will be

impossible for any other word type to be assigned to that topic during evaluation; that is, the “topic modeling”

approach will reduce to simple keyword-spotting.

However, artificially increasing the type-token ratio does not necessarily lead to better classification accuracy

either. To test this scenario in the extreme, we ran a set of experiments in which we filtered the cluster model training

data to exclude all repetitions of a word; that is, we trained on the set of tokens rather than the set of types. This max-

imized the type-token ratio of the training set to be 1.0. However, the classification accuracies were poorer in all

cases. In this scenario, all words in the training data appear with uniform probability, while in reality we want the

cluster centroids to be closer to stool than to chair, closer to cookie than cake, and so on. Clearly, the frequency

information that comes from including the natural distribution of word tokens is also important.

Thus, one possible explanation for the effectiveness of the multilingual approach here is that it helps to balance

the trade-off between too-tight clusters (occurring due to many repeated instances of highly frequent words in the

monolingual dataset) and too-broad clusters (occurring when each word type appears with uniform density). Another

way of thinking about this is that the multilingual data adds more “synonyms” to the dataset, enriching the vocabu-

lary in the relevant areas of the semantic space (assuming, of course, a good alignment between the English and

Swedish spaces). This helps to better define where the clusters should be located in the space. A concrete example of

how this can lead to better topics will be seen in the following section.

5.2. What topics are being learned?

To better understand how the different topic models differ in practice, we consider some examples of the topics

that are learned. For each configuration (combination of training set, k, and classification language), we consider

examples from the model that leads to the overall best accuracy on the given classification task. For the sake of

space, we do not attempt an exhaustive analysis, but simply offer some illustrative examples.

Table 8 shows two examples of clusters learned using English (all) data with k ¼ 23; initializing with either k-

means++ or the seed method. For each cluster, we generally list the top five words in the cluster, ranked by their



Table 8

Comparison of the topic models resulting from the supervised and automatic initialization methods, for the dataset

English (all), with k ¼ 23. The k-means++ clusters have been manually aligned to the seeded clusters to aid in

comparison.

# Seed Initialization: seed words Initialization: k-means++

1 boy boy kid youngster lad johnny ... boy girl kid man youngster ...

2 girl girl woman man mama mommy ...

3 woman mother daughter sister child son ... mother daughter sister child son ...

4 cookie cookie jelly cookie

5 stool stool stepstool stool stepstool

6 water water dry rain basin wind ... water sink dry wash faucet drip spilling overflow flow ...

7 sink sink

8 overflow overflow flow fill torrent cascade ...

9 wash wash spilling mouth towel faucet ...

10 fall fall spring collapse winter summer ... fall spring collapse winter summer

11 window window door windowsill glass side ... window door curtain windowsill roof ...

12 curtain curtain wall lip valance ladder ... shrubbery drape skirt ruffle cloth ...

13 plate plate cup bowl finish pan ... cup time finish end back ...

14 cloth hand finger wrist foot toe ... hand finger wrist toe nose...

15 jar jar lid pot jar lid pot

16 dish dish pudding platter egg fry dish platter pudding plate egg ...

17 kitchen floor room kitchen roof house ... floor kitchen room cupboard house closet countertop driveway garage ...

18 cupboard cupboard cabinet closet countertop dishwasher ...

19 garden shrubbery tree grass shrub garden ...

20 take want know get say think ... get go want take ask ...

21 reach reach climb grow extend reach climb grow extend path ...

22 attention action counter perspective time step ... leave cause hear attention disturb ...

23 see be have remain include see look glance appear detail

24 � say think know something suppose thing anything ...

25 � mhm board chair shh sirt ...

26 � run stand running walk standing ...

27 � action counter actio motion movement

28 � do em xxx uff

29 � be have
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closeness to the cluster centroid (in some cases, the cluster contains only five or fewer words, in which case there is

no ellipsis; in other cases we list more than five words to aid in the example). We have manually aligned similar clus-

ters for the purpose of comparison.

