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Abstract

This paper seeks to examine the effect of in-
cluding background knowledge in the form of
character pre-trained neural language model
(LM), and data bootstrapping to overcome the
problem of unbalanced limited resources. As a
test, we explore the task of language identifica-
tion in mixed-language short non-edited texts
with an under-resourced language, namely the
case of Algerian Arabic for which both la-
belled and unlabelled data are limited. We
compare the performance of two traditional
machine learning methods and a deep neural
networks (DNNs) model. The results show
that overall DNNs perform better on labelled
data for the majority categories and struggle
with the minority ones. While the effect of
the untokenised and unlabelled data encoded
as LM differs for each category, bootstrap-
ping, however, improves the performance of
all systems and all categories. These methods
are language independent and could be gener-
alised to other under-resourced languages for
which a small labelled data and a larger unla-
belled data are available.

1 Introduction

Most Natural Language Processing (NLP) tools
are generally designed to deal with monolingual
texts with more or less standardised spelling.
However, users in social media, especially in
multilingual societies, generate multilingual non-
edited material where at least two languages or
language varieties are used. This phenomenon is
linguistically referred to as language (code) mix-
ing where code-switching and borrowing, among
others, are the most studied phenomena. Poplack
and Meechan (1998) defined borrowing as a mor-
phological or a phonological adaptation of a word
from one language to another and code-switching
as the use of a foreign word, as it is in its origi-
nal language, to express something in another lan-

guage. However, the literature does not make it
clear whether the use of different script is counted
as borrowing, or code-switching or something
else. For instance, there is no linguistic well-
motivated theory about how to classify languages
written in other scripts, like French written in Ara-
bic script which is frequently the case in North
Africa. This theoretical gap could be explained
by the fact that this fairly recent phenomenon has
emerged with the widespread of the new tech-
nologies. In this paper, we consider both code-
switching and borrowing and refer to them collec-
tively as language mixing. Our motivation in do-
ing so is to offer to sociolinguists a linguistically
informative tool to analyse and study the language
contact behaviour in the included languages.

The task of identifying languages in mixed-
language texts is a useful pre-processing tool
where sequences belonging to different lan-
guages/varieties are identified. They are then pro-
cessed by further language/variety-specific tools
and models. This task itself has neither been well
studied for situations when many languages are
mixed nor has it been explored as a main or an aux-
iliary task in multi-task learning (see Section 2).

1.1 Related Work

There has been some interesting work in detecting
code mixing for a couple of languages/language
varieties, mostly using traditional sequence la-
belling algorithms like Conditional Random Field
(CRF), Hidden Markov Model (HMM), linear ker-
nel Support Vector Machines (SVMs) and a com-
bination of different methods and linguistic re-
sources (Elfardy and Diab, 2012; Elfardy et al.,
2013; Barman et al., 2014b,a; Diab et al., 2016;
Samih and Maier, 2016; Adouane and Dobnik,
2017). Prior work that is most closely related
to our work using neural networks and related
languages, Samih et al. (2016) used supervised
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deep neural networks (LSTM) and a CRF classi-
fier on the top of it to detect code-switching, us-
ing small datasets of tweets, between Egyptian
Arabic and MSA and between Spanish and En-
glish using pre-trained word embeddings trained
on larger datasets. However, in their annotation
they combined ambiguous words, which are words
that could be of either languages depending on the
context, in one category called ’ambiguous’ and
ignored words from minority languages. More-
over, the system was evaluated on a dataset with
no instances of neither ’ambiguous’ nor ’mixed-
language’ words, basically distinguishing between
MSA and Egyptian Arabic words in addition to
Named Entities and other non-linguistic tokens
like punctuation, etc.

Similar to our work, Kocmi and Bojar (2017)
proposed a supervised bidirectional LSTM model.
However, the data used to train the model was cre-
ated by mixing edited texts, at a line level, in 131
languages written in different scripts to create a
multilingual data, making it a very different task
from the one investigated here. We use non-edited
texts, a realistic data as generated by users reflect-
ing the real use of the included languages which
are all written in the same Arabic script. Our texts
are shorter and the size of the dataset is smaller,
therefore, our task is more challenging.

