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Abstract

This paper examines to what degree cur-
rent deep learning architectures for im-
age caption generation capture spatial lan-
guage. On the basis of the evaluation of
examples of generated captions from the
literature we argue that systems capture
what objects are in the image data but not
where these objects are located: the cap-
tions generated by these systems are the
output of a language model conditioned on
the output of an object detector that cannot
capture fine-grained location information.
Although language models provide useful
knowledge for image captions, we argue
that deep learning image captioning archi-
tectures should also model geometric rela-
tions between objects.

1 Introduction

There is a long-traditional in Artificial Intelligence
(AI) of developing computational models that in-
tegrate language with visual information, see inter
alia.: (Winograd, 1973; McKevitt, 1995; Kelleher,
2003; Gorniak and Roy, 2004; Kelleher and Krui-
jff, 2005a; Brenner et al., 2007; Dobnik, 2009;
Tellex, 2010; Sjöö, 2011; Dobnik and Kelleher,
2016; Schütte et al., 2017). The goal of this pa-
per is to situate and critically examine recent ad-
vances in computational models that integrate vi-
sual and linguistic information. One of the most
exciting developments in AI in recent years has
been the development of deep learning (DL) archi-
tectures (LeCun et al., 2015; Schmidhuber, 2015).
Deep learning models are neural network mod-
els that have multiple hidden layers. The advan-
tage of these architectures is that these models
have the potential to learn high-level useful fea-
tures from raw data. For example, Lee et al. (2009)

report how their convolutional deep belief network
“learns useful high-level visual features, such as
object parts, from unlabelled images of objects
and natural scenes”. In brief, Lee et al. show how
a deep network trained to perform face recognition
learns a hierarchical sequence of feature abstrac-
tions: neurons in the early layers in the network
learn to act as edge detectors, neurons in later lay-
ers react to the presence of meaningful parts of a
face (e.g., nose, eye, etc.), and the neurons in the
last layers of the network react to sensible con-
figurations of body parts (e.g., nose and eyes and
sensible (approximate) offsets between them).

Deep learning models have improved on the
start-of-the-art across a range of image and lan-
guage modelling tasks. The typical deep learn-
ing architecture for image modelling is a convolu-
tional neural network (CNN) (Lecun et al., 1998)
and for language modelling is a recurrent neu-
ral network (RNN), often using long short-term
memory (LSTM) units (Hochreiter and Schmid-
huber, 1997). However, from the perspective of
research into the interface between language and
vision perhaps the most exciting aspect of deep
learning is the fact that all of these models (both
language and vision processing architectures) use
a vector based representation. A consequence of
this is that deep learning models have the poten-
tial to learn multi-modal representations that in-
tegrate linguistic and visual information. Indeed,
inspired by sequence-to-sequence neural machine
translation research (Sutskever et al., 2014), deep
learning image captioning systems have been de-
veloped that use a CNN to process and encode im-
age data and then pass this vector based encoding
of the image to an RNN that generates a caption
for the image. Figure 1 illustrates the components
and flow of data in an encoder-decoder CNN-RNN
image captioning architecture.

The performance of these deep learning image
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Encoder Decoder

CNN
Vector Based
Representation

RNN “A bird flying
over water”

0 / 0

Figure 1: A schematic of a typical encoder-decoder deep learning image captioning architecture in (Xu
et al., 2015). The photo is different from but similar to the photo in this example. The current photo is by
Jerry Kirkhart (originally posted to Flickr as Osprey Hunting) and is sourced via Wikimedia Commons.
It is used here under the Creative Commons Attribution 2.0 generic licence.

captioning systems is impressive. However, the
question posed by this paper is whether these sys-
tems are actually grounding the semantics of the
entire linguistic caption in the image, and in par-
ticular whether these systems ground the seman-
tics of spatial relations in the image. The rest of
the paper is structured as follows: Section 2 in-
troduces the components of deep learning image
captioning architecture in more detail; following
this, Section 3 reviews the challenges of grounding
language in perception, with a particular focus on
spatial language; the paper concludes in Section
5 by posing the question of whether deep learning
image captioning architectures as currently consti-
tuted are capable of doing justice to the complexity
and diversity of factors that affect the production
and interpretation of spatial language in visually
situated dialogues.

