
Building an Effective Software Issues Scorecard:
An Action Research Report from the Automotive

Domain
Rakesh Rana

Skövde Artificial Intelligence Lab
University of Skövde

Email: rakesh.rana@his.se

Tommy Lagercrantz
Volvo Car Group

Göteborg, Sweden

Miroslaw Staron
Chalmers - University of Gothenburg

Göteborg, Sweden

Abstract—A large number of mature software companies
use data and analytic for status monitoring of their projects
and to help improve their decision making at different levels
within the organization. Dashboards or scorecards also provide
common platform for different stakeholders to access information
they need for tracking the status of projects of their interest.
Further data from software issues database can provide real
and observable indicators to track the quality of given product
during its development and testing. The study presented here
reports on distinct and evolution of information needs of different
stakeholder groups interested in tracking such data. The action
research report documents the evolution of software issues
scorecard as it is extended to meet information need of specific
user groups. A roadmap for future into how such scorecard can
be made more effective is also presented.

I. INTRODUCTION

Finding and fixing defects (or issues) is overall the most
expensive activity in embedded software development [1].
Given the size, complexity, time and cost pressures - tracking
and predicting quality is a major challenge in automotive
software development projects. To meet the demands of high
quality and reliability - significant effort is devoted on software
V&V (Verification& Validation). Testing the software is an
important part of software V&V used for ensuring correct
functionality and reliability of software systems; but at the
same time software testing is also a resource intensive activity
accounting for up to 50% of total software development costs
[2] and even more for safety critical software systems. Thus
having a good testing strategy is critical for any industry with
high software development costs.

One way of being efficient in dealing with software issues
is an efficient way of organizing discovered defect reports
to facilitate effective exchange of information between testers
and developers, constant monitoring of found issues until their
resolution and validation. Also by utilizing better visualization
techniques for data representations, the software issues data
can be made more useful and interactive for its stakeholders
that allow for fast response. Primarily software issues and
reliability measures are used for [3] [4]:

• Software process improvement,

• Planning and controlling testing resources during soft-
ware development, and

• Evaluating the maturity or release readiness of software
before the release date.

Most organizations maintain defect databases which can
be local to a team, project/product or specific section of
an organization. All defects found during verification and
validation activities are reports in these databases in a pre-
defined format - often with the sole purpose of facilitating their
resolution. The database usually provides the platform where
different stakeholders within and outside of an organization
can:

• Access the information about issue(s) of their interest,
• Add, edit, or update the information related to a given

issue,
• Comment, provide expertise or guidance to help resolve

the issue, and
• Track the progress of reported issue(s) and monitor defect

statistics.

To facilitate the documentation and exchange of informa-
tion, various attributes are recorded for each reported software
issues. Some of these attributes are mandatory aimed at
providing the basic information pertaining to given defect,
while others are optional that provide additional details. The
overall goal is to provide information from actor (usually
tester) who discovered the defect to actor(s) who will resolve
or help resolve it (usually developers).

The main challenge is of course how to make the infor-
mation documented and available in these defect databases
interactive and user friendly for different stakeholders. In this
action research we specifically studied the information needs
of different stakeholders, and how the Software Issues (SWI)
scorecard could cater to their information needs.

The rest of paper is organized as follows, the next section
following this introduction gives a brief overview of related
work. In section III we discuss the research methodology
and providing more details about the case company and its
software development and testing process. Section IV provides
the overview of state of SWI scorecard at the beginning of

the study, followed by section V documenting the evolution
of same as the study progressed. The study is summed with
conclusions presented in section VI.

II. RELATED WORK

Large software projects within the automotive domain par-
ticularly the development of platform projects at full EE
(Electronics & Electrical System) level can span over several
months and include number of iterations/integration points
[5]. The combination of large size of projects, rapid feature
development, and extensible architecture implies emergence of
new information needs [6] across projects and also during the
project evolution. Assessing the information need of different
stakeholders and meeting those needs using data from different
sources is an important activity to ensure the development of
high quality software within the planned resources and time.

