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Abstract 100 

Context 101 

Serum estradiol (E2) and estrone (E1) levels exhibit substantial heritability. No genome-wide 102 

association study (GWAS) of estrogen levels has been performed in men of European origin. 103 

Objective 104 

To investigate the genetic regulation of serum E2 and E1 in men. 105 

Design, setting and participants 106 

GWAS in 11,097 men of European origin from nine epidemiological cohorts.  107 

Main Outcome Measures 108 

Genetic determinants of serum E2 and E1 levels.  109 

Results 110 

Variants in/near CYP19A1 demonstrated the strongest evidence for association with E2, 111 

resolving to three independent signals. Two additional independent signals were found on the 112 

X chromosome; FAM9B, rs5934505 (p-value 3.4 x 10-8) and Xq27.3, rs5951794 (p-value 3.1 113 

x 10-10). E1 signals were found in CYP19A1 (rs2899472, p-value 5.5 x 10-23), in TRIM4 114 

(rs17277546, p = 5.8 x 10-14) and in CYP11B1/B2 (rs10093796, p-value 1.2 x 10-8). 115 

E2 signals in CYP19A1 and FAM9B were associated with bone mineral density (BMD). 116 

Mendelian Randomization analysis suggested a causal effect of serum E2 on BMD in men. 1 117 

pg/ml genetically increased E2 was associated with a 0.048 SD increase in lumbar spine BMD 118 

(p-value 2.8 x 10-12). 119 
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In men and women combined, CYP19A1 alleles associated with higher E2 levels were 120 

associated with lower degrees of insulin resistance.  121 

Conclusions 122 

Our findings confirm that CYP19A1 is an important genetic regulator of E2 and E1 levels, and 123 

strengthen the causal importance of E2 for bone health in men.  We also report 2 new 124 

independent loci on the X-chromosome for E2, one new locus each in TRIM4 and 125 

CYP11B1/B2, for E1.  126 

Keywords: estradiol, estrone, GWAS, men, BMD, insulin sensitivity  127 
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Introduction 128 

17 ß-estradiol (E2) and estrone (E1) are the major biologically active estrogens in men. E2 is 129 

more potent than E1. Aromatase, encoded by the CYP19A1 gene, is the key enzyme 130 

responsible for the final step in the synthesis of both E2 and E1. E2 is formed from 131 

aromatization of testosterone, and E1 is formed from aromatization of androstenedione. E2 132 

can also be formed from conversion of E1 by 17ß-hydroxysteroid dehydrogenase (1). 133 

In men, the circulating levels of E2 and E1 are determined by both genetic and environmental 134 

factors. The heritability for E2 in men has been estimated to be ~30-45% and for E1 ~40% (2, 135 

3). Early studies of the genetic regulation of circulating E2 and E1 levels were hampered by 136 

their small size and the use of immunoassays with poor specificity, precision and accuracy at 137 

lower concentrations. However, in 2010 Orwoll and colleagues performed a large study of 138 

5,000 elderly men of European, Asian and African origin in Sweden, the United States, Hong 139 

Kong and Tobago (4). Serum sex steroid levels were measured using gas chromatography – 140 

mass spectrometry (GC-MS), thereby avoiding the previously mentioned problems with 141 

immunoassays. In addition to geographical differences in E2 and E1 levels, suggestive of 142 

environmental influences, they also found racial differences. Both E2 and E1 levels, as well as 143 

the estradiol to testosterone and estrone to androstenedione ratios, were higher in Black than 144 

in Asian and Caucasian men (4). These data suggested that genetically determined differences 145 

in aromatase activity among Black, Asian and Caucasian men might be responsible for the 146 

observed racial differences in E2 and E1 levels.  147 

We made a first attempt to find genetic loci involved in the determination of estrogen levels in 148 

men by analyzing 604 SNPs in 50 candidate sex steroid-related genes (5). In a screening 149 

cohort, the CYP19A1 SNP rs2470152 showed the most significant association with E2 levels 150 



9 
 

measured by GC-MS. This was confirmed in two replication cohorts. Rs2470152 was also 151 

significantly associated with E1 levels in all three cohorts (n=5531) (5).  152 

Meta-analyses of genome-wide association studies (GWAS) enable a comprehensive analysis 153 

of the whole genome in a large number of subjects. Chen and colleagues performed a GWAS 154 

in 3,495 Chinese men, where E2 concentrations were determined using an immunoassay. 155 

They found two independent SNPs in the CYP19A1 gene to be associated with E2 levels 156 

(rs2414095 and rs2445762) (6). These findings further strengthened the evidence for a major 157 

role of CYP19A1 in the regulation of serum E2 levels in men, but due to the relatively small 158 

sample size and low power, genetic loci in other regions of the genome could have been 159 

missed. To date no GWAS has been performed in men of European origin. In women, a 160 

smaller GWAS meta-analysis of 1,583 postmenopausal women found no genome-wide 161 

significant SNPs. Among variants that were suggestively associated with E2, several were 162 

located at the CYP19A1 locus (7). 163 

Both E2 and testosterone regulate bone mass (8). Studies of men with non-functional estrogen 164 

receptor alpha (ERα) (9), and inactivating mutations of the CYP19A1 gene (10), have 165 

demonstrated that estrogens are important for peak bone mass acquisition in men. Population 166 

based studies have shown that in men, low serum levels of E2 are associated with a lower 167 

bone mineral density (BMD), higher rates of bone loss and an increased risk of fractures (8, 168 

