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Abstract We use the local orthogonal decomposition technique introduced in
Målqvist and Peterseim (Math Comput 83(290):2583–2603, 2014) to derive a gener-
alized finite element method for linear and semilinear parabolic equations with spatial
multiscale coefficients. We consider nonsmooth initial data and a backward Euler
scheme for the temporal discretization. Optimal order convergence rate, depending
only on the contrast, but not on the variations of the coefficients, is proven in the
L∞(L2)-norm. We present numerical examples, which confirm our theoretical find-
ings.
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1 Introduction

In this paper we study numerical solutions to parabolic equations with highly varying
coefficients. These equations appear, for instance, when modeling physical behavior
in a composite material or a porous medium. Such problems are often referred to as
multiscale problems.
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Convergence of optimal order of classical finite element methods (FEMs) based
on continuous piecewise polynomials relies on at least spatial H2-regularity. More
precisely, for piecewise linear polynomials, the error bound depends on ‖u‖H2 , which
may be proportional to ε−1 if the diffusion coefficient varies on a scale of ε. Thus,
the mesh width h typically must fulfill h < ε to achieve convergence. However, this
is not computationally feasible in many applications. To overcome this issue, several
numerical methods have been proposed, see, for example, [2,8,13,15,16,19], and
references therein. In particular, [15,16] consider linear parabolic equations.

In [13] a generalized finite element method (GFEM) was introduced and conver-
gence of optimal order was proven for elliptic multiscale equations. Themethod builds
on ideas from the variational multiscale method [8,10], which is based on a decompo-
sition of the solution space into a (coarse) finite dimensional space and a residual space
for the fine scales. The method in [13], often referred to as local orthogonal decompo-
sition, constructs a generalized finite element space where the basis functions contain
information from the diffusion coefficient and have support on small vertex patches.
With this approach, convergence of optimal order can be proved for an arbitrary posi-
tive and bounded diffusion coefficient. Restrictive assumptions such as periodicity of
the coefficients or scale separation are not needed. Some recent works [1,6,7,14] show
how this method can be applied to boundary value problems, eigenvalue problems,
semilinear elliptic equations, and linear wave equations.

In this paper we apply the technique introduced in [13] to parabolic equations with
multiscale coefficients.We use the diffusion coefficient to construct a generalized finite
element space and for the discretization of the temporal domain we use the backward
Euler scheme. Using tools from classical finite element theory for parabolic equations,
see, e.g, [11,12,18], and references therein, we prove convergence of optimal order
in the L∞(L2)-norm for linear and semilinear equations under minimal regularity
assumptions and nonsmooth initial data. The analysis is completed with numerical
examples that support our theoretical findings.

In Sect. 2 we describe the problem formulation and the assumptions needed to
achieve sufficient regularity of the solution. Section 3 describes the numerical approx-
imation and presents the resulting GFEM. In Sect. 4 we prove error bounds and in
Sect. 5 we extend the results to semilinear parabolic equations. Finally, in Sect. 6 we
present some numerical examples.

2 Problem formulation

We consider the parabolic problem

cu̇ − ∇ · (A∇u) = f, in � × (0, T ],
u = 0, on ∂� × (0, T ],
u(·, 0) = u0, in �,

(2.1)

where T > 0 and � is a bounded polygonal/polyhedral domain in R
d , d ≤ 3. We

assume c = c(x), A = A(x), and f = f (x, t). Here we allow both c and A to be
multiscale (in space), but independent of the time variable.
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Multiscale techniques for parabolic equations 193

We let H1(�) denote the classical Sobolev space with norm

‖v‖2H1(�)
= ‖v‖2L2(�) + ‖∇v‖2L2(�)

and V = H1
0 (�) the space of functions in H1(�) that vanishes on ∂�.We use H−1(�)

to denote the dual space to V . Furthermore, we use the notation L p(0, T ; X) for the
Bochner space with finite norm

‖v‖L p(0,T ;X) =
( ∫ T

0
‖v‖p

X dt
)1/p

, 1 ≤ p < ∞,

‖v‖L∞(0,T ;X) = ess sup0≤t≤T ‖v‖X ,

where X is a Banach space equipped with norm ‖ · ‖X . Here v ∈ H1(0, T ; X) means
v, v̇ ∈ L2(0, T ; X). The dependence on the interval [0, T ] and the domain � is
frequently suppressed andwewrite, for instance, L2(L2) for L2(0, T ; L2(�)). Finally,
we abbreviate the L2-norm ‖ · ‖ := ‖ · ‖L2(�) and define |||·||| := ‖A1/2∇ · ‖.

To ensure existence, uniqueness, and sufficient regularity, we make the following
assumptions on the data.

We assume

(A1) A ∈ L∞(�,Rd×d), symmetric, and

0 < α1 := ess inf x∈� inf
v∈Rd\{0}

A(x)v · v

v · v
,

∞ > α2 := ess supx∈� sup
v∈Rd\{0}

A(x)v · v

v · v
,

(A2) c ∈ L∞(�,R) and

0 < γ1 := ess infx∈� c(x) ≤ ess supx∈� c(x) =: γ2 < ∞,

(A3) u0 ∈ L2,
(A4) f, ḟ ∈ L∞(L2).

We let (u, v) = ∫
�

uv denote the classical L2 inner product and define

(·, ·)c := (c ·, ·).

Due to (A2) this is an inner product and the induced norm ‖c1/2 · ‖ is equivalent to
the classical L2-norm.

We emphasize that throughout this work C denotes a constant that may depend on
the bounds α1 and α2 (often through the contrast α2/α1), the bounds γ1 and γ2, the
shape regularity parameter � (3.1) of the mesh, the final time T , and the size of the
domain �, but not on the mesh size parameters nor the derivatives of the coefficients
in A or c. The fact that the constant does not depend on the derivatives of A nor c
is crucial, since these (if they exist) are large for the problems of interest. This is
sometimes also noted as C being independent of the variations of A and c.

We now formulate the variational form of problem (2.1). Find u(·, t) ∈ V such that
u(·, 0) = u0 and
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(u̇, v)c + a(u, v) = ( f, v), ∀v ∈ V, t ∈ (0, T ], (2.2)

and a(u, v) = (A∇u,∇v).
The following theorem states existence and uniqueness of a solution to (2.2). The

proof is based on Galerkin approximations, see, e.g., [5,9].

Theorem 2.1 Assume that (A1)–(A4) are satisfied. Then there exists a unique solution
u to (2.2) such that u ∈ L2(0, T ; H1

0 ) and u̇ ∈ L2(0, T ; H−1).

3 Numerical approximation

In this section we describe the local orthogonal decomposition method presented in
[13] to define a generalized finite element method for the multiscale problem (2.2).

First we introduce some notation. Let {Th}h>0 and {TH }H>h be families of shape
regular triangulations of�where hK := diam(K ), for K ∈ Th , and HK := diam(K ),
for K ∈ TH .We also define H := maxK∈TH HK and h := maxK∈Th hK . Furthermore,
we let � > 0 denote the shape regularity parameter of the mesh TH ;

� := max
K∈TH

�K , with �K := diam BK

diam K
, for K ∈ TH , (3.1)

where BK is the largest ball contained in K .
Now define the classical piecewise affine finite element spaces

VH = {v ∈ C(�̄) : v = 0 on ∂�, v|K is a polynomial of degree ≤ 1,∀K ∈ TH },
Vh = {v ∈ C(�̄) : v = 0 on ∂�, v|K is a polynomial of degree ≤ 1,∀K ∈ Th}.