By comparison to our work, most of the litera-
ture focuses on detecting code-switching points in
a text, either at a token level or at a phrase level
or even beyond a sentence boundaries, we distin-
guish between borrowing and code-switching at
a word level by assigning all borrowed words to
a separate variety (BOR). Most importantly, our
main focus is to investigate ways to inject ex-
tra knowledge to take advantage of the unlabelled
data.

1.2 Linguistic Situation in Algeria

The linguistic landscape in Algeria consists of
several languages which are used in different
social and geographic contexts to different de-
grees (Adouane et al., 2016a): local Arabic va-
rieties (ALG), Modern Standard Arabic (MSA)
which is the only standardised Arabic variety,
Berber which is an Afro-Asiatic language different
from Arabic and widely spoken in North Africa,
and other non-Arabic languages such as French,
English, Spanish, Turkish, etc. A typical text con-
sists of a mixture of these languages, and this mix-

ture is often referred to, somewhat mistakenly as
Algerian Arabic. In this paper, we use the term Al-
gerian language to refer to a mixture of languages
and language varieties spoken in Algeria, and the
term Algerian variety (ALG) to refer to the local
variety of Arabic, which is used alongside other
languages such as, for example Berber (BER).

This work seeks to identify the language or lan-
guage variety of each word within an Algerian lan-
guage text. Algerian language is characterised by
non-standardised spelling and spelling variations
based on the phonetic transcription of many local
variants. For instance, the Algerian sentence in
(1), which is user generated, is a mixture of 3 lan-
guages (Arabic, French and Berber) and 2 Arabic
varieties (MSA and ALG). Each word is coloured
by its language in d., b. is an IPA transcription
and c. is the human English translation. To il-
lustrate the difficulty of the problem, we addition-
ally show the (incorrect) translation proposed by
Google translate e., where words in black are ad-
ditional words not appearing in the original sen-
tence.

(1) a. ¼@PñÓ H. AJ. Ë Qº� ð �é�̄ A¢Ë@ Ég ú
ÎK. ñ�JÊJ
�

b. [muræk ælbæb sekkær wu ætQaqæ èæl
si:ltupli:]

c. Please open the window and close the
door behind you

d. French Algerian Berber MSA Berber
MSA Algerian

e. SELTOPLEY POWER SOLUTION
AND SUGAR FOR MORAK PAPER

All the words in different languages are normally
written in the Arabic script, which causes high de-
gree of lexical ambiguity and therefore even if we
had dictionaries (only available for MSA) it would
be hard to disambiguate word senses this way. In
(1), the ALG word É g open means solution in

MSA, the Berber word �é �̄ A ¢ Ë@ window which is
adapted to the MSA morphology by adding the
MSA definite article È@ (case of borrowing) means

energy/capacity in MSA. The Berber word Q º �
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close means sugar / sweeten / liquor / get drunk in
MSA.

Moreover, the rich morphology of Arabic is
challenging because it is a fusional language
where suffixes and other morphemes are added to
the base word, and a single morpheme denotes
multiple aspects and features. Algerian Arabic
shares many linguistic features with MSA, but it
differs from it mainly phonologically, morpholog-
ically and lexically. For instance, a verb in the first
person singular in ALG is the same as the first per-
son plural in MSA. The absence of a morphologi-
cal/syntactic analyser for ALG makes it challeng-
ing to correctly analyse an ALG text mixed with
other languages and varieties.

Except for MSA, Arabic varieties are neither
well-documented nor well-studied, and they are
classified as under-resourced languages. Further-
more, social media are the only source of written
texts for Algerian Arabic. The work in NLP on Al-
gerian Arabic and other Arabic varieties also suf-
fers severely from the lack of labelled (and even
unlabelled) data that would allow any kind of su-
pervised training. Another challenge is that we
have to deal with all the complications present
in social media domain, namely the use of short
texts, spelling and word segmentation errors, etc.
in addition to the non-standard orthography used
in informal Arabic varieties. We see the task of
identification of the variety of each word in a text
a necessary first step towards developing more
sophisticated NLP tools for this Arabic variety
which is itself a mixture of other languages and
varieties.