11-14). Some studies also show a smaller contribution of testosterone to BMD in men (8, 11). 169 

The relative contribution of androgens versus estrogens in the regulation of bone mass in men 170 

remains incompletely understood, and studies showing evidence of a causal effect of serum 171 

E2 on BMD in men are still sparse (15). 172 

Mendelian randomization is a method used to strengthen or refute the causality of a 173 

biomarker, such as E2, and an outcome measure of interest, such as BMD, when a 174 
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randomized controlled trial is not possible. Mendelian randomization uses genetic data and 175 

relies on the principle that due to the random assortment of genetic variants at conception, 176 

these genetic variants are independent of many factors that bias observational studies, such as 177 

confounding and reverse causation. Therefore, if a biomarker is etiologically involved in an 178 

outcome measure, the genetic factors that influence the biomarker will also influence the 179 

outcome measure (16). To date, no Mendelian randomization has been performed to 180 

investigate causality between E2 levels and BMD in men. 181 

Case reports of men with aromatase deficiency due to an inactivating mutation of the 182 

CYP19A1 gene, mechanistic animal studies and clinical studies also suggest that estrogen 183 

signaling through ERα is important for insulin sensitivity in men (17-23). Thus, genetic 184 

factors regulating estrogen levels may also be of relevance for the regulation of insulin 185 

sensitivity in men. 186 

Here we present the results of the first GWAS of estrogen levels combining several 187 

population-based cohorts of men of European origin. We also present results of our analyses 188 

of the association of resultant genome wide significant associations with two major estrogen 189 

related traits –bone mineral density and insulin sensitivity.  190 
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Methods 191 

Study samples  192 

The discovery stage of the E2 GWAS included 11,097 men of European origin drawn from 193 

nine epidemiological cohorts: the Framingham Heart Study (FHS), the Gothenburg 194 

Osteoporosis and Obesity Determinants (GOOD) study, the Invecchiare in Chianti 195 

(InCHIANTI) study, the LUdwigshafen RIsk and Cardiovascular Health (LURIC) study, the 196 

Multi-Ethnic Study of Atherosclerosis (MESA) study, the Osteoporotic Fractures in Men 197 

(MrOS) Sweden Gothenburg study, the MrOS Sweden Malmö study,  the MrOS US Study, 198 

and the Rotterdam 1 (RS1) study. Replication of one SNP displaying considerable 199 

heterogeneity in genome wide significant fixed effect models, but nominal significance only 200 

in random effects models, was performed in the European Male Ageing Study (EMAS, 201 

n=1,641). EMAS is a cohort of men predominantly of European origin with only 0.62 % 202 

(n=21) of the sample used here being of non-European descent. 203 

The discovery stage of the E1 GWAS included 7,570 men of European origin drawn from six 204 

of the above-mentioned cohorts: FHS, GOOD, MrOS Sweden Gothenburg, MrOS Sweden 205 

Malmö, MrOS US and RS1. 206 

Exclusion criteria included chemical or surgical castration and/or medications affecting sex 207 

hormones such as steroid 5-alpha reductase inhibitors, and sex hormone antagonists. All 208 

studies were approved by local ethics committees and all participants provided written 209 

informed consent. Characteristics of the study samples and detailed descriptions of the 210 

participating cohorts, genotyping, quality control and imputation procedures are provided in 211 

the Supplementary Appendix and in Supplemental Tables 1, 2 and 3. 212 

 213 
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Sex hormone measurements 214 

In six discovery cohorts (FHS, GOOD, MrOS Sweden Gothenburg, MrOS Sweden Malmö, 215 

and MrOs US), measurements of E1 and E2 were performed using either the GC-MS or the 216 

liquid chromatography tandem mass spectrometry (LC-MS/MS) technique. In the remaining 217 

discovery cohorts (LURIC, InCHIANTI, MESA and RS-1) measurements were performed 218 

using immunoassays. In the replication cohort (EMAS), E2 was measured using the GC-MS 219 

technique. Methods for all measurements are given in the Supplementary Appendix. 220 

Genotyping and statistical analyses 221 

Nine discovery and one replication study populations were genotyped using a variety of 222 

genotyping platforms including Illumina (HumanHap 550k, 610k, 1M-Duo, Omni1-Quad, 223 

Omni express) and Affymetrix (500K Dual GeneChip + 50K gene-centered MIP set, Array 224 