2 The Standard DL Image Captioning
Architecture

As mentioned in Section 1 there are two major
components within current standard deep-learning
image captioning systems, a CNN that processes
the image input and encodes some of the informa-
tion from the image as a vector, and an RNN that
takes the vector representation of the image as an
input and generates a caption for the image. This
section provides an explanation for how each of
these components works: Section 2.1 introduces
the basic architecture of a CNN and Section 2.2
introduces the basic architecture of an RNN and
explains how they can be used to create visually
grounded language models.

2.1 Convolutional Neural Networks
CNNs are specifically designed for image recog-
nition tasks, such as handwritten digit recognition
(Le Cun, 1989). A well-recognised approach to

image recognition is to extract local visual features
and combine these features to form higher-order
features. A local feature is a feature whose ex-
tent within a image is constrained to a small set of
neighbouring pixels. For example, for face recog-
nition a system might first learn to identify fea-
tures such as patches of line or curve segments,
and then learn patterns across these low level fea-
tures that correspond to features such as eyes or
a mouth, and finally learn how to combine these
body-part features to identify a face.

A key challenge in image recognition is creat-
ing a model that is able to recognise if a visual
feature has occurred in the image irrespective of
the location of the feature in the image:

“it seems useful to have a set of fea-
ture detectors that can detect a partic-
ular instance of a feature anywhere on
the input plane. Since the precise lo-
cation of a feature is not relevant to
the classification, we can afford to loose
some position information in the pro-
cess” (Le Cun, 1989, p.14)

For example, a face recognition network should
recognise the shape of an eye whether the eye is in
the top right corner of the image or in the centre
of the image. CNNs achieve this translation in-
variant detection of local visual features using two
techniques:

1. weight (parameter) sharing and
2. pooling.

Recall that each neuron in a network learns a func-
tion that maps from a set of inputs to an output
activation. The function is defined by the set of
weights the neuron applies to the inputs it receives
and learning the function involves updating the
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weights from a set of random initialised values to a
set of values that define a function that the network
found useful during training in terms of predicting
the correct output value. In the context of image
recognition a function can be understood as a fea-
ture detector which takes a set of pixel values as
input and outputs a high-activation score if the vi-
sual feature is present in the set of input pixels and
a low-activation score if the feature is not present.
Furthermore, neurons that share (or use) the same
weights implement the same function and hence
implement that same feature detector.

Given that a set of weights for a neuron defines
a feature detector and that neurons with the same
weights implement the same feature detector, it is
possible to design a network to check whether a vi-
sual feature occurs anywhere in an image by mak-
ing multiple neurons share the same set of weights
but have each of these neurons inspect different
portions of the image in such a way so that to-
gether the neurons cover the whole image.

For example, imagine we wish to train a net-
work to identify digits in images of 10⇥ 10 pix-
els. In this scenario we may design a network so
that one of the neurons in the network inspects the
pixels in the top-left corner of the figure to check
if a visual feature is present. The image at the
top of Figure 2 illustrates such a neuron. This
neuron inspects the pixels (0,0), . . . ,(2,2) and ap-
plies the function defined by the weight vector
< w0, . . . ,w8 >. This neuron will return a high ac-
tivation if the appropriate pixel pattern is present
in the pixels input to the function and low other-
wise. We can now create a copy of this neuron that
uses the same weights < w0, . . . ,w8 > but which
inspects a different set of pixels in the image: the
image at the bottom of Figure 2 illustrates such
a neuron, this particular neuron inspects the pixels
(0,1), . . . ,(2,3). If the visual feature that the func-
tion defined by the weight vector < w0, . . . ,w8 >

occurs in either of the image patches inspected by
these two neurons, then one of the neurons will
fire.

