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1 Introduction

In Lau et al. (2017) we present two claims, which we support through two sets
of experiments. The first claim is that speaker’s acceptability judgments for sen-
tences are intrinsically gradient rather than binary. The second is that probabilistic
machine learning models trained on corpora of naturally occurring text are able to
predict human acceptability judgments with an encouraging degree of accuracy.

We motivated our first claim with two types of crowd source annotations, using
Amazon Mechanical Turk. For the first we used round trip machine translation to
introduce a variety of infelicities into test sets of randomly selected sentences from
the British National Corpus (BNC), and from Wikipedia. We had Turkers annotate
these sentences using a variety of binary and gradient scoring systems. We ran
these experiments in English, Spanish, German, and Russian. In the second case
we used crowd sourcing to annotate the examples in Adger (2003).1 Both anno-
tations clearly exhibited a wide range of gradience, both for mean and individual
judgments.

In the second set of experiments we trained a number of machine learning lan-
guage models on BNC and Wikipedia corpora, respectively. We applied a sequence
of alternative scoring functions to map the logprob values that the models assigned
to sentences in a test set to an acceptability rating. These functions normalise prob-
ability values by neutralising the influence of word frequency and sentence length.
Some of them also track the effect of particular lexical items on the probability of
a sentence in which they occur.

We argue in detail that, for formal and empirical reasons, neither grammatical-
ity (a theoretical concept), nor acceptability (an observable and measurable prop-
erty) can be directly reduced to probability. Instead, we map probability distri-

1We annotated both the original set of examples, and a subset filtered by experts to remove cases
of semantic and pragmatic anomaly.

1



butions over sentences into acceptability values using our scoring functions. Our
models assign probability based acceptability values to sentences.

We tested our models, enriched with scoring functions, on crowd source anno-
tated Wikipedia test sets in English, Spanish, German, and Russian. Our best model
for these experiments was a simple vanilla Recurrent Neural Network (RNN), and
our most robust scoring function was SLOR (Pauls and Klein (2012)).

(1) SLOR =
logPm(ξ)− logPu(ξ)

|ξ|

where ξ = sentence, Pm(ξ) = the probability of the sentence given by the model,
Pu(ξ) = the unigram probability of the sentence, and |ξ| = the length of the sen-
tence.

The Pearson coefficient correlations that the predictions of our RNN + SLOR
achieved are: English 0.57, German 0.69, Spanish 0.6, and Russian 0.61. These
are strong correlations.

We also tested our models on the annotated filtered Adger test set, using both
BNC and Wikepedia trained versions. Our correlations were lower for this set.
Neither the RNN nor SLOR did well. Our best performing model was our two-
tier Hidden Bayesian Hidden Markov Model combined with one of our lexicalised
scoring functions, trained on English Wikipedia text. It achieved a Pearson corre-
lation of 0.49. We speculated that this difference in performance of our models on
the two types of data sets may be due to the very specific snd sequence local nature
of the syntactic ill formedness that linguists examples exemplify, as opposed to the
broader range of infelicities that round trip machine translation introduces.

The general conclusion that we draw from our experiments is that probabilis-
tically based language models are able to capture the gradience that is pervasive
in sentence acceptability judgments, and that they show considerable promise in
predicting these judgments. We noted that classical binary theories of grammar
cannot accommodate gradience, but must consign it to external processing and per-
formance factors. While this is a reasonable move in principle, an implemented,
integrated theory that combines binary grammar with these factors is required in
order to compare this approach with one that takes grammatical knowledge to be
probabilistic in nature, and so appropriately represented by the sorts of models
that we use. Unfortunately, no such rigorous integrated theory has been proposed
over the history of theoretical linguistics, despite the central role that acceptability
judgments play in syntactic theory.

Moreover, to the best of our knowledge, no wide coverage, domain general bi-
nary grammar which can be tested on the sorts of test sets that we employ, or on
test sets of linguists’ examples for that matter, has ever been constructed. There-
fore, it is not possible to compare our models, or other machine learning based
language models, with a categorical grammar for performance in predicting hu-
man judgments, even for accuracy of (forced) binary classification. There is some
irony in the tenacity with which (many) theoretical linguists insist on describing
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their frameworks as ”generative” when these do not produce/recognise strings or
structures.2 By contrast, machine learning based language models are fully gener-
ative.

2 Sprouse et al. (2018)’s Critical Comments

Sprouse et al. (2018) (SYIFB) argue that our models capture gradience in human
acceptability ratings at the cost of accuracy in binary classification of sentences
as acceptable or unacceptable. They support this argument by training two of our
models, trigrams + SLOR and the RNN + SLOR, on the BNC and then testing
them on three crowd source annotated test sets.