6.0) (Supplemental Table 2). To increase genomic coverage and allow the evaluation of the 225 

same SNPs across as many study populations as possible, each study imputed genotype data 226 

based on the HapMap CEU Build 36. Algorithms were used to infer unobserved genotypes in 227 

a probabilistic manner using either MACH (http://www.sph.umich.edu/csg/abecasis/MACH), 228 

or IMPUTE2 (24). We analyzed only those SNPs (genotyped or imputed) which had a minor 229 

allele frequency of >0.01 and an imputation quality of ≥0.3. The X chromosome was available 230 

for analysis in 6 cohorts (FHS, GOOD, LURIC, MrOS Sweden Gothenburg, MrOS Sweden 231 

Malmö and MrOS US), in this study. Imputations of the X-chromosome were performed in all 232 

of these cohorts except MrOS US. 233 

Altogether, ~2.5 million SNPs were tested for association with serum E2 and E1 in the 234 

discovery stage. Genome-wide association analyses were performed using an additive genetic 235 

linear regression model adjusted for: 1) age and BMI (E2 and E1) or: 2) age, BMI, 236 

testosterone and SHBG (E2 only), in each of the discovery cohorts. In FHS, a linear mixed 237 
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effect model with a random effect to account for relationships was used. Imputed genotypes 238 

were analyzed in all cohorts taking the genotype uncertainties into account. The meta-239 

analyses were performed in the METAL software 240 

(https://www.sph.umich.edu/csg/abecasis/MACH), using an inverse-variance weighted fixed 241 

effect model. Random effects models were used when fixed effect models displayed 242 

heterogeneity defined as an I2-value > 50%  (25). These models were calculated using the R-243 

package (http://www.r-project.org). A threshold of p < 5×10−8 was established a priori as the 244 

level for genome-wide significance in the discovery analyses (26).  245 

Approximate conditional analyses for E2 and E1 were performed using the Genome-wide 246 

Complex Trait Analysis (GCTA) software (27), and the genotypes of the EPIC Norfolk study 247 

cohort used as a reference panel to estimate patterns of Linkage Disequilibrium (28). The GC-248 

corrected and quality control filtered meta-analysis results and a condition list containing the 249 

lead SNPs of the final loci were used as input for the conditional analysis. An additional 250 

association was declared when the conditional P-value was below the genome-wide 251 

significance threshold. Subsequently, this SNP was added to the list of conditional analysis 252 

SNPs and the conditional analysis was performed again in a stepwise fashion until no 253 

additional significant independent associations were found. 254 

 Gene expression analyses 255 

We analyzed associations between identified SNPs associated with serum estrogen levels and 256 

gene expression in the eQTL dataset generated by the GTEx Consortium (version 6p), which 257 

was obtained from http://www.gtexportal.org/ (29) 258 

Associations with testosterone 259 

Associations with serum testosterone concentrations were retrieved from the discovery dataset 260 

of our previously published GWAS of testosterone levels (30).  261 
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Associations with other traits 262 

We hypothesized, based on data in the literature, that our genome wide significant SNPs and 263 

secondary signals from conditional analyses could be associated with BMD and/or insulin 264 

sensitivity. To test these hypotheses we searched publicly available databases for associations 265 

with lumbar spine (LS) and femoral neck (FN) BMD in men (www.gefos.org) (31). Data on 266 

glycemic traits in men and women combined were downloaded from 267 

http://www.magicinvestigators.org/downloads/ (32, 33). Data on glycemic traits in men and 268 

women separately were contributed by MAGIC investigators (32, 33). HOMA-IR was 269 

calculated as (fasting insulin x fasting glucose)/22.5. 270 

Mendelian Randomization of serum E2 on BMD 271 

To investigate if E2 has a causal effect on BMD we performed a summary statistic two 272 

sample inverse variance weighted Mendelian Randomization (34). We selected the 5 top loci 273 

from our E2 meta-analysis and extracted summary statistics (β and SE) from the 274 

corresponding SNPs in both our E2 study and the GEFOS study on LS and FN BMD. The 275 

variant specific associations were used to create an inverse variance weighted estimate of the 276 

causal effect size and its standard error. 277 

278 
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Results 279 

We performed a GWAS of serum E2 and E1 concentrations, investigating ~2.5 million SNPs 280 

in up to 11,097 men. In analyses of autosomal chromosomes, all 9 discovery cohorts 281 

(n=11,097) were included in the discovery analyses of E2, and six cohorts (n=7,570) were 282 

included in the discovery analyses of E1.  283 

In analyses of the X-chromosome, six cohorts (n=8,953) were included in the discovery 284 

analyses of E2, and five cohorts (n=6,917) were included in the discovery analyses of E1.  285 

Estradiol  286 

In the model adjusted for age and BMI (Model 1), two loci were associated with E2 287 

concentrations at the genome-wide significance threshold of p < 5 x 10-8 in the discovery 288 

analyses (Figure S1A). The strongest association was found within the CYP19A1 locus on 289 

chromosome 15q21.1 (rs727479, effect size 1.39 pg/ml per effect allele, (SE 0.12), p = 8.2 x 290 