In this paper we explore two avenues for im-
proving the state of the art in variety identifi-
cation for Algerian Arabic. First, we measure
the ability of recurrent neural networks to iden-
tify language mixing using only a limited train-
ing corpus. Second, we explore to what extent
adding background knowledge in the form of pre-
trained character-based language model and boot-
strapping can be effective in dealing with under-
resourced languages in the domain of language
identification in mixed-language texts for which
neither large labelled nor unlabelled datasets ex-
ist.

The paper is organized as follows: in Section
2, we give a brief overview of methods for lever-
ing learning from limited datasets. In Section 3,
we describe the data. In Section 4, we present the

architecture of our learning configurations which
include both traditional approaches and deep neu-
ral networks and explain the training methods used
on the labelled data, experiments and results. In
Section 5, we experiment with these models when
adding background knowledge and report the re-
sults.

2 Leveraging Limited Datasets

Deep learning has become the leading approach
to solving linguistic tasks. However deep neural
networks (DNNs) used in a supervised and un-
supervised learning scenario usually require large
datasets in order for the trained models to per-
form well. For example, Zhang et al. (2015) es-
timates that the size of the training dataset for
character-level DNNs for text classification task
should range from hundreds of thousands to sev-
eral million of examples.

The limits imposed by the lack of labelled
datasets have been countered by combining
structural learning and semi-supervised learn-
ing (Ando and Zhang, 2005). Contrary to the su-
pervised approach where a labelled dataset is used
to train a model, in structural learning, the learner
first learns underlying structures from either la-
belled or unlabelled data. If the model is trained
on labelled data, it should be possible to reuse
the knowledge encoded in the relations of the pre-
dictive features in this auxiliary task, if properly
trained, to solve other related tasks. If the model
is trained on unlabelled data, the model captures
the underlying structures of words or characters in
a language as a language model (LM), i.e., model
the probabilistic distribution of words and charac-
ters of a text.

Such pre-trained LM should be useful for var-
ious supervised tasks assuming that linguistic
structures are predictive of the labels used in these
tasks. Approaches like this are known as trans-
fer learning or multi-task learning (MTL) and are
classified as a semi-supervised approaches (with
no bootstrapping) (Zhou et al., 2004). There is an
increasing interest in evaluating different frame-
works (Ando and Zhang, 2005; Pan and Yang,
2010) and comparing neural network models (Cho
et al., 2014; Yosinski et al., 2014). Some studies
have shown that MTL is useful for certain tasks
(Sutton et al., 2007) while others reported that it is
not always effective (Alonso and Plank, 2017).

Bootstrapping (Nigam et al., 2000) is a gen-
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eral and commonly used method of countering the
limits of labelled datasets for learning. It is a
semi-supervised method where a well-performing
model is used to automatically label new data
which is subsequently used as a training data for
another model. This helps to enhance supervised
learning. However, this is also not always effec-
tive. For example, Pierce and Cardie (2001) and
Ando and Zhang (2005) show that bootstrapping
degraded the performance of some classifiers.

3 Data

In this section, we describe the datasets that we use
for training and testing our models. We use two
datasets: small dataset, annotated with language
labels, and a larger dataset lacking such annota-
tion.

3.1 Labelled data

We use the human labelled corpus described by
Adouane and Dobnik (2017) where each word is
tagged with one of the following labels: ALG (Al-
gerian), BER (Berber), BOR (Borrowing), ENG
(English), FRC (French), MSA (Modern Stan-
dard Arabic), NER (Named Entity), SND (inter-
jections/sounds) and DIG (digits). The annotators
have access to the full context for each word. To
the best of our knowledge, this corpus is the only
available labelled dataset for code-switching and
borrowing in Algerian Arabic, written in Arabic
script, and in fact also one of the very few available
datasets for this particular language variety over-
all. Because of the limited annotation resources
the corpus is small, containing only 10,590 sam-
ples (each sample is a short text, for example one
post in a social media platform). In total, the data
contains 215,875 tokens distributed unbalancely
as follows: 55.10% ALG (representing the major-
ity category with 118,960 words), 38.04% MSA
(82,121 words), 2.80% FRC (6,049 words), 1.87%
BOR (4,044 words), 1.05% NER (2,283 words),
0.64% DIG (1,392 numbers), 0.32% SND (691 to-
kens), 0.10% ENG (236 words), and 0.04% BER
(99 words).

