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Experimental realization of a minimal microscopic heat engine
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Microscopic heat engines are microscale systems that convert energy flows between heat reservoirs into work
or systematic motion. We have experimentally realized a minimal microscopic heat engine. It consists of a
colloidal Brownian particle optically trapped in an elliptical potential well and simultaneously coupled to two
heat baths at different temperatures acting along perpendicular directions. For a generic arrangement of the
principal directions of the baths and the potential, the symmetry of the system is broken, such that the heat flow
drives a systematic gyrating motion of the particle around the potential minimum. Using the experimentally
measured trajectories, we quantify the gyrating motion of the particle, the resulting torque that it exerts on
the potential, and the associated heat flow between the heat baths. We find excellent agreement between the
experimental results and the theoretical predictions.
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I. INTRODUCTION

During the last two decades, the rapid development
of stochastic thermodynamics has provided scientists with
a framework to explore the properties of nonequilibrium
phenomena in microscopic systems where fluctuations play
a prominent role [1–8]. The advancement of experimen-
tal techniques (in particular optical trapping and digital
video microscopy [9]) has made it possible to experimen-
tally study thermodynamics at the single-trajectory level
[10–13]. These tools have been applied, e.g., to investigate
the performances of molecular machines [6,14]. Furthermore,
microscopic heat engines (i.e. artificial microscopic systems
that extract heat from the surrounding thermal baths and turn
it into useful work or systematic motion) have been proposed
theoretically [15–22] and realized experimentally [23–29],
providing insights into fundamental aspects of nonequilibrium
thermodynamics.

In this article, we experimentally realize and investigate
a minimal microscopic engine constituted of a Brownian
particle held by a generic potential well and simultaneously
coupled to two heat baths at different temperatures acting
along perpendicular directions so that a nonequilibrium steady
state is maintained. For a generic arrangement of the principal
directions of the baths and the potential, the symmetry of the
system is broken, such that the heat flow between the two heat
baths drives a systematic gyrating motion of the particle around
the potential minimum. Originally, this engine was proposed
theoretically by Filliger and Reimann [17]; it is considered to
be minimal because of its intrinsic simplicity, yet generating a
torque via circular motion, and because it works autonomously
in permanent simultaneous contact with two heat baths (i.e.,
without the need for an external driving protocol).

II. EXPERIMENTAL SETUP AND THEORETICAL MODEL

In the experiment, we use a single colloidal particle
suspended in aqueous solution at room temperature and trap it
in an elliptical optical potential. The per se isotropic thermal

environment is rendered anisotropic by applying fluctuating
electric signals with an almost white frequency spectrum
along a specific direction; such techniques [30–32] and similar
ones [33,34] have recently been demonstrated to generate
in excellent approximation high-temperature thermal noise
with negligible friction effects. In addition to experimentally
confirming the prediction of Ref. [17] for the torque [see
Eq. (7)], we characterize the gyrating motion of the colloid
in more detail by measuring the cross-correlation between
the spatial coordinates. Moreover, we analyze the energy
exchanges between the two heat baths mediated by the
particle’s motion, using the tools of stochastic energetics
[1,35].

Theoretically, we model the motion of the Brownian
particle using overdamped Langevin equations in two
dimensions [17]:

γ ẋ = − ∂

∂x
U (x,y) +

√
2γ kBTx ξx(t) ,

γ ẏ = − ∂

∂y
U (x,y) + √

2γ kBTy ξy(t) . (1)

The particle’s motion is confined by an elliptical harmonic
potential U (x,y) with stiffnesses kx ′ and ky ′ along its principal
axes x ′ and y ′, which are rotated by an angle θ with respect
to the coordinate axes x and y (Fig. 1):

U (x,y) = 1

2
[x y] R(−θ ) k R(θ )

[
x

y

]
, (2)

where R(θ ) = [ cos θ sin θ

− sin θ cos θ] and k = [kx′ 0
0 ky′]. The coordi-

nate axes x and y are aligned with the directions of the
anisotropic temperatures Tx and Ty , such that the angle θ

provides a means to control the symmetry breaking between
clockwise and counterclockwise orientation. The correspond-
ing thermal fluctuations are modeled by mutually independent
Gaussian white noise sources ξx(t) and ξy(t) with 〈ξx(t)〉 =
〈ξy(t)〉 = 0 and 〈ξx(t)ξx(t ′)〉 = 〈ξy(t)ξy(t ′)〉 = δ(t − t ′). In the
following, Ty is equal to the temperature of the aqueous
solution, i.e., room temperature Ty = 292 K , while Tx is either

