
Thesis for The Degree of Licentiate of Philosophy

Computer-Assisted Language Learning with
Grammars

A Case Study on Latin Learning

Herbert Lange

Division of Functional Programming
Department of Computer Science & Engineering

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden, 2018

Computer-Assisted Language Learning with Grammars
A Case Study on Latin Learning

Herbert Lange

Copyright ©2018 Herbert Lange
except where otherwise stated.
All rights reserved.

Technical Report No 181L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Functional Programming
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

Cover image: Mullus surmuletus, in D. Marcus Elieser Bloch’s, ausübenden
Arztes zu Berlin Ökonomische Naturgeschichte der Fische Deutschlands - mit
sieben und dreyssig Kupfertafeln nach Originalen (1783) (Source: Wikimedia)

This thesis has been prepared using LuaLATEX.
Printed by Lorensberg Reproservice,
Gothenburg, Sweden 2018.

ii

iii

“Det är én måde at forstå
en anden kultur på. At leve den. Att flytte ind i den, at bede om

at blive tålt som gæst, att lære sig sproget. På et eller andet
tidspunkt kommer så måske forståelsen.”

- Frøken Smillas fornemmelse for sne1

“Det finns ett enda sätt för att förstå en annan kultur. Att leva
den. Att flytta in i den, att be att få bli tåld som gäst, att lära sig

språket. Förr eller senare kommer kanske förståelse.”
- Fröken Smillas känsla för snö2

“There is one way to understand another culture. Living it. Move
into it, ask to be tolerated as a guest, learn the language. At some

point understanding may come.”
- Miss Smilla’s feeling for snow3

“Tantum unus modus est intelligere aliam culturam. In ea vivere.
In eam collocare, qua hospes tolerari precari, linguam discere.

Serius ocius esset intellectum.”
- Virginis Smillae intuitio pro nive4

1Høeg (2006)
2Høeg (1993b)
3Høeg (1993a)
4Own translation

Abstract

Learning new languages has a high relevance in today’s society with a globalized
economy and the freedom to move abroad for work, study or other reasons.
In this context new methods to teach and learn languages with the help of
modern technology are becoming more relevant besides traditional language
classes.

This work presents a new approach to combine a traditional language class
with a modern computer-based approach for teaching. As a concrete example
a web application to help teach and learn Latin was developed.

Keywords

Compuer-Assisted Language Learning, Controlled Natural Language, Latin

v

Acknowledgment

I would like to start by thanking Hans Leiss, my former teacher and master’s
supervisor in Munich, who taught me the formal approaches to languages
(including Montague Grammar, Categorial Grammar and Grammatical Frame-
work, of course) and gave me the motivation to remain in academia to pursue
my PhD.

Next I want to thank my supervisor Peter Ljunglöf who did not only support
me in my work whenever I needed it but also gave great recommendations for
music and concerts.

Thanks go also to my co-supervisor Koen Claessen and my Examiner Aarne
Ranta who were always open to give feedback whenever asked for.

Furthermore I want to thank Torsten Zesch for his willingness to become
my discussion leader and coming to Gothenburg for my Licentiate seminar.

I also appreciate the inspiring discussions with my office mates and my
colleagues in general, but especially over lunch and beers on many evenings.
My work here would not be the same without you.

A special thanks has to go to my family who had to accept that I move far
away to follow my dreams but still support me in every way possible.

Finally I want to thank my friends here in Gothenburg who make my life
enjoyable, including my choir, fencing club, photo club, hackerspace and many
more.

A few people have to be named specifically: Aljoscha (for heading the PhD
council, nice rounds of Skat and more), Daniel (for many nice beers, Skat,
Rumble in the Pub and more), David (more distant as a colleague but more
close as a neighbor, with whom I discussed many topics over plenty of folk öl),
Eike (for Skat as well as karaoke and free beer at his company), Inari (the best
office and boat mate I could imagine, fermentation parties and so much more),
Jesper (for great Belgian food and beer), Linnea (who first thought I was
Swedish because I didn’t talk in hours, for helping me with learning Swedish,
lending me cute children’s books and being a friend in general), Pavul (for
Humanist afterworks and lunches), Simon H. (fermentation parties and more),
Simon R. (for being a great flat and boat mate), Thomas (for Skat, beers and
as a ham radio operator the support to get a ham radio license myself, 73 de
SA6HRB), Víctor (more fermentation, lunch discussions and more), and many
more which I cannot all name here.

The MUSTE project is funded by the Swedish Research Council (Veten-
skapsrådet) under grant number 621-2014-4788.

vii

List of Publications

This thesis is based on the following publications:

[A] Herbert Lange “Implementation of a Latin Grammar in Grammatical
Framework” DATeCH2017, Göttingen, Germany, 2017

[B] Herbert Lange and Peter Ljunglöf “Mulle: A grammar-based latin lan-
guage learning tool to supplement the classroom setting”, In Proceedings
of the 5th Workshop on Natural Language Processing Techniques for
Educational Applications (NLPTEA ’18), Melbourn. Australia, 2018

[C] Herbert Lange and Peter Ljunglöf “Putting control into language learning”
SIGCNL 2018, Maynooth, Ireland, 2018

ix

x

Contents

Abstract v

Acknowledgement vii

List of Publications ix

1 Introduction 1

2 Background 7
2.1 Text Input and Modification . 8
2.2 Controlled Natural Languages 9
2.3 Latin Resources . 10
2.4 Computer-Assisted Language Learning 11

3 Grammar-based Language learning 15
3.1 Grammatical Framework . 16
3.2 From Word-based Text Editing to Translation Exercises 22
3.3 Textbook Lessons . 24
3.4 Exercise Generation . 26
3.5 Suitable Grammars . 27
3.6 Teaching Concept . 28

4 The Latin Resource Grammar Library 31
4.1 Grammar Components . 32
4.2 Morphology . 32
4.3 Lexicon . 39
4.4 Grammar rules . 41
4.5 Status and Extensions . 45

5 Latin Language Learning 47
5.1 User Interaction . 48
5.2 Improving the User Experience 56
5.3 Evaluation . 57

6 Summary 63
6.1 Conclusion . 64
6.2 Future Work . 64

Bibliography 69

xi

xii CONTENTS

Chapter 1

Introduction

2 CHAPTER 1. INTRODUCTION

Learning languages has a growing relevance in our globalized community.
With an increased mobility it is easier and more likely to move to a foreign
country: for work, studies or other reasons. With the ubiquity of computers the
use of computers in language learning has increased and many new language
learning platforms are available. So you can easily practice your Japanese at
the breakfast table or learn some Spanish phrases in the bus on the way home.
This quite different approach to language learning poses new challenges, both
from a pedagogical and a technological point of view.

But not all languages people are interested in are as common as Japanese
or Spanish, for which large amount of language resources are available. So
dealing with a lack of language resources when creating a language learning
application is a challenge which has to be addressed.

The main aspect of this thesis is the conceptualization of a language learning
framework suitable to build full-fledged and flexible language learning systems
that are suitable for less-resourced languages. The whole field of Computer-
Assisted Language Learning (CALL) itself is very broad so we focus on the
specific setting close to traditional classroom-style language learning. That
means we have a look at how languages have been taught in the traditional
way and extend this approach with a computer-based learning application
that provides popular features of state-of-the-art language learning apps like
gamification and an easy-to-use web interface. That way the traditional
language classes, even for languages like Latin, which have not necessarily
been too appealing to students for generations, can be almost as enjoyable as
learning the language of a favorite holiday destination. By relying on grammars
to encode the learning objectives we can guarantee for a high level of reliability.

The MUSTE Language Learning Environment (MULLE), the framework
we present here, is not limited to one very specific use-case and language.
Instead it provides a flexible way to control the content of the language learning
application just in the way the grammars used are created. This places it
between a pure language learning system and an authoring system for various
language learning exercises.

To show the practicability of our approach we combine MULLE with a
generic Latin grammar to build a workable language learning application
for Latin. The choice of Latin can be seen as almost arbitrary, but was of
course influenced by my previous work. Also, even though other approaches to
language learning could be applied to less-resourced languages as well,1 the
competition for Latin seems very limited.

The MULLE system is developed as a Free and Open Source Software and
we will release all resources created in the process where possible.

1.1 This Thesis
In this thesis we will have a look on aspects of CALL. The main focus is on
a flexible and generic approach to teaching and learning second and foreign
languages based on grammars. This system has several interesting properties,
especially reliability, flexibility and being less resource hungry.

1Duolingo supports Klingon and High Valyrian among others

1.2. STRUCTURE AND CONTRIBUTIONS 3

Based on the general concept we present a language learning application to
teach and learn Latin in a closed and traditional classroom setting. We both
developed the foundations and implemented a language learning application
that has been tested with students in a language class.

1.1.1 Personal Motivation
The work of the last three years which resulted in this thesis, was inspired by
my own situation:

• I moved to Sweden and struggled with learning Swedish. One of the
available mobile language learning applications helped me to get a first
basic intuition about the language

• My PhD project provided me with a intuitive way to modify text on
touchscreen-based devices, that was looking for a real-world application
and reminded me of a certain language learning application

• I am interested in historic languages and already worked on Latin for my
master’s thesis (Lange, 2013)

1.1.2 Research Objectives
The personal motivation from the previous section strongly influenced the main
question we want to answer in this thesis: How can we build a modern language
learning application that is especially suitable for less-resourced and historic
languages but offers the flexibility to extend its use far beyond that?

This question led to a list of research objectives we follow up on:

• Design a general framework for language learning based on grammars
that can be used with word-level text editing

• Show suitability for less-resourced languages

• Identify important characteristics of grammars for different kinds of
language learning exercises

• Provide and test the concrete implementation of MULLE for Latin

These objects were the guidelines for our work and focused our efforts
and we can claim that we mostly accomplished in completing these goals, but
we also managed to extend the scope from an approach that just focuses on
the learning side to also include features that support the teacher in creating
teaching and learning resources.

1.2 Structure and Contributions
The work in this thesis mostly contributes to the field of Computer-Assisted
Language Learning for second and foreign languages with minor contribution to
the Digital Humanities in the form of the Latin grammar. The content is based
on three publications, “Implementation of a Latin Grammar in Grammatical

4 CHAPTER 1. INTRODUCTION

Framework” (Lange, 2017), “MULLE: A Grammar-based Latin Language
Learning Tool to Supplement the Classroom Setting” (Lange and Ljunglöf,
2018a) and “Putting Control into Language Learning” (Lange and Ljunglöf,
2018b) as well as extends them. The papers were all for the most part written
by the author of this thesis. For (Lange, 2017) the author of this thesis was
the sole author, while (Lange and Ljunglöf, 2018a) and (Lange and Ljunglöf,
2018b) were co-authered by Peter Ljunglöf. The individual contributions are
explained in the corresponding sections of the theis.

1.2.1 Background
The first chapter (Chapter 2) provides the background to our work and helps
contextualize it. It contains no new contribution and is not required for
understanding the remaining content of the thesis.

The background provided covers gesture-based text input methods, Con-
trolled Natural Languages, Latin resources and an overview of Computer-
Assisted Language Learning.

1.2.2 Grammar-based Lessons
The two main parts of the thesis (Chapter 3 and 5) are both based on the
two papers (Lange and Ljunglöf, 2018a,b). The papers overlap to a certain
degree and together cover both the general foundations and the concrete
implementation.

The first part (Chapter 3) focuses on the general ideas, starting with
concepts not directly connected to language learning and bridging over to
the central part of the thesis. It starts with a necessary introduction to the
grammar formalism used and presents the general method of grammar-based
text editing from Ljunglöf (2011). After this introduction the focus is shifted
to language learning related topics: creating language learning lessons based
on information found in textbooks and generate exercises within a lesson. The
chapter is concluded with considerations about properties of suitable grammars
and the language teaching approach we aim for.

The main contribution is the creation of a general language learning frame-
work that works out of the box given a grammar and can provide different
kinds of language learning exercises. Another important finding is the closeness
of the suitable grammars to Controlled Natural Languages in general.

The original articles are co-authored by Peter Ljunglöf who made a list of
valuable contributions:

• invented the method for word-based text editing in the first place

• provided knowledge about the background of gesture-based input

• contributed ideas about relaxing grammars for morphology exercises

• gave valuable feedback to both papers

About 80 percent of the content of (Lange and Ljunglöf, 2018a) and the
whole content of (Lange and Ljunglöf, 2018b) was written by the author of
this thesis. Peter Ljunglöf contributed one section about user input and one

1.2. STRUCTURE AND CONTRIBUTIONS 5

section about relaxing grammars to the first paper as well as general feedback
to both papers.

1.2.3 The Latin Resource Grammar as a Language Re-
source

A minor interlude is the description of the Latin Resource Grammar described
in (Lange, 2017). It is part of the Grammatical Framework Resource Grammar
Library which will be in larger extent described in Section 3.1.2.

As a step towards a concrete application for teaching less-resourced lan-
guages, with Latin as an example language, we sketch the construction of a
computational grammar, a basic and general computational resource that can
be created with limited human effort. It only requires some experience in
grammar development and a generally available resource like a school grammar
book.

The process of creating a Latin grammar including the challenges in both
creating such a grammar in general and problems in handling Latin specifically
are described in Chapter 4 as an example for how to develop a computational
grammar. The content of the paper is extended by further development of the
grammar as well as some evaluation of the coverage. These extensions include
increased flexibility in word order and adding rules necessary to cover text
fragments required for the language learning task.

The author of this thesis was the only author of both the grammar and the
paper describing it.

1.2.4 The Latin Language Learning Application
The next to last part of this work is the design and implementation of a
ready-to-use application to teach Latin based on the ideas of previous chapters.

Here we describe the step from the general ideas presented in Chapter 3 to
a usable system in the specific application area of Latin learning to augment
the traditional classroom setting. We give a more detailed description of
the user interaction with the system, describe measures to improve the user
experience and sketch an experiment for a full evaluation of the system including
a description of a pilot for this experiment.

The main contribution is the presentation of a workable system based of
the ideas of the previous chapters, using modern features for gamification. We
also suggest a design for an experiment to fully evaluate the system.

1.2.5 Conclusion and Future work
We conclude the thesis by looking back at the research questions and show in
what way they have been answered in this thesis appropriately.

Ultimately, not every aspect of the work described in this thesis is finished
yet. This gives opportunity for a list of potential future topics which can be
addressed at a later point. A discussion of these topics is given in the end.

Chapter 2

Background

8 CHAPTER 2. BACKGROUND

Before presenting our own work it is important to put it into the scientific
context which provided the foundation and background to it. Without this
contextualization a claim of proper scientific work is hard to justify.

The thesis touches on several different topics and even different fields
ranging from Linguistics and Computational Linguistics to Computer Science
and Pedagogics. These include aspects of Latin linguistics, Computer-Assisted
Language Learning and Human-Computer-Interaction.

This chapter provides background information to alternative methods of
text input, introduces the field of Controlled Natural Languages, gives an
overview of other formal or computational Latin resources and concludes with
an overview over the development of Computer-Assisted Language Learning.
To each of these areas we will relate concepts of our own work.

2.1 Text Input and Modification
Every time a user wants to input and modify text on a modern device they
are confronted with methods that haven’t changed much since the dominance
of typewriters. One still uses the same kind of keyboard and the only major
improvement is that it is possible to more seamlessly remove and change text.
However, the cursor has to be moved to the correct position, then the parts
to be changed have to be deleted character by character and finally the new
content has to be typed.

Some drawbacks of the traditional keyboard are well known, mostly er-
gonomic factors (Ciobanu, 2014), which lead to problems reaching from minor
discomfort to complete disability to use a device depending on the nature of
the device or other impairments.

People with various health-related limitations can either use this method of
text input only in a very limited way or not at all. This can be caused both
by physical or mental impairments. Over the time different technologies have
been developed to support these people, e.g. Braille keyboards and displays for
blind people (Becker et al., 2004) or speech or gesture based methods (Felzer
et al., 2014; Kumar et al., 2012; Ward et al., 2002).

Independently, the kind of devices we use to create and modify text changed
significantly. Mobile phones became ubiquitous while at the same time they
became smaller and more powerful. These facts already required radical
changes in the way text can be created, starting with the T9 predictive text
creation system used in earlier feature phones (King et al., 2000) to touch-
based methods on current smart phones. These methods like the academic
Dasher (Ward et al., 2002) or the commercial systems Swype (Kushler and
Marsden, 2004) and Swiftkey improve the input speed by adding suggestion
and post-correction features, but still suffer from some of the same drawbacks
by using the typewriter-style keyboard on small touch-based devices.

Different approaches work on word level instead of character level. A
simple approach is used in the MOLTO project (Ranta et al., 2012). Here
the incremental Grammatical Framework parser is used to suggest only valid
continuations, word by word, depending on a grammar. It provides useful
support when creating a new text to guarantee that the text is within the
language defined by the grammar.

2.2. CONTROLLED NATURAL LANGUAGES 9

The input systems on smart phones like Swype also provide word-based
methods for post-correction, e.g. to fix typos.

The approach chosen by Ljunglöf (2011) is agnostic to the creation part
and focuses only on the editing of already existing text. It uses grammars to
provide syntax trees for the surface text and then maps editing operations on
the surface to tree operations.

Text input is also a relevant aspect in language learning. Depending on
the application the amount of text input can be minimized, e.g. by providing
multiple choice for gap-filling. For larger scale translation exercises a more
flexible method for text input and modification is necessary which has to be
handled appropriately. Duolingo and others for example introduced the concept
of a “word bank”. A list of words is provided to the user which contains all
words to form the correct sentence and additionally a set of distractors. This
approach seems to have disadvantages because already the choice of vocabulary
can give major hints for the translation and make it too easy. For our translation
exercises we adopted Ljunglöf’s method which seems particularly suitable in
combination with our grammar-based approach to language learning. The
implications of this choice will be discussed later in depth.

2.2 Controlled Natural Languages
The idea to work with small grammars that describe limited language fragments
to increase the reliability is not a new idea. Already Richard Montague
started formalizing language fragments that have well-defined semantics, even
though his claims were much broader1 (Montague, 1974). However, exactly
this intentionally limited approach is the concept behind Controlled Natural
Languages (CNLs), an active research area within computational linguistics.

A good definition of CNLs and overview of the field is given by Kuhn (2014).
The definition is based on four criteria:

• Exactly one language

• Restrictions on lexicon, syntax and/or semantics

• Preserving most of the natural properties

• Explicitly constructed language

This definition describes a set of languages located in a spectrum ranging
from purely formal languages on the one hand and full natural languages on
the other.