3.2 Unlabelled data

Unfortunately, there is no existing user-generated
unlabelled textual corpus for ALG. Therefore, we
also collected, automatically and manually, new
content from social media in Algerian Arabic
which include social networking sites, blogs, mi-

croblogs, forums, community media sites and user
reviews.1

The new raw corpus contains mainly short non-
edited texts which require further processing be-
fore useful information can be extracted from
them. We cleaned and pre-processed the cor-
pus following the pre-processing and normalisa-
tion methods described by Adouane and Dobnik
(2017). The data pre-processing and normalisa-
tion is based on applying certain linguistic rules,
including: 1. Removal of non-linguistic words
like punctuation and emoticons (indeed emoticons
and inconsistent punctuation are abundant in so-
cial media texts.) 2. Reducing all adjacent re-
peated letters to maximum two occurrences of let-
ters, based on the principle that MSA allows no
more than two adjacent occurrences of the same
letter. 3. Removal of diacritics representing short
vowels, because these are rarely used; 4. Removal
all duplicated instances of texts; 5. Removal of
texts not mainly written in Arabic script 6. Nor-
malisation all remaining characters to the Arabic
script. Indeed, some users use related scripts like
Persian, Pashto or Urdu characters, either because
of their keyboard layout or to express some sounds
which do not exist in the Arabic alphabet, e.g. /p/,
/v/ and /g/.

Additionally, we feed each document, as a
whole, to a language identification system that dis-
tinguishes between the most popular Arabic vari-
eties (Adouane et al., 2016b) including MSA; Mo-
roccan (MOR); Tunisian (TUN); Egyptian (EGY);
Levantine (LEV); Iraqi (IRQ) and Gulf (GUF)
Arabic. We retain only those predicted to be Al-
gerian language, so that we can focus on language
identification within Algerian Arabic, at the word
level.

Table 1 gives some statistics about the labelled
and unlabelled datasets. Texts refer to short texts
from social media, words to linguistic words ex-
cluding punctuation and other tokens, and types
to sets of words or unique words. We notice that
82.52% of the words occur less than 10 times in
both datasets. This is due to the high variation
of spelling and misspellings which are common in
these kinds of texts.

1We have a documented permission from the own-
ers/users of the used social media platforms to use their tex-
tual contributions for research.
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Dataset #Texts #Words #Types
Labelled 10,590 213,792 57,054
Unlabelled 189,479 3,270,996 290,629

Table 1: Information about datasets.

4 Using Labelled Data

4.1 Systems and Models

We frame the task as a sequence labelling prob-
lem, namely to assign each word in a sequence the
label of the language that the word has in that con-
text. We use three different approaches: two ex-
isting sequence labelling systems – (i) an HHM-
based sequence labeller (Adouane and Dobnik,
2017); (ii) a classification-based system with vari-
ous back-off strategies from (Adouane and Dob-
nik, 2017) which previously performed best on
this task, henceforth called the state-of-the-art sys-
tem; and (iii) a new system using deep neural net-
works (DNNs).

4.1.1 HMM system
The HMM system is a classical probabilistic se-
quence labelling system based on Hidden Markov
Model where the probability of a label is estimated
based on the history of the observations, previous
words and previous labels. In order to optimise the
probabilities and find the best sequence of labels
based on a sequence of words, the Viterbi algo-
rithm is used. For words that have not been seen in
the training data, an constant low probability com-
puted from the training data is assigned.

4.1.2 State-of-the-art system
The best-so-far performing system for identifying
language mixing in Algerian texts is described by
Adouane and Dobnik (2017). The system is a
classifier-based model that predicts the language
or variety of each word in the input text with var-
ious back-off-strategies: trigram and bigram clas-
sification, lexicon lookup from fairly large man-
ually compiled and curated lexicons, manually-
defined rules capturing linguistic knowledge based
on word affixes, word length and character combi-
nations, and finally the most frequent class (uni-
gram).

