
The topography of the environment alters the optimal
search strategy for active particles
Giorgio Volpea,1 and Giovanni Volpeb

aDepartment of Chemistry, University College London, London WC1H 0AJ, United Kingdom; and bDepartment of Physics, University of Gothenburg, 41296
Gothenburg, Sweden

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved September 18, 2017 (received for review June 26, 2017)

In environments with scarce resources, adopting the right search
strategy can make the difference between succeeding and fail-
ing, even between life and death. At different scales, this applies
to molecular encounters in the cell cytoplasm, to animals looking
for food or mates in natural landscapes, to rescuers during search
and rescue operations in disaster zones, and to genetic computer
algorithms exploring parameter spaces. When looking for sparse
targets in a homogeneous environment, a combination of ballistic
and diffusive steps is considered optimal; in particular, more bal-
listic Lévy flights with exponent α≤ 1 are generally believed to
optimize the search process. However, most search spaces present
complex topographies. What is the best search strategy in these
more realistic scenarios? Here, we show that the topography of
the environment significantly alters the optimal search strategy
toward less ballistic and more Brownian strategies. We consider
an active particle performing a blind cruise search for nonregen-
erating sparse targets in a 2D space with steps drawn from a
Lévy distribution with the exponent varying from α= 1 to α= 2
(Brownian). We show that, when boundaries, barriers, and obsta-
cles are present, the optimal search strategy depends on the
topography of the environment, with α assuming intermediate
values in the whole range under consideration. We interpret these
findings using simple scaling arguments and discuss their robust-
ness to varying searcher’s size. Our results are relevant for search
problems at different length scales from animal and human forag-
ing to microswimmers’ taxis to biochemical rates of reaction.
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What is the best strategy to search for randomly located
resources? This is a crucial question for fields as diverse

as biology, genetics, ecology, anthropology, soft matter, com-
puter sciences, and robotics (1, 2). To describe and analyze how a
searcher browses the search space, many different plausible mod-
els have been proposed, including Brownian motion and intermit-
tent search patterns as well as Lévy flights and walks (1–3). In
particular, Lévy statistics, among others models (1), have been
successfully used to describe the emergence of optimal search
strategies in natural systems at different length scales, from molec-
ular entities (4, 5) to swimming and swarming microorganisms (6–
8) to crawling eukaryotic cells (9) to different species of forag-
ing animals (10–16) to human motion patterns (17–19), although
in the field of movement ecology there is some controversy on
how universal Lévy searches are (20–25). Lévy statistics have also
found applications in science and engineering [e.g., for defining
the optimal search strategy for robots (26) and for describing
anomalous diffusion and navigation on networks (27, 28)].

The strategies based on Lévy statistics can be described under
a unified framework, where the searcher is an active particle
(29) that performs random jumps (blind search) with lengths `
that are drawn from a stable distribution P(`). The two lim-
iting cases for α→ 0 and α=2 correspond to ballistic and
Brownian motion, respectively. The intermediate cases combine
diffusive (i.e., local exploration) and ballistic (i.e., decorrelating,
long-range excursions) steps in different proportions. In particu-

lar, the case for α=1 corresponds to a compromise superdiffu-
sive regime, where the searcher explores its surroundings while
reducing oversampling compared with a pure Brownian strategy
(2, 11, 30). When resources are plentiful, the most efficient strat-
egy is a Brownian search (α=2) (11, 14, 15); when resources
are sparse, however, a Lévy strategy with α=1 performs bet-
ter over a pure Brownian strategy (2). In general, more ballistic
search strategies (i.e., α≤ 1) have been shown to be optimal in a
wide range of situations, with the specific value of the exponent
α dependent on, for example, the nature of the encounters with
the targets (i.e., destructive or nondestructive) or the presence of
memory in the searcher’s motion (11, 23, 31–35).