Constructed Natural Languages have several fields of application, an overview
of which Kuhn gives (ibid.). These include document authoring, automatic
reasoning and translation, all of which are supported by the closeness to formal
languages.

A rather underrepresented application is CNLs for language learning. There
have been a few approaches like Basic English (Ogden, 1930), which predates
the use of computers for language learning purposes, and provides a restricted

1“I reject the contention that an important theoretical difference exists between formal
and natural languages” (Montague, 1974)

10 CHAPTER 2. BACKGROUND

version of the English language to help people learn it as a foreign or second
language. A more modern approach is ALCOGRAM (Adriaens and Schreors,
1992) which tried to combine document authoring and CALL and finally there
is the master’s thesis by Abolahrar (2011) that uses simple but multilingual
phrase grammars for language learning in combination with the MOLTO input
method.

The criteria for CNLs also mostly match the grammars we use in our
work. That means we use restricted fragments of a language that seem natural.
However, we add multilinguality and relax the constraint that the languages
have to be explicitly constructed. Instead we use languages implicitly defined by
text fragments in textbooks. This aspect will be discussed further in Section 3.5.

2.3 Latin Resources
Even though Latin has been in the interest of people including linguists for a
very long time, it can still be considered an under-resourced or less-resourced
language when the primary focus is on computational resources. There is lots
of written material in the form of e.g. grammar books over the centuries from
the classical antiquity to modern times, but there are not too many web pages
in Latin which leads to the lack of a large multilingual web corpus including
extensive Latin resources. However, one exception and a potentially surprising
and valuable resource in this context is Wikipedia. The Latin version contains
more than 100 000 pages which are linked to the corresponding articles in other
languages (Vicipaedia, 2018).

Most of the older and traditional resources lack a degree of formality that is
required to convert them into a representation that can be used in the context
of computational linguistics. That even concerns the extensive work by Harm
Pinkster (1984, 2015) on Latin syntax and semantics which, to explain the
rather free Latin word order refers to pragmatic features such as topic and
focus. But these elements are already for humans hard to identify.

On the other hand, some interest in Latin can be found in the area of formal
syntax, already present in the work of Chomsky (1988) and in Combinatory
Categorial Grammar by Steedman (2016). However, that usually never resulted
in an extensive linguistic resource. Some work has also been done in adopting
Chomsky’s minimalist program for Latin (Sayeed and Szpakowicz, 2004) which
led to a computational implementation which still only focused on plain syntax,
ignoring the challenges of Latin morphology.

There are also some more specific and limited resources language resources
for Latin. These include a Latin finite state morphology (Springmann et al.,
2016) which is considered state of the art. Additionally effort has been put into
the creation of Latin treebanks (Bamman and Crane, 2006; Gregory R. Crane,
editor, 2018), some of which now are included in the Universal Dependencies
project (Nivre et al., 2016). Especially the treebanks provide the material for
a quantitative analysis of syntactic constructions which is in quite some detail
covered by Bamman and Crane (2006).

We add to the list of available resources the Latin implementation of the
Grammatical Framework Resource Grammar Library (see Subsection 3.1.2),
which will be described in more detail in Chapter 4. It is part of a growing

2.4. COMPUTER-ASSISTED LANGUAGE LEARNING 11

Stage 1970s-1980s:
Structural CALL

1980s-1990s:
Communicative CALL

21st Century:
Integrative CALL

Technology Mainframe PCs Multimedia and
Internet

English-Teaching
Paradigm

Grammar Translation
& Audio-Lingual

Communicate
Language Teaching

Content-Based,
ESP/EAP

View of Language Structural (a formal
structural system)

Cognitive (a mentally
constructed system)

Socio-cognitive
(developed in social
interaction)

Principal Use of
Computers

Drill and Practice Communicative
Exercises

Authentic Discourse

Principal Objective Accuracy Fluency Agency

Table 2.1: Epochs of CALL from the 1960s to the 1990s according to Warschauer
(2004)

collection of large natural language grammars that are freely available and
provides an essential resource for the creation of application-specific grammars,
precisely the type of grammars we need in our application.

2.4 Computer-Assisted Language Learning
The history of Computer-Assisted Language Learning (CALL) goes back almost
as far as the history of modern computers, at least to the middle of the 20th
century, some people even choose earlier dates (Computer History Museum,
2010). Its relevance increased in the same way as technology got more accessible,
now with ubiquitous computing it has arrived in the mainstream.

It is almost impossible to give a full account of the history of CALL. An
overview for the earlier periods of CALL ranging from the 60s to the 90s of the
previous century is given by Levy (1997). For each of the three periods 60s/70s,
80s and 90s he presents major projects, their technological background and
their influence on the field. Most of theses historic developments are described
in a similar way by Warschauer (2004), whose classification of the CALL history
can be found in Table 2.1. However, Bax (2003) opposes this classification by
pointing out what he claims to be contradictions. That involves the separation
into epochs even though most of the systems survived their own epochs in one
way or another. Furthermore he opposes the classification of the pedagogic
concepts in some epochs neglecting evidence given by Levy.

Beyond the description of the first three epochs additional projects are
mentioned to sketch the more recent development in the field.

2.4.1 First Epoch: 1960-1979
The first of theses epochs coincides with the mainframe era of computer history
which means that computers where not generally available but instead large
mainframes could be found at special places like universities which could only
be accessed remotely by dumb terminals. In this context two major projects
were incepted, PLATO2 and TICCIT3. However, large steps in the development

2Programmed Logic for Automatic Teaching Operations (a backronym)
3Time-Shared, Interactive, Computer-Controlled Information Television

12 CHAPTER 2. BACKGROUND

of CALL were already taken in this earlier period together with a push in the
necessary technology. This was possible due to large-scale funding and large
team efforts in the development.

PLATO was initiated in 1960 to develop a computer system for educational
purposes. The design goal was interactive, self-paced instructions for a large
number of students. One of its first applications was to teach French, and
it already provided many features of modern learning environments: high-
resolution graphics, multimedia, and features for collaboration. Its use was
not limited to language learning; Lessons and other applications could be
developed in various ways, including using a high level authoring language
called TUTOR.(Levy, 1997, pp. 15ff.)

The TICCIT system was started 1971 at Brigham Young University com-
bining television technology and computers. One difference between PLATO
and TICCIT is that the second one already from the start used exactly one
authoring system which made use of a specific theory of teaching. This frame-
work dictated the requirements on hardware and software. Even stronger than
with PLATO, multimedia aspects were essential with TICCIT. Furthermore,
the system gave more control to the learner: they could not only select the
content but could also change the behavior of the system with dedicated keys
for difficulty levels and other parameters. (ibid., pp. 18f.)

Both systems were evaluated by the Education Testing Service. While
the PLATO system appealed to both teachers and students the system did
not show any major positive or negative effect in learner outcome. TICCIT
on the other hand showed large improvement in the student achievements.
(ibid., pp. 20f.)

2.4.2 Second Epoch: 1980-1989
The second phase was dominated by the development of personal computing in
contrast to mainframes. Home computers became available and were accessible
to everyone. A special initiative in that area was the BBC Computer Literacy
Project in the UK that led to the development of the BBC Micro, a home
computer specifically designed and built for educational purposes. On the
other hand powerful workstations with multimedia capabilities found their way
into universities and were connected in large networks. These developments
influenced CALL. Most of the home computers provided an implementation
of BASIC in which simple CALL-programs could be developed and the in-
terconnectedness allowed for increased relevance of Communicative Language
Teaching (Savignon, 1987). Later more specific authoring systems like Hy-
perCard for Apple Macintosh provided important tools for developing CALL
solutions. Around this time both large-scale projects and projects by individual
language teachers could be found. (ibid., pp. 22ff.)

The first of the two relevant projects of this decade was the Storyboard
program, a typical example of the authoring systems of the 80s. The task
associated with it was to reconstruct a text from hints like the title and context.
Other than the previous projects it was more of a personal project of individual
researchers and language teachers. It spread all over the microcomputer
ecosystem and was ported to many different computer systems and programming
languages. In this process it got extended and modified to become more user-

2.4. COMPUTER-ASSISTED LANGUAGE LEARNING 13

friendly and feature-rich. The text reconstruction task can be seen as one of
the first generation CALL tasks together with gap-filling and text modification.
It also provides context for communicative learning given that the texts are
authentic. (ibid., pp. 24f.)

The second project again falls more in the category of large-scale projects.
The Athena Language Learning System (ALLP) was part of Project Athena
that started in 1983 at MIT to explore the use of computers in education. The
ALLP itself was focusing on communicative approaches for language learning.
Project Athena provided a large network of 450 workstation including modern
multimedia workstations. Two major initiatives were included in the project, the
MUSE authoring framework provided means to connect many different kinds of
media with a hypertext-like system. More importantly, as part of ALLP the use
of AI and NLP techniques for language learning was explored, which led to a
game based on interactive video narratives. The goal was to teach vocabulary in
context, exercise reading and listening comprehension, raise cultural awareness
as well as practice communication strategies. (ibid., pp. 26ff.)

2.4.3 Third Epoch: 1990-1996
The major influence on the development of third generation CALL projects
was the easier access to global networks, especially the internet with its use
of hypertext to present information and fast ways of communication by email.
(ibid., pp. 31ff.)

The International Email Tandem Network is a direct consequence of this
development. It began in 1993 and promoted language learning by communi-
cation over the internet. The system was divided into subnets organized as
mailing lists, which provide bilingual discussion forums where participants can
ask for advice in either language. The system provided a high level of flexibility
and independence in time management and teaching approaches. Instead of
at a fixed time in class, the students practiced the language distributed all
over the week. Also, the teachers and instructors would not just point out
mistakes but instead could influence the learner’s language use by positive
example. This was supported by a more informal teacher-learner-relationship.
(ibid., pp. 32f.)

The next to last project in the historical excursion by Levy is the CAMILLE4

project that grew out of France InterActive. It combines a communicative
competence approach with an interactive multimedia environment: it puts the
concept of a learning environment in the center. Instead of focusing on methods
of teaching it focuses on the learning process and gives more freedom to the
learner. The system itself uses metaphors like the desktop to organize the
learning. On a virtual desk the learner can organize various learning resources
starting with an interactive textbook. Students are directed by lessons divided
into units and modules. Exercises include classic drills but also quizes and
role-playing tasks. In the context of France InterActive, a thorough model for
the multimedia development process was presented. (ibid., pp. 34ff.)

The Oral Language Archive is the last project to be mentioned. It was initi-
ated 1994 at Carnegie Mellon University. Its aim is to create a large collections
of native speaker’s sound recordings together with a learning infrastructure

4Computer-Aided Multimedia Interactive Language Learning

14 CHAPTER 2. BACKGROUND

based on this resource. Furthermore, it provides integration into a broad range
of authoring systems including Hypercard. (ibid., pp. 37ff.)

2.4.4 Fourth Epoch: after 1996
Levy’s book was published in 1997 which makes its description of the historical
context of CALL stop around that time. But that of course does not mean that
the development of CALL stopped, more the opposite. Some important factors
in the most recent period of CALL include crowd-sourcing and a growing
interest in commercial applications that target a general audience as well as
specialized systems for usage in a very specific course.

A look both at the recent publications in CALL-related conferences and
workshops like NLP4CALL,5 BEA,6 NLPTEA7 and more, as well as at the
popular apps in the app stores, can give a picture of the current CALL landscape.
Besides full-fledged language learning systems like ours, a lot of current research
is in specific sub-problems like learner modeling, automatic essay grading, and
so on.

One of the most popular apps, which now is a commercial system that
started with a clear crowd-sourcing approach, is Duolingo (Garcia, 2013).
Furthermore, a variety of specific systems for different languages and language
concepts using different technologies developed in recent years:

• Morphology training with finite state methods (Kaya and Eryiğit, 2015)

• Linguistic resources like annotated data or semantic resources with rule-
based algorithms (Michaud, 2008; Moritz et al., 2016; Redkar et al.,
2017)

• Linguistic resources combined with both machine learning and rule-base
approaches (Volodina et al., 2014)

• Crowd-sourcing in combination with machine learning (Horie, 2017)

In this context we need to place our work. It makes no sense to deny the
influence of Duolingo, still we aim in a different direction. Also it should be
obvious that this work is not done in a large team effort or a big commercial
setup. Superficially, our system seems like other systems that are built for this
very specific use case of teaching historic languages, for example “King Alfred”
(Michaud, 2008), but for teaching Latin.

However, our general approach is very flexible for reasons that will be
explained in the next Chapter, which puts it close to general authoring systems.
Even though some properties of MULLE are fixed, a lot of flexibility in the
creation of lessons and exercises is possible in the way the grammars are
designed.

5Natural Language Processing for Computer-Assisted Language Learning
https://spraakbanken.gu.se/eng/research/icall/nlp4call
6Workshop on Innovative Use of NLP for Building Educational Applications
7Workshop on Natural Language Processing Techniques for Educational Applications

https://spraakbanken.gu.se/eng/research/icall/nlp4call

Chapter 3

Grammar-based Language
learning

16 CHAPTER 3. GRAMMAR-BASED LANGUAGE LEARNING

The central part of this thesis is the development of a general and flexible
framework for language learning by providing access to different types of
exercises. For that we adopt the general method for grammar-based text
modification on the word level to a general framework for language learning
suitable for different settings including the traditional classroom setting.

This chapter gives an insight into the general mechanics behind the MULLE
system. We first present the necessary background by introducing the gram-
mar formalism which we use in this approach. Building on this formalism
we introduce the method for text modification on word level supported by
grammars as it was suggested by Ljunglöf (2011). These two sections are mostly
independent from the topic of language learning. This topic becomes relevant
in the following two sections: first we describe how to create grammar files
suitable for our ideas for CALL, and building on that we present methods to
create exercises from grammars. The chapter is concluded with a reflection of
the properties of both the grammars and the pedagogical approach to language
learning inherent in our framework.

3.1 Grammatical Framework
Before we can more precisely describe our grammar-based approach to language
learning, we need to introduce the grammar formalism we use to formalize
the grammars which both encode the learning objectives and control the user
input.

This grammar formalism, called Grammatical Framework (or GF in short), is
a special-purpose programming language with a syntax similar to the functional
programming language Haskell. It provides several advanced features which
either help the development of grammars or are of theoretical interest. It has
also been shown that this grammar formalism’s expressivity is equivalent to
parallel multiple context-free grammars (PMCFG), a mildly context-sensitive1

grammar formalism (Ljunglöf, 2004).

3.1.1 Grammar Formalism
A grammar in GF is separated into one abstract syntax and one or more concrete
syntaxes. The abstract syntax defines a general framework of syntax rules that
defines what atomic components exist and how more complex components can
be assembled from smaller parts, without going into the detail about the shape
of these components. In that way it defines a grammar similar to traditional
context-free grammars without terminals. The concrete syntax in turn defines
how a specific language can be modeled concretely. By sharing the same abstract
syntax across several concrete syntaxes it is easy to provide multilinguality to
applications by using transfer-based translation via the abstract syntax trees.
For that the concrete strings are parsed to abstract syntax trees and then
linearized, i.e. converted back from an abstract syntax tree into a concrete
string, in another concrete language.

1Ljunglöf shows that it is even more expressive than mildly context-sensitive but still
parsable in polynomial time

3.1. GRAMMATICAL FRAMEWORK 17

3.1.2 The Resource Grammar Library
The separation into abstract and concrete syntax provides the foundation for
the Resource Grammar Library (RGL) (Ranta, 2009), a large abstract syntax
and a set of concrete syntaxes of various languages implementing this common
interface. The RGL is both a collection of more than 30 language grammars
and a common interface to use these languages in multilingual applications.
These grammars can be used as support for building specific applications, like
the one we want to describe here, by providing a higher-level abstraction to
the underlying languages.

3.1.3 Simple Example

1 abstract Chomsky = {
2 cat
3 S ; NP ; VP ; N ; V ; A ; Adv ;
4 fun
5 mkS : NP -> VP -> S ;
6 mkNP : N -> NP ;
7 adjNP : A -> NP -> NP ;
8 mkVP : V -> VP ;
9 advVP : VP -> Adv -> VP ;

10 colorless_A : A ;
11 green_A : A ;
12 ideas_N : N ;
13 sleep_V : V ;
14 furiously_Adv : Adv ;
15 }

Listing 3.1: An example for an abstract syntax in GF to cover the sentence
Colorless green ideas sleep furiously

A first example of a GF grammar can be seen in Listing 3.1 and Listing 3.2.
The Listing 3.1 shows a simple abstract syntax with seven terminal and non-
terminal categories, five lexical rules and five phrasal rules. The first three
categories S, NP and VP stand for the usual syntactic categories for sentence,
noun phrase and verb phrase while the other four categories N, V and A and
Adv stand for the lexical categories of nouns, verbs, adjectives and adverbs.

The rules in lines 10 to 14 introduce new lexical items with the names
colorless_A, green_A, ideas_N, sleep_N and furiously_V with the corre-
sponding categories for adjectives, nouns, verbs and adverbs. Note that GF
itself does not make a formal distinction between lexical and phrasal rules. The
only difference is the number of categories on the right-hand side. If it is just
one category, or in the concrete syntax a function without a parameter, it is
called a lexical rule and otherwise a phrasal rule (Ranta, 2011, pp. 98).

The remaining rules in lines 5 to 9 define how noun phrases can be created
from nouns (mkNP), that verbs can be used as verb phrases (mkVP) and that a
noun phrase and a verb phrase together can form a sentence (mkS). Additionally,
adjectives can modify noun phrases (adjNP) and adverbs can modify verb
phrases (advVP). As the reader might already have expected, the grammar
can recognize the Chomskyan sentence colorless green ideas sleep furiously
(Chomsky, 1957, p. 15) and variations if it.

18 CHAPTER 3. GRAMMAR-BASED LANGUAGE LEARNING

1 concrete ChomskyEng of Chomsky = {
2 lincat S,NP,VP,N,V,A,Adv = Str;
3 lin
4 mkS np vp = np ++ vp ;
5 mkNP n = n ;
6 adjNP adj np = adj ++ np ;
7 mkVP v = v ;
8 advVP vp adv = vp ++ adv ;
9 colorless_A = "colorless" ;

10 green_A = "green" ;
11 ideas_N = "ideas" ;
12 sleep_V = "sleep" ;
13 furiously_Adv = "furiously" ;
14 }

Listing 3.2: The English concrete syntax for the abstract syntax given in
Listing 3.1

In the concrete version for English in Listing 3.2 we assign concrete values
to the definitions from the abstract syntax in Listing 3.1 (line 1). In line 2 we
define that all categories are represented by strings. In the lines 9 to 13 we
just give the string literals for the lexical items.