10-30) (Table 1, Figures 1A, S2A, S3A). This SNP, which is located in the second intron of the 291 

gene, showed heterogeneity of effect size across studies as indicated  by an I2 value of 57% 292 

(25). To take this heterogeneity into account, we additionally calculated a random effects 293 

model, which was also genome-wide significant (effect size = 1.35 pg/ml SE 0.19, p = 2.0 x 294 

10-12). 295 

The second locus was found on the X-chromosome where one SNP, rs5934505, reached 296 

genome-wide significance (p = 3.4 x 10-8). Rs5934505 is located 79 kb downstream of the 297 

FAMily with sequence similarity 9, member B (FAM9B) gene (Xp22.31) (Table 1, Figures 1A, 298 

S2B, S3B). There was heterogeneity of effect size across studies for this SNP (I2 = 72%). A 299 

random effects model displayed nominal, but not genome-wide, significance in the same 300 

direction as the result from the fixed effect meta-analysis (C-allele associated with higher E2 301 
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levels, effect size 0.74 pg/ml per effect allele (SE 0.24), p = 0.002). Therefore, we attempted 302 

replication for rs5934505 in the EMAS cohort (n = 1,641). In this cohort, the C-allele was 303 

also associated with higher E2 levels; effect size of 1.59 pg/ml per effect allele (SE 0.39), p-304 

value 5.2 x 10-5.  305 

In the model that was adjusted for testosterone and SHBG levels, in addition to age and BMI 306 

(Model 2 (Figure S1B)), the associations between E2 and the CYP19A1 locus remained 307 

significant (rs727479: p =3.1 x 10-43 (Table 1, Figures 1B, S2C, S3C)). In this analysis, the I2 308 

value was 69%, but the random effects model was genome wide significant (effect size 1.42 309 

pg/ml per effect allele (SE 0.20), p-value 3.5 x 10-13). A novel genome wide significant locus 310 

on the X-chromosome also appeared in this analysis. Rs5951794 (p = 3.1 x 10-10, I2 = 6%) is 311 

located in the distal part of the long arm on chromosome X (Xq27.3), approximately 137 Mb 312 

from the FAM9B SNP rs5934505 (Table 1, Figures 1B, S2D, S3D). 313 

To identify multiple statistically independent SNPs within the same genomic region, we 314 

performed stepwise approximate conditional analyses (GCTA) for each of the genome-wide 315 

significant loci. In the model adjusted for testosterone and SHBG, the analysis revealed two 316 

additional genome-wide significant SNPs in CYP19A1 locus; rs2899472 in intron 4 317 

(conditional p-value 1.1 x 10-8) and rs16964258 in intron 1 (conditional p-value 8.2 x 10-15) 318 

(Table 1, Figures 1B, S2C, S3E-F). In the model adjusted for age and BMI only, no additional 319 

independent associations were found. 320 

In Model 1, rs727479 explained 0.9% of the overall variance of E2 levels. When rs5934505 321 

(FAM9B) was added, 1.1% of the variance was explained. In Model 2, independent CYP19A1 322 

SNPs explained 1.3% of the overall variance in E2 levels. When rs5951794 (Chr X) was 323 

added, 1.4% of the variance was explained.   324 
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In Model 1, rs727479 explained 0.9% of the overall variance of E2 levels. When the other 325 

identified SNP from Model 1, rs5934505 (FAM9B) was added, 1.1% of the overall variance in 326 

E2 levels was explained. In Model 2, independent CYP19A1 SNPs explained 1.3% of the 327 

overall variance in E2 levels. When the other genome wide significant SNP from Model 2, 328 

rs5951794 (Chr X), was added, 1.4% of the overall variance in E2 levels was explained.   329 

Estrone 330 

Three genome-wide significant loci, located on chromosomes 7, 8 and 15, respectively, were 331 

associated with E1 levels (Figure S1C). The strongest association was found for the CYP19A1 332 

locus on chromosome 15. The lead SNP was rs2899472 (p = 5.5 x 10-23) (Table 1, Figures 1C, 333 

S2E, S3G). Because of heterogeneity in effect size at this variant (I2 = 59%), a random effects 334 

model was run, which was genome wide significant (effect size 2.55 pg/ml per effect allele, 335 

SE 0.41, p = 4.6 x 10-10). In conditional analyses of this locus, the SNP with the most 336 

significant association with E2, rs727479, was also genome wide significantly associated with 337 

E1 (conditional p-value 3.5 x 10-10) (Table 1, Figures 1C, S2E, S3H).  338 

On chromosome 7, the SNP most significantly associated with E1 levels was rs17277546 (p = 339 

5.8 x 10-14), located in the 3’ UTR of the Tripartite motif containing 4 (TRIM4) gene (Table 1, 340 

Figures 1C, S2F, S3I). On chromosome 8, the SNP most significantly associated with E1 341 

levels was rs10093796 (p = 1.2 x 10-8). This SNP is located between the CYP11B1 and the 342 