These studies have limited their analysis to landscapes char-
acterized by a barrier-free homogenous topography. However,
in realistic scenarios, the environment is often characterized
by a more complex topography, where boundaries, barriers,
and obstacles play a crucial role in determining the searcher’s
motion. Examples of complex search spaces include cytoplasm
for molecules within cells (36), biological tissue (or soil) for
motile bacteria (37), and patchy landscapes for foraging ani-
mals (38). This complexity can significantly influence the long-
term behavior of the system under study (39). As it has been
recently shown, even a small perturbation, such as an external
drift, can shift the optimal search strategy toward more Brownian
strategies (40).

Here, by considering a searcher performing a blind cruise
search for uniformly distributed nonregenerating sparse tar-
gets, we show with numerical simulations and simple scaling
arguments that the exponent that optimizes the search strategy
depends on the topography of the environment. In particular, we
show that, different from the homogeneous case where typically
α≤ 1 optimizes the search process, the optimal search strategy
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tends toward less ballistic and more Brownian cases, correspond-
ing to values for the exponent α in the range (1, 2].

Results
Search in a Homogenous Topography. We start by analyzing an
active particle of radius R, blindly searching for targets in an
environment with a homogeneous topography (i.e., without any
physical obstacles). As the active particle cruises the search
space, it continuously captures the targets that come within a
capture radius rc = 2R from its center, as schematically shown in
Fig. 1A. The number of targets caught in each run is proportional
to the area swept by the capture region surrounding the active
particle. We assume the targets to be uniformly distributed, non-
regenerating, and scarce (i.e., with density ρ � r−2

c ). The latter
condition implies that, after an active particle captures a target,
the probability of finding a second one is negligible if the particle
moves by ` . rc.

The active particle performs a run-and-tumble motion (i.e.,
it has a fixed speed v and changes its orientation ϕ by a nor-
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Fig. 1. Optimal search strategy in a homogenous topography. (A) Schema-
tic representation (not to scale) of an active particle of radius R blindly
searching for uniformly distributed targets (dots) in a homogenous envi-
ronment. The particle placed at position [x, y] moves with constant speed v
and variable orientation ϕ. The capture radius is rc (gray shaded area). (B)
The time intervals tn with n = 0, 1, 2, ... between changes of orientation ϕ
are drawn from a Lévy distribution Pα(t) of exponent α ∈ [1, 2]. The solid
lines represent power laws of exponent−µ = −(α+1) for the two limiting
cases at µ = 2 (α = 1) and µ = 3 (α = 2). Note that, for the case α = 2, the
distribution is a Gaussian, which is not a power law asymptotically. (C) Four
different 1,000-s trajectories with a common origin are shown for various
values of α. The black scale bar corresponds to 1,000 R. (D) Average number
of caught targets (circles) as a function of α in normalized units (n.u.). The
values are averaged over 1,000 1-h trajectories and normalized to the max-
imum value at α= 1. The gray shaded area represents one SD around the
average values.

mally distributed angle with zero mean and SD σϕ at discrete
time intervals tn with n =0, 1, 2, ...) (29). In the following, we set
v =5R s−1 and σϕ=π/6. The time intervals tn between changes
of direction are drawn from a Lévy distribution Pα(t) of expo-
nent α∈ [1, 2] (Fig. 1B) (2). Asymptotically, this distribution
tends to a power law with exponent −(α+ 1) for α∈ [1, 2) (2):

Pα(t) ≈ A(α)t−(α+1) for t →∞, [1]

where A(α) is a normalization constant, such that
∫∞
0

Pα(t)dt =
1; for α = 2, the distribution is a Gaussian, which decays expo-
nentially in t . As v is constant, the run lengths `h(tn) = vtn are
also distributed according to a Lévy distribution of same index
α, thus leading the particle to move superdiffusively for α < 2
and diffusively for α = 2 at long times (Fig. S1A) (2). Examples
of trajectories for various values of α are shown in Fig. 1C: as α
decreases from the case of a pure Brownian strategy (α = 2), the
searchers tend to move ballistically over longer distances before
a change in orientation occurs. These different superdiffusive
regimes allow the searcher to explore the overall search space,
combining ballistic and diffusive steps in different proportions
(2, 11, 30). Fig. 1D plots the average number of caught targets
〈Nh〉 obtained from 1,000 simulated 1-h trajectories as a function
of α. This number decreases as a function of α, so that the opti-
mal search strategy is for α = 1, while the worst is the Brownian
(α = 2), in agreement with foraging theory (2).

