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Abstract We use the local orthogonal decomposition technique introduced in
Malqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a gener-
alized finite element method for linear and semilinear parabolic equations with spatial
multiscale coefficients. We consider nonsmooth initial data and a backward Euler
scheme for the temporal discretization. Optimal order convergence rate, depending
only on the contrast, but not on the variations of the coefficients, is proven in the
Lo (L2)-norm. We present numerical examples, which confirm our theoretical find-
ings.
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1 Introduction

In this paper we study numerical solutions to parabolic equations with highly varying
coefficients. These equations appear, for instance, when modeling physical behavior
in a composite material or a porous medium. Such problems are often referred to as
multiscale problems.
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Convergence of optimal order of classical finite element methods (FEMs) based
on continuous piecewise polynomials relies on at least spatial H>-regularity. More
precisely, for piecewise linear polynomials, the error bound depends on ||| 52, which
may be proportional to € ! if the diffusion coefficient varies on a scale of €. Thus,
the mesh width £ typically must fulfill 2 < € to achieve convergence. However, this
is not computationally feasible in many applications. To overcome this issue, several
numerical methods have been proposed, see, for example, [2,8,13,15,16,19], and
references therein. In particular, [15,16] consider linear parabolic equations.

In [13] a generalized finite element method (GFEM) was introduced and conver-
gence of optimal order was proven for elliptic multiscale equations. The method builds
on ideas from the variational multiscale method [8, 10], which is based on a decompo-
sition of the solution space into a (coarse) finite dimensional space and a residual space
for the fine scales. The method in [13], often referred to as local orthogonal decompo-
sition, constructs a generalized finite element space where the basis functions contain
information from the diffusion coefficient and have support on small vertex patches.
With this approach, convergence of optimal order can be proved for an arbitrary posi-
tive and bounded diffusion coefficient. Restrictive assumptions such as periodicity of
the coefficients or scale separation are not needed. Some recent works [1,6,7,14] show
how this method can be applied to boundary value problems, eigenvalue problems,
semilinear elliptic equations, and linear wave equations.

In this paper we apply the technique introduced in [13] to parabolic equations with
multiscale coefficients. We use the diffusion coefficient to construct a generalized finite
element space and for the discretization of the temporal domain we use the backward
Euler scheme. Using tools from classical finite element theory for parabolic equations,
see, e.g, [11,12,18], and references therein, we prove convergence of optimal order
in the Ly(L2)-norm for linear and semilinear equations under minimal regularity
assumptions and nonsmooth initial data. The analysis is completed with numerical
examples that support our theoretical findings.

In Sect. 2 we describe the problem formulation and the assumptions needed to
achieve sufficient regularity of the solution. Section 3 describes the numerical approx-
imation and presents the resulting GFEM. In Sect. 4 we prove error bounds and in
Sect. 5 we extend the results to semilinear parabolic equations. Finally, in Sect. 6 we
present some numerical examples.

2 Problem formulation
We consider the parabolic problem

cu—V-(AVu)=f, inQ x (0,T],
u=>0, on a2 x (0, T, 2.1)
u(-,0) = ugp, in 2,

where T > 0 and © is a bounded polygonal/polyhedral domain in R?, d < 3. We
assume ¢ = c(x), A = A(x), and f = f(x,t). Here we allow both ¢ and A to be
multiscale (in space), but independent of the time variable.
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We let H!(2) denote the classical Sobolev space with norm

2 2 2
”v”Hl(Q) = ||v||L2(Q) + ||Vv||L2(Q)

andV = HO1 (R2) the space of functions in H'' (£2) that vanishes on dQ2. We use H Q)
to denote the dual space to V. Furthermore, we use the notation L, (0, T'; X) for the
Bochner space with finite norm

T AP
olejor0 = [ i)™ 1< p <o,
VIl Lo 0,75 %) = €sssupp<, <7 llvllx,

where X is a Banach space equipped with norm | - || x. Here v € H'(0, T; X) means
v,0 € L»(0,T; X). The dependence on the interval [0, 7] and the domain 2 is
frequently suppressed and we write, for instance, L (Ly) for L, (0, T'; L>(£2)). Finally,
we abbreviate the Ly-norm || - || := || - ||, and define [||-]|| := [|A'/2V - .