4.1.3 DNN model
Recurrent Neural Networks (RNNs) (Elman,
1990) have been used extensively in sequence pre-
diction. The most popular RNN variants are the

Long Short-Term Memory (LSTMs) (Hochreiter
and Schmidhuber, 1997) and the Gated Recurrent
Unit (GRUs) (Cho et al., 2014).

Our neural networks consists of four layers: one
embedding layer, two recurrent layers, and a dense
layer with softmax activation. All our models are
optimized using the Adam optimizer, built using
the Keras library (Chollet, 2015), and run using
a TensorFlow backend. A summary of the model
architecture is shown in Figure 1. (This variant
is composed of only the uncoloured (white) parts
of the figure; the coloured parts are added in the
model described in section 5). The DNN is pro-
vided the input character by character. We opt for
character-based input rather than word-based in-
put for two reasons. First, we expect that the inter-
nal structure of words (phonemes and morphemes)
is predictive of a particular variety. This way we
hope to capture contexts within words and across
words. Second, we do not have to worry about the
size of the vocabulary, which we would if we were
to use word embeddings.

This language-identification model is trained
end-to-end. Because of the nature of RNNs, the
network will assign one language variant per in-
put symbol, and thus per character — even though
the tags are logically associated word-by-word. To
deal with this mismatch, when training we tag
each character of a word and the space which fol-
lows it with the variant of the word. When eval-
uating the model, we use the tag associated with
the space, so that all the word has been fed to the
model before a prediction is made.

We have trained models with various values
for the hyper-parameters: number of layers, num-
ber of epochs, memory size, drop-out rate and
the batch size, but report detailed results for the
model with the best behaviour. We experimented
with both GRU and LSTM RNNs and found that
the GRU performs better than LSTM on our task
which is in line with the results of the previous
comparisons but on different tasks (Chung et al.,
2014). We also found out that our best systems are
optimised with the architecture shown in Figure 1
with a memory size of 200, batch size of 512 and
number of epochs of 25. Increasing or decreasing
these values caused the overall accuracy to drop.
Using drop-out improved the performance of the
systems (overall accuracy > 90%) over not using
it (< 70%). The best results are obtained using
drop-out rate of 0.2 for the recurrent layers. We
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refer to this model as DNN in the following.

Embedding

Language model (2 × RNN)

Tagging model (2 × RNN)

Dense layer

Softmax

input characters in [0..38]

character representation in R40

language model state in R200

tagging model state in R200

tag score in R10

tag prediction in [0,1]10

Dense layer

Softmax

character representation in R40

next character prediction in [0,1]39

Figure 1: DNN architecture.

4.2 Results
To ensure a fair comparison, all the models have
been evaluated under the same conditions. We
use 10-fold cross validation on all of them and
report their performance measured as the aver-
age accuracy. Table 2 shows the results. Note
that for the DNN we only report the results of
the (best-performing) GRU models. As a base-
line we take the most frequent category in the
labelled data. State-of-the-art (2) outperforms
slightly HMM (1). DNN (3) outperforms slightly
the State-of-the-art (2). All the systems perform
better than the baseline.

Model Accuracy (%)
1 HMM 89.29
2 State-of-the-art 89.83
3 DNN 90.53
4 Baseline 55.10

Table 2: Performance of the models on labelled data.

Figure 2 shows the performance of each model
per category reported as average F-score. Over-
all the models perform better on the majority cat-
egories such as ALG (Algerian) and MSA (Mod-
ern Standard Arabic), and non linguistic categories
like DIG (digits) and SND (sounds) because their
patterns are more or less regular and language in-
dependent. The State-of-the-art system achieves
the best performances for all categories except for
ALG where it is slightly outperformed by DNN,

ALG BER BOR DIG ENG FRC MSA NER SND
0

20

40

60

80

100

HMM State-of-the-art DNN

Figure 2: Models’ average F-score per category.

average F-score of 91.45 and 92.22 respectively.
A possible explanation for this is that the State-
of-the-art system is more robust because it in-
volves several strategies of classification. DNN
performed better than HMM in all cases except for
ENG (English) and SND. Both DNN and HMM
struggle with minority categories like ENG, BOR
(borrowing), BER (Berber), NER (Named Enti-
ties), and FRC (French). Note that in this exper-
iment we only used the smaller labelled dataset.
In the following section, we explore ways to take
advantage of the additional relatively large unla-
belled dataset in order to improve the performance
of the systems.