CYP11B2 genes (Table 1, Figures 1C, S2G, S3J). 343 

Estrone is not derived from testosterone and not bound to SHBG in the circulation. Therefore 344 

no analyses of E1 adjusted for these parameters were performed. 345 

Independent CYP19A1 SNPs explained 1.5% of the overall variance in E1 levels. 346 

Rs17277546 (TRIM4) and rs10093796 (CYP11B1/B2) explained 0.5% and 0.1% respectively 347 
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of the variance. In total, 2.1% of the overall variance in E1 levels was explained by these 348 

genome wide significant SNPs. 349 

Gene expression analyses 350 

In the GTEx database, two of the CYP19A1 SNPs were robustly associated with the 351 

expression level of CYP19A1. The alleles associated with higher E2 levels were associated 352 

with higher gene expression levels (rs727479: β 0.23, p = 1.9 x 10-5 (skin), and rs2899472: β 353 

0.20, p = 9 x 10-8 (whole blood)). Rs727479 was also associated with the expression level of 354 

signal peptide peptidase like 2A (SPPL2A) (β 0.18, p = 1.3 x 10-4(transformed fibroblasts). 355 

SPPL2A is located 442 kB upstream of CYP19A1. The E1 associated SNP on chromosome 8, 356 

rs10093796, was associated with the expression levels of two adjacent genes in several tissues 357 

(Lys6/Neurotoxin1 (LYNX1)) pancreas β 0.68, p = 5.6 x 10-9 and Lymphocyte Antigen 6 358 

Complex, Locus K (LY6K) skin β 0.32, p=2.3 x 10-7). LYNX1 and LY6K are located 95 kB and 359 

168 kB respectively upstream of CYP11B1. The other SNPs in our study were not associated 360 

with expression levels in the GTEx database. 361 

Associations with estrogen related traits 362 

To further investigate the physiological relevance of our E2 GWAS findings, we performed 363 

look up analyses of other GWAS which had data on phenotypes known or suspected to be 364 

related to E2 levels.  365 

Testosterone 366 

To better understand the mechanism underlying the association between our E2-related SNPs 367 

and E2 levels, we studied the association between these SNPs and serum testosterone levels. 368 

If the effect of the SNPs on E2 levels was exerted upstream of the aromatase enzyme, one 369 

would expect that SNPs to be associated with higher testosterone as well as higher E2 levels. 370 

On the other hand, if the effect of the SNPs on E2 levels were exerted through alteration in 371 
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either the amount or the activity of the aromatase enzyme, only E2 levels would be expected 372 

to be increased, with no increase in testosterone levels. The C-allele of the E2 X chromosome 373 

SNP rs5934505 (FAM9B) was positively associated with levels of both testosterone and E2, 374 

suggesting that the effect of rs5934505 is exerted upstream of aromatase (Table 2, Figure 2). 375 

Indeed, we have previously reported that the X chromosome SNP rs5934505 (FAM9B) is 376 

associated with circulating testosterone levels in men (p = 1.6 x 10-8) (30). None of the other 377 

E2 SNPs were associated with increased levels of testosterone, suggesting that these SNPs are 378 

affecting either the amount or the activity of aromatase or estradiol clearance. In fact, the G-379 

allele of the other E2 X-chromosome SNP, rs5951794, was associated with increased E2 380 

levels and slightly decreased testosterone levels (effect size -7.68 ng/dl per effect allele (SE 381 

3.05), p = 0.01) (Table 2, Figure 2). Additionally, for CYP19A1 SNPs, there were indications 382 

of associations with testosterone in the opposite direction compared to E2, but these 383 

associations did not reach statistical significance (rs727479 p = 0.05 and rs16964258 p = 384 

0.26) (Table 2, Figure 2).  385 

BMD 386 

The primary SNP in CYP19A1, rs727479, and the secondary signals rs2899472 and 387 

rs16964258, were all significantly associated with LS BMD in men (p ≤ 0.01; Table 3). 388 

Rs727479 and rs2899472 were also associated with FN BMD in men (p < 0.01). The 389 

direction of the effect was the same for all markers, i.e. alleles associated with higher levels of 390 

E2 were associated with a higher BMD. Moreover, rs5934505 (FAM9B) was associated with 391 

both FN (p = 0.01) and LS (p = 7 x 10-6) BMD. As in the case of CYP19A1 SNPs, the allele 392 

associated with higher E2 levels was associated with a higher BMD (Table 3).  393 

 394 

 395 
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Mendelian Randomization E2 and BMD 396 

The data from the GEFOS database show associations between individual SNPs and BMD, 397 

but do not provide information on possible causality between the E2 levels resulting from 398 

these SNPs and BMD. To overcome this we performed a summary statistic Mendelian 399 

Randomization analysis which suggested that there is a causal effect of serum E2 on BMD. A 400 

1 pg/ml genetically increased E2 was associated with a 0.048 SD (SE 0.008), p = 2.8 x 10-12 401 

increase in LS BMD. For the femoral neck the increase was 0.037 SD (SE 0.007, p = 4.4 x 10-402 