To ensure existence, uniqueness, and sufficient regularity, we make the following
assumptions on the data.

We assume

(Al) A € Loo(R2, R4*?), symmetric, and

Ax)v-v

0 < aj :=essinfyco inf L
veRI\[0} V-V

Ax)v-v

00 > ap = €SSSUP,. .o SUp ——,
veRd\{o} V-V

(A2) ¢ € Loo(R2,R) and

0 < y1 :=essinfyeq c(x) < esssup,cq c(x) =: ¥ < 00,

(A3) ug € Lo,
(A4) £, f € Loo(L2).

We let (u, v) = fQ uv denote the classical L, inner product and define
(e ==(cr).
Due to (A2) this is an inner product and the induced norm c1/?
the classical Ly-norm.

We emphasize that throughout this work C denotes a constant that may depend on
the bounds «; and «» (often through the contrast > /«1), the bounds y; and y», the
shape regularity parameter o (3.1) of the mesh, the final time 7', and the size of the
domain €2, but not on the mesh size parameters nor the derivatives of the coefficients
in A or c¢. The fact that the constant does not depend on the derivatives of A nor ¢
is crucial, since these (if they exist) are large for the problems of interest. This is
sometimes also noted as C being independent of the variations of A and c.

We now formulate the variational form of problem (2.1). Find u(-, #) € V such that
u(-,0) = up and

- || is equivalent to
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@, v)e +a,v)=(f,v), YveV,te(,T], 2.2)

and a(u, v) = (AVu, Vo).
The following theorem states existence and uniqueness of a solution to (2.2). The
proof is based on Galerkin approximations, see, e.g., [5,9].

Theorem 2.1 Assume that (Al)—(A4) are satisfied. Then there exists a unique solution
uto (2.2) such thatu € L»(0, T; H)) and it € Ly(0, T; H™').

3 Numerical approximation

In this section we describe the local orthogonal decomposition method presented in
[13] to define a generalized finite element method for the multiscale problem (2.2).

First we introduce some notation. Let {7 };~0 and {7y}~ be families of shape
regular triangulations of 2 where hg := diam(K), for K € 7}, and Hg := diam(K),
for K € Ty. Wealsodefine H := maxke7;, Hx and h := maxg 7, h k. Furthermore,
we let o > 0 denote the shape regularity parameter of the mesh 7y;

ith diamBx yik T, G.1)
‘= max ok, Wi = ———, for , )
@ KeTy oK QK diam K "

where By is the largest ball contained in K.
Now define the classical piecewise affine finite element spaces

Vg ={v e C(Q):v=00nd%, v|k is a polynomial of degree < 1, VK € Ty},
Vi ={veC(Q):v=00ndRQ,v|g is a polynomial of degree < 1, VK € Ty,}.
We let \V denote the interior nodes of V and ¢, the corresponding hat function for
x € N, such that span({gy},en’) = Vg. We further assume that 7}, is a refinement
of Ty, so that Vi C Vj,. Finally, we also need the finite element mesh 7 of €2 to be
such that the L,-projection Py onto the finite element space Vy is stable in H I horm,

see, e.g., [3], and the references therein.
To discretize in time we introduce the uniform discretization

O=ty<ti<---<ty=T, wheret, —t,_1=r1. (3.2)

Let U, be thEe approximation of u(¢) at time ¢ = ¢, and denote f, := f(#,). Using

the notation 0,U,, = (U, — U,—1)/t we now formulate the classical backward Euler
FEM,; find U,, € V}, such that

(0 Un, v)e +a(Up,v) = (fr.v), Yv eV, (3.3)

forn = 1,..., N and Uy € V}, is some approximation of ug. We also define the
operator Ay, : V, — Vj, by

(Apv,w) =a(v,w), Yv,w € V. (3.4)
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Multiscale techniques for parabolic equations 195

The convergence of the classical finite element approximation (3.3) depends on
|| D?u||, where D? denotes the second order derivatives. If the diffusion coefficient A
oscillates on a scale of € we may have || D?u|| ~ €1, see [17] for a further discussion.
The total error is thus typically bounded by ||u(t,) — U,|| < C(r + (h/€)?), which is
small only if & < €.