5 Using Data Augmentation With
Background Knowledge

5.1 Training Methods

In this section, we examine which data augmen-
tation method performed on the unlabelled cor-
pus can best enhance the performance of our three
models. We experiment with data bootstrapping,
pre-training a language model, and the combina-
tion of both methods. In each case, we are pro-
viding some form of background knowledge com-
pared to the task described in Section 4.

5.1.1 Bootstrapping
For bootstrapping, we use the State-of-the-art sys-
tem (Section 4.1.2) to label the unlabelled data
without additional checking of the quality of an-
notation and then use this bootstrapped data in fur-
ther training. We re-run the experiments described
in Section 4 using the bootstrapped data as the
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training data. We refer to the systems as HMM
bootstrapped, State-of-the-art bootstrapped, and
DNN bootstrapped respectively.

5.1.2 Language Model
Another way to take advantage of the unlabelled
data is to train a language model (LM) on the
whole data and use the internal state of the LM
as input to the tagger, rather than using the raw
textual input. To this end, we modify the struc-
ture of our DNN as indicated by the blue-coloured
parts in Figure 1. Namely, we add two language-
modelling RNN layers between the embedding
and the tagging layers. They are followed by a
dense layer with softmax activation, which pre-
dicts the next character in the input.

With this setup, we train the language-
modelling layers on the unlabelled corpus, as a
generative language model on the unlabelled data
set. Thus, the output of these layers contains the
information necessary to predict the next charac-
ter given the previous sequence of characters. The
language model is trained on 80% of the unla-
belled data and evaluated on the remaining 20%.
The rest of the network is then trained as in the
previous case (Section 4.1.3). We stress that, in
this instance, only the last two layers are trained
on the language-identification task. We refer to
this model as DNN with LM.

25 50 75 100 125 150
1.68

1.7

1.73

1.75

1.78

1.8

1.83

validation loss training loss

Figure 3: Language model loss through training epochs

You may notice in Figure 3 that the model is
still improving (at 150 epochs), albeit slowly, even
after exhausting our computational budget. Never-
theless, the model appears to be working well as a
text generator. For instance, we took sentence (1)
as a seed and obtained sentences that are gram-
matically and structurally acceptable, even if they
are semantically meaningless and reproduce the

many spelling variants found in the original cor-
pus. Here are two examples:

1. ú

	G @P ú


�æ 	k AK
 é<Ë @ ð AîD
Ê« �HñÖ 	ß ��PY�® 	K AÓ A 	K @ ÑêÖÏ @
ÈAmÌ'@ 	áÓ ÕÎª�J 	K ��PY�® 	K AÓ A 	K @ ½Ëñ�® 	K AÓ é<Ë @ ð ¼AªÓ

2. 	¬QªK
 ð ðCJ. ��K
 �� 	̄QªK
 AÓ ¼PAJ. K
 é<Ë @ Èñ�® 	K AÓ é<Ë @ ð
A 	JK
YîE
 é<Ë @ Èñ�®K
 I. m�'
 ���. m�'
 AÓ ú
Í@ @QÖÏ @ è @P 	áK
ð

5.1.3 Language Model and Bootstrapping
We retrain the DNN model using the pre-trained
LM and the bootstrapped data in order to optimise
the use of the unlabelled data. We refer to this
model as DNN bootstrapped and LM.

5.2 Results
We evaluate all the models under the same condi-
tions as in Section 4, using 10-fold cross valida-
tion we report the average accuracy over the folds.
The evaluation set in the bootstrapping models in
each fold is only taken from the labelled data while
the training part consists of a combined 9-folds
from the labelled data and the entire bootstrapped
data. In other words, the entire bootstrapped data
is added to the training data at each time. In
the case of DNNs, we found again that GRUs
perform significantly better than LSTM, and that
bootstrapped models are optimised with drop-out
rate of 0.2 whereas models with language model
perform better with drop-out rate of 0.1. The ob-
tained results are reported as the average accuracy
in Table 3. For the DNN, we only report the results
of the (best-performing) GRU models.