Dashboards have been used to monitor number of impor-
tant metrics or KPIs (Key Performance Indicators) evolution
over time [7] [8] [9]. Richard W. Selby [10] contend that
measurement-driven dashboards provide a common platform
for understanding, evaluating, and predicting the development,
and management of large-scale systems and processes. The
author provided empirical observations of dashboards that
have been used on actual large-scale projects. Buse and Zim-
mermann [11] propose using software analytics for helping
mangers to meeting their information needs. Baysal, Holmes,
and Godfrey [12] motivates the need for qualitative dashboards
specifically designed for the need of developers to help them
improve their situational awareness by providing custom views
of variety of information related to their tasks that will help
them manage their workload while performing day-to-day
development tasks.

Visualizing large number of measure in one place helps
upper management and teams [13]; it can help upper manage-
ment to monitor and control development process and self-
organized software development teams can use it to monitor
and communicate the status of the quality of their product
under development [14]. The basic requirements for such dash-
boards are that they need to collect important and necessary
information and visualize it in a simple way which is intuitive
for its intended audience. Staron et al. in a book chapter
[15] used case study from three large companies engaged
in software development provides an overview of develop
and use dashboard for monitoring of software development
progress and discuss the quality of software architectures
under development. In this paper we describe the scorecard for
software issues used within a large automotive OEM (Original
Equipment Manufacturers), the main purpose of this scorecard
is to collect and summarize the information for software defect
database for a given ongoing project to help software devel-
opment and test teams, sub-system (ECU) owners, quality and
project managers on get the latest updated information (with
respect to software issues) in an user friendly way that is easy
to interpret by both technical and not so technical stakeholders.

Another characteristic of most dashboards used in industry
are that they evolve over time, as the use of dashboard

is increased among its intended (and sometimes extended)
audiences new information needs are communicated by
different stakeholders. These information needs may be due
to specific interest of particular group of stakeholders or
due to evolution of software development/testing/management
process itself which renders monitoring of certain new infor-
mation/metrics important. Rotella and Chulani [16] reported
the implementation and evolution of software quality goals
(and corresponding Software Quality Dashboard, SWQD) at
Cisco Software. The authors also reported number of quality
improvements achieving the quality goals during the studied
period. This paper also reports the evolution of software issues
scorecard during the studied period providing details on the
information needs of different stakeholder groups and how
they were fulfilled.

III. RESEARCH METHODOLOGY

Given the main objective of this research study was to
understand the evolving information needs of current users
of SWI scorecard by different stakeholders in the context of
large automotive software platform projects and help bring in
changes to improve its effectiveness as information tool, action
research methodology was used in this research study. Action
research is a research strategy for organizational research in
which the researchers are themselves involved in the studied
change. In action research, new knowledge is created through
seeking of solutions or improvements to real-life practical
problems [17]. The general process cycle for action research
utilized in this study can be presented as Figure 1.

Diagnosing

Action
Planning

Action
Taking Evaluating

Specifying
Learning Development

of client-system
infrastructure

Fig. 1. Overview of action research cycle used in the study

The primary actors involved in the action research were,
1) Metrics Team Leader: The Team leader responsible for

collection, analysis and reporting of project status with
regard to software issues to different software teams and
management within the company, the team leader has
more than three decades of experience in various roles
at the company. Researcher: The researcher involved in
the reported action research project has worked with the

case company for over three years on various research
projects.

2) Stakeholders (scorecard users): The stakeholders that
have contributed to this research study mainly include
regular users of SWI scorecard which constituted team
leaders of various software development and test teams
mainly at sub-system/ECU level, system/function own-
ers, project, and quality managers.

As expected in a study of this nature and also according to
the illustration of Figure 1, the research study was conducted
in iterative manner with inputs from one group of stakeholders
collected, analysed and if deemed important implementation
was done to meet the requested information need. Following
the implementation, enough time was given for all regular user
to adapt to new changes and the updates were followed up (for
evaluation and learning) with the user group that requested the
implemented changes but also with other user group on their
assessment of added functionality.