The purpose of the method described in this paper is to find an approximate solu-
tion, let us denote it by U for now, in some space V C Vj, such that dim V =dim Vg,
for H > h, and the error ||U, — U, | <CH?. Here C is independent of the variations in
A and ¢ and U, is less expensive to compute than U,. The total error is then the sum
of two terms

lu(tn) — Unll < llutn) = Unll + Un — Unll,

where the first term is the error due to the classical FEM approximation with backward
Euler discretization in time. This is small if 4 (and 7) is chosen sufficiently small, that
is, if /1 resolves the variations of A. Hence, we think of 2 > 0 as fixed and appropriately
chosen. Our aim is now to analyze the error ||U, — l}n Il

We emphasize that V = Vp is not sufficient. The total error would in this case
typically be |Ju(t,) — 0n|| ~ (Tt + (H/e)z), which is small only if H < €.

The next theorem states some regularity results for (3.3).

Theorem 3.1 Assume that (Al)—(A4) are satisfied. Then, for | < n < N, there exists
a unique solution U, to (3.3) such that U, € V). Furthermore, if Uy = 0, then we
have the bound

19:Unll < € (I1f gLy + 1l siza)) (3.5

and, if f =0, then
18:Unll < Ct,y " Uoll, n =1, 118,8,Unll < Ct, 2 [Upll, n =2,  (3.6)

where C depends on a1, y1, y» and T, but not on the variations of A or c.
Proof From (3.3) it follows for n > 2 that
(5,5[Un, v)c +a (5,Un, v) = (5,fn, v) , Yv eV,

and choosing v = 9;U,, we derive
n

_ _ 1 _
Y28, U, || < IIc/?8, Uy | + N grnatf/u.

From (3.3) we have, since Uy = 0, ||c!/28,U;| < y1_1/2||f1||. Finally, using the
inequality

n

n
3 fill < ‘@ <cllf :
> tlacfil _;tj%agxiljrllf(ﬁll = Clf e

j=2

and the bounds on ¢ in (A2) we deduce (3.5).
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196 A. Malgvist, A. Persson

To derive the bounds in (3.6), we define the solution operator E, such that E,v
is the solution to (3.3) with f = 0 and initial data v € L. Let {¢;} and {A;} be
eigenfunctions and corresponding eigenvalues such that

a(gi,v) = Ai(@i, v)e, YveV.

It follows that the eigenvalues {A;} are real and positive and {¢;} are orthogonal with
respect to the inner products (-, -). and a(-, -). Furthermore, there is a finite subset
of eigenfunctions that spans Vp, i.e., span{g; }f‘i | = Vi, for some M < oo. With this
notation, the solution E,v can be written as
U 1
E,v = —— (v, ¢i) ;.
n ZZ_; a+ 'L’)u,')”( i) i

The bounds now follows from [18, Lemma 7.3]. O

3.1 Orthogonal decomposition

In this section we describe the orthogonal decomposition which defines the GFEM
space denoted V in the discussion above. We refer to [13,14] for details. The GFEM
space is defined using only the diffusion coefficient A, that is, the variations in ¢ are
not accounted for in the construction of the space. In Sect. 4 we prove that this space
indeed is sufficient to obtain convergence of the method.

For the construction of the GFEM space we use the (weighted) Clément interpola-
tion operator introduced in [4], Ty : V), — Vg defined by

Jnv =3 Gav)®)ey, where (Jpv)(x) = Jover 3.7)
Jo®
xeN Qrx

For this interpolation operator the following result is proved [4]
HEI lv="Trvli,& + IV =T,k < ClIVullL,@g), Vv eV,  (3.8)

where &g := U{K € Ty : K N K # ¢} and C depends on the shape regularity o.
Let VI = {v € V}, : Jzv = 0} be the kernel of the Clément interpolation operator
(3.7). This space contains all fine scale features not resolved by Vy. The space Vj
can then be decomposed into V), = Vg & Vf, where v € V), can be written as a sum
v =vy + v, with vy € Vg, o € VI, and (vy, vf) =0.
Now define the orthogonal projection Rf: V;, — VI by

a(Rfv, w)=a(v,w) Yw € Vf, vevV,.