Slightly different are the other three phrasal rules. In the context of abstract
syntax we talked about rules, in the concrete syntax the corresponding concrete
versions are usually called linearization functions, in a similar sense as functions
in functional programming. They can be seen as a kind of mathematical
functions that take the components as parameters and based on these compute
new value. The simplest cases are the two functions mkNP and mkVP in line
5 and line 7 respectively. They seem similar to the identity function and to
do nothing specific at all except for returning the parameter unchanged. But
internally the category is changed from N to NP and from V to VP to make them
usable in the respective context2. Not a V, only a VP can be modified by an
adverb with the rule advVP. Slightly more complex are the functions like adjNP,
advVP and mkS which combine several parts to a new one. For example adjNP
modifies a noun phrase with an adjective, that means it takes an adjective
and a noun phrase as parameters and produces a new noun phrase. The order
of the parameters and their types are defined in the abstract syntax. In the
concrete syntax we can assign arbitrary names to them, but it is good practice
to use reasonable names like adj for the adjective and np for the noun phrase.
Since in this simple example all values are just strings, we can concatenate
them with the ++ operator to form a new string. The same happens for advVP
and mkS.

3.1.4 Extended Example
To show more of the power of GF we extend the abstract syntax from Listing 3.1
to the one in Listing 3.3. Previously we had just one form for each of the lexical
entries. Now we add inflected word forms. This also requires that we enforce
agreement between different parts of the sentence. Furthermore, we add a

2Usually called a type coercion

3.1. GRAMMATICAL FRAMEWORK 19

1 abstract ChomskyExt = {
2 cat
3 S ; NP ; VP ; PN ; Det ; N ; V ; V2 ; A ; Adv ; Pron ;
4 fun
5 mkS : NP -> VP -> S ;
6 mkNP : Det -> N -> NP ;
7 mkNP2 : PN -> NP ;
8 mkNP3 : Pron -> NP ;
9 adjN : A -> N -> N ;

10 mkVP : V -> VP ;
11 mkVP2 : V2 -> NP -> VP ;
12 advVP : VP -> Adv -> VP ;
13 aSg_Det : Det ;
14 aPl_Det : Det ;
15 theSg_Det : Det ;
16 thePl_Det : Det ;
17 Chomsky_PN : PN ;
18 colorless_A : A ;
19 green_A : A ;
20 idea_N : N ;
21 sleep_V : V ;
22 furiously_Adv : Adv ;
23 love_V2 : V2 ;
24 I_Pron : Pron ;
25 }

Listing 3.3: Extended abstract syntax based on Listing 3.1 to demonstrate
word inflection and agreement

proper name, definite and indefinite articles, a transitive verb and a pronoun.
GF differs from other grammar formalisms insofar that it has a strong

distinction between types and values of these types. That means so far that we
have the string type Str and string values as literals surrounded by quotation
marks. But we can extend this notion by defining new complex types like tables
and records which then can be used to specify values of these types. Tables
usually give rise to inflection tables while records enable us to store several
values separately, which can be used to store inherent grammatical features
alongside the plain string values. For the grammatical features we can define
finite parameter types, i.e. types that are defined by listing all their values.

We start by defining the types again. First we need to define the parameters
in line 2–3 along which we want to inflect word forms by giving all possible
values. We need a Number feature for noun inflection and Number together with
Person for verb forms. This is also encoded in the types we define in lines 4
to 10. Even for still simple cases like S, A and Adv we now have {s : Str}3

instead of just Str. These types are now so-called records in GF. A record is
a collection of values, called record fields, of potentially various types, each
of which is assigned a label to access this value. So in this case we only have
one record field with the label s of type Str. It is common practice in GF
to use record types and values for all categories, each containing a s field for
the main string representation. We can also use records to store additional
features like inherent properties. In our example we use it to store an inherent
number feature in determiners, proper names and noun phrases (lines 5 and

3Record types and values in GF are surrounded by squiggly brackets

20 CHAPTER 3. GRAMMAR-BASED LANGUAGE LEARNING

1 concrete ChomskyExtEng of ChomskyExt = {
2 param Number = Sg | Pl ;
3 Person = P1 | P3 ;
4 lincat S = { s : Str } ;
5 Det = { s : Str ; n : Number };
6 N = { s : Number => Str } ;
7 PN = { s : Str ; n : Number } ;
8 Pron, NP = { s : Str ; n : Number ; p : Person } ;
9 V, V2 = { s : Person => Number => Str } ;

10 VP = { s : Person => Number => Str };
11 A, Adv = { s : Str } ;
12 lin
13 mkS np vp = { s = np.s ++ vp.s ! np.p ! np.n } ;
14 mkNP det n = { s = det.s ++ n.s ! det.n ; n = det.n ; p = P3 } ;
15 mkNP2 pn = { s = pn.s ; n = pn.n ; p = P3 } ;
16 mkNP3 pron = pron ;
17 adjN adj n = { s = table { num => adj.s ++ n.s ! num }} ;
18 mkVP v = v ;
19 mkVP2 v2 np = { s = \\p,n => v2.s ! p ! n ++ np.s } ;
20 advVP vp adv = { s = \\p,n => vp.s ! p ! n ++ adv.s } ;
21 aSg_Det = { s = "a" ; n = Sg } ;
22 aPl_Det = { s = "" ; n = Pl } ;
23 theSg_Det = { s = "the" ; n = Sg } ;
24 thePl_Det = { s = "the" ; n = Pl } ;
25 Chomsky_PN = { s = "Chomsky" ; n = Sg } ;
26 colorless_A = { s = "colorless" } ;
27 green_A = { s = "green" } ;
28 idea_N = { s = table { Sg => "idea" ; Pl => "ideas" }};
29 sleep_V = { s = table { P1 => table { Sg => "sleep" ;
30 Pl => "sleep" } ;
31 P3 => table { Sg => "sleeps" ;
32 Pl => "sleep" }}} ;
33 love_V2 = { s = table { P1 => table { _ => "love" } ;
34 P3 => table { Sg => "loves" ;
35 Pl => "love" }}} ;
36 furiously_Adv = { s = "furiously" } ;
37 I_Pron = { s = "I" ; n = Sg ; p = P1 } ;
38 }

Listing 3.4: Concrete syntax for the abstract syntax in Listing 3.3 to
demonstrate word inflection and agreement

3.1. GRAMMATICAL FRAMEWORK 21

7). Noun phrases and pronouns have the additional inherent feature of person
which is stored in a record field p. The remaining categories N, V, V2 and
VP can be inflected, which means we define them as tables from the features
they are inflected by to the result type. Nouns are in this small example only
inflected by Number, which results in a table from Number to Str, or in GF
code Number => Str (line 6). All verb categories and the verb phrases derived
from them are inflected both by person and number which results in the
table of tables Person => Number => Str.

Now that we defined all types we can define appropriate values of these
types. For adverbs and adjectives this is straightforward, for each record field,
here just s we need to assign a value (line 26, 27 and 36). For proper names
and determiners the approach is the same but we also have to give a value
for the n field containing the inherent number (lines 21–25). The indefinite
article in plural usually does not appear on the surface. Instead we define it as
the empty string. For pronouns we just add the record field p for the inherent
person feature.

For the inflected categories we need to define inflection tables, for nouns
only inflected by number, for verbs inflected by person and number. Table
values start with the table keyword followed by a list of mappings (=>) from
parameter values to result values. In line 26 for example the Sg parameter value
is mapped to the string "idea" and Pl is mapped to "ideas". The mapping
has to be total, i.e. there must be a mapping for each possible value of the
parameter. For verbs we have tables of tables, the value of the first level of
mapping is again a table (line 29–33 and 33–45). As we can see in the case of
sleep_V we can have the same forms several times in a table. We can avoid
some of these redundancies by using a wildcard (_) matching all remaining
parameter values, for example in line 33 where the number does not matter
for verb forms in first person.

After defining all the lexical rules we have to give the concrete versions
of the phrasal rules. Here again we combine the parameters to form new
values but this time we have to make sure that we enforce the right kind of
agreement. The simple cases are now still mkVP but also mkNP3 which converts
a pronoun into a noun phrase. They again look like the identity function. The
rule mkNP2 which turns a proper name into a noun phrase just copies all the
information from the noun and adds the record field for person and sets it
to third person. With rule mkNP in line 14 we have the first case where we
have to enforce agreement when combining a determiner and a noun to a noun
phrase. The noun is inflected by number (it contains a table from Number to
Str) and the determiner has an inherent number feature (a record field for
Number. We can select the number value from the record in the determiner
by using record-projection (.) and use its value to select the right form from
the table in the noun using table selection (!). The resulting string can be
combined with the string from the s field of the determiner to form the string
for the noun phrase. To complete the value for the noun phrase we copy the
number value from the determiner and again add a third person value to
the p record field. The same method is used in mkS to form sentences from a
noun phrase and a verb phrase. Here the person and number feature is used
to select the correct verb from. Finally we have to have a look at the two rules
ajdN and advVP. These two rules modify nouns and verb phrases respectively

22 CHAPTER 3. GRAMMAR-BASED LANGUAGE LEARNING

by adding an adjective or an adverb to an inflected word. At this point we do
not know the correct word form yet, but we can use tables in one more way
to solve this problem. Instead of a parameter value we can also use a variable
name (line 17) which will later be bound to the concrete value and that way
we can pass on information through the tree. A short form for this which even
works for several levels using several variables is the \\ operator in lines 19 and
20. The expression \\x => ... is syntactic sugar for table { x => ... }.

Covering the whole syntax of GF is not feasible in the scope of this thesis so
the interested reader should be referred to the book about GF (Ranta, 2011).
The main points that are relevant for the rest of the thesis are the separation into
abstract and concrete syntax that easily give rise to multilinguality, especially
in combination with the RGL. Also important is the extensions of the context-
free core with records and tables to provide means to store separate pieces
of information, select values from a set of alternatives and pass information
through the syntax tree, which contributes to the expressive power of GF.

3.2 From Word-based Text Editing to Transla-
tion Exercises

Ljunglöf (2011) suggested a novel method to edit texts on the word level using
grammars in the background by mapping text modification on the surface
onto operations on the underlying syntax trees. Even though other grammar
formalisms could be used as well, by using GF, as described in the previous
section, we get advantages like immediate multilinguality by using language
independent abstract syntax trees. How this method can be used in language
learning will be explained in the course of this section.

Language learning usually involves two different languages, one language
that is taught and the other language that is used for teaching and to describe
the learning outcome. Following a tradition in logic and linguistic we call the
first language the object language and the second one the meta language.

One traditionally important part of learning a language is to translate
between these two languages. For that reason we want to focus, among other
potential exercise types, on translation exercises in our application. But instead
of presenting the learner with a sentence in one language and expecting them to
come up with a complete and free translation on their own, we offer the learner
two sentences in the different languages and the student’s task is to modify
one of the sentences to make it a proper translation of the other sentence. To
accomplish this task, the student uses the method that will be described now.

3.2.1 Word-based Text Modification
The method presented by Ljunglöf (2011) does not, like most other methods to
modify text, work directly on the surface string, but instead provides a method
to map between text editing operations on the surface and tree modification
on the underlying abstract syntax tree.

The user interacts only with the surface representation by clicking on
positions in the string and choosing replacements of selected parts from a menu.

3.2. FROM WORD-BASED TEXT EDITING TO TRANSLATION EXERCISES 23

The clicks are translated into node positions in the tree which then affect both
the selection of a substring and the list of potential changes.

To give a concrete example we can revisit variations of the Chomskyan
sentence Colorless green ideas sleep furiously with its syntax tree (Figure 3.1).
We already showed the abstract syntax in Listing 3.1 in the previous section.
Let us assume that the user selects the circled NP node covering the phrase
green ideas.4. Then the system uses the grammar to generate a list of trees
with the same category NP (Figure 3.2). The syntax rules that can result in NP
are the two rules in lines 5 and 6 of Listing 3.1. As already this small example
shows, the list can be infinite, so some filtering has to be applied and the final,
finite, list of trees is used to suggest editing operations on the string to the user.
The first tree results in the string ideas and is not containing any adjective
which results in the deletion of the adjective that was present previously, the
second tree (colorless ideas) contains a different adjective which results in a
substitution of the corresponding substring and the third tree (colorless green
ideas) contains an additional adjective which results in the insertion of this
additional adjective. By using the grammar the system only suggests changes
that lead to syntactically correct sentences. We will discuss in Section 3.6 what
influence that can have on language learning.

S

NP

A N

VP

V

green ideas sleep

Figure 3.1: The syntax tree for the sentence green ideas sleep according to
the abstract syntax in Listing 3.1 with the NP node selected by the user and
highlighted

NP

N

ideas

NP

A N

colorless ideas

NP

A NP

A N

colorless green ideas

…

…

Figure 3.2: List of potential subtrees with root category NP that can be
generated with the abstract syntax in Listing 3.1 and be used to replace the
subtree selected in Figure 3.1

4Details how this selection works will be covered in Section 5.1

24 CHAPTER 3. GRAMMAR-BASED LANGUAGE LEARNING

3.2.2 Translation Exercises
To extend this to a method suitable for language learning, we need two syntax
trees, which then give rise to two sentences. By using multilingual grammars
we can have one sentence in the meta and and one in the object language by
using different concrete syntaxes of the same abstract syntax. The user can
then use the method of word-based text modification to change one of the trees
to make it match up with the other to solve translation exercises.

How this method works specifically in the language learning context we
will show at the concrete example of our MULLE Latin app in Section 5.1 of
Chapter 5.

3.3 Textbook Lessons
Now that we have discussed how we can use grammars to direct the user
interaction and sketched a method for translation exercises given two abstract
syntax trees, the next step is to explain how we can extract suitable grammars
for teaching a language from available resources. The main type of resources
we want to focus on are traditional textbooks. However, that does not mean
that the general ideas cannot be used in various other settings.

3.3.1 Lesson Structure
Text books that are used in language teaching in a traditional classroom setting
(e.g. Ehrling (2015); Lindauer et al. (2000)) are divided into several lessons
to slowly increase the vocabulary and syntactic complexity covered, to guide
the learner to an extensive understanding of the language. These lessons are
usually divided into a text fragment (see Figure 3.3 for a sample fragment from
Ehrling (2015)), a vocabulary list and explanations of the grammar as well as
exercises to be solved on paper by the student.

Prima scripta Latina

[...] Imperium imperatorem habet. Imperator imperium tenet.
Caesar Augustus imperator Romanus est. Imperium Romanum tenet.
Multas civitates externas vincit. Saepe civitates victae
provinciae deveniunt. [...]

Figure 3.3: An excerpt from the first lesson in a textbook for beginner’s learners
of Latin on university level (Ehrling, 2015) showing short, simple sentences

We adopt the same structure for our application by creating one grammar
for each lesson. To cover the same content as well as keep up the familiarity we
use both the vocabulary list as well as the lesson texts to create our grammars.

3.3.2 The Grammar Extraction Process
The process to create a lesson grammar from a textbook lesson consists of
three steps. These steps should be automated as much as possible, but at the

3.3. TEXTBOOK LESSONS 25

Caesar Augustus imper-
ator Romanus est.

Cl

VP

NP NP

N PN N A VA

Caesar Augustus imperator Romanus est

[...]
mkNP1 : N -> PN -> NP ;
mkNP2 : A -> N -> NP ;
mkVP : VA -> NP -> VP ;
mkCl : NP -> VP -> Cl ;
mkS : Cl -> S ;
[...]

Figure 3.4: The steps to derive a grammar from a sentence 1. analyze the
sentence (eng. Caesar Augustus is the Roman emperor), 2. create a syntax tree
to cover the sentence, 3. derive a grammar from the syntax tree.

moment require some human intervention. The steps are the following:

1. Adapt a lexicon from the textbook lesson, which usually is given as an explicit
vocabulary list. Some of the vocabulary is already covered in the lexical
resources available for GF in the language we want to handle. Otherwise
the morphological grammar rules using smart paradigms 5 can be used to
extend the lexical resources.

2. Create syntax trees for all sentences in the text. This can be done manually
or semi-automatically by parsing the sentences with the full RGL extended
with the new lexicon. In case of several analyses the correct, i.e. desired,
analysis has to be selected manually.

3. Create a grammar describing precisely the trees from the previous steps.
For that the rules can be read off the inner nodes of the trees. Usually this
grammar will be over-generating. Several methods can be used to reduce
the grammar, e.g. by merging several rules to one.

An example of this process can be seen in Figure 3.4. The last two steps
are simplified a lot by having access to the RGL. Especially in the last step,
most of the rules needed in a grammar are usually already covered by the RGL
and can be used without any additional effort. Sometimes minor adjustment
between the general case handled in the RGL and a more specific case in the
text are necessary. Thanks to the abstraction level of the RGL and modularity
supported by GF the parts that are covered by the RGL can easily be shared
across languages. That makes it easy to add additional languages to a lesson
or exchange one language for another because the common core stays the same
and only the manually overridden, language-specific parts have to be replaced.

The grammar which we get as a result from this process can be used in our
application to provide the resources necessary to generate translation exercises
based on the content of a syllabus and in the context of a language course. In
the end each lesson is covered by one grammar which is specific to exactly the
same vocabulary and syntactic complexity of this lesson. This means that the
content of the exercises generated from this lesson should already be familiar
to a student from the classroom. How exactly exercises can be generated from
a given lesson grammar is the topic of the following section.

5Smart paradigms are covered in detail in Chapter 4

26 CHAPTER 3. GRAMMAR-BASED LANGUAGE LEARNING

3.4 Exercise Generation
After the introduction of the method used for user interaction as well as
the method to derive lesson-specific grammars from an existing textbook,
this section focuses on how to generate proper exercises given a set of lesson
grammars.

Our main interest in exercises so far have been translation exercises because
they are straightforward to implement in our system and are the most common
type of exercises in the concrete use case we looked at. We want to group the
exercises we provide in our system into lessons. We already pointed out that
for each lesson in the textbook we can create a lesson-specific grammar file.
We extend this notion of a lesson to a lesson in our framework which consists
of a lesson grammar and a set of exercises using the same grammar.