A. The Case Company: Volvo Car Group

Volvo Car Group (VCG) is a Swedish car Original Equip-
ment Manufacturer (OEM), based in Gothenburg. VCG devel-
ops software and hardware typically in a distributed software
development environment, but for a limited number of Elec-
tronic Control Units (ECUs) the software is also developed in-
house. The development is done by the software development
teams who usually also hold responsibility for integrating the
software with the hardware developed by suppliers. The major-
ity of the embedded software development in the car, however,
is developed by external suppliers who design, implement,
and test the functionality based on specifications from VCG
([18], [19]). SWI scorecards we worked with during this study
are the large platform projects, the project come from the
EE (Electrical and Electronics) integration department within
the VCG which deals with the integration of various software
functionalities and responsible for the final assessment of full
EE hardware and software systems.

B. The SW Development Life Cycle & Testing Process

Most automotive Original Equipment Manufacturers
(OEMs) follow Model Driven Development (MDD) and since
car platform projects are often large and spread over several
months, they are executed in number of iterations. In literature
and development standards, software development life cycle
in automotive domain has been illustrated as approaches
based on V-model [20], [21]. The life cycle of full EE car
platform projects have been described in authors earlier work
[5], in simple terms it can be represented as shown in Figure
2.

The process followed at each iteration within the production
software development phase can be described using a V-model
(refer to Figure 3), essentially for each iteration - first the
requirements are set or reviewed followed by System Design
(functional design and system architecture). Following the
system design ECU specifications is done which can also be
referred as software design since software is usually designed

Concept phase

Focus: Functionality Addition
Focus: Integration &
Acceptance Testing

In Operation

Production Software

Trial &
POC

Requirements Setting Warranty
Period
Monitoring

In Process
Monitoring

Iterations 1, 2, ... X to Release

Fig. 2. Representation of software development life cycle for EE platform
project within automotive domain

for specific ECUs and they are generally co-developed, opti-
mized for particular functionality.

Vehicle
Requirements

System
Design

Sub-System
Design

ECU
Specification

Implementation,
SW on ECU

Unit
Testing

Sub-System
Integration & Testing

System Integration
& Verification

Vehicle
Validation

Fig. 3. Overview of software development process at VCG

Next comes the implementation where designed software
is implemented (as code either manually written in object
oriented language or auto-generated from a functional model
build using some domain specific language (DSL) such as
Matlab/Simulink). The implemented code usually undergoes
rigorous testing under simulated environment to ensure correct
working of intended functionality and fulfilment of desired
quality requirements. The testing of software in simulated
environment is termed Model-In-Loop testing where different
functional models/code is also integrated and tested. The
software code is then integrated within the hardware/ECU and
it follows the testing via the Hardware-In-Loop testing (for
all iterations) and testing within complete vehicle prototypes
(for certain iterations). Major types of testing carried out to
verify and validate the functionality include unit testing, sub-
system integration and testing, system integration and testing,
functional and acceptance testing.

IV. SWI SCORECARD

The main idea behind using a SWI scorecard is to provide
a snap shot view of current status with respect to software
defects for a given project. The SWI scorecard is basically
an outcome of applying balanced scorecard [22] approach for
reporting the Key performance Indicators (KPIs) specifically to
software defects discovered and resolved in the given project
at any given point in time. Given that SWI scorecard provides
KPIs and summary statistics related to SW defects of a given
project, it is primarily aimed at team leaders, system owners,
quality, and project managers to keep track of the progress

of project from software defects perspective (an important
indicator of software quality and maturity). With the objectives
and target audience in mind, the two basic features required
from a good SWI scorecard would be:

• It provides a good overview of current status of project
(with respect to SW defects),

• It is updated frequently to ensure the latest data is
available, and

• The information is provided in format that is easy for its
intended users.

A. State Of SWI Scorecard at The Beginning of Study

At the start of the action research reported here, the
case company has SWI scorecard that satisfied the basic
requirements outlined above. Basically the scorecard provided
overview of information deemed most important by various
stakeholders and also included graphical representation for
easy interpretation. The basic information conveyed included,

• Number of SW issues/defects found until the given time,
• Status (open, closed, etc.) of SW issues found until the

given time, and
• The planned follow up of all unresolved issues (planned

fix date, test and validation plan).
The information was presented both in tabular and graphical

format that made it fast and easy to interpret for different
stakeholders of the scorecard. The scorecard was built on a
popular spreadsheet application linked to the software issues
database, the updated scorecard sent out to relevant stake-
holders (as well as available in a shared space). A simplified
version of how the information was provided graphically is
shown in Figure 4.