Extending the idea of a set of neurons with
shared weights inspecting a full image results in
the concept of a feature map. In a CNN a feature
map consists of a group of neurons that share the
same set of weights on their inputs. This means
that each group of neurons that share their weights
learns to identify a particular visual feature and
each neuron in the group acts as a detector for that
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Figure 2: Two neurons connected to different ar-
eas in the input image (i.e., with different recep-
tive fields) but which shared the same weights:
w0,w1,w2,w3,w4,w5,w6,w7,w8

feature. In a CNN the neurons within each group
are arranged so that each neuron examines a differ-
ent local region in the image. The set of pixels that
each neuron in the feature map inspects is known
as the receptive field of that neuron. The neu-
rons and the related receptive fields are arranged
so that together the receptive fields cover the en-
tire input image. Consequently, if the visual fea-
ture the group detects occurs anywhere in the im-
age one of the neurons in the group will identify
it. Figure 3 illustrates a feature map and how each
neuron in the feature map has a different receptive
field and how the neurons and fields are organised
so that taken together the receptive fields of the
feature map cover the entire input image. Note
that the receptive fields of neighbouring neurons
typically overlap. In the architecture illustrated in
Figure 3 the receptive fields of neighbouring neu-
rons will overlap by either two columns (for hor-
izontal neighbours) or by two rows (for vertical
neighbours). However, an alternative organisation
would be to reduce the number of neurons in the
feature map and reduce the amount of overlap in
the receptive fields. For example, if the receptive
fields only overlapped by one row or one column
then we would only need half the number of neu-
rons in the feature map to cover the entire input
image. This would of course result in a “two-to-
one under-sampling in each direction” (Le Cun,
1989).

The idea of applying the same function repeat-
edly across an input space by defining a set of neu-
rons where each neuron applies the function to a
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Figure 3: A feature map

different part of the input is very general and can
be used irrespective of the type of function being
applied. CNNs networks often use the same tech-
nique to under-sample the output from a feature
map. The motivation for under-sampling is to dis-
card locational information in favour of generalis-
ing the network’s ability to identify visual features
in a shift invariant manner. The standard way to
implement under-sampling on the output of a fea-
ture map is to use a pooling layer, so called as it
pools information from a number of neurons in a
feature map. Each neuron in a pooling layer in-
spects the outputs of a subset of the neurons in a
feature map, in a very similar way to the way the
neuron in the feature map each has a receptive field
in the input. Often the function used by neurons in
a pooling layer is the max function. Essentially, a
max pooling neuron outputs the maximum activa-
tion value of any of the neurons in the preceding
layer that it inspects. Figure 4 illustrates the ex-
tension of the feature map in Figure 3 with a pool-
ing layer. The output of the highlighted neuron
in the pooling layer is simply the highest activa-
tion across the 4 neurons in the feature map that
it inspects. Pooling obviously discards locational
information at a local level, after pooling the net-
work knows that a visual feature occurred in a re-
gion of the image but does not know where pre-
cisely within the region the feature occurred.
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Figure 4: Applying pooling to a feature map

A CNN network is not restricted to only one
feature map or one pooling layer. A CNN net-
work can consist of multiple feature maps and
pooling layers working in parallel where the out-

puts of these different streams of processing are
finally merged to one or more fully connected lay-
ers (see Figure 5). Furthermore, these basic build-
ing blocks of feature maps and pooling layers can
be sequenced in many different ways: the output
of one feature map layer can be used as the input
to another feature map layer, and the output of a
pooling layer may be the input to a feature map
layer. Consequently, a CNN architecture is very
flexible and can be composed of multiple layers of
feature maps and pooling layers. For example, a
CNN could include a feature map that is fed into
a pooling layer which in turn acts as the input for
a second feature map layer which itself is down-
sampled using another pooling layer, and so on,
until the outputs of a layer are eventually fed into
a fully-connected feed-forward layer where the fi-
nal prediction is calculated: feature map ! pool-
ing ! feature map ! pooling ! dots ! fully-
connected layer. Obviously with each extra layer
of pooling the network discards more and more lo-
cation information.
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Figure 5: A CNN architecture containing N par-
allel streams of feature maps and pooling layers
feeding into a single fully connected feed-forward
layer

2.2 Recurrent Neural Network Language
Models

Recurrent Neural Networks (RNN)1 are an ideal
neural network architecture for processing sequen-
tial data such as language. Generally, RNN mod-
els are created by extending a feed-forward neu-

1This introduction to Recurrent Neural Networks is based
on (Kelleher, 2016).
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ral network that has just one hidden layer with a
memory buffer, as shown in Figure 6a.