We let N denote the interior nodes of VH and ϕx the corresponding hat function for
x ∈ N , such that span({ϕx }x∈N ) = VH . We further assume that Th is a refinement
of TH , so that VH ⊆ Vh . Finally, we also need the finite element mesh TH of � to be
such that the L2-projection PH onto the finite element space VH is stable in H1-norm,
see, e.g., [3], and the references therein.

To discretize in time we introduce the uniform discretization

0 = t0 < t1 < · · · < tN = T, where tn − tn−1 = τ. (3.2)

Let Un be the approximation of u(t) at time t = tn and denote fn := f (tn). Using
the notation ∂̄tUn = (Un − Un−1)/τ we now formulate the classical backward Euler
FEM; find Un ∈ Vh such that

(∂̄tUn, v)c + a(Un, v) = ( fn, v), ∀v ∈ Vh, (3.3)

for n = 1, . . . , N and U0 ∈ Vh is some approximation of u0. We also define the
operator Ah : Vh → Vh by

(Ahv,w) = a(v,w), ∀v,w ∈ Vh . (3.4)
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Multiscale techniques for parabolic equations 195

The convergence of the classical finite element approximation (3.3) depends on
‖D2u‖, where D2 denotes the second order derivatives. If the diffusion coefficient A
oscillates on a scale of ε wemay have ‖D2u‖ ∼ ε−1, see [17] for a further discussion.
The total error is thus typically bounded by ‖u(tn) − Un‖ ≤ C(τ + (h/ε)2), which is
small only if h < ε.

The purpose of the method described in this paper is to find an approximate solu-
tion, let us denote it by Û for now, in some space V̂ ⊂ Vh , such that dim V̂ =dim VH ,
for H >h, and the error ‖Un−Ûn‖≤C H2. Here C is independent of the variations in
A and c and Ûn is less expensive to compute than Un . The total error is then the sum
of two terms

‖u(tn) − Ûn‖ ≤ ‖u(tn) − Un‖ + ‖Un − Ûn‖,

where the first term is the error due to the classical FEM approximation with backward
Euler discretization in time. This is small if h (and τ ) is chosen sufficiently small, that
is, if h resolves the variations of A. Hence, we think of h > 0 as fixed and appropriately
chosen. Our aim is now to analyze the error ‖Un − Ûn‖.

We emphasize that V̂ = VH is not sufficient. The total error would in this case
typically be ‖u(tn) − Ûn‖ ∼ (τ + (H/ε)2), which is small only if H < ε.

The next theorem states some regularity results for (3.3).

Theorem 3.1 Assume that (A1)–(A4) are satisfied. Then, for 1 ≤ n ≤ N, there exists
a unique solution Un to (3.3) such that Un ∈ Vh. Furthermore, if U0 = 0, then we
have the bound

‖∂̄tUn‖ ≤ C
(‖ f ‖L∞(L2) + ‖ ḟ ‖L∞(L2)

)
, (3.5)

and, if f = 0, then

‖∂̄tUn‖ ≤ Ct−1
n ‖U0‖, n ≥ 1, ‖∂̄t ∂̄tUn‖ ≤ Ct−2

n ‖U0‖, n ≥ 2, (3.6)

where C depends on α1, γ1, γ2 and T , but not on the variations of A or c.

Proof From (3.3) it follows for n ≥ 2 that
(
∂̄t ∂̄tUn, v

)
c + a

(
∂̄tUn, v

) = (
∂̄t fn, v

)
, ∀v ∈ Vh,

and choosing v = ∂̄tUn we derive

‖c1/2∂̄tUn‖ ≤ ‖c1/2∂̄tU1‖ + 1√
γ1

n∑
j=2

τ‖∂̄t f j‖.

From (3.3) we have, since U0 = 0, ‖c1/2∂̄tU1‖ ≤ γ
−1/2
1 ‖ f1‖. Finally, using the

inequality
n∑

j=2

τ‖∂̄t f j‖ ≤
n∑

j=2

max
t j−1≤ξ≤t j

τ‖ ḟ (ξ)‖ ≤ C‖ ḟ ‖L∞(L2),

and the bounds on c in (A2) we deduce (3.5).
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196 A. Målqvist, A. Persson

To derive the bounds in (3.6), we define the solution operator En such that Env

is the solution to (3.3) with f = 0 and initial data v ∈ L2. Let {ϕi } and {λi } be
eigenfunctions and corresponding eigenvalues such that

a(ϕi , v) = λi (ϕi , v)c, ∀v ∈ V .

It follows that the eigenvalues {λi } are real and positive and {ϕi } are orthogonal with
respect to the inner products (·, ·)c and a(·, ·). Furthermore, there is a finite subset
of eigenfunctions that spans Vh , i.e., span{ϕi }M

i=1 = Vh for some M < ∞. With this
notation, the solution Env can be written as

Env =
M∑

i=1

1

(1 + τλi )n
(v, ϕi )cϕi .

The bounds now follows from [18, Lemma 7.3]. ��

3.1 Orthogonal decomposition

In this section we describe the orthogonal decomposition which defines the GFEM
space denoted V̂ in the discussion above. We refer to [13,14] for details. The GFEM
space is defined using only the diffusion coefficient A, that is, the variations in c are
not accounted for in the construction of the space. In Sect. 4 we prove that this space
indeed is sufficient to obtain convergence of the method.

For the construction of the GFEM space we use the (weighted) Clément interpola-
tion operator introduced in [4], IH : Vh → VH defined by

IH v =
∑
x∈N

(IH v)(x)ϕx , where (IH v)(x) :=
∫
�

vϕx∫
�

ϕx
. (3.7)

For this interpolation operator the following result is proved [4]

H−1
K ‖v − IH v‖L2(K ) + ‖∇(v − IH v)‖L2(K ) ≤ C‖∇v‖L2(ω̄K ),∀v ∈ V, (3.8)

where ω̄K := ∪{K̄ ∈ TH : K̄ ∩ K �= ∅} and C depends on the shape regularity �.
Let V f = {v ∈ Vh : IH v = 0} be the kernel of the Clément interpolation operator

(3.7). This space contains all fine scale features not resolved by VH . The space Vh

can then be decomposed into Vh = VH ⊕ V f , where v ∈ Vh can be written as a sum
v = vH + vf , with vH ∈ VH , vf ∈ V f , and (vH , vf) = 0.

Now define the orthogonal projection Rf : Vh → V f by

a(Rfv,w) = a(v,w) ∀w ∈ V f , v ∈ Vh .

Using this projection we define the GFEM space, also referred to as the multiscale
space,
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Multiscale techniques for parabolic equations 197

Vms := VH − RfVH ,

which leads to another orthogonal decomposition Vh = Vms⊕V f . Hence any function
v ∈ Vh has a unique decomposition v = vms + vf , with vms ∈ Vms and vf ∈ V f , with
a(vms, vf ) = 0.

To define a basis for Vms we want to find the projection Rf of the nodal basis
function ϕx ∈ VH . Let this projection be denoted φx , so that φx ∈ V f satisfies the
(global) corrector problem

a(φx , w) = a(ϕx , w), ∀w ∈ V f . (3.9)

A basis for the multiscale space Vms is thus given by

{ϕx − φx : x ∈ N }.

We also introduce the projection Rms : Vh → Vms, defined by

a(Rmsv,w) = a(v,w), ∀w ∈ Vms, v ∈ Vh . (3.10)

Note that Rms = I − Rf . For Rms we have the following lemma, based on the results
in [13].

Lemma 3.2 For the projection Rms in (3.10) and v ∈ Vh we have the error bound

‖v − Rmsv‖ ≤ C H2‖Ahv‖, v ∈ Vh, (3.11)

where C depends on α1 and �, but not on the variations of A or c.