Using this projection we define the GFEM space, also referred to as the multiscale
space,
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Multiscale techniques for parabolic equations 197

V™= Vy — Ry,

which leads to another orthogonal decomposition Vj, = V™ @ V. Hence any function
v € Vj, has a unique decomposition v = v™ + vf, with v™ € V™ and of € VT, with
a(@™, vf) = 0. ~

To define a basis for V™ we want to find the projection R' of the nodal basis
function ¢, € Vp. Let this projection be denoted ¢y, so that ¢, € v satisfies the
(global) corrector problem

(g, w) = algx, w), Ywe V' (3.9)
A basis for the multiscale space V™ is thus given by
{pr — ¢ x e N}
We also introduce the projection R™: V;, — V™ defined by

a(R™v, w) =alv,w), Ywe V™, veV,. (3.10)

Note that R™ = J — Rf. For R™ we have the following lemma, based on the results
in [13].

Lemma 3.2 For the projection R™ in (3.10) and v € Vj, we have the error bound
lv = R™v|| < CH?| Apvll, v € Vi, (3.11)

where C depends on o1 and o, but not on the variations of A or c.

Proof Define the following elliptic auxiliary problem: find z € V}, such that
a(z,w) = (v — R™v, w), Yw eV,
In [13, Lemma 3.1] it was proven that the solution to an elliptic equation of the form
a(u,w) = (g, w), Yw e Vp,
satisfies the error estimate
llu — R™ulll < CH|gll,

where C depends on ¢ and «q, but not on the variations of A. Hence, we have the
following bound for z,

llz — R™z[ll < CH|lv — R™v].
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198 A. Malgvist, A. Persson

Furthermore, we note that v — R™v € Vj, and

lv— R™v|? = (v — R™v, v — R™v) = a(z, v — R™v)

=a(z — R™z,v— R™v) < [llz — R™z|l| llv — R™]]I.

Now, since a(v, w) = (Apv, w), we get |[[lv — R™v]|| < CHJ|Apv| and (3.11)
follows. =

In particular, if U, is the solution to (3.3), then (3.11) gives

|Uy — R™U, |l < CH?||[Py(fn — cd:Up)ll, n=>1,
18, Uy — R™3,U, |l < CH?||Py(3y fr — ¢ 33, Up)Il, n>2,

where P}, is the Ly-projection onto Vj,.

The result in Lemma 3.2 should be compared with the error of the classical Ritz
projection Ry : V — Vj, defined by a(Rpv, w) = a(v, w), Yw € V. Using elliptic
regularity estimates, one achieves

IRpv — vll < Ch?||D?v|| < Ch?|| Av],

which is similar to the result in Lemma 3.2. However, in this case, C depends on the
variations of A and the regularity of 2. This is avoided by using the R™*-projection,
since the constant in Lemma 3.2 does not depend on the variations of A or c.

Now define the corresponding GFEM to problem (3.3); find U;™ € V™S such that

UM, v) +a(UM, v) = (fy,v), Yve V™, (3.12a)
(UmS’ v)C = (U01 U)Ca VU € Vms’ (312b)

forn =1,..., N. Furthermore, we define the operator A™ : V™ — V™S by
(A™v, w) =a(v,w), Yv,we V™, (3.13)

Remark 3.3 In this remark we discuss the possibilities of including time dependency
in the coefficients ¢ and A.

(1) Itis possible, with a slight modification of the error analysis, to let c = c(x, t) be
time dependent with rapid variations in space. However, for simplicity, we shall
only study the time independent case here.