Each exercise consists of two abstract syntax trees which are valid within
the lesson grammar. Depending on the similarity between the two trees the
exercise can be easier or more difficult to solve. This gives control over the
way how the students are improving their language skills. To define a lesson
we have to generate a set of exercises.

Bootstrapping for the exercises in a lesson can be done manually or be
partially automated by randomly generating valid trees for a grammar. To
guarantee for a high level of reliability, human expertise is required at the
moment. For example for each lesson it the difficulty level has to be decided
which can be controlled by selecting reasonable, i.e. not too different, trees for
each exercise.

The trees should not be completely unrelated, otherwise it would be too
difficult and tedious to solve the task, especially in the beginning. So both trees
should have a certain level of similarity. Even similar trees can be different on
several levels: on the lexical level requiring to change certain aspects of the
used words, or the syntactic level requiring to add, remove or substitute larger
constituents or even to modify higher-level aspects of the sentence like polarity,
tense, aspect, etc.

This gives some flexibility in designing the lessons from the teacher’s point
of view but adds complexity when trying to automatically generate suitable
exercises. The method is even so general that the whole system can be seen as
agnostic about both the languages to be used and the teaching approach. As
long as it is provided with a grammar for each lesson which is multilingual with
at least two different languages and a set of exercises is provided or generated
where each exercise consists of two valid syntax trees and each syntax tree one
of the languages in the grammar is assigned, the system can provide automatic
translation exercises to the student.

Additional exercise types have been discussed but mostly remain for future
work. The simplest possible addition would be exercises to practice vocabulary
knowledge by using trees that are only different on the lexical level. One of
the other exercise types could be an additional level of morphology training.
By default grammars in GF take care of choosing the correct word forms and
enforce agreement between parts of the sentence. These agreement features can
be relaxed to also allow exercises where the user has to choose the correct word
forms instead of relying on the system to provide the correct forms for them.
Other exercise types could contain additional media like images or sound.

3.5. SUITABLE GRAMMARS 27

3.5 Suitable Grammars
The grammars that are intended to be used in this framework require certain
properties. Some of these properties are determined by the method used for
modifying the sentences and other properties are inherent of the grammars
that can be derived from the textbook lessons.

The grammars derived from a textbook in the way we presented have the
following properties:

• limited vocabulary, given in the explicit vocabulary list in the book

• small set of syntax rules, defined by the text fragment given in the lesson

• implicitly defined syntactic complexity, defined by the lesson’s learning
outcome

For the editing method it is relevant that the size of the grammar is limited
so that the suggestions can be presented in a clear way. Furthermore, it might
be necessary to have a surface representation of all information necessary for
the user to solve the task. That means that even if some grammatical features
are usually not expressed on the surface they have to be accessible on the
surface in our system. In case of Latin that would be for example articles
in general or pronouns in subject position. It is not yet fully clear if that is
a general requirement or should only be an option in the beginning to help
people learn these potentially unusual features like pronoun dropping.

These properties place the suitable grammars close to the concept of Con-
trolled Natural Languages. A CNL is a language based on a specific natural
language preserving most of the natural properties while restricting its vocab-
ulary, syntax and/or semantics. It also has to be specifically constructed for
a specific purpose (Kuhn, 2014). So CNLs can be seen as languages that are
placed on the scale ranging from formal languages to full natural languages.
This sounds similar to the result we get from extracting grammars from text-
books. The only concern could be the focus on explicit definitions of languages
in CNLs while our lesson grammars can be seen as being defined implicitly by
the text fragment. Still the concepts seem strongly related.

CNLs can be classified according to various criteria, including the intended
application of the language (translation, reasoning, etc.) and the context of its
creation (academic, industrial, etc.). A more relevant classification is the PENS
classification that places a language in a space defined by the four dimensions
Precision, Expressiveness, Naturalness and Simplicity. Each dimension is
assigned a scale from 1 to 5 with 5 being the highest level possible. (Kuhn,
2014).

Considering the restrictions identified for usable grammars and the general
structure of the grammar used in MULLE, this results in the PENS classification
P 4E−N4S4:

Deterministically interpretable (P 4): The grammars are fully formalized
in a computational grammar formalism. Each sentence can be mapped
to a finite set of abstract syntax trees

Languages with natural sentence (N4): The sentences created by the
grammar are syntactically correct according to the RGL

28 CHAPTER 3. GRAMMAR-BASED LANGUAGE LEARNING

Languages with short description (S4): The languages are formalized in
compact grammars with limited access to external resources like the RGL
and additional lexica

No classification (E−): No formal representation besides the abstract syntax
trees is used so the dimension of expressivity is not relevant.

Besides the CNL classification, we can also look at how grammars are clas-
sified in the GF ecosystem. There is a distinction between resource grammars
and application grammars. The main difference is that resource grammars just
describe the syntax of a language without any semantic considerations while
application grammars are used for a specific application and have a strong
semantic focus suitable for the intended domain. Also resource grammars aim
for wider coverage than application grammars.

The grammars that are used in our system can be seen as a hybrid. They
have a strong focus on syntax, but rely, where possible, on a separate resource
grammar and only need to cover a small fragment of a language. They also
seem to require at least some focus on semantics. The sentence originally
presented by Chomsky talking about “colorless green ideas” is considered
grammatically correct but does not make sense semantically. We argue that
this lack of semantic coherence can be an obstacle when learning languages and
for that reason it would be useful to introduce semantic restrictions. From a
purely syntactic point of view, adjectives can be combined with any noun, but
language use only allows certain combinations depending on features of lexical
semantics. These restrictions can be added by including semantic knowledge,
for example by including FrameNet-style semantics in the grammars Gruzitis
and Dannélls (2017).

3.6 Teaching Concept
Before we conclude this section we still have to answer the question about the
concept we intend for language teaching and learning with our application. We
will describe a language learning application in Chapter 5 which has a very
specific use case: It is intended to be used in combination with the traditional
classroom setting. That means that a large part of language learning does not
happen with our application but in the classroom and our application provides
drop-in replacement for exercises traditionally solved on paper. But that only
partially answers the question.

The language learning system has certain properties which shape the learn-
ing experience:

positive feedback There is no way to provoke negative feedback. The learner
can try until they succeed and the system can help to guide them in the
right direction.

implicit learning The learning within our application is purely implicit, the
explicit part of language learning has to be provided externally, e.g. in a
traditional language class. The learner also learns mostly by imitating
constructions presented to them.

3.6. TEACHING CONCEPT 29

That means the intended audience is currently not an independent language
learner but a student in a separate explicate language learning context. This
context provides them with the knowledge about the necessary vocabulary for
the lessons and general syntax rules. However, our system provides the student
with a flexible playground in which they can explore features of the language
without facing frustration from negative feedback.

30 CHAPTER 3. GRAMMAR-BASED LANGUAGE LEARNING

Chapter 4

The Latin Resource
Grammar Library

32 CHAPTER 4. THE LATIN RESOURCE GRAMMAR LIBRARY

One of the foundations we built our final language learning application on
is an extensive language resource in the form of a computational grammar for
the Latin language. Work on this grammar already started before the current
project but due to new and future requirements, extensions have been made,
and work will continue as long as necessary. For that reason we have decided
to include a description of this grammar including extensions made in the more
recent past.

We first explain the different components of the grammar, how they are
motivated and how they can be implemented in GF. That includes a description
of a functional morphology for Latin, an example lexicon and a set of syntactic
rules. This is followed by a discussion of current extensions and ways of
evaluating the quality and coverage of the grammar.

4.1 Grammar Components
The grammar which is subject to description here is part of the Resource
Grammar Library distribution. It follows the the concept of the RFL by
implementing the common interface as the other languages, still the process of
creating a concrete implementation for a language in the RGL can vary a lot
depending on the language and certain decisions about the design approach
(Ranta, 2011, p. 224).

The process described here is mostly influenced by two factors, the structure
of the RGL abstract syntax and the structure of a generally available grammar
book, more specifically the school grammar book by Bayer and Lindauer (1994).
There is quite some overlap between the two structures, still there are some
general differences. The RGL defines a set of morphological rules to derive full
paradigms from a base-form lexicon, a small lexicon and general syntax rules.
The Latin grammar book focuses mostly on morphology and some syntactic
information, but does not cover any lexicographic information. For that reason
we will postpone the discussion of the lexicon until after the description of the
morphology.

4.2 Morphology

Word class Inherent Parametric No. of Inflection classes
Noun Gender Number, Case 5
Adjective Degree, Gender, Number, Case 3
Verb (active) Anteriority, Tense, Number, Person 4 regular, 4 deponent
Determiner Number Gender, Case

Table 4.1: Inherent and parametric features relevant for lexical categories

Latin is a strongly inflecting language, which means it belongs to the class of
synthetic languages that express many syntactic features by using morphemes.
Other than in agglutinative languages, another family of synthetic languages,
where every feature is expressed in a separate morpheme, inflecting languages
can encode several features in one suffix morpheme (Payne, 1997, pp. 27). For
example in the Latin verb form audio (eng. I listen) audi- forms the word stem

4.2. MORPHOLOGY 33

Feature Values
Gender Feminine, Masculine, Neuter
Number Singular, Plural
Case Nominative, Genitive, Dative, Accusative, Ablative, Vocative
Degree Positive, Comparative, Superlative
Anteriority Anterior, Simultaneous
Tense Present Indicative, Present Subjunctive, Imperfect Indicative,

Imperfect Subjunctive, Future Indicative, Future Subjunctive
Person 1, 2, 3

Table 4.2: Domains of the finite features relevant for the Latin language

and the suffix -o encodes present tense, indicative, active, first person,
singular. The suffix -remus instead indicates imperfect, subjunctive, ac-
tive, second person, plural where -re- encodes the tense and mood and
-mus the number and person.

As a consequence, it means that many of the Latin word classes inflect along
many different grammatical features. An overview of the different features for
each word class can be seen in Table 4.1 and Table 4.2 gives for each feature,
or parameter type, the list of all possible values. As we can see from the table,
nouns are inflected by case and number and there are six values for case and
two values for number which gives us 6 × 2 = 12 noun forms. Other word
classes like verbs can appear in even more forms.

This fact confronts us with the challenge of dealing with this morphological
complexity. Fortunately, Latin is a very regular language, for each lexical
category there exist a set of inflection classes, i.e. collections of words of a
word class that inflect in a similar way, covering the majority of the vocabulary.
These classes can be formalized and applied in a general way that is called
smart paradigm in GF (Détrez and Ranta, 2012).

Smart paradigms are functions that reconstruct as much morphological
information as possible, that means that we want to have as little information
as necessary in our lexicon from which we then generate the whole paradigm.
Ideally we can use just one word form to extract all other forms as well as all
other relevant grammatical information. The result of a smart paradigm is a
GF table that encodes the information from Table 4.1 and Table 4.2 for the
word class in question. An example for a smart paradigm for nouns that only
requires one word form can be seen in Listing 4.2. Smart paradigms are one of
the applications of pattern matching in GF, in this case pattern matching on
strings (Ranta, 2011, p. 282f.).

4.2.1 Noun Inflection
Nouns are inflected by number and case and have an inherent gender which
is reflected in the linearization type in GF (Listing 4.1).

For nouns we have five different inflection classes, in Latin linguistics usually
called declension classes (from lat. declinare – eng. to bend), four of which are
mostly regular and one class that contains all the irregular nouns.

For the nouns of the first two classes we can extrapolate the whole paradigm
as well as the noun gender from just one noun form, the nominative singular

34 CHAPTER 4. THE LATIN RESOURCE GRAMMAR LIBRARY

1 param
2 Number = Sg | Pl ;
3 Case = Nom | Gen | Dat | Acc | Abl | Voc ;
4 Gender = Fem | Masc | Neutr ;
5 lincat
6 N = {s : Number => Case => Str ; g : Gender }

Listing 4.1: Linearization type for nouns together with all parametric
features required

1 oper
2 noun : Str -> Noun = \verbum ->
3 case verbum of {
4 _ + "a" => noun1 verbum ;
5 _ + "us" => noun2us verbum ;
6 _ + "um" => noun2um verbum ;
7 _ + ("er" | "ir") => noun2er verbum
8 ((Predef.tk 2 verbum) + "ri") ;
9 _ + "u" => noun4u verbum ;

10 _ + "es" => noun5 verbum ;
11 _ => Predef.error ("3rd declinsion cannot be applied" ++
12 " to justone noun form" ++ verbum)
13 } ;
14

15 -- a-Declension
16 noun1 : Str -> Noun = \mensa ->
17 let
18 mensae = mensa + "e" ;
19 mensis = init mensa + "is" ;
20 in
21 mkNoun
22 mensa (mensa +"m") mensae mensae mensa mensa
23 mensae (mensa + "s") (mensa + "rum") mensis
24 Fem ;
25

26 ...
27

28 mkNoun : (sn,sa,sg,sd,sab,sv,pn,pa,pg,pd : Str)
29 -> Gender -> Noun =
30 \sn,sa,sg,sd,sab,sv,pn,pa,pg,pd,g -> {
31 s = table {
32 Sg => table {
33 Nom => sn ; Acc => sa ; Gen => sg ; Dat => sd ;
34 Abl => sab ; Voc => sv
35 } ;
36 Pl => table {
37 Nom | Voc => pn ; Acc => pa ; Gen => pg ;
38 Dat | Abl => pd
39 }
40 } ;
41 g = g
42 } ;

Listing 4.2: Smart paradigm for nouns to identify declension classes accord-
ing to noun suffixes. The function init drops the last character, Predef.tk
drops a suffix of given length. noun1 is an example for the implementation
of a declension class in GF. mkNoun is a function that fills the inflection
table to form a noun value

4.2. MORPHOLOGY 35

1 oper
2 noun_ngg : Str -> Str -> Gender -> Noun = \verbum,verbi,g ->
3 let s : Noun = case <verbum,verbi> of {
4 <_ + "a" , _ + "ae"> => noun1 verbum ;
5 <_ + "us" , _ + "i" > => noun2us verbum ;
6 <_ + "um" , _ + "i" > => noun2um verbum ;
7 <_ + ("er" | "ir") , _ + "i" > => noun2er verbum verbi ;
8 <_ + "us" , _ + "us"> => noun4us verbum ;
9 <_ + "u" , _ + "us"> => noun4u verbum ;

10 <_ + "es" , _ + "ei"> => noun5 verbum ;
11 _ => noun3 verbum verbi g
12 }
13

14 -- Consonant declension
15 noun3c : Str -> Str -> Gender -> Noun = \rex,regis,g ->
16 let
17 reg : Str = Predef.tk 2 regis ;
18 regemes : Str * Str = case g of {
19 Masc | Fem => < reg + "em" , reg + "es" > ;
20 Neutr => < rex , reg + "a" >
21 } ;
22 in
23 mkNoun
24 rex regemes.p1 (reg + "is") (reg + "i") (reg + "e") rex
25 regemes.p2 regemes.p2 (reg + "um") (reg + "ibus")
26 g ;

Listing 4.3: Smart paradigm for nouns to identify declension classes accord-
ing to noun suffixes given two noun forms and the noun gender to handle
cases that cannot be handled by the smart paradigm in Listing 4.2. noun3c
is the implementation of the third declension class for noun stems ending in
a consonant.

form, which we will call the base form (Listing 4.2). From this we can easily
extract the noun stem and by attaching the correct suffix for number and
case we get the full paradigm (e.g. lines 15–23). From Table 4.2 we can see
that we have to include two values for number and six for case. We put the
strings into the correct shape with the function in lines 27–37 by putting the
strings into the correct position of the two tables.

In the general case the same approach works for nouns of the fourth and
fifth declension. Only in some cases the base form has the same suffix as nouns
from the second class but they can be distinguished by looking at another noun
form like the genitive singular e.g. lat. domus (nom. sg. – eng. house),
domi (gen. sg.) (second class) and lat. casus (nom. sg. – eng. case), casus
(gen. sg.) (fourth class).

The third declension class is the least regular one, in the sense that it is a
collection of many nouns that inflect in different ways but each of them is quite
regular in itself. That means that we can still derive the full paradigm from
the two base forms we already used before plus the noun gender (Listing 4.3).

The gender information for most of the classes, except for the third one,
can be derived easily because they mostly contain nouns of a certain gender
that can easily be identified from the base form, feminine for the first class
and masculine or neuter for the second class. But the third class is not only a

36 CHAPTER 4. THE LATIN RESOURCE GRAMMAR LIBRARY

collection of many different nouns with different ways of inflection but also of
different genders, which has to be added to the lexicon entry of the noun.

4.2.2 Adjective Inflection

1 param
2 Degree = Posit | Compar | Superl ;
3 Agr = Ag Gender Number Case ;
4 lincat
5 A = {
6 s : Degree => Agr => Str ;
7 adv : Adverb ;
8 } ;

Listing 4.4: Linearization type for adjectives together with all parametric
features required, the parameter Agr uses the constructor Ag to construct
new parametric values by combining several other parameter values

The inflection of adjectives is related to the noun inflection because adjective
forms in most cases mirror the forms of the nouns they agree with, including
the suffixes. The major difference is that adjectives inflect along two more
features, gender and comparison level (or degree). On the other hand there are
only three inflection classes for adjectives. The linearization type for adjectives
can be seen in Listing 4.4. The parameter type Agr in line 3 looks different from
the parameter types we have seen so far. It uses the constructor Ag to form a
new parameter value from one Gender, one Number and one Case value. By
combining finite types we again get a new finite type but also gain advantages
e.g. when using pattern matching on these values.

The first and second declension classes, which cover the majority of ad-
jectives, inflect in a very similar way to the noun inflection of the first and
second declension classes. Because adjectives also inflect along the gender,
the masculine and neuter forms correspond to the noun forms of the second
declension while the feminine forms match the forms of nouns of the first
declension class. Only in some cases the masculine nominative singular
form is different (Bayer and Lindauer, 1994, p. 39) but the rest of the paradigm
uses the same inflection as the noun declension. Only in the third inflection
class we can find adjectives which have either three different forms, one for
each gender, only two forms because masculine and feminine share forms, or
even only one form independent of gender (Bayer and Lindauer, 1994, p. 38).

From the implementation point of view, we already encoded most of the
suffixes used in adjective inflection in the noun morphology, which can be
reused with just minor modifications. That works without any bigger problems
for adjectives of the first two declensions.

Some additional complexity is added by adjective that do not have separate
forms for the comparison levels but instead use the adverbs magis (eng. more)
and maxime (eng. most) (Bayer and Lindauer, 1994, p. 44). This fact leads to
a lot of “missing” forms in the paradigm and additional we need to keep track
which adjectives form comparison levels in which way, e.g. in additional record
fields.