Proof Define the following elliptic auxiliary problem: find z ∈ Vh such that

a(z, w) = (v − Rmsv,w), ∀w ∈ Vh .

In [13, Lemma 3.1] it was proven that the solution to an elliptic equation of the form

a(u, w) = (g, w), ∀w ∈ Vh,

satisfies the error estimate

|||u − Rmsu||| ≤ C H‖g‖,

where C depends on � and α1, but not on the variations of A. Hence, we have the
following bound for z,

|||z − Rmsz||| ≤ C H‖v − Rmsv‖.
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198 A. Målqvist, A. Persson

Furthermore, we note that v − Rmsv ∈ Vh and

‖v − Rmsv‖2 = (v − Rmsv, v − Rmsv) = a(z, v − Rmsv)

= a(z − Rmsz, v − Rmsv) ≤ |||z − Rmsz||| |||v − Rmsv|||.

Now, since a(v,w) = (Ahv,w), we get |||v − Rmsv||| ≤ C H‖Ahv‖ and (3.11)
follows. ��

In particular, if Un is the solution to (3.3), then (3.11) gives

‖Un − RmsUn‖ ≤ C H2‖Ph( fn − c ∂̄tUn)‖, n ≥ 1,

‖∂̄tUn − Rms∂̄tUn‖ ≤ C H2‖Ph(∂̄t fn − c ∂̄t ∂̄tUn)‖, n ≥ 2,

where Ph is the L2-projection onto Vh .
The result in Lemma 3.2 should be compared with the error of the classical Ritz

projection Rh : V → Vh defined by a(Rhv,w) = a(v,w), ∀w ∈ Vh . Using elliptic
regularity estimates, one achieves

‖Rhv − v‖ ≤ Ch2‖D2v‖ ≤ Ch2‖Av‖,

which is similar to the result in Lemma 3.2. However, in this case, C depends on the
variations of A and the regularity of �. This is avoided by using the Rms-projection,
since the constant in Lemma 3.2 does not depend on the variations of A or c.

Now define the corresponding GFEM to problem (3.3); find Ums
n ∈ Vms such that

(∂̄tU
ms
n , v)c + a(Ums

n , v) = ( fn, v), ∀v ∈ Vms, (3.12a)

(Ums
0 , v)c = (U0, v)c, ∀v ∈ Vms, (3.12b)

for n = 1, . . . , N . Furthermore, we define the operator Ams : Vms → Vms by

(Amsv,w) = a(v,w), ∀v,w ∈ Vms. (3.13)

Remark 3.3 In this remark we discuss the possibilities of including time dependency
in the coefficients c and A.

(i) It is possible, with a slight modification of the error analysis, to let c = c(x, t) be
time dependent with rapid variations in space. However, for simplicity, we shall
only study the time independent case here.

(ii) We emphasize that the construction of the method in (3.12) depends on the fact
that the diffusion coefficient does not depend on time. If we have A = A(x, t),
the multiscale space could be updated in each time step. For each tn , we would
then define a new Ritz projection Rf with A = A(x, tn) leading to a space Vms

n .
If the variations in time are slow or periodic, it is also possible reuse the space
for several time steps. However, if the variations are fast and non-periodic, then
updating the basismay become too expensive which calls for a different approach.
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3.2 Localization

Since the corrector problems (3.9) are posed in the fine scale space V f they are com-
putationally expensive to solve. Moreover, the correctors φx generally have global
support, which destroys the sparsity of the resulting linear system (3.12). However, as
shown in [13], φx decays exponentially fast away from x . This observation motivates
a localization of the corrector problems to smaller patches of coarse elements. Here
we use a variant presented in [6], which reduces the required size of the patches.

We first define the notion of patches and their sizes. For all K ∈ TH we define
ωk(K ) to be the patch of size k, where

ω0(K ) := int K ,

ωk(K ) := int
( ∪ {K̂ ∈ TH : K̂ ∩ ωk−1(K ) �= ∅}), k = 1, 2, . . .

Moreover, we define V f(ωk(K )) := {w ∈ V f : v(z) = 0 on � \ ωk(K )}.
Now define the operator Rf

K : Vh → V f by

∫

�

A∇ Rf
K v · ∇w =

∫

K
A∇v · ∇w, ∀v ∈ Vh, w ∈ V f ,

and note that Rf := ∑
K∈TH

Rf
K . We now localize the operator Rf

K by defining
Rf

K ,k : Vh → V f(ωk(K )) through

∫

ωk (K )

A∇ Rf
K ,kv · ∇w =

∫

K
A∇v · ∇w, ∀v ∈ Vh, w ∈ V f(ωk(K )),

and we define Rf
k := ∑

K∈TH
Rf

K ,k . Hence we can, for each nonnegative integer k,
define a localized multiscale space

Vms
k := VH − Rf

k VH .

Here the basis is given by {ϕx − φk,x : x ∈ N }, where φk,x = Rf
kϕx is the localized

version of φx . The procedure of decomposing Vh into the orthogonal spaces Vms and
V f together with the localization of Vms to Vms

k is referred to as local orthogonal
decomposition.

The following lemma follows from Lemma 3.6 in [6].

Lemma 3.4 There exists a constant 0 < μ < 1 that depends on the contrast α2/α1
such that

|||Rfv − Rf
kv||| ≤ Ckd/2μk |||v|||, ∀v ∈ Vh,

where C depends on α1, α2, and �, but not on the variations of A or c.
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200 A. Målqvist, A. Persson

Now let Rms
k : Vh → Vms

k be the orthogonal projection defined by

a
(
Rms

k v,w
) = a(v,w), ∀w ∈ Vms

k . (3.14)

The next lemma is a consequence of Theorem 3.7 in [6] and estimates the error due
to the localization procedure.

Lemma 3.5 For the projection Rms
k in (3.14) we have the bound

‖v − Rms
k v‖ ≤ C

(
H + kd/2μk

)2 ‖Ahv‖, ∀v ∈ Vh . (3.15)

Here C depends on α1, α2, and �, but not on the variations of A or c.

Proof The proof is similar to the proof of Lemma 3.2. Let z ∈ Vh be the solution to
the elliptic dual problem

a(z, w) = (v − Rms
k v,w), ∀w ∈ Vh,

which gives

‖v − Rms
k v‖2 = (

v − Rms
k v, v − Rms

k v
) = a

(
z − Rms

k z, v − Rms
k v

)

≤ |||z − Rms
k z||||||v − Rms

k v|||.

It follows from Theorem 3.7 in [6] that there exists a constant C depending on α2, α1,
and �, such that |||z − Rms

k z||| ≤ C(H +kd/2μk)‖v− Rms
k v‖, withμ as in Lemma 3.4.

Since (Ahv,w) = a(v,w) we get |||v − Rms
k v||| ≤ C(H + kd/2μk)‖Ahv‖ and (3.15)

follows. ��
We are now ready to formulate the localized version of (3.12) by replacing Vms by

Vms
k . The localized GFEM formulation reads; find Ums

k,n ∈ Vms
k such that

(
∂̄tU

ms
k,n, v

)
c
+ a

(
Ums

k,n, v
) = ( fn, v), ∀v ∈ Vms

k , (3.16a)(
Ums

k,0, v
)

c
= (U0, v)c, ∀v ∈ Vms

k , (3.16b)

for n = 1, . . . , N . We also define the operator Ams
k : Vms

k → Vms
k by a localized

version of (3.13)

(
Ams

k v,w
) = a(v,w), ∀v,w ∈ Vms

k . (3.17)

We also define the solution operator Ems
k,n , such that the solution to (3.16), with

f = 0, can be expressed as Ums
k,n = Ems

k,nUms
k,0. For this operator we have estimates

similar to (3.6). Since the initial data in (3.16) is the projection onto Vms
k with respect

to the inner product (·, ·)c, we define Pms
c,k : L2 → Vms

k by

(
Pms

c,k v,w
)

c
= (v,w)c, ∀w ∈ Vms

k ,

to state the next lemma.
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Lemma 3.6 For l = 0, 1, and v ∈ L2, we have

‖∂̄ l
t Ems

k,n Pms
c,k v‖ ≤ Ct−l

n ‖v‖, n ≥ l, |||Ems
k,n Pms

c,k v||| ≤ Ct−1/2
n ‖v‖, n ≥ 1,

where C depends on the constant α1, γ1, γ2, but not on the variations of A or c.