N
um

be
r o

f S
W

 is
su

es

Time

Total number of SW issues

New
Planned
Resolved

Fig. 4. A simplified representation of graphical data visualization in original
scorecard

The figure shown here (Figure 4) is only a simplified
representation for illustrative purpose, the actual view cannot
be included due to confidentiality, but the representation
illustrates well the basic status representation in the original
graphical presentation. The figure provides its users a snap
shot of most desired information with respect to issues/defect
statistics for a given project at a given point in time and its

historical evolution. It also provide the statistics with regard
to future plans (i.e. the test and validation plans).

B. Understanding the Information Needs

While the SWI scorecard meet the basic expectations of
its intended users, the primary participant of action study
(the metrics team leader and researcher) wanted to find out
potential areas of improvement with the aim of making the
SWI scorecard more user friendly and one that meets more
than basic needs of its users.

To better understand the needs of SWI scorecard users,
the metrics team leader and researcher collected views from
sample of it users. The views of users were collected during
regular meeting metrics team leader attended with different
teams, unstructured and semi-structured interviews with dif-
ferent groups of scorecard users. Attempt was made to collect
suggestions and opinions from representatives of each group
which included:

• Team leaders of software development and testing teams,
• Sub-system/ECU owners (that included number of func-

tion teams),
• Function owners (logical functions/features can have

components across multiple ECUs), and
• Quality and project managers at different levels.
A number of suggestions for improvement were collected

during the informal talks with the stakeholders, specifically
the opinions that came across frequently were:

• The need to drill down from the project to sub-system
level, this was mainly requested by team leaders and
ECU owners so that they can track their teams progress
and also compare it to other teams working on the same
project,

• It was expressed that the most recent data (for e.g. data
from last x weeks) could be presented separately, since
this was most interesting at the given point in time,

• Function owners wished for ability to track for a specific
combinations of teams at a time, and

• Quality and project managers expressed their desire to see
some more aspects such as defect discovery rate, defect
resolution rate and where possible some projections in
future.

The different views and suggestions offered by different
groups of stakeholders were deemed useful and thus SWI
scorecard was evolved to accommodate these suggestions.
The next section provides more details on how the scorecard
evolved following updates to meet the new requirements.

V. SWI SCORECARD EVOLUTION

In this section we describe the features or new information
integrated to the SWI scorecard which resulted in its evolution
during the action research. As described in previous section,
the information need was first assessed by talking to relevant
stakeholders and users of SWI scorecard. Each informational
element was added one at a time and given time to sink in
with its users. Keeping changes one at a time and maintaining

a set period before next change were designed to allow users
to adopt to new information in the scorecard, and provide
feedback with regard to its suitability. The metrics team
leader made sure that all changes in the SWI scorecard were
introduced and explained to a sample of its uses in different
meetings and forums. A user manual was also sent out with
the SWI scorecard when the change was large and required
explanation on how to use it.

Given that the original SWI scorecard have been developed
as an excel template, wide familiarity of Microsoft Excel
within company and the fact that new functionality in latest
version of Excel allowed extending the scorecard as desired
contributed in keeping excel as the scorecard reporting tool.

A. Filter By Functions & ECUs

The first information that was added to original SWI
scorecard was the ability to easily filter SW defects statistics
based on individual functions and ECUs. Since many of the
scorecard users were either team leaders responsible for a
specific ECU or function owners, the filtering ability at the
granularity of functions and ECUs was very well received.
The filters were added using excel built-in pivot tables and
slicer function that allowed users to:

• Filter data on individual functions/ECUs,
• Filter data on specific combinations of functions/ECUs

this functionality was useful for managers responsible for
several teams, and

• View the charts for filtered data (the display charts get
dynamically updated based on the chosen filter)

An example of filter slicer is shown in Figure 5, a user can
chose a desired individual (or combination) of functions/ECUs
simply by clicking (CTRL+click) on functions/ECUs of inter-
est. The user is able to go back to project level (default view)
data by cancelling the filter using cancel filter tab on upper
right corner of slicer.