2470-0045/2017/96(5)/052106(8) 052106-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.052106


AYKUT ARGUN et al. PHYSICAL REVIEW E 96, 052106 (2017)

FIG. 1. Brownian colloid in an elliptical potential. (a)–(c) Experimental steady-state probability distributions of a Brownian particle for
isotropic temperature (Tx = Ty = 292 K) inside an elliptical potential (kx′ = 1.63 pN/μm, ky′ = 0.86 pN/μm) (a) with its principal axes
x ′ and y ′ aligned with the Cartesian coordinates x and y (θ = 0), (b) with θ = π/4, and (c) with θ = −π/4. The probability densities are
pictured by scatter plots of experimentally measured particle positions, darker regions corresponding to higher densities. (d)–(f) Experimental
steady-state probability distributions for anisotropic temperature (Tx = 1750 K > Ty = 292 K) (d) with θ = 0, (e) θ = π/4, and (f) with
θ = −π/4. The blue arrows represent the associated probability flux [Eq. (3)]: when the principle axes of the elliptical potential and the
anisotropic thermal environment are rotated with respect to each other to break rotational symmetry, there appears a rotational flux component
whose direction depends on the sign of θ . Note that there is no net flux when (a)–(c) the system is at thermal equilibrium, and when (d) the
axes of the anisotropic temperature and the potential are aligned (θ = 0).

room temperature or hotter due to the effective heating from the
electric noise signals [30–32]. The viscous friction in Eq. (1) is
given by the isotropic Stokes coefficient γ = 6πνR, where ν

is the viscosity of the watery solution and R the particle radius.
Experimentally, we use polystyrene particles with diameter

2R = 1.98 μm (Microparticles GmbH) held in a potential
generated using an optical tweezers [9]: we focus a laser beam
(wavelength λ = 532 nm) using a high-numerical aperture
objective (60×, NA 1.40), while we introduce the ellipticity
in the potential by altering the intensity profile of the laser
beam using a spatial light modulator (PLUTO-VIS, Holoeye
GmbH). We track the position of the particle at 400 fps by
digital video microscopy using the radial symmetry algorithm
[36]. The values of the optical trapping stiffnesses, kx ′ =
1.63 pN/μm and ky ′ = 0.86 pN/μm, are measured from the
acquired particle trajectories by using the equipartition method
and the autocorrelation methods [9] in the absence of electric
noise (i.e., when Tx = Ty = 292 K). Figures 1(a)–1(c) show
the experimental equilibrium probability density pss(x,y) of
the particle in the elliptical trap with θ = 0 [Fig. 1(a)], θ = π/4

[Fig. 1(b)], and θ = −π/4 [Fig. 1(c)], when Tx = Ty = 292 K

are both equal to room temperature.

III. RESULTS AND DISCUSSION

We can now establish a nonequilibrium steady state by
introducing different temperatures along the x and y directions.
Due to the colloidal particle being electrically charged in
solution, a randomly oscillating field applied along the
x direction produces a fluctuating electrophoretic force on
the particle, which increases its random fluctuations along the
x direction, leading to an effective increase of the temperature
[30]. The electric field is generated by driving with an electric
white noise two parallel thin wires (gold, diameter 30 μm)
placed on either side of the optical trap at a distance of 1 mm.
The effective temperature along x is then proportional to the
variance of the particle position along the x direction when the
principal axes of the optical trap are aligned with the Cartesian
axes x and y. Figures 1(d)–1(f) present the resulting stationary
probability distributions for the cases θ = 0 [Fig. 1(d)],
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FIG. 2. Cross-correlation functions D(t). (a) D(t) as a function of the relative orientation θ between the axes of the temperature anisotropy
(Tx ≡ 6.0 Ty) and those of the potential; it is maximized for θ = π/4. (b) D(t) as a function of the temperature anisotropy (θ ≡ π/4); it
grows with increasing Tx . The red symbols represent the experimental data (the shaded area is the standard deviation) and the solid black lines
represent the corresponding theory [Eq. (5)]. The insets show schematically the alignment between the axes of the temperature anisotropy
(arrows) and those of the potential (ellipses), the temperature along the y axis is color-coded in blue indicating the “cold” direction Ty = 292 K ,
while the temperature in the x direction is indicated in blue if Tx = Ty = 292 K and red if it corresponds to the “hot” direction with Tx > Ty .