Proof As in the proof of Theorem3.1 there exist a finite number of positive eigenvalues
{λi }M

i=1 and corresponding orthogonal eigenvectors {ϕi }M
i=1 such that span {ϕi } = Vms

k
and

a(ϕi , v) = λi (ϕi , v)c, ∀v ∈ V .

It follows that Ems
k,nv can be written as

Ems
k,nv =

M∑
i=1

1

(1 + τλi )n
(v, ϕi )cϕi ,

and the bounds now follow from [18, Lemma 7.3]. ��

4 Error analysis

In this sectionwe derive error estimates for the local orthogonal decompositionmethod
introduced in Sect. 3. The bounds of the time derivatives of a parabolic problem with
nonsmooth initial data, (c.f. Theorem 3.1), depends on negative powers of tn , which
leads to error bounds containing negative powers of tn . These are non-uniform in
time, but of optimal order for a fix time tn > 0. The same phenomenon appears in
classical finite element analysis for equations with nonsmooth initial data, see [18]
and references therein. The error analysis in this section is carried out by only taking
the L2-norm of U0, which allows u0 ∈ L2.

Theorem 4.1 Let Un be the solution to (3.3) and Ums
k,n the solution to (3.16). Then,

for 1 ≤ n ≤ N,

‖Ums
k,n − Un‖ ≤ C

(
1 + log

tn
τ

)
(H + kd/2μk)2

(
t−1
n ‖U0‖ + ‖ f ‖L∞(L2)

+ ‖ ḟ ‖L∞(L2)

)
,

where C depends on α1, α2, γ1, γ2, �, and T , but not on the variations of A or c.

The proof of Theorem 4.1 is divided into several lemmas. To study the error in the
homogeneous case, f = 0, we use techniques similar to the classical finite element
analysis of problems with nonsmooth initial data, see [18] and the references therein.

Define Th : L2 → Vh and Tms
k : L2 → Vms

k by

a(Thv,w) = (v,w)c, ∀w ∈ Vh, v ∈ L2,

a
(
Tms

k v,w
) = (v,w)c, ∀w ∈ Vms

k , v ∈ L2.
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With this notation the solution to the parabolic problem (3.3), with f = 0, can be
expressed as Th ∂̄tUn + Un = 0, since

a(Th ∂̄tUn, w) = (∂̄tUn, w)c = −a(Un, w), ∀w ∈ Vh .

Similarly, the solution to (3.16), with f = 0, can be expressed as Tms
k ∂̄tUms

k,n +Ums
k,n =

0. Note that Th and Tms
k are self-adjoint and positive semi-definite with respect to

(·, ·)c on L2, and Tms
k = Rms

k Th .
Now, let en = Ums

k,n − Un , where en solves the error equation

Tms
k ∂̄t en + en = −Un − Tms

k ∂̄tUn = (Th − Tms
k )∂̄tUn = (Rms

k − I )Un =: ρn,

(4.1)

for n = 1, . . . , N with Tms
k e0 = 0, since

a(Tms
k e0, w) = (Ums

k − U0, w)c = 0.

The following lemma is a discrete version of [18, Lemma 3.3].

Lemma 4.2 Suppose en satisfies the error equation (4.1). Then

‖en‖2 ≤ C
(
‖ρn‖2 + t−1

n

( n∑
j=1

τ‖ρ j‖2 +
n∑

j=2

τ t2j ‖∂̄tρ j‖2
))

, n ≥ 2, (4.2)

‖e1‖ ≤ C‖ρ1‖, (4.3)

where C depends on γ1 and γ2, but not on the variations of A or c.

Proof Multiply the error equation (4.1) by c ∂̄t en and integrate over � to get

(Tms
k ∂̄t en, ∂̄t en)c + (en, ∂̄t en)c = (ρn, ∂̄t en)c,

where the first term on the left hand side is nonnegative, since Tms
k is positive semi-

definite on L2. Multiplying by τ tn we have

tn‖c1/2en‖2 − tn(en, en−1)c ≤ tn(ρn, en − en−1)c,

which gives

tn
2

‖c1/2en‖2 − tn−1

2
‖c1/2en−1‖2 ≤ tn(ρn, en − en−1)c + tn − tn−1

2
‖c1/2en−1‖2

≤ tn(ρn, en)c − tn−1(ρn−1, en−1)c

− (tnρn − tn−1ρn−1, en−1)c + τ

2
‖c1/2en−1‖2.
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Summing over n now gives

tn‖c1/2en‖2 − t1‖c1/2e1‖2 ≤ 2tn(ρn, en)c − 2t1(ρ1, e1)c

−
n∑

j=2

2(t jρ j − t j−1ρ j−1, e j−1)c +
n∑

j=2

τ‖c1/2e j−1‖2,

and thus,

tn‖c1/2en‖2 ≤ C
(

tn‖c1/2ρn‖2 +
n∑

j=2

τ
(
t2j ‖c1/2∂̄tρ j‖2 + ‖c1/2ρ j−1‖2

)

+
n∑

j=2

τ‖c1/2e j−1‖2
)
.

To estimate the last sum we note that, since Tms
k is self-adjoint and positive semi-

definite,

2(Tms
k ∂̄t en, en)c = (Tms

k ∂̄t en, en)c + (Tms
k en, ∂̄t en)c

= ∂̄t (T
ms
k en, en)c + τ(Tms

k ∂̄t en, ∂̄t en)c ≥ ∂̄t (T
ms
k en, en)c.

so by multiplying the error equation (4.1) by 2cen we get

∂̄t (T
ms
k en, en)c + 2‖c1/2en‖2 ≤ 2(Tms

k ∂̄t en, en)c + 2‖c1/2en‖2 = 2(ρn, en)c.

Multiplying by τ and summing over n gives

(Tms
k en, en)c +

n∑
j=1

τ‖c1/2e j‖2 ≤
n∑

j=1

τ‖c1/2ρ j‖2,

where we have used that Tms
k e0 = 0. Since the first term is nonnegative we deduce

that
∑n

j=1 τ‖c1/2e j‖2 ≤ ∑n
j=1 τ‖c1/2ρ j‖2 and (4.2) follows. For n = 1 this also

proves (4.3). Note that we have used the bounds on c in (A2) to obtain the result in
the L2-norm. ��

Next lemma is a discrete version of a result that can be found in the proof of [18,
Theorem 3.3].

Lemma 4.3 Under the assumptions of Lemma 4.2 we have, for n ≥ 2, the bound

‖en‖ ≤ Ct−1
n

(
max
2≤ j≤n

t2j ‖∂̄tρ j‖ + max
1≤ j≤n

(
t j‖ρ j‖ + ‖

j∑
r=1

τρr‖
))

, (4.4)

where C depends on γ1 and γ2, but not on the variations of A or c.
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Proof It follows from Lemma 4.2 that

‖en‖ ≤ C

(
max
2≤ j≤n

t j‖∂̄tρ j‖ + max
1≤ j≤n

‖ρ j‖
)

, n ≥ 2,

or by using Young’s inequality with different constants the proof can be modified to
show that

‖en‖ ≤ ε max
2≤ j≤n

t j‖∂̄tρ j‖ + C(ε) max
1≤ j≤n

‖ρ j‖, n ≥ 2,

for some ε > 0. Now define z j = t j e j . Then

Tms
k ∂̄t zn + zn = tnρn + Tms

k en−1 := ηn, n ≥ 1,

and, since Tms
k z0 = 0 we conclude from Lemma 4.2

‖zn‖ ≤ ε max
2≤ j≤n

t j‖∂̄tη j‖ + C max
1≤ j≤n

‖η j‖.