This feature not only proved useful for individual team
leaders and function owners for assessment of their team SWI
statistics, but it was found out that it found much use during
cross-functional team meetings where it provided a snap shot
view of current status of different teams with respect to SW
issues and encouraged healthy discussions and exchange of
information between cross functional teams.

B. Discovery & Resolution Rates

Another important statistics with respect to SW defects,
different stakeholders were interested in was the rate of
discover and resolution at given point in time and how it has
been since the start of project. Although it was possible to
infer these rates from the main chart in original SWI scorecard
- it was not very intuitive/user friendly. The main chart in
original scorecard basically showed historical data on number
of defects found and resolved against time in bar chart - which
meant that to infer their rates users had to follow the trend of
bar chart over time.

To resolve the aforementioned difficulty, firstly two line
plots were added to the main chart showing the rate of defects

Fig. 5. The representation of slicer function to allow users to filter information
on specific systems/sub-systems

found and resolved now users can see the evolution of two
rates (defect discovery and resolution) in a quick glance and
the gap between them also provided simple measure of if the
verification and validation activities were on track. In order to
give users also an easy way to check the numbers associated
with these rates, a new chart was added to the new scorecard
with simple bar chart that showed number of defects found
and resolved in given week side by side. Simple illustrations
of inclusion of discovery and resolution rates on main chart
and additional bar chart are shown in Figure 6.

N
um

be
r o

f S
W

 is
su

es

Time

Total number of SW issues

New
Planned
Resolved
Total found
Total resolved*

Fig. 6. Representation of discovery and resolution rates to one of original
scorecard graph

As it can be seen from the figure, the additions of lines
in main char and the added bar chart provides the desired
information in an intuitive manner. It is easy to identify the

time periods when the rate of defect discovery &/or resolution
was fast/slow and how many defects were found and resolved
at a given point in time.

C. Last Time Period, Shorted

Quality and project managers responsible for full project
or large number of teams usually have to shift through large
amount of information from widely different spectrum related
to given projects. They also use SWI scorecard for monitoring
of project and teams with respect to software defects. One
aspect these managers are interested in is quickly identifying
specific teams with either largest reported issues or ones that
may have deviated from their verification & validation plan.
This is mainly to identify teams where these managers need to
focus at given point in time and using SWI statistics provide
on source of information to making such decisions.

To cater to these needs a new filter was added to the score-
card that can short functions/ECUs on the most important SWI
attributes such as number of defects found, number of defects
resolved, difference between found and resolved, average and
median age of unresolved software issues, deviations from
validation plan etc. Another important feature of this added
filter was ability to select the time period of interest, which
is usually last couple of weeks for most mangers. Once the
attribute of interest and time period is selected by a manger,
the scorecard lists the individual functions/ECUs with values
shorted such that teams that may need some attention are listed
on top, while teams meeting the expectations are listed below.
This allows managers to combine this information with other
sources of information to decide if they wish to follow up with
a particular team and dig deeper on any aspect or not. A basic
representation of filter is shown in Figure 7.

Fig. 7. An example of added graphical representation of information added
to original scorecard to show delta issues

D. Other Attributes of Interest

The defect databases record number of different attributes.
Although the primary aim of such documentation is to facili-
tate the information exchange between person who discovered
(usually testers) and reported the defect into the database
and actors that will resolve it or help in its resolution; the
information available in these database can be used to get more

insights into the software development and testing process and
thus help in software process improvement.

Software defect classification schemes can be can be used
to develop templates for defect reporting that share a well-
defined structure. Such pre-defined and shared structure facil-
itates quantitative analysis of defect reports that can provide
useful insights to characterize the development process and
also assist in identifying improvement opportunities [23].
Examples of defect classification schemes include orthogonal
defect classification [24] developed at IBM, schemes based on
IEEE standard classification for software anomalies (IEEE Std.
1044) and a light-weight defect classification scheme [23].