θ = π/4 [Fig. 1(e)], and θ = −π/4 [Fig. 1(f)], when Tx =
1750 K and Ty = 292 K: they are elongated along the x

direction [in comparison with Figs. 1(a)–1(c), because of the
presence of the extra noise. Furthermore, we can measure the
stationary probability density current according to [6][

Jx(x,y)
Jy(x,y)

]
=

[〈
x(t + 
t) − x(t)
y(t + 
t) − y(t)

〉
x(t)=x, y(t)=y

+
〈
x(t) − x(t − 
t)
y(t) − y(t − 
t)

〉
x(t)=x, y(t)=y

]
pss(x,y)

2
t
,(3)

where the averages are taken over all particle displacements
during a sampling time interval 
t , which start (first line) or
end (second line) at position [xy]. This current is represented by
the blue arrows in Figs. 1(e) and 1(f) and clearly indicates the
presence of a gyrating motion; the strength and direction of this
rotational motion depend on the rotary asymmetry induced by
θ and, importantly, they vanish for θ = 0 [Fig. 1(d)], because
the principal directions of the baths and of the potential are
aligned and therefore there is no symmetry breaking. Note also
that there is essentially no flux in Figs. 1(a)–1(c), as expected
at thermal equilibrium.

In order to quantify this rotational behavior, we calculate
the differential cross-correlation function between x and y

[37,38]:

D(t) = 〈x(t∗)y(t∗ + t)〉 − 〈y(t∗)x(t∗ + t)〉
= 〈r(t∗)r(t∗ + t) sin[φ(t∗ + t) − φ(t∗)]〉 , (4)

where the angle brackets indicate the average over the
steady-state distribution, for which D(t) is independent of the
reference time point t∗. Its representation in the second line

using polar coordinates r =
√

x2 + y2 and φ = arctan(y/x)
illustrates that it vanishes if there is no net motion of the
colloid and that it is positive (negative) for counterclockwise
(clockwise) net gyrating movements.

Since the model described by Eq. (1) can be solved
analytically, we can calculate an exact closed expression for
D(t) (see Appendix A for details),

D(t) = sign(t) kB(Tx − Ty)
e
− |t |k

x′
γ − e

− |t |k
y′

γ

kx ′ + ky ′
sin(2θ ) . (5)

Experimentally, D(t) can be directly evaluated from the
recorded trajectories without explicit knowledge of the trap
parameters and temperatures [37,38], using the expression
in Eq. (4). Figure 2 presents the experimental D(t) (red
symbols) for different values of θ and temperature anisotropy,
which are in good agreement with the theoretical predictions
from Eq. (5) (black lines): D(t) vanishes when θ = 0 and is
maximized when θ = ±π/4 [Fig. 2(a)]; and D(t) increases as
the temperature anisotropy increases [Fig. 2(b)].

The rotational motion of the particle around the origin can
also be measured by studying its weighted angular velocity
r2dφ/dt . Its average is proportional to the strength M of
the average torque 〈x(∂U/∂y) − y(∂U/∂x)〉 exerted by the
particle on the potential U [17,37,38]:

M = −γ

〈
r2 dφ

dt

〉
. (6)

This expression provides a way of computing the average
torque directly from the recorded trajectories without explicit
knowledge of the trap parameters and temperatures. On the
other hand, an analytical prediction for the torque as a function
of precisely these parameters is again obtained from the exact
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FIG. 3. Torque as a function of (a) the relative orientation θ be-
tween the axes of the temperature anisotropy (Tx ≡ 6.0 Ty) and those
of the potential, and (b) as a function of the temperature difference
Tx − Ty (θ ≡ π/4). The symbols represent the experimental data
(corresponding to five trajectories of 50 s, the error bars indicate
standard deviations) and the solid lines are the theoretical predictions
given by Eq. (7).

solution of Eq. (1) [17] (see Appendix A for details):

γ

〈
r2 dφ

dt

〉
= −M = −kB(Tx − Ty)

kx ′ − ky ′

kx ′ + ky ′
sin(2θ ) . (7)

By the independent measurement of kx ′ , ky ′ , Tx , and Ty , we can
compare this prediction with the experimental measurements
without any fit parameter. The symbols in Fig. 3 represent the
experimentally measured torques, which are indeed in very
good agreement with theoretical predictions from Eq. (7) (solid
lines). When evaluating the torque from the experimental
data, we used an estimator which is exact to first order
in the sampling time step (as opposed to the zeroth-order
naive estimator) in order to obtain an accurate value despite
the relatively large experimental value 
t = 2.5 ms (see
Appendix B for details). The torque vanishes when θ = 0
[Fig. 3(a)] and when Tx = Ty [Fig. 3(b)], increases as θ

approaches π/4 and grows linearly with the temperature
difference Tx − Ty .