Search in a Porous Topography. To understand how the com-
plexity of the environment influences the optimal search strat-
egy, we now consider an active particle looking for targets in
a medium with a heterogeneous topography (Fig. 2A). Specifi-
cally, the search space is now a 2D porous medium composed
of uniformly distributed circular interconnected pores with aver-
age radius Rp� rc; the characteristic size of a cluster of pores
is much bigger than the total particle’s displacement within the
simulation time. We model the interaction with the pore walls
using reflective boundary conditions, so that the particle moves
along the walls until its orientation changes to point away from
the boundary (41). This scenario is realistic at different length
scales, as indeed, both biological and artificial microswimmers
and elementary robots behave in a similar way (29, 42).

As it can be seen in Fig. 2B, moving in such a porous environ-
ment shifts the optimal search strategy toward a more Brownian
strategy (α=1.3) from the more ballistic case in the homoge-
nous topography (α=1). This shift can be understood in quan-
titative terms by looking at the effective probability distribution
of the run lengths Pp,α(`) in the porous medium (Fig. 2C). This
distribution is well-approximated by a power law with an expo-
nential cutoff at Rc =λRp:

Pp,α(`) ≈ B(α, v)`−(α+1)e
− `

Rc for `→∞, [2]

where B(α, v) is a normalization constant, such that
∫∞
0

Pp,α(`)
d` = 1, and λ is a proportionality constant; λ ≈ 2.4 is esti-
mated by fitting the previous function to the simulated data and
in general, depends on the geometrical features of the medium.
As a result of this interaction with the boundaries, therefore,
the porosity affects longer run lengths more than shorter ones,
thus mainly penalizing the more ballistic strategies over the more
Brownian ones. In other terms, even if the changes in the par-
ticle’s orientation are still dictated by the distributions in Fig.
1B, the boundaries effectively limit the maximum run length,
leading the particles to perform a subdiffusive motion rather
than a superdiffusive one as in the homogenous environment
(Fig. S1B); this behavior is in accordance with observations on
persistent random walkers in the presence of obstacles (43).
Qualitatively, this can also be appreciated by looking at some
sample trajectories for different values of α (Fig. 2D): when α
decreases, the particles tend to spend longer portions of their
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Fig. 2. Shift of the optimal search strategy in a porous topography. (A) A sample area of an extended 2D porous medium, where an active particle searches
for uniformly distributed targets (dots). The porous medium is composed of circular interconnected pores of average radius Rp (Rp/rc ≈ 12.5). (B) Average
number of caught targets 〈Np〉 (squares) as a function of α in normalized units (n.u.). The values are averaged over 1,000 1-h trajectories and normalized
to the maximum value at α = 1.3. The gray shaded area represents one SD around the average values. To directly compare with the homogenous case,
the trend of Fig. 1D is also shown (circles). (C) Simulated probability distribution of the run lengths Pp,α(`) in the porous medium as a function of α (dots).
The distributions are fitted to a power law with an exponential cutoff for α ∈ [1, 2) (Eq. 2) (dashed lines). The vertical dashed line represents the cutoff Rc.
(D) Four different 1,000-s trajectories with a common origin are shown for different values of α. All black scale bars correspond to 50 R.

trajectories at the walls, thus exploring less efficiently the inner
area of the pores. It is interesting to note that, at least when the
searcher explores the complex topography for a finite time as in
our simulations, the average shift in the optimal search strategy
depends on the pore characteristic size, while it is largely inde-
pendent of the density of pores and the local configuration of the
explored cluster (Fig. S2).