8 (Figure 3). 403 

Insulin sensitivity 404 

The publicly available GWAS results for measures of insulin sensitivity included only 405 

autosomal chromosomes, and did not include results for men and women separately. Thus the 406 

following results apply for men and women combined. Insulin resistance expressed as 407 

HOMA-IR was negatively associated with the E2 increasing A-alleles of rs727479 (p = 408 

0.004) and rs2899472 (p = 0.003) in CYP19A1. This was due to a negative association of 409 

these alleles with fasting insulin (p = 0.003 for rs727479 and p = 0.017 for rs2899472) 410 

(Supplemental Table 4). Adjustments for BMI had no effect on the results (BMI-adjusted 411 

fasting insulin p = 0.002 for rs727479 and p = 0.031 for rs2899472). There were no 412 

associations with fasting glucose for these SNPs.  The MAGIC investigators also provided us 413 

with data not publicly available on fasting insulin and fasting glucose for men and women 414 

separately (fasting insulin: men n ≈ 26,000, women n ≈ 32,000, fasting glucose: men n ≈ 415 

36,000, women n ≈ 43,000). In this dataset, the association between rs727479 and fasting 416 

insulin was significant in women (β -0.014 (SE 0.004), p = 0.002). In men the direction of the 417 

association was the same as in women, but was not statistically significant (rs727479: β -418 

0.006 (SE 0.005), p = 0.19).   419 
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Discussion 420 

In this GWAS, SNPs in the CYP19A1 gene showed the strongest associations with both E1 421 

and E2 levels. This confirms data from previous studies (5, 6, 35) and establishes CYP19A1 as 422 

an important genetic regulator of estrogen levels in men. We found three independent signals 423 

in CYP19A1, which extends the results from previous studies. We also identified two 424 

additional signals for E2 on chromosome X and two additional signals for E1, on 425 

chromosomes 7 and 8, respectively. Moreover, SNPs found to be associated with E2 levels in 426 

this study were also associated with known or suspected estrogen-related traits including 427 

BMD and insulin sensitivity. Mendelian randomization analysis using the independent E2 428 

SNPs suggests a causal effect of E2 on BMD in men. 429 

The finding of several independent signals for both E1 and E2 in CYP19A1 is consistent with 430 

the findings in the previously reported GWAS in Chinese men, where two independent SNPs 431 

were found. This strengthens the conception that the regulation of estrogen levels is governed 432 

by more than one signal in the gene. The organization of CYP19A1 is rather complex. The 433 

gene consists of a 30-kb coding region and a 93-kb regulatory region including 10 tissue-434 

specific promoters (36). There are four blocks of linkage disequilibrium (LD) in the gene. 435 

Rs727479, which displayed the most significant association with E2 levels in our study, is 436 

located in intron 2 in LD block 4, which covers 50 kB including the entire coding region, 437 

exons/promoters I.6, I.3 and PII, through 5.8 kb downstream of exon 10 (37). Rs727479 has 438 

been associated with E2 levels in previous candidate gene studies investigating haplotype-439 

tagging SNPs in CYP19A1, as well as in more comprehensive studies investigating larger 440 

numbers of SNPs in many genes, in both men (35, 38, 39) and postmenopausal women (40). 441 

Moreover, rs727479 was the second most significant SNP in the GWAS of E2 levels in 442 

postmenopausal women performed by Prescott and colleagues, although it did not reach 443 
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genome-wide significance (p = 5 x 10-7), perhaps due to the relatively low number of study 444 

participants (7). In all of these studies, the direction of the effect was the same as in our study: 445 

the A-allele was associated with higher E2 levels. The most significant SNP in the male 446 

Chinese GWAS performed by Chen and colleagues, rs2414095, is in very strong linkage (r2 = 447 

0.96) with rs727479 (6), and it is also located in intron 3 in LD block 4. The findings from our 448 

gene expression analyses that rs727479 is associated with the expression of CYP19A1 in two 449 

tissues further support the relevance of this SNP in the regulation of E2 levels.  450 

To our knowledge, the CYP19A1 loci rs2899472 and rs16964258 have not been linked to E2 451 

levels in previous studies. Rs2899472 is located in intron 4, in LD-block 4. Rs16964258 is 452 

located in a different region of the gene; intron 1, between LD blocks 1 and 2. Interestingly, 453 

the SNP most significantly associated with estrogen levels in our previous extended candidate 454 

gene study, rs2470152 (5), is also located in this region, 10 kb downstream of rs16964258. 455 

