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Some implementations of type theories have a mechanism for implicit arguments, that allows
users to omit some code from their programs and proofs. This kind of feature can be useful.
However, at least in the case of Agda [8] it can also be slow, and sometimes one might wish
that more implicit arguments could be instantiated. We are chipping away at these problems,
and this note describes some preliminary results.

We have constructed an example that is too demanding for the current implementation of
Agda. This example involves the definition of a dependently typed object language inside Agda,
and then a definition of “setoid” inside this language. The definition of the object language only
allows well-typed terms to be constructed, following McBride [6]. The definition of “setoid” in
this language involves a large number of implicit arguments that the type-checker has to infer.

Our prototype, a variant of Tog [5], improves upon Agda by managing to type-check the
example, and doing so in reasonable time and space.1 The main techniques used to achieve this
result are heterogeneous unification in the style of Gundry and McBride [4, 3], and hash consing
inspired by Shao et al. [9] and Filliâtre and Conchon [2]. Note, however, that the prototype
excludes several features of Agda, including termination checking, and that this should be kept
in mind when benchmark data is analysed.

Homogeneous vs. heterogeneous unification Dependent type-checking can be reduced
to solving a set of general constraints of the form Γ ⊢ t ∶ A ≈ u ∶ B [5]. Such a constraint is
well-formed if in context Γ term t has type A and term u has type B. Implicit arguments in
the program syntax are represented by typed metavariables in the constraint syntax. When a
metavariable α is instantiated by a term t (which we require to be closed), any occurrence of α
becomes definitionally equal to t. A constraint is solved by instantiating each metavariable in
such a way that the two sides of the constraint become definitionally equal.

In a homogeneous unification approach, the two sides of a constraint have the same type.
Mazzoli and Abel [5] split each general constraint Γ ⊢ t ∶ A ≈ u ∶ B into two homogeneous
unifier constraints, C1 ≡ Γ ⊩ A ≈ B ∶ Set and C2 ≡ Γ ⊩ t ≈ u ∶ A, where C2 is only meaningful
once C1 has been solved. If the user program is ill-typed and C2 is solved before C1, then one
can end up in a situation where the type-checker treats ill-typed terms as being well-typed [8].
Tog in homogeneous mode (and, to a lesser degree, Agda) will not tackle C2 until C1 is solved.
This approach is too strict for our example, because it prevents unification under binders (λ
and Π) until the types of the bound variables have been unified.

By contrast, in the heterogeneous approach due to Gundry and McBride [4], unifier con-
straints can have two different types: C1 ≡ Γ ⊩ A ∶ Set ≈ B ∶ Set, C2 ≡ Γ ⊩ t ∶ A ≈ u ∶ B.
The constraint C2 can now be tackled before C1. In the case where both sides of a constraint
are headed by a binder (e.g. Γ ⊩ λy.t ∶ Π(x ∶ A1)B1 ≈ λy.u ∶ Π(x ∶ A2)B2), the constraint
is simplified by introducing a twin variable x̂ of dual type A1‡A2, defined so that x́ ∶ A1 and
x̀ ∶ A2. The new constraint becomes Γ, x̂ ∶ A1‡A2 ⊩ t[x́/y] ∶ B1 ≈ u[x̀/y] ∶ B2.

If a constraint reaches an irreducible form, say Γ ⊩ αu1 . . . un ∶ A ≈ t ∶ B, and
the equation is in the pattern fragment [7, 1], then there will be a unique solution, here
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α ∶= λu1 . . . un.t. However, before instantiating α, the unifier must perform a compatibility
check: Γ ⊩ A ∶ Set ≈ B ∶ Set must hold, and ditto for the two types of any twin variable x̂ whose
two projections both occur in the constraint. Thus it may seem as if the heterogeneous ap-
proach is no more powerful than the homogeneous approach. However, as the unifier works on
C2, intermediate constraints may be generated which, when solved, lead to the instantiation of
metavariables. This additional information could be just what is needed to solve C1.

Our implementation We have extended the prototype Tog [5] with a heterogeneous unifier
based on Gundry and McBride’s algorithm [4]. If a naive implementation of heterogeneous
unification is used, then there is a risk that a significant amount of redundant work is performed
when the types of left-hand and right-hand sides are similar. We use hash consing, and assign
a unique identifier to each term. We can then memoize term-traversing operations (including
normalization, substitution, computation of metavariables and free variables in terms, pruning
of redundant metavariable arguments, η-expansion, and twin variable removal).

Preliminary results We have compared our heterogeneous unifier, an updated version of
Tog’s homogeneous unifier, and Agda.2 Tog with the heterogeneous unifier type-checks the se-
toid example mentioned above in 131 s with hash consing and memoization (HC&M) disabled,
and in 22 s with HC&M enabled. Tog with the homogeneous unifier deems the example unsolv-
able in 8 s with HC&M enabled, and Agda runs out of memory after more than 5 h. However,
in other cases Tog (with the heterogeneous unifier and HC&M enabled) runs slower than Agda.
It is an open question whether the use of HC&M can sometimes lead to excessive memory usage
due to large memo tables.

We note that this case study provides one data point in favour of Gundry’s belief that
heterogeneous unification with twin variables [4] “handles a sufficiently broad class of problems
to be useful for elaboration of a dependently typed language” [3, §4.3.4].
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