In this sub-section we list using one such attribute from
the defect reports that we use for further insights, but given
the information need and desire to explore different aspects of
software process within a given company different attributes
recorded in the defect databases can be leveraged for more
in-depth analysis. Since the large E/E platform projects within
automotive domain involve large number of ECUs, integration
testing is an important part of each iteration/integration point.
Before integration points, each team tests their software for
unit and function tests and following integration, integration,
function and acceptance testing is usually done by various
independent teams with our studied company. We wanted to
find out more on which teams were contributing to defect
discovery to the software of one particular ECU that have
many functions communicating (dependencies) with several
other ECUs. It was also intended to see how the contributions
evolved over time as the platform project progressed. Figure 8
show the share of different teams in number of reports software
issues over first four major integration points.

12%

70%

12%

6%

Integration Point 1

Development team Test team
Integration team Function test team

15%

46%

24%

15%

Integration Point 2

Development team Test team
Integration team Function test team

14%

27%

34%

25%

Integration Point 3

Development team Test team
Integration team Function test team

10%

22%

32%

36%

Integration Point 3

Development team Test team
Integration team Function test team

Fig. 8. Representation of using graphical representation of information for
deeper insights from SWI issues data

The pie charts display very clearly and provide a simple
overview of how much of software issues were reported (proxy
for amount of testing) by:

• Software development team for this ECU,
• Software test team for given ECU,
• The independent integration teams at integration depart-

ment, and
• The team responsible for verification and validation at

function level.

Following this further into late integration points, one would
be able to see the share of software issues reported by function
testing, and teams conducting acceptance test at vehicle level.
Such deep analysis of specific attribute(s) from the defect
database can help provide empirical evidence for or against
common held beliefs, evidence to test certain hypothesis about
software development or test processes and provide insights
that can be used for process improvements.

E. Projections or Forecasting

Another feature mainly requested by quality and project
managers was the ability to see some projections into future.
Since the defect discovery and resolution rates are usually not
linear for e.g. the widely reported S-shaped defect inflow
theorizes that the defect discovery rate is low at the beginning
of testing, maximizes around middle and again slow down
toward the end of testing as the software under test matures
with resolution of discovered defects.

Quality and project managers who are responsible for
delivering high quality software in a given time frame are
often interested in knowing if the software under development
and testing will reach the desired quality/maturity demands by
the given release date. Thus projections using current defect
inflow data and based on theoretical software reliability models
can provide useful projections into future to help quality and
project managers’ asses if the project under development or
testing is on track or would require more resources.

We added visual basic routine in Excel SWI scorecard
template, which can use the partial defect data for given project
and fit logistic or gompertz model on the data to provide
future forecasts. For details on use of software reliability
growth models for optimal test resource allocation and release
readiness assessment in the automotive domain, readers are
referred to authors earlier work [25]. The Figure 9 show an
example of using logistic model to fit the observed defect data
and providing projections based on the logistic growth model.

It is noted here that the implementation of this routine is
an recent effort and requires some manual inputs, but still it
does provide important advantages for industrial practition-
ers in terms of shielding them from the need to manually
filter the data from defect database, exporting it to some
statistical software package and using complex mathematical
models to obtain projections using software reliability models.
Once enough testing (defect) data is available, about half-
way through the project [26], the routine is able to provide
stable forecasts that can help managers monitor and asses the

Fig. 9. Representation of forecasting model added to original SWI issues
scorecard to fulfil trend projection needs

current status of projects from the software defect management
perspective.

F. Roadmap for Future

During the course of this action research, the SWI scorecard
evolved from a simple excel template providing basic defect
statistics information to a platform with rich information set to
address the specific information needs of different user groups.
Nonetheless there is much more that can be done to continue
the process of building an effective software issues scorecard.
The most notable future work is listed here:

• Online: The choice of continuing with Excel as the basic
reporting tool provided many advantages, specifically
familiarity among user groups, easy display of data in
form of tables and charts. But it also mean that the
scorecard needs to be updated manually and available
as the latest version document (offline). It is recognized
that within near future, the SWI scorecard need to be
made online such that anyone can access the scorecard
using standard web browser or even mobile application
and the scorecard would be updated automatically (data
synchronized with the defect database).