In many cases, the two methods of initialization result in very similar clusters (e.g. clusters 14, 15, 16). In other

cases, the k-means++ initialization merges topics that are distinct in the seeded initialization. For example, in the

seeded case, clusters 1, 2, and 3 are intended to refer to the boy, the girl, and the woman respectively (although it is

clear from the top-ranked words that there is much semantic overlap between the clusters 2 and 3). In the automati-

cally initialized case, we end up with only two clusters relating to these topics: cluster 1 generally contains words

that objectively refer to the people in the image (boy, girl, etc.), while cluster 3 contains words that describe an

inferred relationship between the participants (mother, daughter, son, etc.). While these clusters do not accurately

distinguish between the three actors in the scene, previous work has sometimes drawn a similar distinction between

interpretive versus literal information units in the Cookie Theft picture (Hillis Trupe and Hillis, 1985), and the abil-

ity to infer or interpret non-literal pictorial elements may be impaired in dementia and its pre-clinical stages (Ste-

vens, 1985; Cuetos et al., 2007).

We also observe that the objects water and sink, and the actions wash and overflow, have all been assigned to a

single topic in the automated case, and similarly words relating to the kitchen, cupboard, and garden have been col-

lapsed into a single topic.

In contrast, there are some topics generated in the automated case that do not exist in the seeded topic models.

One interesting example is clusters 28 and 29, which contains verbs that can be used as auxiliary verbs (be, do, and

have). These clusters are likely not very informative on their own, as most narratives will include these highly fre-

quent verbs. However, allocating these verbs to a separate cluster allows the other clusters to be more specific with

respect to the verbs that qualify as a reference to a given information unit. Cluster 24 is another interesting example,

where the words again do not appear to reference the actual information content of the image, but rather a speaker’s



...atnävapläjhattäsarögågatålallåhannukammoktegakösröfåf1
2 vatten water varmvatten vattenpöl vattensamling torka dry diskvatten . . .
3 see look titta glance
4 st̊a stand ligga falla fall run standing sit heta running hylla lay
5 flicka pojke girl boy mamma flickebarn tjej kille kid tio̊ars̊aldern . . .

...attamsärggniretnalpegaksubsuhdärtnedragyrebburhsdrågdärt6
...emuserpgnihtgnihtynagnihtemostnawaknätakcytwonkknihtyas7

8 jar lid
9 mother syster daughter barn dotter mor syskon child fru sister son . . .
10 hand handtag tygstycke handduk skjorta klnning wrist snöre finger . . .
11 be
12 se bild pl
13 vara finnas bli kännas förefalla inneh̊alla verka best̊a böra remain . . .

...adirvepiwattarksagnätsasålbnoitcawolbatujksarötsröfålsatläv41
15 ta reach n̊a ramla kliva klättra växa climb slingra grow tippa walk . . .
16 tallrik pall stol kopp gardin skopa balja platter barstol plate . . .
17 dish kök kitchen pudding coffee egg fry
18 ha have
19 kaka pepparkaka smaka sugar nalla kanke puff
20 cookie jelly

...niksamksiddraobpucpåksohksidlootspåkssköktevlogskökknäbksid12
...agnävsagäselläfllitnajröbdlibskcilbnogöyawttäsgnågeknat22

...lliswodniwggävkatsjörpsrooflroodfoorrrödvlogwodniwretsnöf32

Fig. 3. Two-dimensional representation of a cluster model usingMultilingual (all) and k ¼ 23. Color indicates cluster membership. For each clus-

ter, the English and Swedish words closest to the centroid are annotated, and the top closest words listed below.
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uncertainty about the task, often reflected in statements like I don’t know, I can’t say anything else, and vague terms

like thing and something.

These differences notwithstanding, in almost half of the automatically initialized clusters, the word closest to the

centroid actually belongs to the list of seed words. This suggests that if the human-generated list of information units

is essentially a list of frequently-mentioned elements in the image, then given enough (normative) data, we can learn

those topics from the frequency information available in the data. However, the classification results would seem to



Table 9

Example: the polysemous English word fall. In the multilingual case, it belongs to a

cluster with a centroid that is closer to words relating to the action of falling, rather

than the autumn season.