(i) We emphasize that the construction of the method in (3.12) depends on the fact
that the diffusion coefficient does not depend on time. If we have A = A(x, 1),
the multiscale space could be updated in each time step. For each 7,, we would
then define a new Ritz projection Rf with A = A(x, t,) leading to a space V™.
If the variations in time are slow or periodic, it is also possible reuse the space
for several time steps. However, if the variations are fast and non-periodic, then
updating the basis may become too expensive which calls for a different approach.
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3.2 Localization

Since the corrector problems (3.9) are posed in the fine scale space V' they are com-
putationally expensive to solve. Moreover, the correctors ¢, generally have global
support, which destroys the sparsity of the resulting linear system (3.12). However, as
shown in [13], ¢, decays exponentially fast away from x. This observation motivates
a localization of the corrector problems to smaller patches of coarse elements. Here
we use a variant presented in [6], which reduces the required size of the patches.

We first define the notion of patches and their sizes. For all K € 7y we define
wk (K) to be the patch of size k, where

wo(K) :=int K,
wp(K) ==1int (U{K € Ty : K N1 (K) #9)), k=1,2,...

Moreover, we define V(o (K)) := {w € VI :v(z) = 00on Q\ wr(K)).
Now define the operator R% Vi, — Viby

/AVR}u-Vw:/ AVv-Vw, YveV, we Vi,
Q K

and note that Rf := ) KeTy R%. We now localize the operator R% by defining
R .0 Viy > Vi(wi(K)) through

/ AVR} v Vw =/ AV -Vw, YveV, we Viw(K)),
wp(K) K

and we deﬁnf.: R,E = Z KeTy R%’ e Hence we can, for each nonnegative integer k,
define a localized multiscale space

VS = Vy — Rivy.

Here the basis is given by {¢x — ¢ x : x € N}, where ¢y, = R,E(px is the localized
version of ¢,. The procedure of decomposing V}, into the orthogonal spaces V™ and
VT together with the localization of V™ to Vs is referred to as local orthogonal
decomposition.

The following lemma follows from Lemma 3.6 in [6].

Lemma 3.4 There exists a constant 0 < u < 1 that depends on the contrast o /o]
such that

f f d/2 .,k
IR v — Rywlll < CK2M|lvlll, Vv € Vi,
where C depends on oy, aa, and g, but not on the variations of A or c.
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200 A. Malgvist, A. Persson

Now let R;™: V), — V™ be the orthogonal projection defined by
a( v, w) =a(v,w), Ywe V™. (3.14)

The next lemma is a consequence of Theorem 3.7 in [6] and estimates the error due
to the localization procedure.

Lemma 3.5 For the projection R} in (3.14) we have the bound
dj2 , k 2
v — RMy| SC(H+k / u) IAll, Yv e Vi (3.15)

Here C depends on a1, oy, and o, but not on the variations of A or c.
Proof The proof is similar to the proof of Lemma 3.2. Let z € V), be the solution to

the elliptic dual problem

a(z,w) = (v — R™ v, w), Yw e Vp,

which gives
lv — R,r{nsv||2 = (v — R™v, v — R,r{nsv) =a (z - RMz,v— R,I;’Sv)
< llz = R™zllllllv — R vlll.

It follows from Theorem 3.7 in [6] that there exists a constant C depending on a», o1,
and g, such that |||z — R™z||| < C(H +k9/?1%)[lv — R™v]|, with x as in Lemma 3.4.
Since (Ayv, w) = a(v, w) we get [[lv — R™v||| < C(H + k%2 k) || Ayvl| and (3.15)
follows. O

We are now ready to formulate the localized version of (3.12) by replacing V™ by
V", The localized GFEM formulation reads; find U ,{“Z € V™ such that

(U, ), +a (Ul v) = (fasv), Yve V™, (3.16a)
(U v),, = Wo, v)e, Yv € VI, (3.16b)
forn = 1,..., N. We also define the operator A;**: V™ — V™ by a localized

version of (3.13)
(AP, w) = a(v,w), Yv,w e V™. (3.17)

We also define the solution operator E,‘(“fl, such that the solution to (3.16), with

f =0, can be expressed as U;"s = E;™5 U;". For this operator we have estimates

similar to (3.6). Since the initial data in (3.16) is the projection onto V,™ with respect
to the inner product (-, -)., we define P} : L, — V™ by

( RV, w)c =, w)., Ywe V™

to state the next lemma.
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Lemma 3.6 Forl =0, 1, and v € Ly, we have

_ 172
A EN Pl < Ctt ], =1, |ES, PRI < Cty

lvll, n=1,

where C depends on the constant o1, y1, y2, but not on the variations of A or c.