The presence of a systematic rotational motion of the
particle is connected to a transfer of heat from the hot to
the cold bath. Following Sekimoto’s stochastic energetics
approach [1], we identify heat with the work performed
by the dissipating and thermally fluctuating forces, so that
the heat absorbed by the particle from the hot reservoir at
temperature Tx along the trajectory [x(t),y(t)] reads

Qx(τ ) =
∫ τ

0
[−γ ẋ(t) +

√
2kBTxγ ξx(t)] ◦ dx(t) , (8)

where ◦ denotes the Stratonovich product. Using the equations
of motion (1), this can be rewritten as

Qx(τ ) =
∫ τ

0

∂

∂x
U (x(t),y(t)) ◦ dx(t). (9)

This equation expresses the heat flow from the hot reservoir
to the colloidal particle entirely by means of experimentally
accessible quantities, i.e., x(t), y(t), γ , kx ′ , ky ′ , and θ . In the
stationary state, the average heat absorbed along trajectories
divided by the observation time 〈Q̇x〉 = 〈Qx(τ )〉/τ is a
constant independent of the length τ of the trajectory. This
average heat flow can be calculated analytically as (see
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FIG. 4. Heat flow between the two baths as a function of (a) the
relative orientation θ between the axes of the temperature anisotropy
(Tx = 6.0 Ty) and those of the potential, and (b) as a function of
the temperature difference Tx − Ty (θ = π/4). The red squares and
blue circles represent the experimental data measuring Q̇x and Q̇y ,
respectively (corresponding to five trajectories of 50 s, the error
bars indicate standard deviations) and the solid lines represent the
theoretical predictions given by Eqs. (10) and (11).

Appendix A for derivation)

〈Q̇x〉 = kB(Tx − Ty)

4γ (kx ′ + ky ′)
[(kx ′ − ky ′ ) sin(2θ )]2 . (10)

An analogous formula holds for the heat absorbed from the
cold reservoir at temperature Ty ,

〈Q̇y〉 = −〈Q̇x〉 . (11)

In Fig. 4, we present the experimentally measured heat
flows from the cold reservoir (blue circles) and from
the hot reservoir (red squares) to the particle as a func-
tion of θ [Fig. 4(a)] and Tx − Ty [Fig. 4(b)]. As in
the case of the torque, also when evaluating the heat
flow from the experimental data according to Eq. (9),
we used an estimator which is accurate to first order in
the sampling time step 
t (see Appendix B for details). These
experimental results are in very good agreement with the
theoretical predictions (10) and (11) (solid lines). The average
direction of the heat flow is always from the hot to the cold
reservoir; its intensity vanishes as θ → 0 and Tx → Ty , and
increases as θ → π/4 and as Tx increases. In the current setup
this heat flow is turned into systematic motion, but is not used
to perform work against an external load, such that efficiency
as the ratio between work performed and heat taken up from
the hotter reservoir cannot be defined.

IV. CONCLUSIONS

In conclusion, we have presented an experimental real-
ization of a microscopic heat engine employing a single
colloidal particle moving in a generic elliptical optical trap
while in simultaneous contact with two heat reservoirs. This
experimental model features a minimal degree of complexity
necessary to obtain a microscopic, circularly operating heat
engine generating a torque from which work can in principle
be extracted [17]. Furthermore, it has the advantage of being
completely solvable analytically, therefore providing an ideal
test bed for comparing theory and experiments.
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We finally point out a very recent interesting experimental
work [39], which studies a physically completely different but
mathematically equivalent system, namely, two capacitively
coupled resistor-capacitor circuits whose dynamical equations
for the two voltages can be mapped to the model described by
Eq. (1).
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APPENDIX A: SOLUTION OF THE MODEL

1. Dynamics

Starting from the Eqs. (1) and compacting notation, the
overdamped equations of motion read

ṙ(t) = −Ar(t) + Bξ (t) , (A1)

with r = [r1
r2

] ≡ [xy], ξ (t) = [ξ1(t)
ξ2(t)] ≡ [ξx (t)

ξy (t)],

A = 1

γ
R(−θ ) k R(θ ) , (A2)

and

B =
[√

2kBTx/γ 0
0

√
2γ kBTy/γ

]
. (A3)