From the definition of η j it follows that

‖η j‖ ≤ t j‖ρ j‖ + ‖Tms
k e j−1‖, j ≥ 1.

Furthermore, for j ≥ 2

t j‖∂̄tη j‖ ≤ t j‖∂̄t t jρ j‖ + t j‖∂̄t T
ms

k e j−1‖
≤ t2j ‖∂̄tρ j‖ + t j‖ρ j−1‖ + t j‖ρ j−1 − e j−1‖
≤ t2j ‖∂̄tρ j‖ + 2t j‖ρ j − ρ j−1‖ + 2t j‖ρ j‖ + t j‖e j−1‖
≤ 3t2j ‖∂̄tρ j‖ + 2t j‖ρ j‖ + 2t j−1‖e j−1‖
≤ C

(
t2j ‖∂̄tρ j‖ + t j‖ρ j‖

)
+ 2‖z j−1‖,

where we used 1
2 t j ≤ t j−1 ≤ t j for j ≥ 2. To bound ‖Tms

k en‖ we define ẽn =∑n
j=1 τe j and ẽ0 = 0. Multiplying the error equation (4.1) by τ and summing over n

gives

n∑
j=1

τTms
k ∂̄t e j + ẽn = Tms

k ∂̄t ẽn + ẽn = ρ̃n, n ≥ 1,

where ρ̃n = ∑n
j=1 τρ j and we have used that Tms

k e0 = 0. Note that by definition
Tms

k ẽ0 = 0. Thus, by Lemma 4.2, we have

‖ẽn‖ ≤ C
(

max
2≤ j≤n

t j‖∂̄t ρ̃ j‖ + max
1≤ j≤n

‖ρ̃ j‖
)

≤ C
(

max
2≤ j≤n

t j‖ρ j‖ + max
1≤ j≤n

‖
j∑

r=1

τρr‖
)
.
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Hence, since Tms
k ∂̄t ẽn = Tms

k en ,

‖Tms
k en‖ ≤ ‖ẽn‖ + ‖ρ̃n‖ ≤ C

(
max
2≤ j≤n

t j‖ρ j‖ + max
1≤ j≤n

‖
j∑

r=1

τρr‖
)
.

With ε = 1
4 we get

‖zn‖ ≤ 1

4
max
2≤ j≤n

t j‖∂̄tη j‖ + C max
1≤ j≤n

‖η j‖

≤ 1

2
max
1≤ j≤n

‖z j‖ + C
(

max
2≤ j≤n

t2j ‖∂̄tρ j‖ + max
1≤ j≤n

(t j‖ρ j‖ + ‖
j∑

r=1

τρr‖)
)
,

but from (4.3) we deduce ‖z1‖ ≤ t1‖ρ1‖, and hence

‖zn‖ ≤ 1

2
max
2≤ j≤n

‖z j‖ + C
(

max
2≤ j≤n

t2j ‖∂̄tρ j‖ + max
1≤ j≤n

(t j‖ρ j‖ + ‖
j∑

r=1

τρr‖)
)
.

Choosing n∗ such that max2≤ j≤n z j = zn∗ we conclude (4.4). ��
Lemma 4.4 Assume f = 0 and let Ums

k,n be the solution to (3.16) and Un the solution
to (3.3). Then, for 1 ≤ n ≤ N,

‖Ums
k,n − Un‖ ≤ C(H + kd/2μk)2t−1

n ‖U0‖

where C depends on α1, α2, γ1, γ2, �, and T , but not on the variations of A or c.

Proof From Lemma 4.3 we have

‖en‖ ≤ Ct−1
n

(
max
2≤ j≤n

t2j ‖∂̄tρ j‖ + max
1≤ j≤n

(
t j‖ρ j‖ + ‖

j∑
r=1

τρr‖
))

, n ≥ 2,

and fromLemma 4.2 ‖e1‖ ≤ C‖ρ1‖. The rest of the proof is based on estimates for the
projection Rms

k in Lemma 3.5 and the regularity of the homogeneous equation (3.6).
We have

t2j ‖∂̄tρ j‖ ≤ C
(

H + kd/2μk
)2

t2j ‖Ah ∂̄tU j‖

≤ C
(

H + kd/2μk
)2

t2j ‖c1/2∂̄t ∂̄tU j‖ ≤ C
(

H + kd/2μk
)2 ‖U0‖, j ≥ 2,

t j‖ρ j‖ ≤ C
(

H + kd/2μk
)2

t j‖AhU j‖

≤ C
(

H + kd/2μk
)2

t j‖c1/2∂̄tU j‖ ≤ C
(

H + kd/2μk
)2 ‖U0‖, j ≥ 1,
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‖
j∑

r=1

τρr‖ = ‖
j∑

r=1

τ
(
Th − Tms

k

)
∂̄tUr‖ ≤ ‖ (

Th − Tms
k

)
(U j − U0)‖

≤ C
(

H + kd/2μk
)2 ‖U0‖,

where we have used Tms
k = Rms

k Th and ‖U j‖ ≤ C‖U0‖. ��
The next lemma concerns the convergence of the inhomogeneous parabolic problem

(2.1) with initial data U0 = 0.

Lemma 4.5 Assume U0 = 0 and let Ums
k,n be the solution to (3.16) and Un the solution

to (3.3). Then, for 1 ≤ n ≤ N,

‖Ums
k,n − Un‖ ≤ C

(
1 + log

tn
τ

)(
H + kd/2μk

)2 (‖ f ‖L∞(L2) + ‖ ḟ ‖L∞(L2)

)
,

where C depends on α1, α2, γ1, γ2, �, and T , but not on the variations of A or c.

Proof Let Ums
k,n − Un = Ums

k,n − Rms
k Un + Rms

k Un − Un =: θn + ρn . For ρn we use
Lemma 3.5 to achieve the estimate

‖ρn‖ ≤ C(H + kd/2μk)2‖AhUn‖.

Now, for v ∈ Vms
k we have

(
∂̄tθn, v

)
c + a(θn, v) = (−∂̄tρn, v)c.

Using Duhamel’s principle we have

θn = τ

n∑
j=1

Ems
k,n− j+1Pms

c,k (−∂̄tρ j ),

since θ0 = 0. Summation by parts now gives

θn = Ems
k,n Pms

c,k ρ0 − Pms
c,k ρn − τ

n∑
j=1

∂̄t Ems
k,n− j+1Pms

c,k ρ j .

Note that ρ0 = 0. Using Lemma 3.5 and Lemma 3.6 we get

‖θn‖ ≤ C

(
‖ρn‖ + τ

n∑
j=1

t−1
n− j+1‖ρ j‖

)

≤ C
(

H + kd/2μk
)2

max
1≤ j≤n

‖AhU j‖
⎛
⎝1 + τ

n∑
j=1

t−1
n− j+1

⎞
⎠ ,
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where the last sum can be bounded by

τ

n∑
j=1

t−1
n− j+1 ≤ 1 + log

tn
τ

.