The first is Sprouse et al. (2013)’s set of 150 sentence pairs (with a grammat-
ical and an ungrammatical sentence in each pair) selected from Linguistic Inquiry
articles (LI). The second test set contains Adger (2003)’s example pairs. The third
consists of the 120 permutations of the words in Chomsky (1957)’s Colorless green
Ideas sleep furiously (CGI). They report that our RNN + SLOR achieves Pearson
correlations of 0.36 for the mean human ratings of the LI test set, 0.55 for Adger’s
set, and 0.44 for CGI.3

They then use the models as binary classifiers for the LI and Adger sets, com-
paring their performance with that of what they describe as a ”binary grammar”.
The latter is a measure of the Pearson correlation between the linguists’ judgments,
reported in the LI articles and Adger’s textbook, with the mean crowd source ac-
ceptability ratings of these sentences. While the Pearson r scores of the RNN are
0.4 for LI and 0.51 for Adger, SYIFB’s binary grammar metric achieves 0.71 for
the former and 0.87 for the latter. This is the evidence that SYIFB offer for their
claim that our models perform badly in binary acceptability classification.

Finally, they asses our models against the crowd sourced judgments for accu-
racy in binary classification of sentences. They find that the RNN achieves 76%
accuracy for LI, 88% for Adger, and 88% for CGI (they report these as error rates).

There are a number of significant inaccuracies in SYIFB’s description of our
work. Three examples of these are as follows. First, they pass over the fact that
most of our training and experimental work was on Wikipedia text rather than the
BNC, and they restrict their own experiments to training our models on the latter.

2There are, of course, wide coverage grammar driven parsers, many of them probabilistic. How-
ever these are generally domain and task specific. They are not designed to encode human syntactic
knowledge in the broad, robust sense under discussion in our paper. One such grammar is the Stan-
ford PCFG (Klein and Manning (2003a,b)), which we tested on our annotated sets. Predictably, its
performance was far below that of most of our models. But given the design, purpose, and training of
the Stanford PCFG, these results cannot be taken as the basis for a meaningful comparison between
our probabilistic view of grammar and the classical categorical approach.

3While the performance of the trigam + SLOR model that SYIFB report tends to be lower than
the RNN + SLOR, it does not do that badly by comparison. However, we used it as a baseline in
our original work. Given its well known limitations in expressive power, we did not intend it to be a
serious candidate for modelling linguistic knowledge. Therefore, we will limit ourselves to SYIFB’s
results for the RNN.
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We found that using Wikipedia for training generally improved the performance of
our models across test sets. Second, they do not address the results of our own ex-
periments with Adger’s examples (interestingly, their results for the RNN + SLOR
were better than ours in this case). Finally, they do not take account of our pro-
cedures for setting an upper bound less than 1 on the correlation metric used to
assess the performance of a model for the acceptability prediction task. It should
be a grounded estimate of the maximal correspondence one can expect between
the judgments of an individual human annotator and the mean scores expressing
aggregate crowd source ratings, which cannot not, in general, be 1.

We will pass over these, and other problems, in order to focus on what we take
to be the main difficulty with SYIFB’s argument. The ”binary grammar metric”
which they use as a standard of comparison for assessing our model’s performance
is neither a grammar nor a model. It is, in fact, a version of a one annotator vs the
rest correlation that we propose in our paper to estimate an upper bound on any
models’ expected performance. SYIFB imply that it is an idealised, if unspecified,
categorical grammaticality classifier. But this involves positing an underlying cat-
egorial grammar from which the linguists’ judgments in LI and Adger are derived.
To do this is straightforwardly circular, given that the existence of such a grammar
is the question at issue in this discussion.

But then SYIFB’s claim that we lose binary acceptability accuracy has no force.
We assess how well any model predicts acceptability, measured in gradient or bi-
nary terms, relative to human judgments, and we evaluate it compared to alterna-
tive models applied to the same task. SYIFB have not tested our models against a
categorical alternative, as they do not have such a model.

It is worth considering two additional points. First, if we take SYIFB’s ”binary
metric” r scores for LI and Adger as upper bounds on the expected performance of
any model on these sets, then we can normalise the RNN + SLOR r-scores by this
standard. This gives us normalised RNN Pearson correlations of 0.56 for LI and
0.58 for Adger, which are fairly strong.

Second, it is important to recall that our models were trained on one sort of
corpus and tested on an entirely different kind of text. SYIFB trained on the BNC,
and they tested on pairs of hand crafted linguists’ examples. The fact that our
model did as well as SYIFB report that it did is an indication of its domain general
robustness. Should a wide coverage implemented categorical grammar, of the type
that SYIFB assume, ever emerge, it will be interesting to see how well it does
on the annotated round trip MT test sets that we constructed from the BNC and
Wikipedia to assess our models.