Equation (A1) is the stochastic differential equation (SDE) of
a general Ornstein-Uhlenbeck process and is equivalent to a
Fokker-Planck equation [40,41] for the transition probabilities,
or propagator, p(t,r|t0,r0),

∂tp(t,r|t0,r0) =
∑
i,j

Aij ∂ri
[rj p(t,r|t0,r0)]

+ Dij∂ri
∂rj

p(t,r|t0,r0) (A4)

with the diffusion matrix

D = 1

2
B BT =

[
kBTx/γ 0

0 kBTy/γ

]
. (A5)

The propagator gives the probability to find the particle in an
infinitesimal volume element d2r around r at time t given
that it was at r0 at an earlier time t0. Since the system is
Markovian, its statistics are fully determined by p and some
initial distribution p0(r0). The Fokker-Planck equation (A4)
can be solved exactly [40,41] and the resulting propagator is

p(t,r|t0,r0) = e− 1
2 [r−e−(t−t0)A r0]

T
�−1(t−t0)[r−e−(t−t0)A r0]√

(2π )2 det �(t − t0)
, (A6)

where the covariance matrix is

�(t) = �(∞) − e−t A�(∞)e−t AT

, (A7)

and �(∞) is obtained as the solution of the matrix equation

A(∞) + �(∞)AT = 2D. (A8)

One can see that r(t) is a time-homogeneous Gaussian process. For our system, we find

�(∞) = 1

Tr A det A

[
D2 A2

12 + D1
(
A2

22 + det A
) −D1 A21 A22 − D2 A11 A12

−D1 A21 A22 − D2 A11 A12 D1 A2
21 + D2

(
A2

11 + det A
)
]
, (A9)

where Di = kBTi/γ are the diagonal entries of the matrix D, det A = kx ′ky ′/γ 2 and Tr(A) = (kx ′ + ky ′ )/γ .

2. Steady state

From the solution (A6) and the positive definiteness of A,
we understand that the system reaches a steady state in the
limit t → ∞, whose distribution is

pss(r) = e− 1
2 rT�−1(∞)r√

(2π )2 det �(∞)
. (A10)

The characteristic relaxation time to the steady state is τ∞ =
(det A)−1/2 = γ /

√
kx ′ky ′ , which is approximately 16 ms for

our experiments.

3. Correlations

At the steady state, the autocorrelation matrix C(t) [with
entries Cij (t) = 〈ri(t∗ + t)rj (t∗)〉] becomes independent of the
reference time t∗, and, using (A6), can be computed as

C(t) =
{
e−t A(∞) t � 0,

�(∞)e−|t |AT
t < 0.

(A11)

A measure of the nonequilibrium state of the system and the
particle’s rotational motion is the asymmetry in the correlation
function, i.e., the differential cross correlation function:

D(t) = 〈x(t∗)y(t∗ + t)〉 − 〈y(t∗)x(t∗ + t)〉
= 〈r1(t∗)r2(t∗ + t)〉 − 〈r2(t∗)r1(t∗ + t)〉
= C21(t) − C12(t) . (A12)

Plugging in Eq. (A11), we obtain formula (5) above.

4. Torque

The rotational motion of the particle around the origin can
also be assessed by studying its weighted angular velocity
r2dφ/dt , a quantity reminiscent of angular momentum.
Using the equations of motion (1), we find that its average
〈r2dφ/dt〉 = 〈xẏ − yẋ〉 is related to the average torque M

exerted on the potential [introduced by Filliger and Reimann
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[17] and in Eq. (6) above]:

−γ

〈
r2 dφ

dt

〉
= M =

〈
x

∂U

∂y
− y

∂U

∂x

〉

= kB(Tx − Ty)(kx ′ − ky ′) sin(2θ )

kx ′ + ky ′
. (A13)

The left-hand representation provides a way of computing the
average torque directly from the trajectories and independently
of the trap parameters and temperatures.

5. Heat absorbed along a trajectory

The equations of motion (A1) specify several forces
acting on the particle, each of which can be associated with
a physical component of the system. In particular, we have
the potential force FU = −∇U as well as forces linked to
the interaction with the medium and reservoirs, namely, the
frictional force Fdiss = −γ ṙ and the thermal fluctuations
Ftherm = γ Bξ (t). The equations of motion merely state the
balance of these forces.