RNNs process sequential data one input at a
time. In an RNN the outputs of the neurons in
the hidden layer of the network for one input are
feed back into the network as part the next input.
Each time an input from a sequence is presented to
the network the output from the hidden units for
that input are stored in the memory buffer over-
writing whatever was in the memory (Figure 6b).
At the next time step when the next data point in
the sequence is considered, the data stored in the
memory buffer is merged with the input for that
time step (Figure 6c). Consequently, as the net-
work moves through the sequence there is a recur-
rent cycle of storing the state of the network and
using that state at the next time step (Figure 6d).

In order to simplify the following figures we do
not draw the individual neurons and connections
but represent each layer of neurons as a rounded
box and show the flow of information between lay-
ers with arrows. Also, we refer to the input layer
as xt , the hidden layer as ht , the output layer as yt ,
and the memory layer as ht�1. Figure 7a illustrates
the use of this schematic representation of layers
of neurons and the flow of information through an
RNN and Figure 7b shows the same network using
the shorter naming convention.

Figure 8 demonstrates the flow of information
through an RNN as it processes a sequence of in-
puts. An interesting thing to note is that there is a
path connecting each h (the hidden layer for each
input) to all the previous hs. Thus, the hidden layer
in an RNN at each point in time is dependent on
its past. In other words, the network has a memory
so that when it is making a decision at time step t
it can remember what it has seen previously. This
allows the model to take into account data that de-
pends on previous data, for example in sequences.
This is the reason why an RNN is useful for lan-
guage processing: having a memory of the previ-
ous words that have been observed in a sequence
of a sentence is predictive of the words that follow
them.

A language model is a computational model that
takes a sequence of words as input and returns a
probability distribution from which the probabil-
ity of each vocabulary word being the next word in
the sequence can be predicted. An RNN language
model can be trained to predict the next word in
a sequence. Figure 9 illustrates how information

flows through an RNN language model as it pro-
cesses a sequence of words and attempts to predict
the next word in the sequence after each input. The
* indicates the next word as predicted by the sys-
tem. All going well ⇤Word2 = Word2 but if the
system makes a mistake this will not be the case.

When we have trained a language model we
can make it to “hallucinate” or generate language
by giving it an initial word and then inputting the
word that the language model predicts as the most
likely next word as the following input word into
the model, etc. Figure 10 shows how we can use
an RNN language model to generate text by feed-
ing the words the language model predicts back
into the model.

3 Grounding Spatial Language in
Perception

The symbol grounding problem is the problem of
how the meaning of a symbol can be grounded
in anything other than other meaningless sym-
bols. Harnad (1990) argues the symbolic rep-
resentations must be grounded bottom-up from
two forms of non-symbolic sensor representations:
iconic representations which can be understood as
sensory experience of objects and events, and cat-
egorial representations which are feature detec-
tors that are triggered by invariant features of ob-
jects and events within these sensory experiences.
Given these two foundational non-symbolic rep-
resentations, a grounded symbolic system can be
built up with the elementary symbols of this sys-
tem being the symbolic names or labels of the
object and event categories that are distinguished
within the categorical representations of the agent.
Essentially, the meaning of an elementary symbol
is the categorisation of sensor grounded experi-
ence.

The description “meaningless” in the defini-
tion above (originally made by (Harnad, 1990))
should be discussed in relation to the work in dis-
tributional semantics (Turney et al., 2010) which
has been used very successfully for computational
representation of meaning. The reason why dis-
tributional semantic representations work is that
word contexts capture indirectly latent situations
that co-occuring words are all referring to. Distri-
butional semantic models are built from grounded
language (which is therefore not “meaningless”) it
is only that grounded representations are not in-
cluded in the model. Grounding is expressed indi-
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input as the network processes a sequence

Figure 6: The flow of data between the memory buffer and the hidden layer in a recurrent neural network

rectly through word co-occurrences.