Monolingual Multilingual

Words in the cluster: fall spring collapse winter

summer

sta
�
stand ligga falla fall run

standing sit heta running hylla lay

Distance of centroid

to related words:

autumn 0.50 autumn 0.65

harvest 0.70 harvest 0.72

tumble 0.61 tumble 0.58

drop 0.56 drop 0.51
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suggest that these frequently-mentioned topics are not the most diagnostically useful features, at least in the case of

very mild cognitive impairment.

We turn now to the multilingual topic models. Here we consider the multilingual (all) dataset with k ¼ 23 and k-

means++ initialization, which led to the best classification result in Swedish, and the second-best in English. To visu-

alize the clusters in two dimensions, we use t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten

and Hinton, 2008). In Fig. 3, cluster membership is indicated through different colors, with the intensity of the color

scaled by the closeness of the word vector to the cluster centroid. For each cluster, we annotate the word closest to

the centroid from each language (unless only one language is represented in that cluster). We can see that these

words are often, but not always, direct translations of each other (e.g. girl and flicka, window and f€onster). However,
there are also examples where the multilingual approach failed. For example, cookie and kaka belong to separate

clusters (20 and 19), as do stool and pall (21 and 16). If we compare the cosine distances of these five example pairs

in the multilingual space, the first three are indeed closer than the latter two, perhaps due to polysemy (e.g. kaka

could also be translated as cake, and in fact kaka is closer to cake than cookie in the vector space).

However, in some cases the multilingual approach actually appears to resolve sense ambiguity. In Table 8, cluster

10 shows that in the monolingual English case, both the seed and k-means++ initialization lead to the word fall being

clustered with the words spring, winter, and summer (which are mentioned in reference to the exterior seen through

the window, albeit infrequently). Clearly, this is not the sense of fall that is most relevant to the Cookie Theft picture.

In the multilingual case, fall appears in a cluster with the Swedish word falla, which does not have the same ambigu-

ity with the season of autumn (h€ost). Table 9 shows a comparison of the two clusters: in the monolingual case, the

cluster centroid is closer to words like autumn and harvest, while in the multilingual case the centroid is closer to

words like tumble and drop, suggesting that this cluster is more appropriate for the sense of fall that we expect to see

most often in this corpus. This is an example of how the multilingual approach can lead to better topic models, even

if an individual speaker will only use words from one language or the other.
Table 10

Average values for the four summary features, computed across every configu-

ration. Boldface indicates a significant difference between the groups (within a

language). *p ¼ 0:003; yp ¼ 0:0002:

Gothenburg (Swedish) DementiaBank (English)

HC MCI HC MCI

Idea density 0.09 0.09 0.12 0.14

Idea efficiency 0.19 0.18 0.29 0.28

Information density 0.36 0.35 0.39 0.38

Information efficiency 0.77 0.72* 0.93 0.81y
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5.3. Is there a change in information content in MCI?

Our assumption throughout has been that the production of information will be somehow disrupted or reduced in

the MCI participants, but do our data support this assumption? In Table 10 we show the averages for the four sum-

mary features, computed over all combinations of k and training set (selecting at random one of the 10 models gener-

ated for each configuration). In both Swedish and English, we see no significant difference between the groups in

idea density, idea efficiency, or information density. However, in both languages, there is a significant reduction in

information efficiency (that is, the number of words referring to relevant information units, divided by the total

time). Note that although the MCI participants do tend to speak somewhat slower than the control participants, there

is no significant difference in speech rate (as measured in words per minute) between the MCI and HC groups in

either Swedish or English. Thus, the difference really does appear to be one of efficiency: MCI participants are pro-

ducing relevant, information-bearing words at a significantly slower rate than controls, despite not speaking at a sig-

nificantly slower rate in general.