Scaling Arguments. To formalize the shift in the optimal search
strategy caused by the topography of the environment, we define
the efficiency η of catching targets in the porous medium com-
pared with the homogeneous case as

η(α, v) =
〈Np(α, v)〉
〈Nh(α, v)〉

. [3]

Since the mean square displacement of the active particle is of
order t3−α in a homogenous topography, self-intersections con-
stitute a negligible fraction of the overall path for α < 2, which
is closely related to the fact that the Hausdorff dimension of a
Lévy process in the plane is equal to its exponent α (44); this is
also the case in the porous topography for run lengths just below
the spatial cutoff (Fig. 2C), which contribute with higher proba-
bility to the capture of new targets. As a consequence, to a first
approximation, we obtain that the target capture rate is propor-
tional to the average step length for a given topography and a
given α, so that

η(α, v) =
〈`p(α, v)〉
〈`h(α, v)〉

= β(v)

[
1− (1− γ)

(
Tc

tc

)−α+1
]
, [4]

where β(v) ∈ [0, 1] is a function of the particle speed, γ ∈ [0, 1]
is a constant, Tc = Rc/v , tc = rc/v , and 〈`p(α, v)〉 and 〈`h(α, v)〉
are the average step lengths in the porous and homogenous
topography, respectively (Materials and Methods discusses their
calculation).

While Eq. 4 explicitly depends on the particle’s speed v
through β(v), the normalized efficiency η∗ defined as

η∗(α) =
η(α, v)

max(η|v) ≈
η(α, v)

β(v)
= 1− (1− γ)

(
Tc

tc

)−α+1

[5]

is a universal curve that does not directly depend on v . Inter-
estingly, from this equation, the geometrical meaning of γ is
apparent as the percentage of time that the particle spends run-
ning instead of being stuck at a boundary above the spatial
cutoff Rc.

Using Eq. 5, we can, therefore, estimate the shift in the opti-
mal search strategy caused by the topography of the environ-
ment by finding the maximum of η∗(α)〈Nh(α)〉 [i.e., only based
on geometrical parameters (tc, Tc, and γ) and the knowledge of
the particle’s behavior in a homogenous topography 〈Nh(α)〉].
As shown in Fig. 3A, Eq. 5, where y is the only fitting param-
eter, reproduces very well the simulated data, and allows us to
predict correctly the optimal value for the capture rate in the
porous medium from 〈Nh(α)〉 (Fig. 3B). By comparing model
predictions (Fig. 3C) with simulated data (Fig. 3D), Fig. 3 C
and D shows how, after γ is known, this simple model based
on scaling arguments predicts correctly the optimal strategy in
the porous medium at any particle speed. Fig. 3 shows that,
for a given γ, the speed at which the particle moves within
the environment also has an effect on the optimal search strat-
egy: for low values of speed, the optimal search strategy shifts
toward the more ballistic case (α = 1), as the particle tends
to interact with the boundaries only at very long times, thus
mostly moving as in an effectively homogenous environment;
however, when v increases, the optimal search strategy shifts
more and more toward the Brownian case (α = 2), since this
case is the one that minimizes the interaction with the boundaries
over time.

For additional confirmation of the fact that the shift in opti-
mal search strategy is caused by the upper spatial cutoff intro-
duced by the topography of the environment, we now consider a
porous medium with a convex topography instead of the concave
topography considered previously (Fig. 2A). In this topography,
the particle searches for uniformly distributed targets within an
interconnected space containing convex obstacles where there is
no upper cutoff (i.e., Rc → ∞) (Fig. 4A). Also, in this case, the
average radius of the obstacles Rp is chosen, so that Rp/rc ≈
12.5. As expected, the optimal search strategy remains at α = 1
(Fig. 4B) as for a particle searching in a homogenous space (Fig.
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Fig. 3. Influence of the topography on the optimal search strategy: comparison between simulated data and model. (A) Normalized efficiency η∗: simu-
lations (circles) and fit to Eq. 5 (dashed line). (B) Average number of caught targets in the porous environment 〈Np〉 as a function of α: simulations (circles)
and fit to the model (dashed line). (C) Model prediction and (D) simulated data of the average number of caught targets in the porous environment 〈Np〉
in normalized units (n.u.) as a function of α and normalized speed v/R (γ = 0.47).