(Roy, 2005) extends Harnad’s approach by set-
ting out a framework of semiotic schemas that
ground symbolic meaning in a causal-predictive
cycle of action and perception. Within Roy’s
framework meaning is ultimately grounded in
schemas where each schema is a belief network
that connects action, perception, attention, cat-
egorisation, inference, and prediction. These
schemas can be understood as the interface be-
tween the external world (reached through the ac-
tion and perception components of the schemas)
and the agents internal cognitive processes (atten-
tion, categorisation, inference, and prediction).

Spatial language is an interesting case study in
grounding language in perception because linguis-
tic descriptions of perceived spatial relations be-

tween objects are intrinsically about the world and
as such should be grounded within an agent’s per-
ception of that world (Dobnik, 2009; Kelleher and
Costello, 2009). The most common form of spatial
language discussed in the literature is a locative
expression. A locative expression is composed of
a noun phrase modified by a prepositional phrase
that specifies the location of the referent of the
noun phrase relative to another object. We will use
the word target object to refer to the object whose
position is being described and the term landmark
object to refer to the object that the target object’s
location is described relative to2, the annotations

2The literature on locative expressions uses uses a variety
of terms to describe the target and the landmark objects, for
a review see (Kelleher, 2003; Dobnik, 2009). Other terms
found in the literature for the target object include: trajector,
local object, and figure object. Other terms used to describe
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on the following example locative expression il-
lustrates this terminology:

T he big red book| {z }
Target

on the table| {z }
Landmark| {z }

Prepositional
Phrase| {z }

Noun Phrase| {z }
Locative Expression

Previous work on spatial language has revealed
a range of factors that impinge on the interpre-
tation of locative expressions. An obvious com-
ponent in the grounding of a spatial description
is the scene geometry and the size and shape of
region described by the spatial term within that
geometry. The concept of a spatial template is
used to describe these regions and several exper-
iments have revealed how these templates vary
across spatial terms and languages, e.g., (Logan
and Sadler, 1996; Kelleher and Costello, 2005;

the landmark object include: reference object, relatum, and
ground.

Output:

Input:

y1 y2 y3 yt yt+1

h1 h2 h3 ��� ht ht+1

x1 x2 x3 xt xt+1

0 / 0

Figure 8: An RNN unrolled in time
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⇤Word2 ⇤Word3 ⇤Word4 ⇤Wordt+1
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Word1 Word2 Word3 Wordt

0 / 0

Figure 9: RNN language model unrolled in time

Dobnik and Åstbom, 2017).
It has also been shown that the geometry of a

spatial template for a given preposition is affected
by a number cognitive and contextual factors, in-
cluding:

• perceptual attention (Regier and Carlson,
2001; Burigo and Knoeferle, 2015; Kluth and
Schultheis, 2014),

• the viewer’s perspective on the landmark(s)
(Kelleher and van Genabith, 2006),

• object occlusion (Kelleher et al., 2011),
• frame of reference ambiguity and align-

ment between the landmark object and refer-
ence frames (Carlson-Radvansky and Logan,
1997; Burigo and Coventry, 2004; Kelleher
and Costello, 2005),

• the location of other distractor objects in the
scene (Kelleher and Kruijff, 2005b; Costello

Output:

Input:

⇤Word2 ⇤Word3 ⇤Word4 ��� ⇤Wordt+1

h1 h2 h3 ��� ht

Word1

0 / 0

Figure 10: Using an RNN language model to gen-
erate a word sequence
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and Kelleher, 2006; Kelleher et al., 2006),
• and the richness of the perceptual context

(Dobnik and Åstbom, 2017).

The last point is related to the fact that factors
affecting semantics of spatial descriptions go be-
yond scene geometry and include the functional
relationships between the target and the landmark
(Coventry, 1998; Coventry et al., 2001; Coventry
and Garrod, 2004) and force dynamics within the
scene (Coventry et al., 2005; Sjöö, 2011). These
functional relations can be captured as mean-
ings induced from word distributions (Dobnik and
Kelleher, 2013, 2014). Another important factor
of (projective) spatial descriptions is their contex-
tual underspecification in terms of the assigned
frame of reference which is coordinated through
dialogue interaction between conversational par-
ticipants (Dobnik et al., 2015). It is therefore
based on their coordinated intentions in their in-
teraction.