The D` for rs2470152 and rs16964258 is 1.0 but the r2 is 0.062, indicating that the SNPs are 456 

probably linked but, due to different allele frequencies, they are not proxy SNPs of one 457 

another. 458 

The signal in the FAM9B region on the X-chromosome, rs5934505, has not been associated 459 

with E2 levels before, but associations of this locus with testosterone levels are known from 460 

our earlier testosterone GWAS (30), a finding which was later replicated by Jin and 461 

colleagues in a smaller GWAS in men (n = 3,225) (41). Because testosterone is the precursor 462 

of estradiol, it is likely that the association of rs5934505 in the FAM9B region with E2 levels 463 

is mediated through the regulation of testosterone production and not through the conversion 464 

of testosterone to E2 per se. Rs5934505 is located in a CNV-insertion area (Xp22), 145 kb 465 

upstream of the family with sequence similarity 9, member A (FAM9A), and 79 kb 466 

downstream of family with sequence similarity 9, member B (FAM9B) genes. Both genes are 467 

expressed exclusively in the testes, and share 46% amino acid identity. Very little is known 468 
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about their functions (42). The Kallman syndrome 1 (KAL1) gene is located 214 kb 469 

downstream of rs5934505. KAL1 encodes the extracellular matrix glycoprotein anosmin-1 470 

implicated in the embryonic migration of gonadotropin releasing hormone and olfactory 471 

neurons. Deleterious mutations in KAL1 cause X-linked Kallmann syndrome, characterized 472 

by hypogonadotropic hypogonadism and anosmia (43), but there are no previous data 473 

supporting that minor alterations in the function of KAL1 are associated with sex steroid 474 

levels. Moreover, rs5934505 is correlated (r2 = 0.35) with another SNP, rs5978985, in this 475 

region, which was associated with male puberty in a recent GWAS (44).  476 

The other signal on the X chromosome, rs5951794, has not previously been associated with 477 

sex steroid levels, and the mechanism underlying the association in our study is not known. In 478 

contrast to rs5934505 (FAM9B), rs5951794 was not associated with higher testosterone 479 

levels. Therefore, the effect of this SNP would be expected to be exerted through alteration in 480 

the amount or activity of the aromatase enzyme or through regulation of estradiol clearance. 481 

In fact, rs5951794 was associated with slightly lower levels of testosterone. This might be the 482 

result of E2 mediated suppression of LH, which in turn would result in decreased testosterone 483 

levels. Rs5951794 is located approximately 65 kb downstream of a region rich in micro-484 

RNAs (MIRs 506-510, 513-514), expressed mainly in the testes (45). Aside from the micro-485 

RNA cluster, Fragile X mental retardation 1 (FMR1) is the closest gene located 486 

approximately 700 kb downstream of rs5951794.  Keeping the distance in mind, one could  487 

speculate that rs5951794 could affect the regulation of FMR1, a gene which in addition to its 488 

crucial role in the pathogenesis of Fragile X Syndrome associated mental retardation, is also 489 

the leading molecular cause of  premature ovarian failure (46). 490 

The E1 signal rs17277546 in the TRIM4 gene has also been shown to be associated in our 491 

previous GWAS of dehydroepiandrosterone sulphate (DHEAS) concentrations (47). Serum 492 

levels of DHEAS and DHEA are highly collinear (48). Serum levels of DHEAS could 493 
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therefore be a marker of serum levels of DHEA. In our earlier GWAS, the G allele was 494 

associated with higher levels of DHEAS, and in the present study, the G allele was associated 495 

with higher levels of estrone. Thus, an increased amount of adrenal derived precursors for 496 

estrogen synthesis is a possible explanation for the present findings. TRIM4 is a member of 497 

the tripartite motif (TRIM) family. Members of this family have been implicated in many 498 

biological processes including cell differentiation, apoptosis and transcriptional regulation 499 

(49). The mechanism relating rs17277546 to DHEAS levels is not known, but in our previous 500 

GWAS, we found that rs17277546 is strongly associated with expression levels of TRIM4 in 501 

cell lines from liver and adipose tissue in publically available databases. This indicates that 502 

rs17277546 is a functional SNP, or linked to such a SNP (47). 503 

The chromosome 8 signal, rs10093618 is located 1.5 kb upstream of the CYP11B1 gene. The 504 

product of CYP11B1, the steroid 11β-hydroxylase enzyme, catalyzes the conversion of 11-505 

deoxycortisol to cortisol, representing the final step in cortisol biosynthesis, and 11-506 

deoxycorticosterone to corticosterone. Deficiency of this enzyme leads to congenital adrenal 507 

hyperplasia. Hyperandrogenism is a hallmark of this condition since accumulated precursors 508 

are shunted into the androgen synthesis pathway (50). One could thus speculate that 509 

rs10093618, or an unknown variant linked with it, affects the production or efficiency of the 510 

steroid 11β-hydroxylase enzyme and thereby regulates the level of adrenal precursors for the 511 

sex steroid synthesis pathway, notably androstenedione, which is a direct precursor in estrone 512 

biosynthesis.  513 

Because serum E2 levels in men are positively associated with BMD, the SNPs associated 514 

with higher E2 levels would be expected to be associated with higher BMD. In fact, in our 515 

previous extended candidate gene study there was such an association between the lead 516 

CYP19A1 SNP, rs2470152, and BMD (5). Thus, the association in the present study between 517 