1D). In qualitative terms, these results can be interpreted by
observing sample trajectories for various values of α (Fig. 4C):
in fact, as can be appreciated from these trajectories, the convex
porosity does not prevent the particles from moving ballistically
over long distances when the value of α is decreased.

Search in the Presence of Brownian diffusion. The results shown so
far apply to most length scales as long as properly rescaled to
the particle’s radius R. However, when R approaches the micro-
and nanoscales, Brownian diffusion starts playing a significant
role in the translational and rotational motions of an active par-
ticle (29, 41). In particular, while the translational diffusion of
a particle scales with its inverse linear dimension (∝R−1), its
rotational diffusion scales with its inverse volume (∝ R−3). As a
consequence of this volumetric scaling, as R decreases, Brownian
rotation randomizes any persistence in the particle’s orientation
caused by the Lévy strategy. Brownian diffusion then becomes an
important parameter to consider when determining the optimal
search strategy in a nontrivial topography for microscopic active
particles, such as biological and artificial microswimmers [e.g.,
motile bacteria (6–8) and manmade micro- and nanorobots (45)]
moving in complex and disordered environments (29, 39, 46, 47).
Fig. 5A shows how the optimal search strategy (i.e., the optimal
value of α) varies as a function of the particle’s radius (i.e., of
the strength of the particle’s translational and rotational Brown-
ian diffusion coefficients). We focus again on the environment of
Fig. 2A, as it shows a clear deviation from the homogenous case
(Fig. 1). For a given v/R (e.g., for v/R = 5 s−1), when R is above
a certain threshold value (e.g., R ≥ 5µm for v/R = 5 s−1, corre-
sponding to a sufficiently weak rotational diffusion), the optimal
strategy is the same as the one predicted in Fig. 3C (Fig. 5 A and
B). However, when R decreases (entailing a stronger rotational
diffusion), the optimal search strategy shifts toward α = 1 (Fig.
5 A and C). This shift happens, because the increased rotational
diffusion leads to a reduction of the time that the particle spends
at the boundaries. This effectively reduces the penalization that
boundaries have on more ballistic strategies, thus allowing for
the exploration of a greater inner area of the porous structure
compared with more diffusive strategies. Reducing R further, the
optimal search strategy remains at α = 1, although the relative
efficiency over other α values decreases (Fig. 5D). Finally, for
even smaller values of R (e.g., R ≤ 0.1µm for v/R = 5 s−1), the
search process becomes effectively insensitive to the value of α
(Fig. 5E), as the increase in rotational diffusion makes persistent
motion negligible (29).

Discussion
Our results show the critical role played by the topography of
the environment in determining the optimal search strategy for

an active particle with run lengths that are drawn from a Lévy
distribution. In particular, the presence of physical boundaries,
barriers, and obstacles can introduce a cutoff on the distribu-
tion of steps that can penalize more ballistic strategies over more
Brownian ones depending on different geometrical parameters
connected to the topography of the environment and its interac-
tion with the particle’s motion.

In our model, we assumed that the particle is performing a
cruise search with continuous visibility for targets and perfect
hitting probabilities. While we do not expect imperfect hitting
probabilities to affect the optimality of the search strategy in our
case as long as they affect all α values equally, other search sce-
narios might influence the optimal search strategy in a complex
topography (1): for example, in the case of intermittent search
strategies, where there is an alternation between phases of slow
motion that allow the searcher to detect the targets and phases

BA

C

Fig. 4. Convex vs. concave porous topography. (A) A sample area of an
extended 2D convex porous medium, where an active particle searches
for uniformly distributed targets (dots). The porous medium is made up
of the space surrounding circular convex obstacles of average radius Rp