• Different views: While the new SWI scorecard provides
important information that meets demands of different
user groups, currently all this information in form of
tables and charts are presented in the same file. This have
two important limitations in terms of user friendliness, the
first that the file becomes large over time and secondly
and more importantly that the views are not customized
for different user groups. Although temporary solution is
made available by using different sheets to address dif-
ferent user groups, but over time as the scorecard is made
available online different views would be implemented
such that the view and presented information would be
customized to the particular group of users.

• More visualization capabilities: One of the main out-
come of presented action research has been recurring

requests and implementation of visual representation of
data for quick and intuitive understanding. Nonetheless
it is still recognized in the project that more visualiza-
tion capabilities can be added to current state of SWI
scorecard. Specifically by going online and implementing
separate views for different user groups will allow for
more room to add new data visualization. The need to
move more towards interactive visualization has also been
marked for the future updates of the scorecard that will
allow users not only to get statistics and visualize data in
static form but more capabilities to interact with visual
representation of data for digging deeper in areas of
interest.

VI. CONCLUSIONS

Software issues provide a rich source of data that can be
used by software development, test teams, and management
to track and monitor the progress of on-going projects with
regard to issues discovery and resolution. Since finding and
fixing software issues represent a large part of software ver-
ification and validation activities and is a resource intensive
activity monitoring such data is of high importance. The data
if presented in an intuitive manner to different user groups can
provide insights into the process and allow for tacking as well
as software process improvements within organizations.

In this study we set out to understand the evolving in-
formation needs of different user groups of software issues
scorecard in a large organization. In an action research setting
we evaluated the needs of different stakeholders and document
the evolution of SWI scorecard to meet these requirements.
Given the nature of the objective of the research project, the
study was set as an action research.

Over the study, different information needs from different
stakeholders of SWI scorecard were collected, examined and
where appropriate implemented to the evolving scorecard. A
number of changes/features were added as a result which
are documented in this action research report showing the
evolution of such a dashboard (or scorecard). The general
insights from the study include following observations:

• Different groups of stakeholders seek different informa-
tion from software issues databases,

• The information need of different user groups usually
evolve over time,

• The data form issues databases can provide useful in-
sights into software process, and

• There is high need for better data visualization and
interactive visualization.

Similar to most software systems and processes, most
information dashboards or scorecards that are actually used
in industry are living systems/documents. Documentation and
more importantly evaluation of such evolution provides in-
sights into the usefulness of such systems. It further helps to
develop effective strategy and roadmap onto how such systems
can be evolved to meet their main objectives and thus help
companies to meet their organizational goals.

ACKNOWLEDGMENT

The work presented here has been funded by Vinnova and
Volvo Cars jointly under the FFI programme (VISEE, Project
No: DIARIENR: 2011-04438).

REFERENCES

[1] C. Ebert and C. Jones, “Embedded software: Facts, figures, and future,”
Computer, vol. 42, no. 4, p. 4252, 2009.

[2] E. L. Jones, “Integrating testing into the curriculumarsenic in small
doses,” in ACM SIGCSE Bulletin, vol. 33, pp. 337–341.

[3] R. B. Grady, “Software failure analysis for high-return process improve-
ment decisions,” Hewlett Packard Journal, vol. 47, pp. 15–24, 1996.

[4] C.-Y. Huang, M. R. Lyu, and S.-Y. Kuo, “A unified scheme of some
nonhomogenous poisson process models for software reliability estima-
tion,” Software Engineering, IEEE Transactions on, vol. 29, no. 3, pp.
261–269, 2003.

[5] R. Rana, M. Staron, J. Hansson, and M. Nilsson, “Defect prediction
over software life cycle in automotive domain - state of the art and
road map for future,” in ICSOFT-EA 2014 - Proceedings of the 9th
International Conference on Software Engineering and Applications,
Vienna, Austria, 29-31 August, 2014, 2014, pp. 377–382. [Online].
Available: http://dx.doi.org/10.5220/0005099203770382

[6] R. P. Buse and T. Zimmermann, “Information needs for software devel-
opment analytics,” in Proceedings of the 34th international conference
on software engineering. IEEE Press, 2012, pp. 987–996.