E2 associated SNPs in CYP19A1 as well as FAM9B, and BMD is a plausible finding. In fact, 518 
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rs5934505 is in complete linkage, r2 1.0, with rs5934507, which was identified as the only 519 

male specific signal in our previous GWAS of BMD (31). Because of the known association 520 

of rs5934505 with testosterone, the BMD signal was thought to be mediated via testosterone 521 

levels in the BMD GWAS. Given the findings in the present study of an association between 522 

rs5934505 and E2, it seems more likely that the association with BMD is mediated at least in 523 

part via E2 levels rather than solely via a direct effect of testosterone (Figure 3). 524 

Although an association between serum E2 levels and BMD in men has been shown in earlier 525 

association studies, a causal relation has not been demonstrated. In this study, using 526 

Mendelian Randomization analysis, we provide evidence that there is a causal effect of E2 on 527 

BMD. For instance, in the RS-1 cohort, where the E2 levels were 12.7 pg/ml (SD 6.6), 1 SD 528 

of genetically instrumented decrease in E2 would result in a 6.6 x 0.048 = 0.32 SD decrease in 529 

LS BMD and 6.6 x 0.037 = 0.24 SD decrease in FN BMD.  530 

According to Johnell and coworkers, the relative risk for hip fracture in men aged 65 was 2.94 531 

(95 % CI 2.02-4.27) for each SD decrease in FN BMD (51). Using this information of the 532 

association between FN-BMD and hip fracture risk together with the causal effect of serum 533 

estradiol on FN-BMD as estimated in the present MR analysis, 1 SD (using the SD of serum 534 

estradiol from the RS-1 cohort) decrease in genetically instrumented E2 level could increase 535 

the relative risk for hip fracture by 47 %. 536 

In this study, SNPs in CYP19A1 that were associated with higher E2 levels, were also 537 

associated with improved insulin sensitivity and lower fasting insulin in men and women 538 

combined. In men, the role of estrogens in the regulation of insulin sensitivity is not fully 539 

understood. However, mechanistic studies and clinical trials suggest that estrogen signaling is 540 

important in the regulation of insulin sensitivity in men (18, 20, 22, 23). Furthermore, men 541 

with aromatase deficiency due to an inactivating mutation of the CYP19A1 gene are 542 
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overweight or obese, and display and insulin resistance, which often improves with estrogen 543 

replacement therapy (17).  544 

The strengths of our study include the large sample size, with 11,097 men in the discovery 545 

analysis of E2 levels, and the large proportion of serum samples analyzed using the MS-546 

technique. This enabled us to find multiple signals in the CYP19A1 locus, and new signals on 547 

other chromosomes, for both E1 and E2.  A potential weakness of our study is that not all 548 

samples were analyzed by MS. As a result of the lower specificity of the immunoassays, 549 

weaker genetic signals might have been missed. It is likely that future studies with even larger 550 

numbers of samples analyzed by MS could uncover signals not found in this study. 551 

Nevertheless we believe that due to the large proportion of samples analyzed by MS our 552 

findings are robust and the risk for false positive signals is low. We also found SNP 553 

associations with BMD and measures of insulin sensitivity. Additionally, the Mendelian 554 

Randomization analysis provides evidence of a causal effect of E2 on BMD in men. The 555 

mechanisms underlying some of the associations in our study should be further investigated to 556 

expand our understanding of the regulation of sex steroid levels.  557 
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 Legends to figures 886 

Figure 1A-C. Manhattan plots for the genome-wide meta-analysis results. 887 

(A) E2 adjusted for age and BMI, (B) E2 adjusted for, age, BMI, testosterone and SHBG and 888 

(C) E1 adjusted for age and BMI. Red line indicates p = 5 x 10-8. Genome-wide significant 889 

loci are indicated by green color. In the analysis of E1, one SNP on chromosome 1 reached 890 

the threshold for genome-wide significance (p < 5 x 10-8), but had a minor allele frequency of 891 

< 0.01 in all but two cohorts. Therefore this SNP was discarded from further analyses.  892 

Figure 2. Proposed mechanisms underlying the associations between genome wide 893 

significant SNPs and serum levels of E2 and T 894 

SNPs associated with elevated levels of both E2 and T are expected to be located upstream of 895 

T. SNPs associated with elevated levels of E2 but no increase in T levels are expected to be 896 

affecting aromatase activity or estradiol clearance. The allele associated with increased serum 897 

E2 is given for each SNP. The proposed effect of E2 on BMD is also indicated; upwards 898 

arrow represents increase, downwards arrow represents decrease and arrow in parentheses 899 

represents non-significant decrease. 900 

Figure 3. Forest plot of Mendelian Randomization analyses showing the effect of E2 on 901 

BMD. 902 

Effect size of E2 on BMD expressed as SD increase in BMD per pg/ml E2. The horizontal 903 

lines represent confidence interval; the central vertical line represents precision. The values 904 

are based on a meta-analysis of all five E2 associated SNPs (rs727479, rs2899472, 905 

rs16964258, rs5934505, rs5951794). The horizontal axis shows the scale of the effects. 906 

LSBMD = lumbar spine BMD, FNBMD = femoral neck BMD. 907 
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