The research in spatial language semantics
highlights its multifaceted nature. Spatial lan-
guage draws upon (i) geometric concepts, (ii)
world knowledge (i.e., an understanding of func-
tional relationships and force dynamics), and (iii)
perceptual and discourse cues. Thus in order for a
computational system to adequately model spatial
language semantics it should accommodate all or
most of these factors.

4 Spatial Language in DL

The question that this paper addresses is whether
deep learning image captioning architectures as
currently constituted are capable of grounding
spatial language within the images they are cap-
tioning. The outputs of these systems are impres-
sive and often include spatial descriptions. Fig-
ure 1 (based on an example from (Xu et al., 2015))
provides an indicative example of the performance
of these systems. The generated caption in this
case is accurate and what is particularly interest-
ing is that it includes a spatial description: over
water. Indeed, the vast majority of generated cap-
tions listed in (Xu et al., 2015) include spatial de-
scriptions, some of which include:3

• “A woman is throwing a frisbee in a park”
• “A dog is standing on a hardwood floor”

3The emphasis on the spatial descriptions were added
here.

• “A group of people sitting on a boat in the
water”.

The fact that these example captions include
spatial descriptions and that the captions are of-
ten correct descriptions of the input image begs the
question of whether image captioning systems are
actually learning to ground the semantics of these
spatial terms in the images. The nature of neural
network systems makes it difficult to directly anal-
yse what a system is learning, however there are
a number of reasons why it would be surprising
to find that these systems were grounding spatial
language. First, recall from the review of ground-
ing in Section 3 that spatial language draws on a
variety of information, including:

• scene geometry,
• perceptual cues such as object occlusion,
• world knowledge including functional rela-

tionships and force dynamics,
• and coordinated intentions of interacting

agents.

Considering only scene geometry, these image
captioning systems use CNNs to encode the rep-
resentation of the input image. Recall from Sec-
tion 2.1 that CNNs discard locational information
through the (down-sampling) pooling mechanism
and that such down-sampling may be applied sev-
eral times within a CNN pipeline. Although it is
possible that the encoding generated by a CNN
may capture rough relative positions of objects
within a scene, it is likely that this encoding is
too rough to accommodate the level of sensitiv-
ity of spatial descriptions to location that experi-
mental studies of spatial language have found to
be relevant (cf. the changes in acceptability rat-
ings in (Logan and Sadler, 1996; Kelleher and
Costello, 2005; Dobnik and Åstbom, 2017) as a
target object moved position relative to the land-
mark). The architecture of CNNs also points to
the fact that these systems are unlikely to be mod-
elling perceptual cues. CNNs essentially work by
identifying what an object is through a hierarchi-
cal merging of local visual features that are pre-
dictive of the object type. These local visual fea-
tures are likely to be features that are parts of the
object and therefore frequently co-occur with the
object label. Consequently, CNNs are unlikely to
learn to identify an object type via context and
viewpoint dependent cues such as occlusion. Fi-
nally, neither a CNN nor an RNN as currently
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used in the image description tasks provide mech-
anisms to learn force-dynamics or functional re-
lationships between objects (cf. (Coventry et al.,
2005; Battaglia et al., 2013)) nor do they take into
account agent interaction. Viewed in this light
the current image captioning systems appear to
be missing most of the key factors necessary to
ground spatial language. And, yet they do appear
to generate reasonably accurate captions that in-
clude spatial descriptions.