Following Sekimoto’s stochastic energetics approach, we
identify heat with the work performed by the dissipating and
thermally fluctuating forces so that the heat absorbed by the
particle can be calculated using Eqs. (8) and (9). Explicitly,
the heat flowing from the reservoirs to the system along a
trajectory r(t) reads

Qx =
∫ τ

0
[−γ ẋ(t) +

√
2γ kBTxξx(t)] ◦ dx(t)

= [kx ′ cos(θ )2 + ky ′ sin(θ )2]
x2(τ ) − x2(0)

2

+ (kx ′ − ky ′) sin(θ ) cos(θ )
∫ τ

0
y(t) ◦ dx(t), (A14)

and

Qy =
∫ τ

0
[−γ ẏ(t) + √

2γ kBTyξy(t)] ◦ dy(t)

= [kx ′ sin(θ )2 + ky ′ cos(θ )2]
y2(τ ) − y2(0)

2

+ (kx ′ − ky ′) sin(θ ) cos(θ )
∫ τ

0
x(t) ◦ dy(t) , (A15)

where the second equality in both relations follows using the
equations of motion (1). These relations form the basis for
evaluating the average heat flow in Fig. 4 from the experimental
data. Evaluating the integrals along any trajectory in the
stationary state as averages over the steady-state distribution,
we obtain Eqs. (10) and (11).

APPENDIX B: FINITE-TIME ESTIMATORS

The estimation of the torque and heat flows from the
experimental data using Eqs. (6) and (9), respectively, depends
sensitively on the sampling time step 
t of the recorded
trajectories. More precisely, the estimators for the time-
averaged quantities are discretizations of the integrals

M � −γ

τ

∫ τ

0
r2(t) ◦ dφ(t) and 〈Q̇x,y〉 � Qx,y

τ
, (B1)
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FIG. 5. Estimation of torque and heat flow. Simulations showing
the measured values of the (a) torque and (b) heat flows as a function of
the sampling time step 
t using a zeroth-order estimator (circles) and
a first-order estimator [Eq. (B5), crosses]. The black lines represent
the exact values predicted by the theory. The first-order estimator
permits us to obtain the correct values at the experimental sampling
time step 
t = 2.5 ms.

with Qx,y given in Eqs. (A14) and (A15), respectively. Let us
denote the estimators for sampling time step 
t by M(
t)
and 〈Q̇x,y〉(
t). The exact (experimental) values are obtained
in the limit 
t → 0. However, 
t is subject to experimental
constraints and in the case of our experiments is 
t = 2.5 ms

(corresponding to 400 fps), which is not sufficiently small
to obtain accurate values using the naive estimators M(
t)
or 〈Q̇x,y〉(
t). To illustrate this, we performed simulations
of the system under the same experimental conditions [42]
and computed the resulting torque and heat flows for different
sampling time steps 
t as shown by the open circles and
squares in Fig. 5. For too large sampling times, these estimates
clearly deviate from the analytic predictions (solid lines).

To solve this problem, we introduce an improved, first-
order estimator, which we will explain using the example
of the torque; the method works completely analogously for
the heat flows. We first note that the torque (as well as the
heat flows) in the steady state are constant in time, such
that any dependencies on the sampling time step 
t (as the
ones detected when estimating torque and heat flows from the
simulations shown in Fig. 5) are due to the simple estimators
M(
t) [and 〈Q̇x,y〉(
t)] being too imprecise. Assuming that
M(
t) is a smooth function of the sampling time step, we can
expand it around the exact value M(0),

M(
t) = M(0) + b
t + O(
t2) , (B2)

where b is the linear deviation coefficient and O(
t2) stands
for higher order deviations. Likewise, the average torque
sampled for a time step of size 2
t is

M(2
t) = M(0) + 2b
t + O(
t2) . (B3)

Combining these two expressions, we can eliminate the linear
deviation b, so that the exact value M(0) can be approximated
as

M(0) = M(
t)︸ ︷︷ ︸
zeroth-order

+ [M(
t) − M(2
t)]︸ ︷︷ ︸
first-order correction

+O(
t2), (B4)

up to second-order deviations in 
t . In other words, we
construct an improved estimator

M∗(
t) = 2M(
t) − M(2
t) (B5)
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from the naive estimator M(
t), which is accurate to first
order in 
t as opposed to the zeroth-order precision of M(
t).
In principle, we could continue this scheme to higher orders
by including measurements of M at higher multiples of the
sampling time step, but the first-order correction turned out

to be sufficient in the present case. This can be seen from
the blue crosses in Fig. 5(a), which are in good agreement
with the theoretical predictions up to a sampling time step

t = 5.0 ms. The estimator for the heat flows analogous to
Eq. (B5) delivers equally good results, as shown in Fig. 5(b).
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