(Rp/rc ≈ 12.5). (B) Average number of caught targets 〈Np〉 (triangles) as a
function of α in normalized units (n.u.). The values are averaged over 1,000
1-h trajectories and normalized to the maximum value at α = 1. The gray
shaded area represents one SD around the average values. To directly com-
pare with the homogenous and concave porous cases, the trends of Figs. 1D
and 2B are also shown as circles and squares, respectively. (C) Four different
1,000-s trajectories with a common origin are shown for different values of
α. All black scale bars correspond to 50 R.
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Fig. 5. Optimal search strategy in the presence of Brownian diffusion.
(A) Optimal value of α as a function of the particle’s radius R for different
values of v: v = 5R s−1 (circles), v = 10R s−1 (squares), and v = 20R s−1 (trian-
gles). The dashed horizontal lines represent the optimal values in the absence
of Brownian noise (Fig. 3). (B–E) Shift of the optimal search strategy as a
function of α in normalized units (n.u.) at the sample speed v = 5R s−1 with
decreasing values of the particle’s radius R: (B) R = 5 µm, (C) R = 1 µm, (D)
R = 0.5 µm, and (E) R = 0.1 µm. All values are averaged over 10,000 1-h tra-
jectories. The gray shaded area represents one SD around the average values.

of fast motion, during which targets cannot be detected, or in the
case of a search strategy with in-built delays, so that, after a target
is caught, some time must elapse before the following target can
be caught.

Another aspect that can influence the optimal search strat-
egy is the interaction between the searcher and the obstacles
encoded in the boundary conditions. In this work, we have imple-
mented reflective boundary conditions, which imply that the
searcher stays at the boundary until a random reorientation event
makes it point away from the obstacle. This scenario is realistic
at the macroscopic and microscopic scales, as, for example, both
elementary robots and microswimmers (biological and nonbio-
logical) have been reported to behave in this way (29, 42). Alter-
natively, different responses can be considered in the presence
of boundaries, when information obtained from sensing the sur-
roundings, for example, leads to a voluntary switch in the strategy
adopted by the searcher.

As the search time is generally a limiting factor in many real-
istic search scenarios (1), the searcher was allowed to explore
the search space for a finite time in our simulations. Neverthe-
less, from a fundamental point of view, it would be interesting to
study how the optimal search strategy is influenced by the topog-
raphy of the environment in the limit of infinite search times. In
the case of infinite searches, interesting behaviors could emerge
as a result of the interplay between the fractal dimensionality
of the searcher’s trajectory and that of the environment in a
porous topography at the percolation threshold or in a network
of channels.

Our findings are mostly scale-invariant and only partially break
down at the nanoscopic scale (R ≤ 1µm) when rotational diffu-
sion becomes predominant. One important implication of this
is that different search strategies (i.e., different values of α)
will lead to similar outcomes for nanoscopic particles, such as
biomolecules and molecular motors moving in a 2D space (Fig.
5E). This issue can be overcome by reducing the dimensionality
of the environment: for example, by introducing a preferential
direction of motion with molecular rails. In fact, Lévy-type statis-
tics emerge for molecular motors performing searches on poly-
mer chains, such as DNA (4), or on 1D molecular rails, such as
microtubules (5). Similarly, increasing the dimensionality of the
system to a 3D space will alter the probability that the searcher
goes back to the same point compared with a 2D space, and thus,
its optimal search strategy in a complex 3D environment can also
be affected.

Our results are relevant for all random search problems where
the searcher explores complex search spaces. Examples at vari-
ous length scales include the rate of molecular encounters in the
cytoplasm of cells, the localization of nutrients by motile bacteria
in tissue or soil, and the foraging of animals in patchy landscapes
as well as search and rescue operations in ruins after natural dis-
asters. Furthermore, similar dynamics could also be applied to
optimize navigation in topologically complex networks (27, 28).

Materials and Methods
Numerical Simulations. In our numerical model, we consider active particles
of radius R performing a 2D run-and-tumble motion according to the fol-
lowing equations: 

d

dt
x(t) = v cosϕn

d

dt
y(t) = v sinϕn,

where [x(t), y(t)] is the particle’s position, v is the particle’s speed, and ϕn is
the particle’s orientation during the nth time interval, where n = 0, 1, 2, ....
The time intervals tn between changes of direction are drawn from a Lévy
distribution Pα(t) of exponentα∈ [1, 2]; only the absolute value of the num-
ber is considered. At the end of each time interval, the particle orientation
changes by a random angle according to a normal distribution with zero
mean and SD σϕ = π/6. The initial position for the trajectory was ran-
domly chosen within the medium according to a uniform distribution. The
positions of the targets were randomized for each trajectory. Interactions
with the walls were modeled using the boundaries conditions described in
ref. 41. In the data in Fig. 5, translational and rotational Brownian motions
are included by adding three independent white noise processes (Wx , Wy ,
and Wϕ) to the equations of motion (41); in this set of simulations, the
active particles are moving in an aqueous environment (η= 0.001 Nsm−2,
T = 300 K).