[7] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler, “A feedback based
quality assessment to support open source software evolution: the grass
case study,” in Software Maintenance, 2006. ICSM’06. 22nd IEEE
International Conference on. IEEE, 2006, pp. 155–165.

[8] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya et al., “Managing technical debt
in software-reliant systems,” in Proceedings of the FSE/SDP workshop
on Future of software engineering research. ACM, 2010, pp. 47–52.

[9] J. Pérez, R. Deshayes, M. Goeminne, and T. Mens, “Seconda: Software
ecosystem analysis dashboard,” in Software Maintenance and Reengi-
neering (CSMR), 2012 16th European Conference on. IEEE, 2012, pp.
527–530.

[10] R. W. Selby, “Measurement-driven dashboards enable leading indicators
for requirements and design of large-scale systems,” in Software Metrics,
2005. 11th IEEE International Symposium. IEEE, 2005, pp. 10–pp.

[11] R. P. Buse and T. Zimmermann, “Analytics for software development,”
in Proceedings of the FSE/SDP workshop on Future of software engi-
neering research. ACM, 2010, pp. 77–80.

[12] O. Baysal, R. Holmes, and M. W. Godfrey, “Developer dashboards: The
need for qualitative analytics,” Software, IEEE, vol. 30, no. 4, pp. 46–52,
2013.

[13] M. Staron, W. Meding, and C. Nilsson, “A framework for developing
measurement systems and its industrial evaluation,” Information and
Software Technology, vol. 51, no. 4, pp. 721–737, 2009.

[14] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and H. Robinson, “Mod-
els of motivation in software engineering,” Information and Software
Technology, vol. 51, no. 1, pp. 219–233, 2009.

[15] I. Mistrı́k, R. Bahsoon, P. Eeles, R. Roshandel, and M. Stal, Relating
System Quality and Software Architecture. Morgan Kaufmann, 2014.

[16] P. Rotella and S. Chulani, “Implementing quality metrics and goals at
the corporate level,” in Proceedings of the 8th Working Conference on
Mining Software Repositories. ACM, 2011, pp. 113–122.

[17] M. Elden and R. F. Chisholm, “Emerging varieties of action research:
Introduction to the special issue,” Human relations, vol. 46, no. 2, pp.
121–142, 1993.

[18] U. Eklund, N. Jonsson, J. Bosch, and A. Eriksson, “A reference architec-
ture template for software-intensive embedded systems,” in Proceedings
of the WICSA/ECSA 2012 Companion Volume. ACM, 2012, pp. 104–
111.

[19] R. A. McGee, U. Eklund, and M. Lundin, “Stakeholder identification
and quality attribute prioritization for a global vehicle control system,”
in Proceedings of the Fourth European Conference on Software Archi-
tecture: Companion Volume. ACM, 2010, pp. 43–48.

[20] W. Dieterle, “Mechatronic systems: Automotive applications and modern
design methodologies,” Annual Reviews in Control, vol. 29, no. 2, pp.
273–277, 2005.

[21] C. ISO, 26262, Road vehicles–Functional safety, Std., 2011.

[22] R. S. Kaplan and D. P. Norton, The balanced scorecard: translating
strategy into action. Harvard Business Press, 1996.

[23] N. Mellegård, M. Staron, and F. Törner, “A light-weight defect clas-
sification scheme for embedded automotive software and its initial
evaluation,” in Software Reliability Engineering (ISSRE), 2012 IEEE
23rd International Symposium on. IEEE, 2012, pp. 261–270.

[24] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus,
B. K. Ray, and M.-Y. Wong, “Orthogonal defect classification-a concept
for in-process measurements,” Software Engineering, IEEE Transactions
on, vol. 18, no. 11, pp. 943–956, 1992.

[25] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Torner,
“Evaluating long-term predictive power of standard reliability growth
models on automotive systems,” in Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium on. IEEE, 2013,
pp. 228–237.

[26] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner,
W. Meding, and C. Höglund, “Selecting software reliability growth
models and improving their predictive accuracy using historical projects
data,” Journal of Systems and Software, vol. 98, pp. 59–78, 2014.