3 Some Recent Work on DNN Modelling of Syntactic Knowl-
edge

Common to SYIFB and our work is the assumption that the extent to which prob-
abilistic machine learning models can converge on human performance in cogni-
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tively interesting tasks like sentence acceptability rating is an entirely open empir-
ical question. Most of the progress made in this and related areas in recent years
has involved the application of deep neural networks (DNNs), and, in particular,
LSTM RNNs (Hochreiter and Schmidhuber (1997); Mikolov et al. (2010)) to these
tasks.

Warstadt et al. (2018) (WSB) have assembled a set of 10,657 linguists’ sen-
tences labelled for grammaticality/ungrammaticality, which they refer to as the
Corpus of Linguistic Acceptability (CoLA). They extend CoLA to include ”out of
domain” sentences randomly selected from syntax textbooks and research articles.
They use five linguistics PhD students to rate a subset of 200 sentences of CoLA
for (binary) acceptability value, and they find that the majority annotator scores
diverge from the linguists labels for 13% of the subcorpus.4

WSB do semi-supervised learning for a variety of LSTM models by first train-
ing them on the sentences of the BNC and ill formed variants of these sentences
derived by permutation. They use rich (pre-trained) word embeddings in this part
of the training process. They then transfer the sentence vectors obtained by this
part of the learning process to train a binary classifier on their linguists examples
for part of CoLA and test it on the remainder. They also compare the performance
of their LSTMs with our RNN, using, alternately, SLOR and one of our lexical uni-
gram scoring functions. Unsurprisingly, their LSTM models outperform the RNN,
although the latter does quite well on the out of domain part of the CoLA test set.

They also look at the performance of each model for five types of syntactic
phenomena. Interestingly, our RNN out performs their LSTMs for three of the five
constructions that they consider.

As WSB observe, while the LSTMs (and our RNN) achieve results well above
robust baselines on the acceptability task, they are still a good distance from human
performance.

Linzen et al. (2016); Bernardy and Lappin (2017); Gulordava et al. (2018)
present successive studies of the capacity of LSTMs to learn subject-verb agree-
ment, using both supervised and unsupervised (neural language model) learning.
The first two papers focus on English. The third deals with agreement in English,
Hebrew, Italian, and Russian.

Each of the latter two studies reports a significant improvement in performance
of an LSTM model over its predecessor on the agreement recognition task, both
in supervised and unsupervised learning mode. Gulordava et al. (2018) test their
LSTM language model against human annotation for Italian and find that it ap-
proaches human performance.

4Regardless of whether we take the linguists’ judgments (as annotated in the sentences of CoLA)
or the majority vote aggregate of the five linguistics PhD students as our gold standard, this is a
comparatively high rate of divergence from that standard. This once again raises the question of the
reliability of linguists’ grammaticality judgments as evidence for syntactic theories. See Gibson and
Fedorenko (2013); Sprouse and Almeida (2013); Gibson et al. (2013) for opposing views on this
question.

5



4 What Conclusions Can We Draw from this Work?

Both SYIFB and WSB suggest that if we should discover that it is necessary to
enrich the training data of machine learning systems to include symbolic features
such as part of speech (POS) tags or syntactic trees, then these features will corre-
spond to the innate domain specific learning biases that we must assume as condi-
tions of human language acquisition. In their view, these biases will be the learning
theoretic content of an innate Universal Grammar (UG). In fact this claim is not at
all warranted.

ML methods can produce accurate POS taggers (see, for example, Clark (2003)).
Similarly, Clark (2013) shows that it is possible to induce tree structures on string
inputs through distributional learning, for a subset of Context-Free languages. Cur-
rent work seeks to extend these results to a subclass of Mildly Context Free lan-
guages that corresponds to the class of natural languages in expressive power.
Therefore, even if it should emerge that ML models require symbolic feature an-
notation of linguistic data in order approximate human performance, it does not
follow that a mutli-task system could not learn these features by the same sort of
domain general learning procedures that drive ML in other domains.

The history of linguistics and cognitive science is replete with arguments from
the limitations of a particular class of models to the non-viability of the entire
approach to learning and representation that these models exemplify. In several in-
fluential cases these arguments are unsound. Three particularly relevant examples
of his pattern are as follows.

In the first case Chomsky (1957) observes that simple probabilistic bigram
models that use raw frequency counts of lexical items assign nil probability to
both (2)a and (2)b.

(2) a. Colourless green ideas sleep furiously.

b. Furiously sleep ideas green colourlessly.