Proof Asinthe proof of Theorem 3.1 there exist a finite number of positive ei genvalues
{Ai }f‘i | and corresponding orthogonal eigenvectors {¢; }M | such that span {¢;} =
and

a(ei,v) = Ai(gi, v)e, YV EV.

It follows that E;"} v can be written as

M
1
Ek nV = 21: m(vv ©i)ePis

and the bounds now follow from [18, Lemma 7.3]. O

4 Error analysis

In this section we derive error estimates for the local orthogonal decomposition method
introduced in Sect. 3. The bounds of the time derivatives of a parabolic problem with
nonsmooth initial data, (c.f. Theorem 3.1), depends on negative powers of ¢#,, which
leads to error bounds containing negative powers of f,. These are non-uniform in
time, but of optimal order for a fix time #, > 0. The same phenomenon appears in
classical finite element analysis for equations with nonsmooth initial data, see [18]
and references therein. The error analysis in this section is carried out by only taking
the L,-norm of Uy, which allows ug € L.

Theorem 4.1 Let U, be the solution to (3.3) and U,inli the solution to (3.16). Then,
forl <mn <N,

1% = Ul = €1+ og ) (H + K212 (17 U 4+ 1 o

+ 1 Flle(za))s

where C depends on a1, a2, y1, ¥2, 0, and T, but not on the variations of A or c.

The proof of Theorem 4.1 is divided into several lemmas. To study the error in the
homogeneous case, f = 0, we use techniques similar to the classical finite element
analysis of problems with nonsmooth initial data, see [18] and the references therein.

Define 7y, : Ly — Vj and T;™ : Ly — V™ by

a(Tpv, w) = (v, w)e, Yw € Vj, v € Ly,
(Tk v, w) = (v, w)e, Ywe V™, ve L.
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202 A. Malgvist, A. Persson

With this notation the solution to the parabolic problem (3.3), with f = 0, can be
expressed as T,0:U,, + U, = 0, since

a(Tyd, Uy, w) = 3, Uy, w)e = —a(Uy, w), Yw € Vj.

Similarly, the solution to (3.16), with f = 0, can be expressed as Tkmsét U ,i“; +U ,ﬁnfz =
0. Note that 7, and 7, are self-adjoint and positive semi-definite with respect to
(-, )con Ly, and T;™ = R™T),.

Now, let ¢,, = U,?"; — U,, where ¢, solves the error equation

T 0ien + en = —Up = T, Uy = (Tiy = T™)3, Uy = (R — DUy, =: py,
“4.1)

forn =1,..., N with T;™ey = 0, since
a(TkmseO’ w) = (Ulins - U05 w)C =0.
The following lemma is a discrete version of [18, Lemma 3.3].

Lemma 4.2 Suppose ey, satisfies the error equation (4.1). Then

n n
leal? = C(Ioal® + 13 (D wllosI2 + Y widldin 1)), =2 (42)

j=1 j=2
ledll = Cliprlls (4.3)

where C depends on y1 and y», but not on the variations of A or c.