4.2. MORPHOLOGY 37

4.2.3 Verb Inflection

1 param
2 Person = P1 | P2 | P3 ;
3 VActForm = VAct VAnter VTense Number Person ;
4 -- For passive no anteriority because perfect forms are
5 -- built using participle
6 VPassForm = VPass VTense Number Person ;
7 VInfForm = VInfActPres | VInfActPerf Gender
8 | VInfActFut Gender | VInfPassPres
9 | VInfPassPerf Gender | VinfPassFut ;

10 VImpForm = VImp1 Number | VImp2 Number Person ;
11 VGerund = VGenAcc | VGenGen |VGenDat | VGenAbl ;
12 VSupine = VSupAcc | VSupAbl ;
13 VPartForm = VActPres | VActFut | VPassPerf ;
14 VAnter = VAnt | VSim ;
15 VTense = VPres VMood | VImpf VMood | VFut ;
16 VMood = VInd | VConj ;
17 lincat
18 V = {
19 -- active verb forms
20 act : VActForm => Str ;
21 -- passive verb forms
22 pass : VPassForm => Str ;
23 -- infinitive verb forms (nominal verb forms)
24 inf : VInfForm => Str ;
25 -- imperative verb forms
26 imp : VImpForm => Str ;
27 -- gerund verb forms (nominal verb forms)
28 ger : VGerund => Str ;
29 -- gerundive verb forms (adjectival verb forms)
30 geriv : Agr => Str ;
31 -- supine verb forms (nominal verb forms)
32 sup : VSupine => Str ;
33 -- participle verb forms (adjectival verb forms)
34 part : VPartForm => Agr => Str ;
35 } ;

Listing 4.5: Linearization type for verbs together with all parametric features
required, parameters like VActForm use constructor like VAct to construct
new parametric values by combining several other parameter values

Verb inflection in Latin can be seen as one of the biggest morphological
challenges. Especially according to traditional grammar books, verbs do not
only respect the features in Table 4.1, but besides these common verb forms,
also form both nominal and adjectival forms. These are words derived from
verbs that can be used in the same way as nouns or adjectives and express
e.g. necessary actions (Bayer and Lindauer, 1994, pp. 172–190). It is open for
discussion if these forms should be treated as verb forms or as separate lexical
items.

The most practical way is to split the verb paradigm into different groups
of verb forms like finite verb forms, infinite verb forms, adjectival verb forms
and nominal verb forms which are stored in separate record fields (Listing 4.5).
All these forms can be derived from base forms that are closely related to the
word stems. In Latin traditionally three word stems are assumed for verbs, the

38 CHAPTER 4. THE LATIN RESOURCE GRAMMAR LIBRARY

present stem, the perfect stem and the participle stem (Bayer and Lindauer,
1994, p. 68) from which all other forms can be derived. All of them can be
derived from a base from like the present active infinitive which we use in
our grammar or alternatively the first person present indicative active
form used in other approaches.

Latin verbs are inflected according to one of four conjugation classes (from
lat. coniugare – eng. to connect, join) of which the first, second and fourth can
be considered regular, while the third class is an irregular class that covers
several subclasses again. For the regular conjugation classes all forms can be
derived from the one base form, for the irregular forms, some more forms have
to be given explicitly: the first person singular indicative active forms in
both present and perfect tense as well as the perfect passive participle.

1 oper
2 verb1 : Str -> Verb = \laudare ->
3 let
4 lauda = Predef.tk 2 laudare ;
5 laud = init lauda ;
6 laudav = lauda + "v" ;
7 pres_stem = lauda ;
8 pres_ind_base = lauda ;
9 pres_conj_base = laud + "e" ;

10 impf_ind_base = lauda + "ba" ;
11 impf_conj_base = lauda + "re" ;
12 fut_I_base = lauda + "bi" ;
13 imp_base = lauda ;
14 perf_stem = laudav ;
15 perf_ind_base = laudav ;
16 perf_conj_base = laudav + "eri" ;
17 pqperf_ind_base = laudav + "era" ;
18 pqperf_conj_base = laudav + "isse" ;
19 fut_II_base = laudav + "eri" ;
20 part_stem = lauda + "t" ;
21 in
22 mkVerb laudare pres_stem pres_ind_base pres_conj_base
23 impf_ind_base impf_conj_base fut_I_base imp_base
24 perf_stem perf_ind_base perf_conj_base
25 pqperf_ind_base pqperf_conj_base
26 fut_II_base part_stem ;

Listing 4.6: Function to create the full verb paradigm for a verb of the first
conjugation class. The function mkVerb appends the correct suffixes to the
base forms and fills the inflection tables

The approach to verb inflection is fundamentally the same as for nouns
and adjectives. From a set of base forms all other forms can be derived by
attaching the correct suffix to match all grammatical features that can be seen
in Table 4.1. The biggest difference is that for the verb inflection more base
forms are used. These base forms include the three stems, but also twelve
additional base forms that can be easily derived from the stems that include
already the morphemes for tense, aspect and mood but are missing the suffix
for person (Listing 4.6). That way the base forms can easily be combined
with a fixed set of suffixes.

For the nominal and adjectival verb forms we can determine the necessary

4.3. LEXICON 39

base form and then use the same methods we used before for nouns and
adjectives to derive all the forms, i.e. reuse the functions that attache the
correct suffixes.

An exception to this simple approach are the deponent verbs (lat. deponere
– eng. to lay away). These verbs use their passive forms instead of active forms
and for that reason do not have separate passive forms. However, these verbs in
themselves regular again, but are a good example for words with only partially
defined paradigms.

4.2.4 Other Classes
Other classes that should be mentioned here are pronouns of various kinds
including personal pronouns, possessive pronouns, demonstrative pronouns but
also quantifiers, prepositions and adverbs.

The most common determiners in the traditional sense, the definite and
indefinite article, do not exist in Latin, but in some situations similar things
can be expressed with pronouns and quantifiers.

Most words in these other classes are either irregular or they are not very
common in the vocabulary of the language so that it is not very useful to define
smart paradigms but instead it is easier to just list all forms explicitly.

Finally adverbs and prepositions in most cases do not inflect at all with
the exception of some adverbs which have different forms according to the
comparison level.

4.3 Lexicon

1 lin
2 airplane_N = mkN "aeroplanum" ; -- Modern word
3 apartment_N = mkN "domicilium" ; -- noun 2nd decl
4 art_N = mkN "ars" "artis" feminine ; -- Noun 3rd decl
5 bad_A = mkA "malus" ; -- Simple adjective
6 bank_N = mkN "argentaria" ; -- Homonymous Noun
7 computer_N = mkN "computatrum" ; -- Modern word
8 country_N = mkN "terra" ; -- -ae f. -- Noun 1st decl
9 camera_N = ResLat.useCNasN

10 (AdjCN (PositA (mkA "photographicus"))
11 (UseN (mkN "machina"))) ; -- Paraphrase
12 come_V = mkV "venire" ; -- Verb 4th conj
13 die_V = mkV "mori" "mortuus" "morturus"; -- Deponent verb
14 house_N = mkN "domus" "domus" feminine ; -- Noun 4th decl
15 live_V = mkV "vivere" "vivo" "vixi" "victurus" ; -- Verb 3rd conj
16 love_V2 = mkV2 "amare" ; -- Verb 1st conj

Listing 4.7: Various entries from the RGL lexicon for Latin

In GF it is a convention that grammar rules are either classified as lexical
or phrasal rules (Ranta, 2011, pp. 98). Lexical rules are the basic constituents
and always appear at the leaves of the syntax trees while phrasal rules combine
their parameters to a new part and appear inside the tree.

40 CHAPTER 4. THE LATIN RESOURCE GRAMMAR LIBRARY

Lexical categories are categories that only appear as the result type of
lexical rules. Lexical categories again can be divided into open and closed
categories (Ranta, 2011, p. 99).

Closed categories are word classes where it is possible to exhaustively list all
members, i.e. classes that are not productive. Usual candidates are determiners,
quantifiers, prepositions and conjunctions. There are only few words of a
language in the closed categories compared to the open categories.

More interesting are the open classes which are still productive because
new words of these classes can be added to a language at any time. Usual
open categories are nouns, adjectives and verbs. The vocabulary of the open
categories is listed in the lexicon.

The lexicon is an essential part of a GF grammar to test the other parts of
the grammar. For that reason the RGL defines a minimal lexicon with about
350 dictionary entries. These entries have been selected to include both the
Swadesh list of 207 basic concepts as well as an additional variety of modern
concepts (Ranta, 2011, p. 233).

Lexicographic work tends to involve common challenges like homonymy.
Other challenges appear in the multilingual context of GF or in the context of
historic languages.

The most commonly known problem is homonymy, i.e. when the same string
denotes two different semantic concepts in the language. A prime example is
the word bank which is homonymous in several languages, in English it can
denote the place to store money and the river bank. One reason why we have
to deal with homonymy in our task is that the RGL abstract syntax defines the
lexicon as a set of abstract identifier consisting of the English base form and the
lexical category. The identifier in question is bank_N (Line 6 in Listing 4.7).
That means we have to decide which concept in Latin we want to assign to
this identifier, either argentaria as the place for money or ripa as the location
at the river.

An easy but misleading approach would be to define both meanings as
variants of the same concept. But that would allow us to map ripa to the
identifier bank_N and the identifier bank_N back to argentaria and as a
consequence ripa = bank_N = argentaria, and consequently ripa = argentaria,
which we want to avoid. It would also lead to serious problems in connection
with multilinguality.

A better approach is to select one of the two meanings, e.g. the more
common one, and add other abstract identifiers for the other meanings. So we
can define bank_N as argentaria and bank2_N as ripa so we get ripa = bank2_N
6= bank_N = argentaria.

Another problem we encounter in the multilingual setting of the RGL is
that we need to assign a translation to a word that does not as such exist in the
language. The usual approach would be to paraphrase the missing word (Line
9–10). The problem with a paraphrase usually is that it belongs to a phrasal
category while the lexicon entry requires a lexical category. That means we
need to translate between the type of a lexical category and the type of a
phrasal category.

Finally, in this very specific case of a historic language, another challenge
was the presence of modern concepts in the lexicon which are not easy to
translate into Latin (e.g. Line 2). Even though the Vatican, the only country

4.4. GRAMMAR RULES 41

where Latin is still the official language, provides an official translation list for
modern concepts between Latin and Italian, this list is not complete either and
requires the translation via Italian. The best solution we encountered is to use
information provided by the Latin Wikipedia which, thanks to a crowd-sourcing
approach, is able to provide more than 100 000 pages (Vicipaedia, 2018) that
are linked to their counterparts in various languages and provide a rich resource
for translating lexical concepts.

Besides these very specific problems, the general challenge for the creation
of the lexicon is to spell out all the necessary information that cannot be
derived otherwise, e.g. by using the smart paradigms.

4.4 Grammar rules
After looking at the lexical entities, the smallest components we are concerned
with in our grammars, now we can combine them to larger phrases up to the
topmost level of utterances, i.e. sentences and phrases in which all grammatical
features are fixed to form plain strings.

The most important part of this task is to decide which parts can already
be put together and which parts have to be kept available and flexible for later
modification.

To keep up the flexibility we can use the tables and records. With tables
we can pass features on through the syntax trees and with records we can
keep parts of the phrases separate. So records can be used to model discon-
tinuous constituents as well as to store temporary information influencing the
construction of phrases.

Which rules have to be present in a grammar is again defined by the RGL
abstract syntax. These rules range from common and generic to very specific.
This section focuses on the most commonly encountered rules and how they
can be implemented for Latin.

In Listing 4.8 a definition of basic phrase types with the additionally
necessary parameter types is given. Most of the parameter types used in the
phrasal types are the same as used for nouns and verbs, some additional ones
are reuqired and some are different and seem redundant, like e.g. VTense and
Tense but are required because the tense system in the RGL is different from
the tense system used in the grammar book. However, a simple mapping
between the tense systems is possible.

4.4.1 Noun Phrases
In the lexicon there are the two lexical categories of nouns and adjectives
which can be used to form noun phrases (NP). As an intermediate category the
category of common nouns (CN) is introduced. They can be formed directly
from nouns and can be modified by adjectives.

Adjectives can be transformed into adjectival phrases (AP) by selecting
the desired comparison level (positive, comparative or superlative). These
adjectival phrases can then be combined with a CN to form a CN again. Because
adjectives can appear before or after the noun in Latin we keep track of the
position by putting the APs in the separate record fields preap and postap
(Line 13 of Listing 4.8).

42 CHAPTER 4. THE LATIN RESOURCE GRAMMAR LIBRARY

1 param
2 Anteriority = Simul | Anter ;
3 Tense = Pres | Past | Fut | Cond ;
4 Polarity = Pos | Neg ;
5 VQForm = VQTrue | VQFalse ;
6 Order = SVO | VSO | VOS | OSV | OVS | SOV ;
7 lincat
8 AP = { s : Agr => Str } ;
9 CN = { s : Number => Case => Str ; g : Gender ;

10 preap : AP ; postap : AP } ;
11 NP = { s : Case => Str ; g : Gender ; n : Number ;
12 p : Person } ;
13 VP = { s : VActForm => VQForm => Str ;
14 obj : Str ; adj : Agr => Str } ;
15 Prep = { s : Str ; c : Case ; isPost : Bool } ;
16 -- extend verb phrase by adding a preposition
17 VPSlash = VP ** {c : Prep} ;
18 Cl = { s : Tense => Anteriority => Polarity => VQForm
19 => Order => Str } ;
20 S = { s : Str } ;

Listing 4.8: Linearization types for adjective phrases (APs), common nouns
(CNs), noun phrase (NPs), verb phrases (VPs), clauses (Cls) and sentences
(S) together with all additional parametric features required

By combining a CN with a determiner we can create an NP. Latin itself does
not use the determiners commonly found in modern languages like the definite
and indefinite article. However, because the number of a CN is not fixed and
has to be determined by a different constituent, we need to employ these articles
to determine the number feature of the noun phrase even though they do
not have a representation on the surface. Furthermore, some other quantifiers
like omnis (eng. all) which can be used as determiners. The number value
of the determiner dominates the number value of the noun and the adjective
forms, the noun gender dominates the adjective gender value, the case is
still undecided, and the person that is used in the verb agreement is either
third person by default, or if the noun phrase is constructed from a pronoun,
adopted from it. That leads to the type given in Listing 4.8 on line 15 for NPs.

4.4.2 Verb Phrases
Intransitive verbs can be used as verb phrases (VP) directly and transitive verbs
can be combined with a direct object into a VP. Also adjective phrases can be
used together with the copula esse to form a VP.

To create verb phrases from intransitive verbs most of the information
contained in the verb can be ignored and only the finite active verb forms
are used. That means the verb forms are inflected by tense, anteriority,
number and person. The tense system with the separation into tense and
anteriority is based on the work of Reichenbach (1947). As an additional
inflection feature the parameter VQForm is added which controls the use of the
question suffix -ne. Record fields in the VP for direct objects and adjective
phrases are just left empty.

In the case of transitive verbs an intermediate slash category is used. A slash

4.4. GRAMMAR RULES 43

category (C1/C2) expresses the fact that the category is missing a complement
C2 to form a value of category C1, a concept used in many modern grammar
formalisms like Combinatory Categorial Grammars and GPSG with slightly
different semantics (Wood, 1993, p. 107).

A transitive verb can be seen as a category which combined with a noun
phrase to form a verb phrase, similar to a slash category VP/NP. For that reason
it can also be transformed to the VPSlash category in GF which then can be
combined with the object. In this case again the finite active verb form is
stored in the VP the same way as the intransitive verbs. Additionally the noun
phrase is stored as the direct object. The most common grammatical case for
the direct object is the accusative, but this can be overridden by information
stored in the transitive verb.

Finally, for predicative expression, i.e. where an adjective is used as a
complement to a noun, the verb field is filled with the required forms from the
copula and the adjective phrase is stored in the adj field. Otherwise this field
remains empty.

4.4.3 Clauses and Sentences

To finally form sentences we can combine a subject noun phrase with a complete
verb phrase to a clause (Cl), which contains most of the information of the
sentence but several grammatical features like tense, anteriority, polarity,
the word order as well as if it is a proposition or a question, are not decided
yet. These features are encoded in a table again. The rule to create a sentence
is called PredVP which can be seen in Listing 4.9. On this level we have to
deal with a high level of complexity and we do not want to go too much into
the detail but basically we have three main record fields, the subject noun
phrase in the s field, the predicate verb phrase in the v field and the object
noun phrase in the o field. In addition we have one field for negation particles
(neg) and one for adverbial modifiers (adv). We allow adverbs in six different
positions, both between the phrases and within phrases. All this is necessary
to deal with the flexibility in word order we encounter in Latin.

To form a sentence from a clause the parameter values we just named have
to be finally decided. Depending on theses decisions all the parts are assembled.
These involve the subject noun phrase, the verb, potentially direct object or
predicative adjectives, negation particles, adverbs and so on. Some of these are
already decided on in the clause, others are postponed until the formation of a
sentence.

For example for Subject-Object-Verb word order we start with the subject
noun phrase in nominative case which can be followed by a negation particle.
In a predicative setting an adjective phrase will be followed by the verb form
agreeing with the subject noun phrase in number and person, in case of
a transitive verb, instead the direct object is placed before the verb. This
provides us with complete sentences and concludes the description of syntactic
rules.