(2)a is grammatical, if meaningless, while (2)b is a random word list. He con-
cludes that probabilistic models cannot capture grammaticality. For the purpose of
this discussion we can identify grammaticality with acceptability. The view that
Chomsky’s observation entails that no probabilistic characterisation of grammati-
cality can succeed has been widely accepted among theoretical linguists over many
years.

Pereira (2000) shows that this argument does not go through. If bigram models
are extended to include smoothing for unseen events, and hidden variables for word
classes (identified from the data through word distributions), then a bigram model
trained on newspaper text assigns a significantly higher probability value to (2)a
than (2)b.5

5See Lappin and Shieber (2007); Clark and Lappin (2011) for discussion of Pereira’s criticism of
Chomsky’s argument against a probabilistic characterisation of grammaticality.
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SYIFB acknowledge that Pereira (2000) demonstrates the untenability of Chom-
sky’s argument against probabilistic models of grammaticality in general. Oddly,
at certain points of their paper, they seem to suggest that the argument continues
to have force. Clearly it does not, beyond the narrow and uninteresting class of
models to which it applies.

Ngrams are too weak to express the syntactic properties of natural languages
because they cannot represent long distance dependencies over more than n items
in a sequence, not because of their probabilistic nature. More powerful probabilis-
tic models avoid both the limitation that Chomsky observed, and the problem of
long distance dependencies. LSTMs have done fairly well in learning certain types
of such dependency, as the work reviewed in Section 3 indicates.

The second example concerns Gold (1967)’s Identification in the Limit (IIL)
paradigm for learning. Gold shows that, given IIL and presentations of positive
evidence only, a learner can acquire the class of finite languages and a finite class
of (possibly infinite) languages, but not a suprafinite class, which contains the class
of finite languages and at least one infinite language, Therefore, on this learning
paradigm none of the language classes of the Chomsky Hierarchy are learnable
through induction from positive evidence.

Some advocates of UG take Gold’s results to demonstrate that strong innate,
domain specific constraints on learning are a necessary condition for human lan-
guage acquisition (see, for example Crain and Thornton (1998)). In fact this is
not the case. Gold’s paradigm relies on a number of highly implausible assump-
tions concerning the nature of learning, and the evidence available to the language
learner. When IIL is replaced by models specified in terms of a more realistic view
of the learning process, then it is possible to prove that a much richer class of lan-
guages (and of grammars) can be efficiently acquired through data driven induction
procedures. These models do not posit strong domain specific learning biases of
the kind encoded in UG. Clark and Lappin (2011, 2013) offer detailed discussions
of IIL and alternative learning models.

Finally, the third instance of an over reaching argument is Fodor and Pylyshyn
(1988); Fodor (2000)’s critique of connectionism. They point out the serious limi-
tations in the learning abilities of simple feed forward neural networks with a single
layer of hidden units, and back propagation to set the values of the units’ weights.
On the basis of these limitations they conclude that neural networks in general are
incapable of acquiring human level knowledge in most AI applications, particu-
larly in natural language processing. Once again, the argument is unsound. While
simple first generation neural networks are indeed very restricted in their learning
performance, multi-level DNNs with more complex architectures have achieved
striking results across a wide range of tasks, including several areas of NLP.

It is clear that work on DNN models for the learning and representation of nat-
ural language is still in its infancy. While considerable progress has been made,
these models do not yet converge on human linguistic capacities in most cogni-
tively interesting tasks. It is reasonable to expect that entirely new types of machine
learning architectures will replace current DNNs, and that these may well yield
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significant gains in modelling ability across a range of linguistic applications. This
has already happened in machine translation, where statistical MT has given way
to DNN LM driven MT, with a dramatic improvement in quality. In other areas of
ML new types of DNN are now being proposed which may transform learning and
performance in a variety of AI domains.6

At this point we have no way of estimating the possibility of machine learning
methods approaching human level knowledge of the properties of natural language.
The question of whether they can do so remains entirely open. It is certainly prov-
ing to be a fruitful area of research. ML models are precisely specified and im-
plemented. They make clear predictions, and their performance can be evaluated
in quantitative terms against chosen baselines and alternative models. By design-
ing and testing such models we obtain insight into which learning procedures can
achieve relative success for a particular set of tasks corresponding to a given human
cognitive ability.

We welcome SYIFB’s comments on our paper. We appreciate the fact that they
take seriously the issues that we address there, which we see as a very encouraging
development in linguistics. In order to move the discussion forward it is necessary
for advocates of a categorial grammar, derived from a strong bias UG view of
language acquisition, to produce a genuine computational model that provides a
non-trivial classifier for acceptability. It is only when such a system is available
that we can compare it to the ML models that we and other computational linguists
are using to acquire and represent linguistic knowledge.
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