It remains to bound ‖AhUn‖. We have AhUn = Ph( fn − c∂̄tUn) and Theorem 3.1
gives

‖AhU j‖ ≤ C(‖ f j‖ + ‖∂̄tU j‖) ≤ C(‖ f ‖L∞(L2) + ‖ ḟ ‖L∞(L2)),

which completes the proof. ��
Proof (of Theorem 4.1) The result follows from Lemmas 4.4 and 4.5 by rewriting
Un = Un,1 + Un,2, where Un,1 is the solution to the homogeneous problem and Un,2
the solution to the inhomogeneous problem with vanishing initial data. ��
Remark 4.6 We note that the choice of k and the size of μ determine the rate of
the convergence. In general, to achieve optimal order convergence rate, k should be
chosen proportional to log(H−1), i.e. k = c log(H−1). With this choice of k we have
‖Ums

k,n − Un‖ ≤ C(1 + log n)H2t−1
n .

5 The semilinear parabolic equation

In this section we discuss how the above techniques can be extended to a semilinear
parabolic problem with multiscale diffusion coefficient. In this section we assume, for
simplicity, that the coefficient c = 1.

5.1 Problem formulation

We are interested in equations of the form

u̇ − ∇ · (A∇u) = f (u), in � × (0, T ],
u = 0, on ∂� × (0, T ],

u(·, 0) = u0, in �,

(5.1)

where f : R → R is twice continuously differentiable and � is a polygonal/poly-
hedral boundary in R

d , for d ≤ 3. For d = 2, 3, f is assumed to fulfill the growth
condition

| f (l)(ξ)| ≤ C(1 + |ξ |δ+1−l), for l = 1, 2, (5.2)

where δ = 2 if d = 3 and δ ∈ [1,∞) if d = 2. Furthermore, we assume that the
diffusion A fulfills assumption (A1) and u0 ∈ V .

Example 5.1 The Allen–Cahn equation u̇ − ∇ · (A∇u) = −(u3 − u) fulfills the
assumption (5.2).
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Define the ball BR := {v ∈ V : ‖v‖H1 ≤ R}. Using Hölder and Sobolev inequalities
the following lemma can be proved, see [12].

Lemma 5.2 If f fulfills assumption (5.2) and u, v ∈ BR, then

‖ f (u)‖ ≤ C, ‖ f ′(u)z‖H−1 ≤ C‖z‖, ‖ f ′(u)z‖ ≤ C‖z‖H1 , ‖ f ′′(u)z‖H−1 ≤ C‖z‖,

and

‖ f (u) − f (v)‖H−1 ≤ C‖u − v‖,

where C is a constant depending on R.

From (5.1) we derive the variational form; find u(t) ∈ V such that

(u̇, v) + (A∇u,∇v) = ( f (u), v), ∀v ∈ V, (5.3)

and u(0) = u0. For this problem local existence of a solution can be derived given
that the initial data u0 ∈ V , see [12].

Theorem 5.3 Assume that (A1) and (5.2) are satisfied. Then, for u0 ∈ BR, there exist
T0 = T0(R) and C1 > 0, such that (5.3) has a unique solution u ∈ C(0, T0; V ) and
‖u‖L∞(0,T0;V ) ≤ C1R.

For the Allen–Cahn equation it is possible to find an a priori global bound of
u. This means that for any time T there exists R such that if u is a solution then
‖u(t)‖L∞(H1) ≤ R for t ∈ [0, T ]. Thus we can apply the local existence theorem
repeatedly to attain global existence, see [12].

5.2 Numerical approximation

The assumptions and definitions of the families of triangulations {Th}h>0 and {TH }H>h

and the corresponding spaces VH and Vh remain the same as in Sect. 3. For the
discretization in time we use a uniform time discretization given by

0 = t0 < t1 < · · · < tN = T0, where tn − tn−1 = τ, (5.4)

and T0 is given from Theorem 5.3. With these discrete spaces we consider the semi-
implicit backward Euler scheme where Un ∈ Vh satisfies

(∂̄tUn, v) + (A∇Un,∇v) = ( f (Un−1), v), ∀v ∈ Vh, (5.5)

for n = 1, . . . , N where U0 ∈ Vh is an approximation of u0. It is proven in [11] that
this scheme satisfies the bound

‖Un − u(tn)‖ ≤ Ct−1/2
n (h2 + τ),
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if we choose, for instance, U0 = Phu0, where Ph denotes the L2-projection onto Vh .
Note that C in this bound depends on the variations of A.

The following theorem gives some regularity estimates of the solution to (5.5).

Theorem 5.4 Assume that (A1) and (5.2) are satisfied. Then, for U0 ∈ BR, there
exist T0 = T0(R) and C1 > 0 such that (5.5) has a unique solution Un ∈ Vh, for
1 ≤ n ≤ N, and max1≤n≤N ‖Un‖H1 ≤ C1R. Moreover, the following bounds hold

‖∂̄tUn‖ ≤ Ct−1/2
n , n ≥ 1, |||∂̄tUn||| ≤ Ct−1

n , n ≥ 1, ‖∂̄t ∂̄tUn‖ ≤ Ct−3/2
n , n ≥ 2,

where C depends on α1, T0, and R, but not on the variations of A.

Proof We only prove the estimate ‖∂̄t ∂̄tUn‖ ≤ Ct−3/2
n here. The other two follow by

similar arguments.
From (5.5) we get

(∂̄t ∂̄tUn, v) + a(∂̄tUn, v) = (∂̄t f (Un−1), v), ∀v ∈ Vh, n ≥ 2, (5.6)

(∂̄
(3)
t Un, v) + a(∂̄t ∂̄tUn, v) = (∂̄t ∂̄t f (Un−1), v), ∀v ∈ Vh, n ≥ 3. (5.7)

Choosing v = ∂̄t ∂̄tUn in (5.7) gives

1

τ
‖∂̄t ∂̄tUn‖2 − 1

τ
(∂̄t ∂̄tUn−1, ∂̄t ∂̄tUn) + |||∂̄t ∂̄tUn|||2 = (∂̄t ∂̄t f (Un−1), ∂̄t ∂̄tUn),

which gives the bound

‖∂̄t ∂̄tUn‖2 − ‖∂̄t ∂̄tUn−1‖2 ≤ Cτ‖∂̄t ∂̄t f (Un−1)‖H−1 . (5.8)

Using Lemma 5.2 we have for ξ j ∈ (min{Un− j , Un−( j−1)},max{Un− j , Un−( j−1)})

‖∂̄t ∂̄t f (Un)‖H−1 = 1

τ 2
‖ f ′(ξ1)(Un − Un−1) − f ′(ξ2)(Un−1 − Un−2)‖H−1

≤ 1

τ 2
‖( f ′(ξ1) − f ′(ξ2))(Un − Un−1)‖H−1

+ 1

τ 2
‖ f ′(ξ2)(Un − 2Un−1 + Un−2)‖H−1

≤ 1

τ 2
‖(ξ1 − ξ2)(Un − Un−1)‖ + C‖∂̄t ∂̄tUn‖,

Note that |ξ1 − ξ2| ≤ |Un−2 − Un−1| + |Un−1 − Un|. By using Sobolev embeddings
we get

1

τ 2
‖(ξ1 − ξ2)(Un − Un−1)‖ ≤ max

n−1≤ j≤n
2‖(∂̄tU j )

2‖ ≤ max
n−1≤ j≤n

2‖∂̄tU j‖2L4

≤ C max
n−1≤ j≤n

‖∂̄tU j‖2H1 ≤ Ct−2
n−1 ≤ Ct−2

n ,

123



210 A. Målqvist, A. Persson

where we recall the bounds 1
2 t j ≤ t j−1 ≤ t j for j ≥ 2. Multiplying by τ t4n in (5.8)

and summing over n gives

t4n ‖∂̄t ∂̄tUn‖2 ≤ C
n∑

j=3

(τ t4j ‖∂̄t ∂̄t f (U j−1)‖2H−1 + (t4j − t4j−1)‖∂̄t ∂̄tU j−1‖2)