Proof Multiply the error equation (4.1) by ¢ 9;¢, and integrate over £ to get
(Tkmsétenv 5ten)c =+ (en, 5ten)c = (on, 5ten)ca

where the first term on the left hand side is nonnegative, since 7, is positive semi-
definite on L,. Multiplying by tt, we have

1/2

2
tallc’“enll” — th(en, en—1)c < tu(on, €n — €n—1)ec,

which gives

Inyap 2 =112 2 In—Ith—1, 12 2
Zle'Penll* = = Nc 2 en—111* < ta(on. n — en—Dc + ——— I ?en_1]|
2 2 2
< tq(pn,en)c — th—1(Pn—1, €n—1)c¢
T1/2 2
— (thpn — th—1Pn—1, en—1)c + EHC / en—1l°.
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Summing over n now gives

12 2 12 2
tulle / eqnll” —tillc / e1]|” < 2t,(pn, en)e — 2t1(p1, €1)c
n n
1/2 2
- Zz(tjpj _tjflpjfl,ejfl)c‘FZf”C e,
j=2 j=2
and thus,

n
tallc'?eq|* < c(rnnc‘”pnn2 + D TG 2o, + e pj-11P)
Jj=2

n
+ Zrllcl/zej_l ||2>

j=2

To estimate the last sum we note that, since 7, is self-adjoint and positive semi-
definite,

2(Tkmsétenv en)e = (Tkmsétem en)e + (Tkmsenv 5ten)c

= ét(TkmSen’ en)e + T(Tkmséten» 5ten)c = ét(TkmSeny en)c.

so by multiplying the error equation (4.1) by 2ce,, we get
O (T{™en. en)e + 2l Penl® < 2T Bren, en)e +2llc'enll = 2(pn. en)e-

Multiplying by t and summing over n gives

n n
1/2 2 1/2 2
(T™en, en)e + )Tl ZejII < Dl 25117,
j=1 j=1

where we have used that 7;"ep = 0. Since the first term is nonnegative we deduce
that Y°5_, tllc!/Ze; 1> < Y5, tllc!/?p;I|* and (4.2) follows. For n = 1 this also
proves (4.3). Note that we have used the bounds on ¢ in (A2) to obtain the result in
the L,-norm. O

Next lemma is a discrete version of a result that can be found in the proof of [18,
Theorem 3.3].

Lemma 4.3 Under the assumptions of Lemma 4.2 we have, for n > 2, the bound

j
=i A+ o (415 0)

leall = Ct, nggnt,llatpjllﬂrgf; tJIIpJII+IIX;rprII . 44
r=

where C depends on y1 and y», but not on the variations of A or c.
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Proof 1Tt follows from Lemma 4.2 that

lenll = C ( max 7;]|9;p;l + max Ilpj||>, n=2,
2<j=n 1<j=n

or by using Young’s inequality with different constants the proof can be modified to
show that

llenll <€ max #;]|0;p;|l + C(e) max |[|pjll, n =2,
2<j=n 1<j<n

for some € > 0. Now define z; = ¢;e;. Then
Tkmsétzn +zn =thon + Tkmsen—l =M, h2=1,
and, since T;*zg = 0 we conclude from Lemma 4.2

lzoll <€ max t;||9;n;ll +C max [n;].
2<j<n I<j=n

From the definition of 7; it follows that
Inill < tillojll + 1T ej—1ll, j = 1.
Furthermore, for j > 2
tildmill < 1110t pj 1l + 1110, T ej—1 |

< 710051l + tillpj 11l + tillpj—1 — €1

< 7 13pjl 4+ 2tilpj — pj—1ll + 2t 1l o511 + tjlleji |

<367 10ipj 1l + 2t 01l + 2t -1 lleji |

= (213051 + 11ll51) + 201z,
where we used %tj < tj_1 < tj for j > 2. To bound [|7,™e,|| we define ¢, =

27:1 te; and 9 = 0. Multiplying the error equation (4.1) by T and summing over n
gives

n
ZTTkmsétej e =T™08n + & =pn, n>1,
j=1

where , = »i_; p; and we have used that 7™y = 0. Note that by definition

T,™ep = 0. Thus, by Lemma 4.2, we have

e <C<mxt- 35|l + max ~-)
llenll < o 0ol % ol

J
< C( max t|p; max T )
< ( jmax 15llp; 1+ max. 12wl
r=
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Hence, since T;™0;¢, = T;™ey,

J
T™e, |l < |le.ll + o <C<maxt- || + max T )
1T enll < llenll + llonll < ,max illojll max, ”21: orll
r=

With e = }‘ we get

IA

1 _
z — max t¢;||o:n;|| + C max ;
lenll < 3 max o130, +C max ;|
J

1
5 max llzjl+C (L max 713,011+ max (11 +1 Y- vor).