44 CHAPTER 4. THE LATIN RESOURCE GRAMMAR LIBRARY

1 lin
2 PredVP np vp = -- NP -> VP -> Cl
3 let
4 -- combines adverbs from noun phrase and verb phrase
5 adv = np.adv ++ vp.adv ;
6 -- helper functions to either place the adverb in the designated position
7 -- or an empty string instead
8 pres : AdvPos -> Str = \ap -> case ap of { PreS => adv ; _ => [] } ;
9 prev : AdvPos -> Str = \ap -> case ap of { PreV => adv ; _ => [] } ;

10 preo : AdvPos -> Str = \ap -> case ap of { PreO => adv ; _ => [] } ;
11 preneg : AdvPos -> Str = \ap -> case ap of { PreNeg => adv ; _ => [] } ;
12 ins : AdvPos -> Str = \ap -> case ap of { InS => adv ; _ => [] } ;
13 inv : AdvPos -> Str = \ap -> case ap of { InV => adv ; _ => [] }
14 in
15 {
16 -- subject part of the clause:
17 -- ap is the adverb position in the clause
18 s = \\ap =>
19 -- adverbs can be placed in the beginning of the clause
20 pres ap ++
21 -- the determiner , if any
22 np.det.s ! np.g ! Nom ++
23 -- adjectives which come before the subject noun, agreeing with it
24 np.preap.s ! (Ag np.g np.n Nom) ++
25 -- adverbs can be placed within the subject noun phrase
26 ins ap ++
27 -- the noun of the subject noun phrase in nominative
28 np.s ! Nom ++
29 -- adjectives which come after the subject noun, agreeing with it
30 np.postap .s ! (Ag np.g np.n Nom) ++
31 -- second part of split determiners
32 np.det.sp ! np.g ! Nom ;
33

34 -- verb part of the clause:
35 -- tense and anter(ority) for the verb tense
36 -- vqf is the VQForm parameter which defines if the ordinary
37 -- verbform or the question form with suffix "-ne" will be used
38 -- ap is the adverb position in the clause
39 v = \\tense,anter,vqf,ap =>
40 -- adverbs can be placed in the before the verb phrase
41 prev ap ++
42 -- verb phrase complement , e.g. predicative expression , agreeing
43 -- with the subject
44 vp.compl ! Ag np.g np.n Nom ++
45 -- adverbs can be placed within the verb phrase
46 inv ap ++
47 -- verb form with conversion between different forms of tense and aspect
48 vp.s ! VAct (toVAnter anter) (toVTense tense) np.n np.p ! vqf;
49

50 -- object part of the clause, it only depends on the adverb position
51 o = \\ap => preo ap ++ vp.obj ;
52

53 -- optional negation particle, adverbs can be placed before the negation
54 neg = \\pol,ap => preneg ap ++ negation pol ;
55

56 -- after combining the clause the adverb is empty again
57 adv = ""
58 } ;

Listing 4.9: The PredVP rule to combine a noun phrase and a verb phrase to
a clause

4.5. STATUS AND EXTENSIONS 45

4.4.4 Free Word Order
One commonly named characteristics of Latin is the free word order, a big
challenge for every endeavor to formalize this language. Because lots of syntactic
information is morphologically encoded it is not that important to have a strict
order of constituents and their sub-parts in a sentence. This allows flexibility
on several levels.

On the top-level the main constituents like subject noun phrase, verb
and direct object can be combined in an almost arbitrary way. Given these
three parts, six combinations are theoretically possible. However, an empirical
evaluation on a Latin treebank by Bamman and Crane (2006) shows that
classical authors prefer verbs in the final position while later authors prefer
verbs in second position.

To deal with this general order of constituents a new parameter type (Line
12 in Listing 4.8) can be defined which defines the order on the clause level
and provides access to all possible combinations in a table. As a default value
the word order subject-object-verb which is most commonly used by Caesar is
assumed.

The large quantity of morphological information also allows larger distances
between sub-parts of larger constituents like noun or verb phrases because
the agreement in morphological features provides sufficient information to
identify the parts belonging together. That allows that particles including
adverbs can be placed in almost any position in a sentence, even within larger
phrases. To allow this it is necessary to change the phrase categories into split
or discontinuous categories, i.e. categories that do not just use one record field
to store the surface representation but instead split it into parts that are stored
in different record fields. That way the assembly of phrases can be delayed to
a later point when all parts, including particles, of a sentence are known and
can be put in the right place.

As these two examples show, it is possible to solve challenges in handling
natural languages including discontinuous constituents with the help of the
two constructs of tables and records in a clear way.

4.5 Status and Extensions
The RGL abstract syntax defines 1119 abstract function, consisting of both
lexical and phrasal rules. The Latin RGL grammar currently implements
847 of these with 272 rules missing. The implementation of the missing rules
remains as future work. The task to figure out which of the missing rules are
more relevant can be seen as part of the general future task of evaluating the
grammar.

Besides the work on completing the coverage of the abstract syntax, adding
external resources is necessary to increase the usability of the grammar. In
that direction we can report some success: The Latin dictionary provided
by William Whitacker’s Words program (Whitaker, 2006), containing 39225
entries could in large parts be translated into a GF wide-coverage dictionary
containing 33355 entries. Some of the conversion was challenging due to a large
amount of Greek loan words, the support for which had to be added to the
grammar.

46 CHAPTER 4. THE LATIN RESOURCE GRAMMAR LIBRARY

The grammar in the form described above covers basic and general concepts
that are necessary to handle language complexities posed by the Latin language.
It is also sufficient for the current use in the MULLE Latin learning application.
However, it can be extended by either adding more syntax rules or by further
extending the lexical coverage.

Chapter 5

Latin Language Learning

48 CHAPTER 5. LATIN LANGUAGE LEARNING

In Chapter 3 we introduced the general ideas and concepts for a modern
language learning application. These ideas led to the implementation of a
web application that can be used in a Latin language class. The system in
the current state is built with Swedish as the meta language and Latin as the
object language, so where necessary we will gloss the examples with an English
translation.

In this chapter we will first revisit the concept of grammar-based text
modification on the word level and show using a concrete example how the user
interaction for translation exercises works. After that we will discuss concepts
of gamification to improve the user experience and we conclude the chapter
with the description of an experiment to evaluate our system. In this evaluation
the main focus is on the change of learner motivation and attitude.

5.1 User Interaction
When the user logs in into the MULLE web interface they are presented with
the lesson view for the course (Figure 5.1) which gives an overview over the
total progress. All the lessons from the course are listed but some of the lessons
can be disabled, for example if they depend on other lessons which have to be
solved first. Also already finished lessons are marked in green and can usually
be repeated to improve the results. The author of a course can also create
special lessons which are not repeatable. This can be used, e.g. for placement
tests or intermediate tests to assess the learning progress. The lesson screen also
gives some general statistics including the amount of exercises in a lesson and
the current score. When clicking on one of the lessons the user is transferred
to the exercise view for this lesson.

The exercise view is the most relevant one because it is what a student will
be confronted with most of the time. Examples for the exercise view can be
seen in Figure 5.4 to 5.13. At the top of the screen some statistics is shown,
like the time spent, the number of clicks used, the number of exercises already
solved in the lesson and as well as the number of remaining exercises.

In the middle of the screen the user task is placed. Two sentences in
different languages are shown to the user and their task is to use the method
of word-based text editing to change the sentence at the bottom to make it
a translation of the sentence at the top. The parts that are already matched
are highlighted in different colors. The matching phrases are determined by
matching subtrees in the two syntax trees. To increase the difficulty level these
highlights can be disabled.

Now we walk through a concrete example to show how our input method
can be used to solve a translation task. For the start we need a grammar
(Listing 5.1) and two valid syntax trees within the grammar (Figure 5.2 and
Figure 5.3). When looking at both trees, it is possible to see which steps are
necessary to make them the same. For the user who only sees the sentence on
the surface this can be a lot more challenging. We will now show one possible
sequence of steps to solve the exercise, highlighting the changes both in the
syntax tree and on the surface.

To simplify the presentation of the example, we only show the categories
and not the functions in the syntax trees and we will use the category S as

5.1. USER INTERACTION 49

Figure 5.1: The lesson screen, the first screen the user sees after logging in,
shows the list of lessons with color-coded status (red locked, blue unfinished,
green finished) and general information including the current score

the topmost or start category. Furthermore we will ignore the (definite) node
in the tree, the function of which is to determine which function was used to
create the noun phrase. This is necessary because Latin does not express the
definite or indefinite article which usually defines the number feature of the
noun. However, this detail does not have an influence on our example.

5.1.1 Solving an Exercise
In the exercise view the user can click on any word in the bottom sentence. The
click then is mapped to the node in the tree which introduced the corresponding
word. For example the user can click on the word imperator which is translated
to the left-most node at the bottom of the tree. The systems then generates
all subtrees the same root category as the category pointed to. In this case
the root category is N and all trees with the root category are enumerated and
converted to a list of suggestions. Because it does not make any sense to replace
a word with itself, this option is filtered out. The menu after the first click can
be seen in Figure 5.5 on the right while on the left the abstract syntax tree can
be seen with the highlighted node. The next click on the same position moves
the pointer up the tree to the parent of the currently selected node. In this
example the pointer is moved up to the CN node above the previously selected
N node (Figure 5.6, left). The menu still does not contain the entry that would
bring the user closer to the goal. So they can continue clicking and whenever
the user clicks in the same position, the pointer is moved further up in the tree
until it arrives in the root node.

Clicking on a different word sets the pointer to the node which introduces
this word instead of moving the pointer further up. This helps when the user

50 CHAPTER 5. LATIN LANGUAGE LEARNING

accidentally clicked on the wrong word and allows them to explore several
paths to the way to the solution.

In our example, the next click will lead to the pointer pointing to the
NP node (Figure 5.7) where we find the correct subject noun phrase Gallia
(eng. Gaul nominative singular) in the suggestion list. After clicking on the
suggestion both the tree and the sentence are updated (Figure 5.8).

As a next step the user can change the verb phrase, starting by a click on
the verb vincit (eng. conquer third person singular, Figure 5.9). This again
moves the pointer to the node which is responsible for introducing the word,
here the V2 node. With one more click the pointer ends up pointing to the VP
(Figure 5.10) where we can select victus est (eng. be conquered third person
singular) from the menu which replaces the whole subtree and also the whole
verb phrase Galliam vincit (eng. conquer Gaul third person singular) with
the correct one (Figure 5.11).

The final step to make the trees the same is to add the adverb. According
to the grammar and the syntax tree the adverb has to be attached on the S
node at the top of the tree. But the user has no access to this information, so
in theory it would not matter on which word the user starts clicking until they
end up at the top of the tree. However, starting at the verb to add an adverb
seems reasonable. After several clicks on the verb est (eng. be third person
singular, Figure 5.12) the menu contains the option to add the desired adverb.

After selecting this option the abstract trees are the same (Figure 5.13) and
the system congratulates the user to the success and gives the final statistics
including the time spent and the amount of clicks necessary. This concludes our
example of a user interaction to solve a translation exercise using the method
for text modification we propose.

5.1. USER INTERACTION 51

1 abstract PrimaRules = Cat, Conjunction ** {
2 cat CS ;
3 fun
4 useA : A -> AP ;
5 simpleCl : NP -> VP -> Cl ;
6 usePN : PN -> NP ;
7 usePron : Pron -> NP ;
8 useCNdefsg : CN -> NP ;
9 useCNindefsg : CN -> NP ;

10 useCNindefpl : CN -> NP ;
11 complexNP : Det -> CN -> NP ;
12 conjNP : NP -> NP -> ListNP ;
13 extConjNP : ListNP -> NP -> ListNP ;
14 useConjNP : Conj -> ListNP -> NP ;
15 useN : N -> CN ;
16 attribCN : AP -> CN -> CN ;
17 apposCNdefsg : CN -> PN -> NP ;
18 useCl : Cl -> S ;
19 advS : Adv -> S -> S ;
20 intransV : V -> VP ;
21 transV : V2 -> NP -> VP ;
22 complVA : VA -> AP -> VP ;
23 useS : S -> CS ;
24 }
25

26 abstract PrimaLex = Cat ** {
27 fun
28 copula_VA : VA ;
29 copula_V2 : V2 ;
30 -- Vocabulary p11 -- More vocabulary p19
31 imperium_N : N ; puella_N : N ;
32 Romanus_A : A ; laetus_A : A ;
33 magnus_A : A ; amicus_N : N ;
34 imperator_N : N ; anxius_A : A ;
35 habere_V2 : V2 ; vinum_N : N ;
36 tenere_V2 : V2 ; bonus_A : A ;
37 multus_Det : Det ; pater_N : N ;
38 civitas_N : N ; felix_A : A ;
39 externus_A : A ; coniux_N : N ;
40 vincere_V2 : V2 ; sapiens_A : A ;
41 victus_A : A ; numen_N : N ;
42 saepe_Adv : Adv ; ingens_A : A ;
43 provincia_N : N ; -- Not in vocabulary list but in text
44 devenire_V2 : V2 ; Augustus_PN : PN ;
45 Gallia_PN : PN ; Caesar_N : N ;
46 Africa_PN : PN ; he_PP : Pron ;
47 Germanus_N : N ; and_Conj : Conj ;
48 hostis_N : N ;
49 dicere_V : V ;
50 }

Listing 5.1: Abstract syntax for the first lesson, containing both the syntax
rules extracted from the lesson text and the lexicon given as a vocabulary
list in the lesson

52 CHAPTER 5. LATIN LANGUAGE LEARNING

useS : CS

advS : S

saepe_Adv : Adv useCl : S

simpleCl : Cl

usePN : NP complVA : VP

Gallia_PN : PN copulaVA : VA victus_A : A

ofta är Gallien besegrad

Figure 5.2: The first abstract syntax tree with a linearization in Swedish (eng.
often Gaul is conquered

useS : CS

advS : S

simpleCl : Cl

useCNdefsg : NP transV : VP

useN : CN vincere_V2 : V2 usePN : NP

imperator_N : N Gallia_PN : PN

imperator (definite) Galliam vincit

Figure 5.3: The second abstract syntax tree with a linearization in Latin (eng.
the emperor conquers gaul

5.1. USER INTERACTION 53

S
Cl

NP VP

CN V2 NP
N PN

imperator Galliam vincit

Figure 5.4: Left: Syntax tree without any selected node, Right: Screenshot of
the system at the start before any click

S
Cl

NP VP

CN V2 NP
N PN

imperator Galliam vincit
click

Figure 5.5: Left: Syntax tree after the first click, the pointer pointing to
the N node on the left of the tree, Right: Screenshot after the first click on
imperator, showing the suggestion list including all nouns from the lexicon
except imperator. All options lead to a substitution

S
Cl

NP VP

CN V2 NP
N PN

imperator Galliam vincit
click

+ click

Figure 5.6: Left: Syntax tree after the second click in the same position, the
pointer now pointing to the CN node above the N node, Right: Screenshot after
the second click on imperator, showing the suggestion list containing imperator
modified by all possible adjectives. All possible operations are equivalent to
the insertion of an adjective

54 CHAPTER 5. LATIN LANGUAGE LEARNING

S
Cl

NP VP

CN V2 NP
N PN

imperator Galliam vincit
click

+ click

+ click

Figure 5.7: Left: Syntax tree after the third click, pointer going up further
through the tree now pointing to the NP node, Right: Screenshot after the third
click on imperator, showing the suggestion list for noun phrases: the option to
change to plural or to indefinite form of imperator, using imperator as a title
for proper names, changing the determiner to the quantifier multi (eng. many)
or replacing the whole noun phrase by a proper name or pronoun

S
Cl

NP VP

PN V2 NP
PN

Gallia Galliam vincit

Figure 5.8: Left: Syntax tree after replacing the whole CN subtree with the
PN subtree, Right: Screenshot after updating the tree and the sentence on the
surface

S
Cl

NP VP

PN V2 NP
PN

Gallia Galliam vincit

click

Figure 5.9: Left: Syntax tree after updating and first new click, with the
pointer pointing to the V2 node, Right: Screenshot after first click on vincit
(eng. conquer third person singular), showing a list of transitive verbs to
replace it with

5.1. USER INTERACTION 55

S
Cl

NP VP

PN V2 NP
PN

Gallia Galliam vincit

click
+ click

Figure 5.10: Left: Syntax tree after the second click, the pointer now pointing
to the VP node above the V2 node, Right: Screenshot after the second click
on vincit, with the suggestion list showing various types of verb phrases like
predicative expressions and intransitive verbs including the intended option
victus est

S
Cl

NP VP

PN VA A

Gallia victa est

Figure 5.11: Left: Syntax tree after replacing the whole VP subtree including
the V2 node with a new VP subtree, Right: Screenshot after updating the tree
and the sentence on the surface

S
Cl

NP VP

PN VA A

Gallia victa est

click
+ click

+ click
+ click

Figure 5.12: Left: Syntax tree after four clicks, the pointer pointing to the S
node at the root of the tree, Right: Screenshot after four clicks on est (eng.
be third person singular), showing the option to add the adverb saepe (eng.
often) which makes the sentence a proper translation of the sentence at the top

56 CHAPTER 5. LATIN LANGUAGE LEARNING

S

Adv S
Cl

NP VP

PN VA A

Gallia saepe victa est
Figure 5.13: Left: Syntax tree matching the abstract syntax tree in Figure 5.2,
Right: The result screen congratulating the user and showing the time and
clicks spent on the exercise

5.2 Improving the User Experience
One important aspect of modern language learning applications is the concept
of gamification (Deterding et al., 2011). It is the idea to enrich a serious task
with certain elements of a game to improve the motivation to solve this task.

Several approaches to gamification have been suggested including GameFlow
by Sweetser and Wyeth (2005) and MICE by Lafourcade (as described in Fort
et al. (2014, Section 4)). The GameFlow approach translates the more general
Flow concept (Csikszentmihalyi, 1990) to computer games. MICE on the other
hand was developed in the context of Games with a Purpose, a method to
include the general public into academic research (Von Ahn, 2006).

Both GameFlow and MICE list a set of criteria that help to make a task
more game-like and involving.

For GameFlow factors for games are: Concentration, Challenge, Player
skills, Control, Clear goals, Feedback, Immersion and Social interac-
tion. MICE is based on and an acronym for: Money and reward, Ideology
and interest, Constraint and retention and Ego and community.

Of these different factors we were able to integrate the following:

Concentration Minimize the distraction from the task

Challenge Provide a scoring schema

Control Provide an intuitive way to solve the task

Clear Goals Adopt a lesson structure

Immediate Feedback Include a coloring scheme to demonstrate progress

These already cover the majority of the eight parts of the GameFlow concept
and in comparison with the MICE method, we provide some kind of reward,
we support the players interest to learn a language, we give feedback.

Especially the lesson structure is essential to our task because it makes the
learning progress explicit. After finishing a set of exercises a lesson is considered
finished and the student can move on to the next lesson. That way it is always
clear where on the journey to learn the language the student is at the moment.

5.3. EVALUATION 57

Independent variables Dependent variables
Use of application (yes/no)
Previous knowledge (learner level) Learning outcome (translation speed)
Learner motivation Learner motivation (difference to start)
Use of application (usage time)
Dislike of computers

Table 5.1: Variables identified for our setup

More aspects of gamification are possible, especially including social aspects
to both increase competition but also collaboration, but have not yet been
included. These should be included at a later point because social aspects are
an important part both of GameFlow and MICE.