+ t42‖∂̄t ∂̄tU2‖2

≤ C
n∑

j=3

τ
(
t4j ‖∂̄t ∂̄tU j−1‖2 + t4j t−4

j−1 + t3j−1‖∂̄t ∂̄tU j−1‖2
)

+ t42‖∂̄t ∂̄tU2‖2

≤ C
n∑

j=3

τ
(
t4j−1‖∂̄t ∂̄tU j−1‖2 + t3j−1‖∂̄t ∂̄tU j−1‖2

)
,

+ t42‖∂̄t ∂̄tU2‖2 + Ctn

for n ≥ 3. Using ‖∂̄tU j‖ ≤ Ct−1/2
j for j ≥ 1 we get

t42‖∂̄t ∂̄tU2‖2 ≤ Cτ 2(‖∂̄tU2‖2 + ‖∂̄tU1‖2) ≤ Cτ 2(t−1
2 + t−1

1 ) ≤ Cτ.

Now, to bound
∑n

j=2 t3j ‖∂̄t ∂̄tU j‖, we choose v = ∂̄t ∂̄tUn in (5.6) to derive

‖∂̄t ∂̄tUn‖2 + 1

τ
|||∂̄tUn|||2 − 1

τ
|||∂̄tUn−1|||2 ≤ ‖∂̄t f (Un−1)‖2. (5.9)

and with ξ j as above, we get

‖∂̄t f (Un−1)‖ = ‖ f ′(ξ2)∂̄tUn−1‖ ≤ C |||∂̄tUn−1||| ≤ Ct−1
n−1,

where we used Lemma 5.2 and |||∂̄tU j ||| ≤ Ct−1
j for j ≥ 1. Multiplying (5.9) with

τ t3n and summing over n gives

n∑
j=2

τ t3j ‖∂̄t ∂̄tU j‖2 + t3n |||∂̄tUn|||2 ≤ C
n∑

j=2

(
τ t3j t−2

j−1 +
(

t3j − t3j−1

)
|||∂̄tU j−1|||2

)

+ t31 |||∂̄tU1|||2

≤ C
n∑

j=2

(
τ t j + τ t2j−1|||∂̄tU j−1|||2

)
+ t31 |||∂̄tU1|||2.

Using |||∂̄tU j ||| ≤ Ct−1
j for j ≥ 1 we get

n∑
j=2

τ t3j ‖∂̄t ∂̄tU j‖2 ≤ C
(

t2n + tn + t1
)

≤ Ctn,
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where C now depends on tn ≤ T . So we have proved

t4n ‖∂̄t ∂̄tUn‖2 ≤ C
n∑

j=3

τ t4j−1‖∂̄t ∂̄tU j−1‖2 + Ctn + τ

≤ C
n−1∑
j=2

τ t4j ‖∂̄t ∂̄tU j‖2 + Ctn+1 ≤ C
n−1∑
j=2

τ t4j ‖∂̄t ∂̄tU j‖2 + Ctn .

Applying the classical discrete Grönwall’s lemma gives

t4n ‖∂̄t ∂̄tUn‖2 ≤ Ctn,

which proves ‖∂̄t ∂̄tUn‖ ≤ Ct−3/2
n for n ≥ 3. For n = 2 we proved

t42‖∂̄t ∂̄tU2‖2 ≤ Cτ ≤ Ct2,

which completes the proof. ��
Weuse the sameGFEMspace as in Sect. 3, that is, V ms = VH −RfVH and the local-

ized version Vms
k = VH − Rf

k VH . Furthermore, for the completely discrete scheme,
we consider the time discretization defined in (5.4) and the linearized backward Euler
method thus reads; find Ums

k,n ∈ Vms such that Ums
k,0 = Pms

k U0 and

(
∂̄tU

ms
k,n, v

) + a
(
Ums

k,n, v
) = (

f
(
Ums

k,n−1

)
, v

)
, (5.10)

for n = 1, . . . , N where Pms
k is the L2-projection onto Vms

k .
To derive an error estimates we represent the solution to (5.10) by using Duhamel’s

principle. Note that Ums
k,n is the solution to the equation

∂̄tU
ms
k,n + Ams

k Ums
k,n = Pms

k f (Ums
k,n−1),

and by Duhamel’s principle we get

Ums
k,n = Ems

k,nUms
k,0 + τ

n∑
j=1

Ems
k,n− j+1Pms

k f (Ums
k, j−1).

Note that we use c = 1 in the definition of the solution operator Ems
k,n in Sect. 3.2.

5.3 Error analysis

For the error analysis we need the following generalized discrete Grönwall lemma,
see, e.g., [12].
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Lemma 5.5 Let A, B ≥ 0, β1, β2 > 0, 0 ≤ t0 < tn ≤ T , and 0 ≤ ϕn ≤ R. If

ϕn ≤ At−1+β1
n + Bτ

n−1∑
j=1

t−1+β2
n− j+1ϕ j ,

then there is a constant C depending on B, β1, β2, and, T , such that,

ϕn ≤ C At−1+β1
n .

Next lemma states a result for Ams
k which is needed in the analysis. A proof of the

bound can be found in [12].

Lemma 5.6 The following bound holds

‖(Ams
k )−1/2Pms

k f ‖ ≤ C‖ f ‖H−1 , f ∈ L2,

where C depends on α1, but not on the variations of A.

Theorem 5.7 For given R ≥ 0 and T0 > 0 let Un be the solution to (5.5) and Ums
k,n

be the solution to (5.10), such that Un, Ums
k,n ∈ BR. Then, for 1 ≤ n ≤ N,

‖Ums
k,n − Un‖ ≤ C

(
H + kd/2μk

)2
t−1/2
n , (5.11)

where C depends on α1, α2, �, R, and T0, but not on the variations of A.

Proof First we define en = Ums
k,n −Un = (Ums

k,n − Rms
k Un)+(Rms

k Un −Un) = θn +ρn .
For ρ j we use Lemma 3.5 to prove the bounds

‖ρ j‖ ≤ C
(

H + kd/2μk
)2

t−1/2
j , j ≥ 1,

and

‖∂̄tρ j‖ ≤ C
(

H + kd/2μk
)2

t−3/2
j , j ≥ 2.

For θn we have

θn = Ems
k,nθ0 + τ

n∑
j=1

Ems
k,n− j+1Pms

k

(
f
(

Ums
k, j−1

)
− f (U j−1) − ∂̄tρ j

)
.