Model Accuracy (%)
1 HMM bootstrapped 93.97
2 State-of-the-art bootstrapped 95.42
3 DNN bootstrapped 93.31
4 DNN with LM 90.31
5 DNN bootstrapped and LM 90.19

Table 3: Performance of the models with background
knowledge.

The best performance overall is achieved by the
bootstrapped state-of-of-the-art model (2). HMM
bootstrapped (1) performs slightly better than
the DNN bootstrapped (3). Bootstrapping helps
the State-of-the-art system and HMM more than
DNN. This is due to the training nature of the
DNN which is based on capturing frequent reg-
ular patterns, hence adding the bootstrapped data
means introducing even more irregular patterns.
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Compared to the results in Section 4.2, the DNN
bootstrapped (3) outperforms all the models with
the labelled data: (1), (2) and (3) in Table 2. The
bootstrapping method thus improves the perfor-
mance of all configurations, whether they are us-
ing DNNs or not. The reported benefits of boot-
strapping are contrary to the previous observations
where bootstrapping did not help (Section 2).

However, the use of the language model (4) de-
creases slightly (−0.22%) the performance of the
DNN compared to its performance with the la-
belled data (3) in Table 2. The use of the bootstrap-
ping and the language model (5) leads to no signif-
icant difference in performance in respect to (4).
Overall, it appears that the usage of the language
model has no strong effect. This could be caused
by the noise in the data, and adding more unla-
belled data makes it hard for the language model
to learn all the data irregularities. Maybe the sys-
tem requires more training data.

ALG BER BOR DIG ENG FRC MSA NER SND
0

20

40

60

80

100

HMM bootstrapped
State-of-the-art bootstrapped
DNN with LM
DNN bootstrapped
DNN bootstrapped and LM

Figure 4: Models’ average F-score per category.

Figure 4 sums up the performance of each
model per category reported as the average F-
score. The first thing to notice is that bootstrap-
ping improves the performance of all systems, and
the best performance is achieved with the State-of-
the-art. This could be explained by ‘the more data,
the better performance’. HMM bootstrapped out-
performs the DNN bootstrapped except for FRC
and BER. Adding language model to the DNN
causes the overall accuracy to drop compared to
the DNN bootstrapped. Nevertheless, compared

to the results in Figure 2, language model be-
haves differently with each category. For instance,
it boosts the performance of the DNN on ENG,
and the performance on BOR, BER, FRC over
HMM. Whereas combining language model and
bootstrapped data performs the worst except for
BER, ENG and NER. The effect of combining
bootstrapping and language model is better for mi-
nority categories: BER, ENG and NER.

Error analysis of the confusion matrices shows
that all the systems are confused, chiefly between
ALG and MSA, BOR and ALG, FRC and ALG.
The confusions are caused mainly by the lexical
ambiguity between these categories, given that we
identify the language of each word in its context.

6 Conclusions

We have examined the automatic classification of
language identification in mixed-language texts
on limited datasets of Algerian Arabic, in par-
ticular a small unbalanced labelled dataset and
a slightly larger unlabelled dataset. We tested
whether the inclusion of a pre-trained LM on
the unlabelled dataset and bootstrapping the un-
labelled dataset can leverage the performance of
the systems. Overall when using only the small
labelled data, DNNs outperformed the HMM and
the State-of-the-art system. However, DNNs per-
formed better on the majority categories and strug-
gled with the minority ones in comparison to the
State-of-the-art system. Bootstrapping improved
the performance of all models, both DNNs and not
DNNs for all categories.

Adding a background knowledge in the form of
a pre-trained LM to DNNs had a different effect
per category. While it boosted the performance
of the minority categories, its effect on the major-
ity ones was not clear. Despite the generative be-
haviour of the LM, tested in Section 5.1.2, which
showed that LM did learn the underlying struc-
tures of the unlabelled data, the effect of the en-
coded knowledge maybe was not suitable for our
main task. This could be also caused by the high
noise level in the data, even though deep learning
is generally thought to handle noise well.

In our future work, we will focus on exploring
(i) different DNN configurations to investigate the
best ways of injecting background knowledge as
well as (ii) different data pre-processing methods
to normalise spelling and remove misspellings for
MSA, and deal with word segmentation errors.
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