5.3 Evaluation
To both justify our work in the scientific context as well as to collect feedback
for improvement, we designed an experiment to evaluate our language learning
application integrated into a classroom setting. The main question to be
researched in this experiment is on the one hand to show a positive change in
the learning outcome but more importantly on the other hand that the learner
attitude can be influenced in a positive way.

Language teachers, especially for ancient languages, point out that anxiety
among students can be a serious threat to successful learning (Takahashi and
Takahashi, 2015). By providing a game-like approach we intend to target this
problem.

5.3.1 Experimental Design
In this section we describe the setup for an experiment to evaluate the MULLE
Latin learning application. The experiment is both within-subject and between-
subject and focuses within the language learner on the change in language
skills and learner’s attitude over the time of the experiment and compares the
results from a treatment group with one or more control groups.

We describe all relevant aspects for a valid experiment: the identified
variables, the general setup, the sampling of candidates and the evaluation of
relevant factors. Consequently we also describe the pilot for this experiment.

5.3.1.1 Variables

We identified independent and dependent variables relevant to the posed
questions. Both the task of language learning and the classroom setting provide
many potential aspects to an experiment which lead to various kinds of variables.
To only have the relevant variables influence the outcome of the experiment it
is necessary to control for all the other variables. The set of identified variables
can be seen in Table 5.1.

The most informative independent variable is the use of our application
compared to just the traditional teaching approach. Other variables are also
possible including the choice of user input and user interface.

58 CHAPTER 5. LATIN LANGUAGE LEARNING

After identifying the variables they have to be operationalised. Both
dependent variables are of interest but difficult to measure. The change in
learner motivation is very subjective and for a change in learning outcomes
a longitudinal study is required. We approximate a reliable measure for the
change in learning outcome by using timed placement test both in the beginning
and end of the experiment and measure a change in speed to solve the task. For
the learner motivation both a self-assessment in a user survey and individual
interviews can be conducted.

5.3.1.2 Setup

Other language learning systems like Duolingo have been evaluated over a longer
period in a closed setting under strongly controlled conditions and supervision
(Vesselinov and Grego, 2012). Instead we try to increase the openness and
reduce the time effort.

The experiment can be conducted online and the expected runtime is four
weeks. Within this time four different lessons will be made accessible, one
by one, week by week. Each participant is provided with anonymous user
credentials that help to identify a user within the system without connecting
them directly to private and sensitive information.

When logged in for the first time the user is asked to answer a user survey
in the form of the questionnaire seen in Figure 5.14. These answers can be uses
to control for background variables. The questionnaire also asserts the previous
knowledge and motivation in the beginning by self-assessment of the user. The
majority of the questions are closed questions with five possible answers in
a Likert scale ranging from ”Very good” to ”Very bad” or similar categories.
Alternatively an even number of choices can be used to enforce a clear decision
(Allen and Seaman, 2007). The questions are designed in a way that several
questions cover the same variables and cross-check for inconsistent answers.

After this survey the user takes a simple, timed placement test in which a
set of translation exercises from all four lessons are to be solved. Each exercise
also contains a timeout so that the result is either the time used to solve the
exercise or the fact that the user failed to do so. This test contributes to the
measure of previous knowledge and gives the base relative to which the change
in learning outcome can be measured.

After this introductory test the user has access to the system for the whole
time of the experiment to practice their translation skills. In the meantime
more data like the intensity of the system use is kept track of. This can be used
to correlate it to the other results and to contribute to individual interviews
by using stimulated recall (Fox-Turnbull, 2009).

At the end of the experiment a variation of the first step is repeated. This
again involves a modified version of the user survey (Figure 5.15) as well as a
second placement test. Finally, all the data gathered in the experiment has to
be analyzed.

5.3.1.3 Sampling

Depending on the location and the languages involved, the sampling question,
i.e. the selection of a suitable group of participants, can either be solved by
using the whole population, for example beginner Latin learners are not that

5.3. EVALUATION 59

common. In case of a large population more elaborate sampling methods would
be required.

The participants have to be split into several groups, one treatment group
that gets access to our application and one or more control groups. In the
simplest setup just one control group exists which follows the traditional
teaching approaches, in a more advanced setup also control groups that user
different language learning tools or some form of “placebo” can be introduced.

The separation into groups is a delicate matter and can either be solved in
a fair way by randomizing the assignment or several language classes on the
same level take the experiment at the same time and each complete class gets
assigned one of the groups. Random sampling however has the disadvantage
that it does not guarantee for representative sampling. One way of accounting
for these problems would be to shuffle the group assignments after some time.

5.3.1.4 Evaluation

For a meaningful experiment we have to guarantee for its suitability. This
includes validity and reliability as well as replicability. Validity again can be
separated into internal and external validity (Bryman, 2012, p. 69).

For internal validity a causal relationship between the change in learning
outcome as well as learner attitude and the use of the application has to
be shown. To do that, we compare the results in the treatment group with
the results in the control groups. Furthermore we have to control for the
background variables and check the plausibility of the student’s self-assessment.

External validity, the generalizability from this experiment to the general
case, depends on the independence of the sample of participants. This can be
solved by using reasonable sampling methods or, in the worst case, by using
the whole population.

The feature of reliability depends on the measures selected for the variables.
A measure has to be chosen in a way that repeated measurements do not result
in a change in the result. This itself depends on stability and internal reliability.

Following up on this, stability is hard to accomplish outside the natural
sciences, where for example the temperature should not be influenced signif-
icantly by measuring it. In experiments involving humans, stability is much
more of a challenge. Some measures are by their nature more stable than
others: Translation speed might vary, but only within a certain range, while
subjective self-assessment can vary a lot between two measurements depending
on external factors. So the challenge is to find a balance between stability and
applicability. The subjective features are measured in parallel questions with
multiple-indicator measure in the form of Likert-style question answering. In
combination with Cronbach α we can test for reliability. However, we also
combine them with more empirical and stable features like the placement tests.

By designing the experiment as objective as possible we aim for a high level
of reproducibility.

5.3.2 Pilot
Based on these design ideas for a complete experimental evaluation we con-
ducted a pilot in collaboration with a Latin teacher in an introductory course
for Latin on the university level.

60 CHAPTER 5. LATIN LANGUAGE LEARNING

In the beginning 6 students out of the total number of 10 students in the
course agreed to participate and answered the first questionnaire. Over the
next two weeks the students had access to a first lesson but due to a mismatch
between the material in the application and the syllabus none of the students
used this opportunity. After two weeks a second lesson was enabled and one
student started using the system. After four weeks, at the end of the course,
only 4 out of the 10 students were still in class, two of which were candidates
for the experiment and also answered the second questionnaire.

In retrospect we can identify several points that have to be improved for a
full experiment:

• A too short preparation time led to technical problems

• A mismatch between the teaching material and the syllabus lead to a
certain level of reluctance among the teacher and the students

• The complete population we could get candidates from was too small for
significant results

• Among students of history and classical antiquity there is an increased
aversion against using computers

Some points, like the aversion against computers, are hard to solve, but it
seems imperative to get access to a larger group of participants and to match
the teaching material with the syllabus. Both and some of the other problems
can be solved with a sufficient amount of preparation.

5.3. EVALUATION 61

Mandatory information:
Did you attend Latin classes
before?

Yes � No �

If you answered yes in the
previous question, where?

Gymnasieutbildning �

Grundläggande högskoleutbildning �
Private �
Other �
Very Good Good Neutral Bad Very Bad

How would you rate your
previous knowledge about
Latin?

� � � � �

How would you rate your
skills in translating Latin?

� � � � �

How would you rate your
skills in reading Latin?

� � � � �

How would you rate your
motivation to learn Latin?

� � � � �

How would you rate your
joy in translating Latin?

� � � � �

How would you rate your
joy in reading Latin?

� � � � �

How would you rate your
computer skills?

� � � � �

Completely
Agree

Agree Neutral Disagree Strongly
Disagree

I enjoy learning languages � � � � �
I would like to learn more
languages

� � � � �

I enjoy working with the
computer

� � � � �

I use(d) some software to
learn or practice a language

� � � � �

I think computers can be
useful in learning Latin

� � � � �

I think computers make the
life harder

� � � � �

I think I know all the lan-
guages I need

� � � � �

For what reason do you at-
tend this Latin class?
What other languages do/-
did you study?

Voluntary information:
0 - 18 19 - 30 31 - 49 50 - 69 70 +

Age � � � � �
Male Female Other Not

specified
Gender � � � �
First Language(s)

Figure 5.14: Questionnaire for user survey in the beginning

62 CHAPTER 5. LATIN LANGUAGE LEARNING

Mandatory information:
How would you rate your
knowledge about Latin?

� � � � �

How would you rate your
skills in translating Latin?

� � � � �

How would you rate your
skills in reading Latin?

� � � � �

How would you rate your
motivation to learn Latin?

� � � � �

How would you rate your
joy in translating Latin?

� � � � �

How would you rate your
joy in reading Latin?

� � � � �

Very Much A Lot Some A Little Not At All
How do you like the idea of
such an application

� � � � �

How much did you use the
application

� � � � �

If you used the application,
what did you like?
If you didn’t like the appli-
cation, why?
Other comments?

Figure 5.15: Questionnaire for user survey in the end

Chapter 6

Summary

64 CHAPTER 6. SUMMARY

To conclude this thesis we present a summary, both of the work we did
as well as additional topics that seem relevant for future exploration. In the
conclusion we show how we were able to address the research objectives posed
and presented in the introduction and move on from there to the list of relevant
and interesting topics that can be the foundation for future work.

We first revisit the work we have done. After that we move on to the large
potential of future work. That includes both theoretic and practical work in
our approach to language learning. Furthermore, work on the evaluation of
the Latin RGL will be a relevant future contribution.

6.1 Conclusion
We started the thesis with a list of research questions and the motivation
behind it. The main aspects of this work are the general description of a
language learning framework and a concrete implementation of these ideas for
the specific use case of teaching Latin.

This framework should have properties including being suitable for low-
resourced languages and providing a high degree of control and confidence. In
Chapter 3 we presented a language learning framework based on grammar-
backed and word-based sentence modification in combination with formal
grammars closely related to the concept of Controlled Natural Languages.
Using fully formalized grammars for language learning guarantees the intended
properties.

As a necessary prerequisite for the final application we describe the Latin
grammar as part of the Resource Grammar library in Chapter 4, which pro-
vides an indispensable resource for the development of our application-specific
grammars.

Based on these general ideas and in combination with the Latin grammar
as a resource we developed a concrete language learning application for Latin
that can be used in combination with the traditional closed classroom setting.
Important aspects including an experimental evaluation of the system have
been presented in Chapter 5.

Finally we can conclude that we addressed all research objectives we pre-
sented in the beginning. However, some very important points could not yet
be fully addressed, like the full evaluation which stays with high priority on
the list of topics for future research.

6.2 Future Work
Besides the most relevant task of conducting a full evaluation of our application,
we identified two main areas in which future work seems fruitful. That is on
the one hand work that is more theoretical in nature and on the other hand
work that directly improves the learning experience using MULLE. On a side
track the work on the Latin grammar will continue and a complete evaluation
of its quality will be required at some point.

All in all, even though we addressed all research objectives we presented
in the introduction, the project still has plenty of potential to grow in many
different directions.

6.2. FUTURE WORK 65

NP

PN

Chomsky

NP

Det

the

CN

idea

NP

Det

the

CN

Adj

green

CN

idea

Figure 6.1: The changes that lead to the tree on the bottom right should not
be part of the suggestions because it can be generated in the two separate steps
shown

6.2.1 Grammar Extraction
In the description of how we can extract grammars from a textbook lesson
in Section 3.3.2 we presented three steps from a text fragment to a lesson
grammar. The first step always requires some manual work to select the lesson
vocabulary and the second step works automatic given the resource grammar
and the vocabulary list. However, the third step seems to have potential for
future development. There are several different ways to extract grammar rules
from a set of syntax trees. Depending on the fine-grainedness of the grammar
rules the grammar can either be over-generating or over-specific. Here an
automatic process would be desirable that can find a good balance between
these two extremes.

6.2.2 Tree Generation
More theoretical work will focus on the grammar-based text modification. The
main problem with this method is the computational complexity of creating
candidate trees to create the suggestion menus and editing options. For the
small grammar sizes that were involved so far the problem could still be tackled
with rather simple methods. However, a well-founded algebra of tree operations
that prohibits the generation of unnecessary trees in the first place would be
desirable. The main group of unwanted trees are trees that can be created in a
“simpler” way, i.e. we want to exclude trees from generation that are equivalent
to trees that can be created by combining several simple steps. An example
can be seen in Figure 6.1, where we do not want to suggest the change from
the tree on the top to the tree on the bottom right because we can go via the
tree at the bottom left.

A different perspective on the tree generation would be to look at it as a
modified version of chart parsing, where as many nodes of the previous tree
as possible should remain in the chart while adding and changing nodes to
generate new trees. It also remains to be seen in the future how these different
perspectives are related to each other.

66 CHAPTER 6. SUMMARY

6.2.3 Exercise Types
The more practical aspects remaining for future work are manifold. One
direction involves the creation of additional exercise types. Translation exercises
may form a good foundation for language learning, especially for languages
where the primary learning outcome is translation competence. So especially
for Latin that seems sufficient. But also Latin as a strongly inflecting language
requires a focus on morphology. As we already alluded in Chapter 3 it is possible
to relax the grammatical restrictions on agreement between constituents in a
sentence to allow exercising morphological knowledge.

Another interesting form of language learning exercises would be a more
multi-modal and multi-medial exercise combining both text and images or text
and sound recordings, for example as an image description task or for listening
exercises. Even though a large focus of GF is on grammars for natural language
text, it is by far not limited to that. Several examples of grammars for graphics
and other media can be found, e.g. a grammar to generate fractals (Ranta,
2011, p. 196). A similar approach could be used to either generate images
including spatial relationships or to generate queries to find images with the
desired content.

6.2.4 Exercise Generation
Independent of the type of exercises, the task of exercise generation has to be
explored. To provide high flexibility and reliability without repetition requires
a way to automatically generate exercises in a “good” way. At the moment
a semi-supervised method, where a teacher selects a set of suitable exercises
from which we can generate more suitable exercises, seems most practical. The
problem even seems related to the selection of good examples in the creation
of lexica (Kilgarriff et al., 2008) even though there are most likely differences
between good examples for a lexicon and good language learning exercises.

6.2.5 Additional Languages
The broadest field of potential extensions is the addition of languages as well
as going from a closed classroom-related setting to a general and open online
setting. The first part might be especially useful for a wide-scale evaluation
because for most languages a larger population of language learners is available
than for Latin.

6.2.6 User Interaction
Some aspects of the user interaction are not yet very intuitive. Currently
several improvements are work in progress that help remedy these problems.
The first extension of the approach presented here is to represent the current
state of the system not with exactly one abstract syntax tree. Instead we use a
set of syntax trees which give rise to the same linearization as a representation
and operate on all of them in parallel. This also changes the goal from matching
two trees to selecting a string which gives rise to a set of trees, one of which is
the same as the tree given as the goal.

6.2. FUTURE WORK 67

A major challenge in the context of user interaction is the handling of
insertions. At the moment insertion is only possible on the level where the
syntax tree directly licenses it. This leads to the awkward situation in the
last step of the description in Section 5.1.1. Here the user would require some
knowledge about the syntax tree and the grammar to understand the behavior
of the system. An improved semantics of insertions that does not purely depend
on the syntax tree and the selected node could avoid this problem.

Finally, the challenge of presenting the suggestions to the user remains.
That involves on the one hand a good organization of the options within the
menu but also filtering out all unwanted options. That can involve several cases:
replacing a phrase by itself, replacement like the ones described in Section 6.2.2
which can be split into simpler parts but also suggestions that have already
been presented further down in the tree.

6.2.7 Additional Subjects
A bit more remote from the current work on Computer-Assisted Language
learning but also a promising field for future work would be to broaden our
perspective beyond natural languages and include work on teaching and learning
more formal types of languages like the language of mathematics, programming
languages or logic proof systems like natural deduction. There is already some
previous work using various approaches (Caprotti and Seppälä, 2006; Gerdes
et al., 2017; Villadsen et al., 2017), but it would be tempting to transform
them into the MUSTE framework to make it a more general authoring tool for
educational applications.

6.2.8 Grammar Testing for the RGL
As we continue working with Latin for the moment, the Latin resource grammar
also stays in the focus for future work and provides potential for extensions.
To speed up the process of extending the coverage of the abstract syntax,
an evaluation of the current status should be a first step. We can imagine
methods for evaluating the grammar on several levels. Now that we added
additional lexical resources like Whitacker’s Words dictionary (Whitaker, 2006)
we can compare the implementation of the morphology to the state-of-the-art
(Springmann et al., 2016).

Another promising approach to test GF Grammars in general is gftest
(Listenmaa and Claessen, 2018), a general test tool that adopts methods for
testing software to natural language grammars.

Finally, the access to corpora can help to see which of the missing construc-
tions are most common. This helps focusing the work on the more relevant
parts and can be supported by ud2gf (Ranta and Kolachina, 2017), a tool
to convert dependency trees from the Universal Dependency treebank into
GF abstract syntax trees. In combination with the inverse direction gf2ud
(Kolachina and Ranta, 2016) it is also possible to not only evaluate the ratio
of the treebank that is covered by the Latin RGL but also the precision by
comparing it back to the annotated treebank.

68 CHAPTER 6. SUMMARY

Bibliography

Elnaz Abolahrar. Multilingual Grammar-Based Language Training: Com-
putational Methods and Tools. Master’s thesis, Chalmers University of
Technology, 2011.

Geert Adriaens and Dirk Schreors. From COGRAM to ALCOGRAM: Toward a
Controlled English Grammar Checker. In Proceedings of the 14th Conference
on Computational Linguistics - Volume 2, COLING ’92, pages 595–601,
Stroudsburg, PA, USA, 1992. Association for Computational Linguistics.
URL https://doi.org/10.3115/992133.992163.

I. Elaine Allen and Christopher A. Seaman. Likert Scales and Data Analyses,
2007. URL http://asq.org/quality-progress/2007/07/statistics/
likert-scales-and-data-analyses.html. Accessed 08.08.2017.

David Bamman and Gregory Crane. The Design and Use of a Latin Dependency
Treebank. In Jan Hajic and Joakim Nivre, editors, Proceedings of the
Fifth International Treebanks and Linguistic Theories Conference, pages
67–78, Prag, 2006. Institute of Formal and Applied Linguistics, Faculty of
Mathematics and Physics, Charles University. URL http://hdl.handle.
net/10427/42684.