There are a number of factors that may be con-
tributing to this apparent ability. First, an inspec-
tion of the spatial descriptions used in the gen-
erated captions reveals that they tend to include
topological rather than projective spatial preposi-
tions (e.g., on and in rather than to the left of and
above): in a forest, in a park, in a field, in the field
with trees, in the background, on a bed, on a road,
on a skateboard, at a table. These spatial descrip-
tions are more underspecified with regard to the lo-
cation of the target object relative to the landmark
object than projective descriptions which also re-
quire grounding of direction within a frame of ref-
erence. Topological descriptions are semantically
adequate already if the target is just proximal to
the landmark and hence it is more likely that a
caption will be acceptable. Furthermore, it is fre-
quently the case that given a particular label for
a landmark it is possible to guess the appropri-
ate preposition irrespective of the image and/or the
target object type or location. Essentially the task
posed to these systems is to fill the blanks with one
of at, on, in:

• TARGET a field,
• TARGET the background,
• TARGET a road,
• TARGET a table.

Although the system may get some of the
blanks wrong it is likely to get many of them right.
This is because the system can use distributional
knowledge of words which captures some ground-
ing indirectly as discussed in Section 3. Indeed,
recent research has shown that co-occurrence of
nouns with a preposition within a corpus of spa-
tial descriptions can reveal functional relations be-
tween objects referred to by the nouns (Dobnik
and Kelleher, 2013, 2014). Word co-occurrence is
thus highly predictive of the correct preposition.
Consequently, language models trained on im-
age description corpora indirectly model partially

grounded functional relations, at least within the
scope of the co-occurrence likelihood of preposi-
tions and nouns.

The implication of this is that current image
captioning systems do not ground spatial descrip-
tions in the images they take as input. Instead, the
apparent ability of these systems to frequently cor-
rectly use spatial prepositions to describe spatial
relations within the image is the result of the RNN
language model learning to predict the most likely
preposition to be used given the target and land-
mark nouns where these nouns are predicted from
the image by the CNN.

There is a negative and a positive side to this
conclusion. Let’s start with the negative side.
The distinction between cognitive representations
of what something is versus where something is
has a long tradition in spatial language and spa-
tial cognition research (Landau and Jackendoff,
1993). These image captioning systems would ap-
pear to be learning representations that allow them
to ground the semantics of what. But they are
not learning representations that enable them to
ground the semantics of where. Instead, they rely
on the RNN language model to make good guesses
of the appropriate spatial terms to use based on
word distributions. The latter point introduces the
positive side. It is surprising how much and how
robustly semantic information can be captured by
distributional language models. Of course, lan-
guage models cannot capture the geometric rela-
tions between objects, for example they are not
able to distinguish successfully the difference in
semantics between the chair is to the left of the ta-
ble and the chair is to the right of the table as left
and right would occur in exactly the same word
contexts. However, as we argued in Section 3 spa-
tial language is not only spatial but also affected
by other sources of knowledge that leave an im-
print in the word distributions which capture re-
lations between higher-level categorical represen-
tations built upon the elementary grounded sym-
bols (Harnad, 1990). It follows that some categor-
ical representations will be closer to and therefore
more grounded in elementary symbols, something
that has been shown for spatial language (Coven-
try, 1998; Coventry et al., 2001; Coventry and
Garrod, 2004; Dobnik and Kelleher, 2013, 2014).
In conclusion, it follows that successful compu-
tational models of spatial language require both
kinds of knowledge.
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5 Conclusions

In this paper we examined the current architecture
for generating image captions with deep learn-
ing and argued that in its present setup they fail
to ground the meaning of spatial descriptions in
the image but nonetheless achieve a good perfor-
mance in generating spatial language which is sur-
prising given the constraints of the architecture
that they are working with. The information that
they are using to generate spatial descriptions is
not spatial but distributional, based on word co-
occurrence in a sequence as captured by a lan-
guage model. While such information is required
to successfully predict spatial language, it is not
sufficient. We see at least two useful areas of fu-
ture work. On one hand, it should be possible to
extend the deep learning configurations for image
description to take into account and specialise to
learn geometric representations of objects, just as
the current deep learning configurations are spe-
cialised to learn visual features that are indicative
of objects. The work on modularity of neural net-
works such as (Andreas et al., 2016; Johnson et al.,
2017) may be relevant in this respect. On the other
hand, we want to study how much information can
be squeezed out of language models to success-
fully model spatial language and what kind of lan-
guage models can be built to do so.
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