It is worth noting that information efficiency (and to some extent, all four measures) also tended to be higher in

English than in Swedish, pointing to the difficulty of directly comparing such numerical results across languages

without taking into account structural and morphological differences between the languages.
5.4. Limitations

As we observed, one limitation of the word embedding approach is that the word vectors are not disambiguated

for word sense, or even part-of-speech. This problem is potentially compounded in the multilingual case, as different

word senses may be better aligned to different word vectors in the multilingual space. We discussed the issue of fall;

another example that we noticed in this corpus is the Swedish word skola, which occurred most often as the lemma

of the helper verb ska expressing something that will happen (similar to will in English). However, skola also trans-

lates as the English noun school, and it seems that this was the dominant sense captured by the word vector, as it was

often assigned to clusters referring to the two children. One solution to the problem of multiple senses could involve

fuzzy clustering approaches, where words can be assigned to more than one cluster. Another solution could lie in

embedding approaches that distinguish between word senses and parts-of-speech (Chen et al., 2014; Trask et al.,

2015).

In keeping with the previous work, we also limited our analysis to nouns and verbs. However, there could be

important information in the adverbs and adjectives as well. In particular, two of the information units suggested by

Croisile et al. (1996) involve the mother appearing unconcerned, indifferent, or distracted — all adjectives. Future

work should consider how to best incorporate this information in the models, as well as better handling of multi-

word expressions and particle verbs.

Of course, quantifying information content is just one aspect of a complete linguistic analysis. We have started

our multilingual analysis here, since it seems reasonable that the information conveyed should be comparable across

languages, on an abstract semantic level. Nonetheless, we did find differences in the numerical values of the scores

for density and efficiency across languages. It is not at all obvious that the approach of supplementing training data

with samples from other languages will be appropriate when examining other linguistic levels, such as syntax, acous-

tics, and so on.

Finally, our methodology does not allow us to definitively state whether the lower information efficiency

observed in the MCI participants truly represents a change due to their declining cognitive status, since we do not

have a pre-morbid baseline against which to compare. However, longitudinal data will be collected from the Swedish

participants, and follow-up research will document whether information density and efficiency decline on an individ-

ual level over the course of the progression from MCI to dementia.
6. Conclusion

In many studies involving the analysis of clinical language samples, the size of the data is necessarily quite lim-

ited, as data collection is expensive, time-consuming, and limited by various factors (e.g. difficulty recruiting partici-

pants into a study, limited access to the population of interest, privacy issues, etc.). In this paper, we have considered
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how we can use external data to boost the performance of automatic and machine learning methods when faced with

the challenge of small data.

Although we have focused on the topic modeling and classification tasks, when we look at the big picture, there

are actually three broad levels of data involved in the end-to-end analysis:

1. Very large, completely out-of-domain data. These data were used to train the part-of-speech taggers, lemma-
tizers, and word embedding models that we used as off-the-shelf tools. They include things like Wall Street Jour-

nal texts and Wikipedia articles.
2.
 Small, slightly-out-of-domain unlabeled data. These are the additional DementiaBank and Karolinska data we

used to help train the unsupervised topic models. They are Cookie Theft descriptions, but they do not have the

same distribution as the classification data, in terms of patient group membership or demographic variables.
3.
 Small, in-domain, labeled data. These are the clinical datasets for the supervised classification tasks (and which

we also used to help train the topic models, without considering the labels).
Figuring out the best way to learn from all available data will be an important step forward in successfully apply-

ing machine learning in the clinical domain. Here, we find that using data from a different language to help train the

topic model can lead to better classification results than simply augmenting the training data with additional norma-

tive data from the same language. This result held in both English and Swedish, although future work will involve

additional languages. Another avenue of future research will be investigating the optimal proportion of each lan-

guage; here, we only considered an equal mix of the two available languages, but it could be that biasing the topic

model towards the target language, while still enriching the model with some information from another language (or

languages), could be even more effective.

Regarding initialization strategies, our results do not support using expert knowledge to seed the clusters, at least

for the downstream application of automated classification. In any case, the completely data-driven approach is pref-

erable in terms of generalization to different languages and different stimulus images.

Finally, we report a significant reduction in information efficiency in the MCI group, in both English and Swed-

ish. Ongoing work will assess whether this finding generalizes across more varied languages, and seek to identify

other general linguistic markers of MCI. As dementia is a global problem, the comparison of results between and

across languages will be necessary to build robust and accurate automated tools for screening and monitoring the

early indicators of cognitive decline.
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