Stephen Bax. CALL — Past, Present and Future. System, 31(1):13 – 28,
2003. ISSN 0346-251X. URL http://www.sciencedirect.com/science/
article/pii/S0346251X02000714.

Karl Bayer and Josef Lindauer, editors. Lateinische Grammatik. C.C. Buch-
ners Verlag, J. Lindauer Verlag, R. Oldenburg Verlag, 2. Edition, auf der
Grundlage der Lateinischen Schulgrammatik von Landgraf-Leitschuh neu
bearbeitete edition, 1994.

John V. Becker, Daniek E. Hinton, and Hugh G. Anderson JR. Braille Com-
puter Monitor, March 2004. URL http://www.freepatentsonline.com/
6700553.html. US Patent 6700553.

Alan Bryman. Social Research Methods. Oxford University Press, Great
Clarendon Street, Oxford, 4th edition, 2012.

Olga Caprotti and Mika Seppälä. Multilingual Delivery of Online Tests in
Mathematics. In Proceedings of Online Educa, Berlin, 2006.

Noam Chomsky. Syntactic Structures. Mouton de Gruyter, Berlin, New York,
1957. Reprint 2002.

69

https://doi.org/10.3115/992133.992163
http://asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html
http://asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html
http://hdl.handle.net/10427/42684
http://hdl.handle.net/10427/42684
http://www.sciencedirect.com/science/article/pii/S0346251X02000714
http://www.sciencedirect.com/science/article/pii/S0346251X02000714
http://www.freepatentsonline.com/6700553.html
http://www.freepatentsonline.com/6700553.html

70 BIBLIOGRAPHY

Noam Chomsky. Lectures on Government and Binding. The Pisa Lectures.
Foris Publication, Dordrecht- Holland/Providence Rl- U.S.A., 1988.

Octavian Ciobanu. An Evaluation of the Ergonomics of the QWERTY Key-
boards. In Engineering Solutions and Technologies in Manufacturing, volume
657 of Applied Mechanics and Materials, pages 1051–1055. Trans Tech Publi-
cations, 11 2014. URL https://www.scientific.net/AMM.657.1051.

Computer History Museum. PLATO@50: PLATO Computer Learning System
50th Anniversary, June 2010. URL https://www.youtube.com/watch?v=
THoxsBw-UmM. Accessed 08.07.2018.

Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience. Harper
& Row, New York, 1990.

Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. From Game
Design Elements to Gamefulness: Defining ”Gamification”. In Proceedings of
the 15th International Academic MindTrek Conference: Envisioning Future
Media Environments, pages 9–15, New York, 2011. ACM.

Grégoire Détrez and Aarne Ranta. Smart Paradigms and the Predictability and
Complexity of Inflectional Morphology. In Proceedings of the 13th Conference
of the European Chapter of the Association for Computational Linguistics,
EACL ’12, pages 645–653, Stroudsburg, PA, USA, 2012. Association for
Computational Linguistics. URL http://dl.acm.org/citation.cfm?id=
2380816.2380895.

Sara Ehrling. Lingua Latina novo modo – En nybörjarbok i latin för univer-
sitetsbruk. University of Gothenburg, 2015.

Torsten Felzer, Ian Scott MacKenzie, and Stephan Rinderknecht. Efficient
Computer Operation for Users with a Neuromuscular Disease with OnScreen-
DualScribe. Journal of Interaction Science, 2(2), 2014.

Karën Fort, Bruno Guillaume, and Hadrien Chastant. Creating Zombilingo, a
Game with a Purpose for Dependency Syntax Annotation. In Proceedings of
the First International Workshop on Gamification for Information Retrieval,
GamifIR ’14, pages 2–6, New York, 2014. ACM. URL http://doi.acm.
org/10.1145/2594776.2594777.

Wendy Fox-Turnbull. Stimulated Recall using Autophotography. a Method for
Investigating Technology Education. Strengthening the position of technology
education in the curriculum, 2009.

Ignacio Garcia. Learning a Language for free while Translating the Web. does
Duolingo work? International Journal of English Linguistics, 3(1):19, 2013.
URL https://doi.org/10.5539/ijel.v3n1p19.

Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas van Binsbergen.
Ask-Elle: an Adaptable Programming Tutor for Haskell Giving Automated
Feedback. International Journal of Artificial Intelligence in Education, 27(1):
65–100, Mar 2017. URL https://doi.org/10.1007/s40593-015-0080-x.

https://www.scientific.net/AMM.657.1051
https://www.youtube.com/watch?v=THoxsBw-UmM
https://www.youtube.com/watch?v=THoxsBw-UmM
http://dl.acm.org/citation.cfm?id=2380816.2380895
http://dl.acm.org/citation.cfm?id=2380816.2380895
http://doi.acm.org/10.1145/2594776.2594777
http://doi.acm.org/10.1145/2594776.2594777
https://doi.org/10.5539/ijel.v3n1p19
https://doi.org/10.1007/s40593-015-0080-x

BIBLIOGRAPHY 71

Gregory R. Crane, editor. Perseus Digital Library, 2018. URL http://www.
perseus.tufts.edu. Accessed 09.06.2018.

Normunds Gruzitis and Dana Dannélls. A multilingual FrameNet-based
Grammar and Lexicon for Controlled Natural Language. Language Re-
sources and Evaluation, 51(1):37–66, Mar 2017. ISSN 1574-0218. URL
https://doi.org/10.1007/s10579-015-9321-8.

André Kenji Horie. Rewriting Duolingo’s Engine in Scala. http://making.
duolingo.com/rewriting-duolingos-engine-in-scala, January 2017.
Accessed 04.04.2018.

Peter Høeg. Miss Smilla’s feeling for snow. Harvill, London, 1993a. Translation
by F. David.

Peter Høeg. Fröken Smillas känsla för snö. Nordstedts, Stockholm, 1993b.
Reprint 1997, Translation Ann-Mari Seeberg.

Peter Høeg. Frøken Smillas fornemmelse for sne. Rosinante, København, 6.
paperback edition, 2006.

Hasan Kaya and Gülşen Eryiğit. Using Finite State Transducers for Helping
Foreign Language Learning. In Proceedings of the 2nd Workshop on Natural
Language Processing Techniques for Educational Applications, pages 94–98,
2015.

Adam Kilgarriff, Miloš Husák, Katy McAdam, Michael Rundell, and Pavel
Rychlý. GDEX: Automatically Finding Good Dictionary Examples in a
Corpus. In Elisenda Bernal and Janet DeCesaris, editors, Proceedings of the
13th EURALEX International Congress, pages 425–432, Barcelona, Spain,
jul 2008. Institut Universitari de Linguistica Aplicada, Universitat Pompeu
Fabra.

Martin T. King, Dale L. Grover, Clifford A. Kushler, and Cheryl A. Grunbock.
Reduced Keyboard Disambiguating System, January 2000. URL http:
//www.freepatentsonline.com/6011554.html. US Patent 6011554.

Prasanth Kolachina and Aarne Ranta. From Abstract Syntax to Universal
Dependencies. In Linguistic Issues in Language Technology (LiLT), volume 13.
CSLI, Stanford, August 2016. URL http://csli-lilt.stanford.edu/ojs/
index.php/LiLT/article/download/71/73.

Tobias Kuhn. A Survey and Classification of Controlled Natural Languages.
Computational Linguistics, 40(1):121–170, March 2014.

Anuj Kumar, Tim Paek, and Bongshin Lee. Voice Typing: A New Speech
Interaction Model for Dictation on Touchscreen Devices. In Proceedings of
CHI 2012, SIGCHI Conference on Human Factors in Computing Systems,
Austin, Texas, 2012.

Clifford A. Kushler and Randal J. Marsden. System and Method for Con-
tinuous Stroke Word-based Text Input, July 2004. URL http://www.
freepatentsonline.com/y2004/0140956.html. US Patent 20040140956.

http://www.perseus.tufts.edu
http://www.perseus.tufts.edu
https://doi.org/10.1007/s10579-015-9321-8
http://making.duolingo.com/rewriting-duolingos-engine-in-scala
http://making.duolingo.com/rewriting-duolingos-engine-in-scala
http://www.freepatentsonline.com/6011554.html
http://www.freepatentsonline.com/6011554.html
http://csli-lilt.stanford.edu/ojs/index.php/LiLT/article/download/71/73
http://csli-lilt.stanford.edu/ojs/index.php/LiLT/article/download/71/73
http://www.freepatentsonline.com/y2004/0140956.html
http://www.freepatentsonline.com/y2004/0140956.html

72 BIBLIOGRAPHY

Herbert Lange. Erstellung einer Grammatik für das Lateinische im ”Grammat-
ical Framework”. Master’s thesis, Ludwig-Maximilians-Universität, Munich,
2013.

Herbert Lange. Implementation of a Latin Grammar in Grammatical Frame-
work. In DATeCH2017, Göttingen, Germany, 2017.

Herbert Lange and Peter Ljunglöf. MULLE: A Grammar-based Latin Lan-
guage Learning Tool to Supplement the Classroom Setting. In Proceed-
ings of the 5th Workshop on Natural Language Processing Techniques
for Educational Applications (NLPTEA ’18), pages 108–112, Melbourn.
Australia, 2018a. Association for Computational Linguistics. URL http:
//aclweb.org/anthology/W18-3715.

Herbert Lange and Peter Ljunglöf. Putting Control into Language Learning.
In SIGCNL 2018, Maynooth, Ireland, 2018b.

Michael Levy. Computer-Assisted Language Learning. Context and Conceptual-
ization. Claredon Paperback, Oxford, 1997.

Josef Lindauer, Klaus Westphalen, and Bernd Kreiler. Roma, Ausgabe C für
Bayern, Bd.1. C.C. Buchner, 2000.

Inari Listenmaa and Koen Claessen. Automatic Test Suite Generation for
PMCFG Grammars. In Proceedings of the Fifth Workshop on Natural
Language and Computer Science, Oxford, 2018. URL https://doi.org/10.
29007/3p48.

Peter Ljunglöf. Expressivity and Complexity of the Grammatical Framework.
PhD thesis, Göteborg University, 2004.

Peter Ljunglöf. Editing Syntax Trees on the Surface. In Nodalida’11: 18th
Nordic Conference of Computational Linguistics, Rīga, Latvia, 2011.

Lisa N. Michaud. King Alfred: A Translation Environment for Learners of
Anglo-Saxon English. In Proceedings of the Third Workshop on Innovative
Use of NLP for Building Educational Applications, pages 19–26, Columbus,
Ohio, June 2008. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/W08-0903.

Richard Montague. English as a formal language. In Richmond H. Thomason,
editor, Formal Philosophy. Selected Papers of Richard Montague, pages
188–221, New Haven and London, 1974. Yale University Press.

Maria Moritz, Barbara Pavlek, Greta Franzini, and Gregory Crane. Sentence
Shortening via Morpho-Syntactic Annotated Data in Historical Language
Learning. Journal on Computing and Cultural Heritage (JOCCH), 9(1):3,
2016.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg,
Jan Hajič, Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. Universal Depen-
dencies v1: A Multilingual Treebank Collection. In Proceedings of the Tenth

http://aclweb.org/anthology/W18-3715
http://aclweb.org/anthology/W18-3715
https://doi.org/10.29007/3p48
https://doi.org/10.29007/3p48
http://www.aclweb.org/anthology/W08-0903
http://www.aclweb.org/anthology/W08-0903

BIBLIOGRAPHY 73

International Conference on Language Resources and Evaluation (LREC
2016), 2016. URL http://www.lrec-conf.org/proceedings/lrec2016/
pdf/348_Paper.pdf.

Charles Kay Ogden. Basic English: A General Introduction with Rules and
Grammar. Paul Treber, London, 1930.

Thomas Edward Payne. Describing Morphosyntax : A Guide for Field Linguists.
Cambridge University Press, Cambridge, 1997.

Harm Pinkster. Latijnse syntaxis en semantiek. Grüner, Amsterdam, 1984.
Revised 1988 Lateinische Syntax und Semantik, Tübingen: Francke, 1990
Latin Syntax and Semantics, London: Routledge.

Harm Pinkster. The Oxford Latin Syntax. Volume I: The Simple Clause. Oxford
University Press, Oxford, 2015.

Aarne Ranta. The GF Resource Grammar Library. Linguistic Issues in
Language Technology, 2(2), December 2009. URL https://journals.
linguisticsociety.org/elanguage/lilt/article/view/214/158.html.

Aarne Ranta. Grammatical Framework: Programming with Multilingual Gram-
mars. CSLI Publications, Stanford, 2011.

Aarne Ranta and Prasanth Kolachina. From Universal Dependencies to Abstract
Syntax. In Proceedings of the 1st Workshop on Universal Dependencies.
Linköping University Electronic Press, May 2017.

Aarne Ranta, Ramona Enache, and Grégoire Détrez. Controlled Language
for Everyday Use: The MOLTO Phrasebook. In Michael Rosner and Nor-
bert E. Fuchs, editors, Controlled Natural Language, pages 115–136, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

Hanumant Redkar, Sandhya Singh, Meenakshi Somasundaram, Dhara Gora-
sia, Malhar Kulkarni, and Pushpak Bhattacharyya. Hindi Shabdamitra:
A WordNet based E-Learning Tool for Language Learning and Teach-
ing. In Proceedings of the 4th Workshop on Natural Language Pro-
cessing Techniques for Educational Applications (NLPTEA 2017), pages
23–28. Asian Federation of Natural Language Processing, 2017. URL
http://aclweb.org/anthology/W17-5904.

Hans Reichenbach. Elements of Symbolic Logic. The Macmillan Company, New
York, 1947.

Sandra J. Savignon. Communicative Language Teaching. Theory
Into Practice, 26(4):235–242, 1987. URL https://doi.org/10.1080/
00405848709543281.

Asad Sayeed and Stan Szpakowicz. Developing a Minimalist Parser for Free
Word Order Languages with Discontinuous Constituency. In Rafael Muñoz
José Luis Vicedo, Patricio Martínez-Barco and Maximiliano Saiz, editors, Ad-
vances in Natural Language Processing, 4th international conference (EsTAL),
Lecture Notes in Computer Science 3230. Springer-Verlag, 2004.

http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
https://journals.linguisticsociety.org/elanguage/lilt/article/view/214/158.html
https://journals.linguisticsociety.org/elanguage/lilt/article/view/214/158.html
http://aclweb.org/anthology/W17-5904
https://doi.org/10.1080/00405848709543281
https://doi.org/10.1080/00405848709543281

74 BIBLIOGRAPHY

Uwe Springmann, Helmut Schmid, and Dietmar Najock. LatMor: A Latin
Finite-State Morphology Encoding Vowel Quantity. Open Linguistics, 2(1):
386–392, 2016. URL https://doi.org/10.1515/opli-2016-0019.

Mark Steedman. Combinatory Categorial Grammar. An Introduction. Draft
August 25th, 2016, 2016.

Penelope Sweetser and Peta Wyeth. GameFlow: A Model for Evaluating Player
Enjoyment in Games. Computers in Entertainment (CIE), 3(3):3–3, July
2005. URL https://dl.acm.org/citation.cfm?id=1077253.

Ayumi Takahashi and Hideki Takahashi. Anxiety and Self-Confidence in
Ancient Language Studies. Niigata University Language and Culture Research
Department Bulletin, 8 2015.

Roumen Vesselinov and John Grego. Duolingo Effectiveness Study. Technical
report, 12 2012. URL http://static.duolingo.com/s3/DuolingoReport_
Final.pdf. Accessed 16.10.2017.

Vicipaedia. Libera Enceclopaedia, 2018. URL https://la.wikipedia.org/
wiki/Vicipaedia:Pagina_prima. Accessed 09.07.2018.

Jørgen Villadsen, Alexander Birch Jensen, and Anders Schlichtkrull. NaDeA:
A Natural Deduction Assistant with a Formalization in Isabelle. IfCoLog
Journal of Logics and their Applications, 4(1):55–82, 2017.

Elena Volodina, Ildikó Pilán, Lars Borin, and Therese Lindström Tiedemann.
A Flexible Language Learning Platform Based on Language Resources and
Web Services. In Nicoletta Calzolari (Conference Chair), Khalid Choukri,
Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion
Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland, may 2014. European Language Resources Association
(ELRA).

Luis Von Ahn. Games with a Purpose. IEEE Computer, 39(6):92–94, 2006.

David J. Ward, Alan F. Blackwell Y, and David J. C. Mackay Z. Dasher:
A Gesture-Driven Data Entry Interface for Mobile Computing Human-
Computer Interaction. Human-Computer Interaction, page 228, 2002.

Mark Warschauer. Technological Change and the Future of CALL. In S. Fotos
& C. Brown, editor, New Perspectives on CALL for Second and Foreign
Language Classrooms, chapter Technological change and the future of CALL.,
pages 15–25. Lawrence Erlbaum Associates., Mahwah, NJ, 2004.

William Whitaker. Words. Latin-English Dictionary Program, 2006. URL
http://archives.nd.edu/whitaker/words.htm. Accessed 15.7.2018.

Mary McGee Wood. Categorial Grammar. Linguistic Theory Guides edited by
Richard Hudson. Routledge, London and New York, 1993.

https://doi.org/10.1515/opli-2016-0019.
https://dl.acm.org/citation.cfm?id=1077253
http://static.duolingo.com/s3/DuolingoReport_Final.pdf
http://static.duolingo.com/s3/DuolingoReport_Final.pdf
https://la.wikipedia.org/wiki/Vicipaedia:Pagina_prima
https://la.wikipedia.org/wiki/Vicipaedia:Pagina_prima
http://archives.nd.edu/whitaker/words.htm

	Abstract
	Acknowledgement
	List of Publications
	Introduction
	This Thesis
	Structure and Contributions

	Background
	Text Input and Modification
	Controlled Natural Languages
	Latin Resources
	Computer-Assisted Language Learning

	Grammar-based Language learning
	Grammatical Framework
	From Word-based Text Editing to Translation Exercises
	Textbook Lessons
	Exercise Generation
	Suitable Grammars
	Teaching Concept

	The Latin Resource Grammar Library
	Grammar Components
	Morphology
	Lexicon
	Grammar rules
	Status and Extensions

	Latin Language Learning
	User Interaction
	Improving the User Experience
	Evaluation

	Summary
	Conclusion
	Future Work

	Bibliography