Calculation of the Average Run Length in a Homogenous Topography. The
average run length in a homogenous environment 〈`h(α)〉 is

〈`h(α)〉 =
∞∫

0

`h(t)Pα(t)dt

=

tc(v)∫
0

`h(t)Pα(t)dt +

∞∫
tc(v)

`h(t)Pα(t)dt,

where tc(v) = rc/v represents the time that it takes for an active particle to
travel a distance equal to its capture radius rc. Neglecting the first integral,
because it gives a small contribution to the average run length, we obtain

〈`h(α)〉 ≈
∞∫

tc(v)

`h(t)Pα(t)dt,

which using the asymptotic analytical form for Pα(t) in Eq. 1, can be calcu-
lated to be

〈`h(α)〉 ≈ vA(α)

∞∫
tc(v)

t−αdt = v
A(α)

α− 1
t−α+1
c .

Calculation of the Average Run Length in a Porous Topography. The average
run length in a porous environment 〈`p(α)〉 is

〈`p(α)〉 =
∞∫

0

`p(t)Pα(t)dt

=

tc(v)∫
0

`p(t)Pα(t)dt +

Tc(v)∫
tc(v)

`p(t)Pα(t)dt +

∞∫
Tc(v)

`p(t)Pα(t)dt,

where the integral has been divided into three parts delimited by the time
cutoff at tc and by that at Tc = Rc/v calculated using the spatial cutoff
introduced by the porous medium (Fig. 2C). As for the homogenous case,
the first integral gives a small contribution on the average run length, as it
is smaller than rc. As such, it can be neglected, so that

〈`p(α)〉 ≈
Tc(v)∫

tc(v)

`p(t)Pα(t)dt +

∞∫
Tc(v)

`p(t)Pα(t)dt.
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We can now treat these two integrals using the fact that, because of the
interaction with the boundaries, 〈`p(t)〉≤ 〈`h(t)〉 at any given time t taken
from the distributions of Eq. 1 (Fig. 1B). In general, 〈`p(t)〉= C(t, α, v)〈`h(t)〉,
where C ∈ [0, 1] is a multivariable function. To simplify the analysis, we
introduce the following approximation: C(t, α, v) = β(v) for t∈ [tc, Tc] and
C(t, α, v) = γβ(v) for t∈ [Tc,∞), where β ∈ [0, 1] is a speed-dependent
constant and γ ∈ [0, 1] is a prefactor related to the topography of the
environment. This approximation allows us to determine the decrease of
the average run length in the porous environment over the homoge-
nous case by estimating the decrease of the area of the integral before
and after the time cutoff at Tc (Fig. 2C) and thus, to treat differently
the distribution of the run lengths in the porous environment Pp, α(`)
(Eq. 2) in the two time intervals. We, therefore, obtain for the two
integrals

Tc(v)∫
tc(v)

`p(t)Pα(t)dt ≈ β(v)v
A(α)

α− 1

(
t−α+1
c − T−α+1

c

)
and

∞∫
Tc(v)

`p(t)Pα(t)dt ≈ γβ(v)v
A(α)

α− 1
T−α+1

c .

Summing these two integrals, we obtain

〈`p(α)〉 ≈ β(v)v
A(α)

α− 1

(
t−α+1
c − T−α+1

c

)
+ γβ(v)v

A(α)

α− 1
T−α+1

c

= β(v)v
A(α)

α− 1
t−α+1
c

[
1− (1− γ)

(
Tc

tc

)−α+1
]
.
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