To bound ‖θk,n‖ we first assume n ≥ 2 and use summation by parts for the first
part of the sum. Defining n2 to be the integer part of n/2 we can write

−τ

n2∑
j=1

Ems
k,n− j+1Pms

k ∂̄tρ j = Ems
k,n Pms

k ρ0 − Ems
k,n−n2 Pms

k ρn2

− τ

n2∑
j=1

∂̄t Ems
k,n− j+1Pms

k ρ j ,
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and θn can be rewritten as

θn = Ems
k,n Pms

k e0 − Ems
k,n−n2 Pms

k ρn2 − τ

n2∑
j=1

∂̄t Ems
k,n− j+1Pms

k ρ j

− τ

n∑
j=n2+1

Ems
k,n− j+1Pms

k ∂̄tρ j

+ τ

n∑
j=1

(Ams
k )1/2Ems

k,n− j+1(Ams
k )−1/2Pms

k ( f (Ums
k, j−1) − f (U j−1)),

where we note that Pms
k e0 = 0. To estimate these terms we need the following bounds

for β1, β2 > 0

τ

n∑
j=1

t−1+β1
n− j+1 t−1+β2

j ≤ Cβ1,β2 t−1+β1+β2
n , τ

n2∑
j=1

t−β1
n− j+1t−1+β2

j ≤ Cβ1,β2 t−β1+β2
n .

see [11]. Using Lemma 3.6 we get

‖θn‖ ≤ ‖ρn2‖ + Cτ

n2∑
j=1

t−1
n− j+1‖ρ j‖ + Cτ

n∑
j=n2+1

‖∂̄tρk, j‖

+ Cτ

n∑
j=1

t−1/2
n− j+1‖ f (Ums

k, j−1) − f (U j−1)‖H−1 ,

and together with Lemmas 3.5 and 5.2 this gives

‖θn‖ ≤ C(H + kd/2μk)2
(

t−1/2
n2 + τ

n2∑
j=1

t−1
n− j+1t−1/2

j + τ

n∑
j=n2+1

t−3/2
j

)

+ Cτ

n∑
j=1

t−1/2
n− j+1‖Ums

k, j−1 − U j−1‖

≤ C(H + kd/2μk)2t−1/2
n + Cτ

n∑
j=1

t−1/2
n− j+1‖e j−1‖.

Now consider θ1. We can rewrite

θ1 = Ems
k,1θ0 + τ Ems

k,1Pms
k ( f (Ums

k,0) − f (U0) − ∂̄tρ1)

= Ems
k,1Pms

k e0 − Ems
k,1Pms

k ρ1 + τ Ems
k,1Pms

k ( f (Ums
k,0) − f (U0)),
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and using similar arguments as above

‖θ1‖ ≤ C
(

H + kd/2μk
)2

t−1/2
1 + τ t−1/2

1 ‖e0‖,

Hence, we arrive at the estimate

‖en‖ ≤ Ct−1/2
n

(
H + kd/2μk

)2 + Cτ

n∑
j=1

t−1/2
n− j+1‖e j−1‖, n ≥ 1,

and we can use Lemma 5.5 to conclude (5.11). ��

6 Numerical results

In this section we present two numerical examples to verify the predicted error esti-
mates presented for the linear problem in Sect. 4 and the semilinear problem in Sect. 5.
In both cases the domain is set to the unit square � = [0, 1] × [0, 1] and T = 1. The
domain � is discretized with a uniform triangulation and the interval [0, T ] is divided
into subintervals of equal length.

The method is tested on two different problems. One with constant coefficients

c1(x) = 1, A1(x) =
(
1 0
0 1

)
,

and one with multiscale coefficients

c2(x) = D(x), A2(x) =
(

B(x) 0
0 B(x)

)
,

where B and D are piecewise constant with respect to a uniform Cartesian grid of
size 2−6, see Fig. 1 for a plot of a typical coefficient. This choice of B and D imposes
significantmultiscale behavior on the coefficients.We expect quadratic convergence in
the space of classical finite element with piecewise linear and continuous polynomials
(P1-FEM) when A = A1 and c = c1, but poor convergence when A = A2 and
c = c2. For the GFEM we expect quadratic convergence in both cases. Note that in
the semilinear case we have c = c1 in both examples.

We compute the localized GFEM in (3.16) and (5.10), denoted Ums
k,n , for 5 different

values of the coarse grid width, H = √
2 · 2−2,

√
2 · 2−3,

√
2 · 2−4,

√
2 · 2−5, and√

2 · 2−6. The time step is chosen to τ = 0.01 for all problems. The reference mesh
Th is of size h = √

2 · 2−7 and defines the space Vh on which the localized corrector
problems φk,x are solved. To measure the error, the solution Un in (3.3) is computed
using P1-FEM on the finest scale h = √

2 · 2−7 with τ = 0.01.
Note that this experiment measures the error ‖Un −Ums

k,n‖. The total error ‖u(tn)−
Ums

k,n‖ is also affected by the difference ‖u(tn) − Un‖, which is dominating for the
smaller values of H . We now present the results in two separate sections.
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0.6

0.7

0.8

0.9

Fig. 1 A plot of a coefficient that is piecewise constant on a Cartesian grid of size 2−6

6.1 Linear parabolic problem

For the linear parabolic problem (2.1) the right hand side is set to f (x, t) = t , which
fulfills the assumptions for the required regularity. For simplicity the initial data is set
to u0 = 1. To construct B and D we choose, for each cell in the Cartesian grid, a value
from the interval [10−1, 103]. Note that we choose different values for B and D. This
procedure gives both B and D rapidly varying features, see Fig. 1.

For each value of H the localized GFEM, Ums
k,n , and the corresponding P1-FEM,

denotedUH,n , are computed. The patch sizes k are chosen such that k ∼ log(H−1), that
is k = 1, 2, 2, 3, and 4, for the five simulations. When computing UH,n the stiffness
matrix is assembled on the fine scale h and then interpolated to the coarser scale. This
way we avoid quadrature errors. The convergence results for the two examples are
presented in Fig. 2, where the error at the final time tN is plotted against the degrees
of freedom |N |. Comparing the plots we can see the predicted quadratic convergence
for the localized GFEM. Note that even though the multiscale features of c are not
included in the construction of the multiscale space we get convergence without pre-
asymptotic effects, as suggested by the theory. However, as expected, the P1-FEM
shows poor convergence on the coarse grids when the coefficients have multiscale
features. We clearly see the pre-asymptotic effects when H does not resolve the fine
structure of B.

6.2 Semilinear parabolic problem

For the semilinear problem we study the Allen–Cahn equation, which has right hand
side f (u) = −(u3−u) that fulfills the necessary assumptions.Wedefine the initial data
to be u0(x, y) = x(1− x)y(1− y), which is zero on ∂�. The matrix B constructed as

123



216 A. Målqvist, A. Persson

10 2 103 10 4
10−5

10−4

10−3

10−2

10−1

100

(a)

102 10 3 10 4
10 -5

10 -4

10 -3

10 -2

10 -1

100

(b)

Fig. 2 Relative L2 errors ‖Ums
k,N − Uh,N ‖/‖Uh,N ‖ (blue circle) and ‖UH,N − Uh,N ‖/‖Uh,N ‖ (red

asterisk) for the linear parabolic problem plotted against the number of degrees of freedom |N | ≈ H−2.
The dashed line is H2. a Constant coefficients c1 and A1. b Multiscale coefficients c2 and A2 (color figure
online)

102 103 104
10−5

10−4

10−3

10−2

10−1

100

(a)

102 103 104
10−5

10−4

10−3

10−2

10−1

100
(b)

Fig. 3 Relative L2 errors ‖Ums
k,N − Uh,N ‖/‖Uh,N ‖ (blue circle) and ‖UH,N − Uh,N ‖/‖Uh,N ‖ (red

asterisk) for the semilinear parabolic problemplotted against the number of degrees of freedom |N | ≈ H−2.
The dashed line is H2. a Constant coefficient A1. b Multiscale coefficient A2 (color figure online)

in the linear case but with values varying between 10−3 and 1. Note that, for simplicity,
we have c = 1 in both cases.

As in the linear case, we now compute the localized GFEM approximations Ums
k,n

and the corresponding P1-FEM, UH,n . The patch sizes are chosen to k = 1, 2, 2, 3,
and 4, for the five simulations. The convergence results for the two examples are
presented in Fig. 3. We can draw the same conclusions as in the linear case. The
localized GFEM shows predicted quadratic convergence in both cases, but P1-FEM
shows poor convergence on the coarse grids when the coefficients have multiscale
features.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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