IA

r=I1

but from (4.3) we deduce ||z1|| < t1]|p1l, and hence

1 J
Jenll = 5 max Nzl +C(max sl + max @lojll+1 Y- worl) ).

r=1
Choosing n* such that maxo< < z2; = z,+ we conclude (4.4). O

Lemma 4.4 Assume f = 0 and let U ,?‘:Z be the solution to (3.16) and U, the solution
to (3.3). Then, for 1 <n < N,

IUES — Unll < C(H + k120, 11U

where C depends on a1, a2, v1, V2, 0, and T, but not on the variations of A or c.

Proof From Lemma 4.3 we have

J
leall = o ([max 71051+ max (1050 +11 - worl)). n =2

r=I1

and from Lemma4.2 ||e1|| < C||p1 |- The rest of the proof is based on estimates for the
projection R} in Lemma 3.5 and the regularity of the homogeneous equation (3.6).
We have

2

17 19ipjll < € (H + k2" ) 211450, U, |

2 _ 2
= C(H+K2u5) 21 28,8,051 < € (H +k20) 0ol j =2,

2

tillpjll < C (H + k72 uk) 1114, U5)

2

— 2
< C(H+kPuk fj||01/2atUj||SC(H-i-kd/sz) 1Uoll, j =1,
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I errn = Z (Ti = T™) 3. U1l < 11 (Th — TE™) (U = Up)|

=c (H + kd/zuk) 1Uoll

where we have used 7™ = R™T}, and | U, || < C||Uo|. O

The next lemma concerns the convergence of the inhomogeneous parabolic problem
(2.1) with initial data Uy = 0.

Lemma 4.5 Assume Uy = 0 and let U,?“fl be the solution to (3.16) and U, the solution
to (3.3). Then, for 1 <n < N,

t 2 .
U = Unll = C (1 +log ;”) (H +K208) (1 ) + 1 i)

where C depends on a1, a2, Y1, V2, 0, and T, but not on the variations of A or c.

Proof Let U,?“; - U, = U,inz - R™®U, + R™®U, — U, =: 6, + py. For p, we use
Lemma 3.5 to achieve the estimate

loall < CCH + k21" | ApUs .
Now, for v € V;™ we have

(5t9n’ U)C +an, v) = (—5”0;1, V)c-

Using Duhamel’s principle we have
n
On =1 Eln_ i1 PR (=0ip)),
since 6y = 0. Summation by parts now gives

n
__ pms pms ms a rms
O = EpuPero— Pegon —T Z 3tEk,n—j+1P kP
j=1

Note that pg = 0. Using Lemma 3.5 and Lemma 3.6 we get

161l < C(npnn +th ,anjn)

§C(H+kd/2,uk) max AU 1+rZzn 1ol
j=1
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where the last sum can be bounded by

n
t
—1 n
thn—jﬂ < l—i—log;.
Jj=1

It remains to bound || A, U,|l. We have A,U, = Py (f, — cd;U,) and Theorem 3.1
gives

LARU; I < AL+ 10:U51D) < CUF gz + 1 gza)s

which completes the proof. O

Proof (of Theorem 4.1) The result follows from Lemmas 4.4 and 4.5 by rewriting
U, = Uy,1 + Uy 2, where U, 1 is the solution to the homogeneous problem and U, »
the solution to the inhomogeneous problem with vanishing initial data. O

Remark 4.6 We note that the choice of k and the size of u determine the rate of
the convergence. In general, to achieve optimal order convergence rate, k should be
chosen proportional to log(H ™), i.e. k = clog(H ~"). With this choice of k we have
IURS — Uyl < C(1 +logn)H?1;7L.

5 The semilinear parabolic equation

In this section we discuss how the above techniques can be extended to a semilinear
parabolic problem with multiscale diffusion coefficient. In this section we assume, for
simplicity, that the coefficient ¢ = 1.

5.1 Problem formulation

We are interested in equations of the form

w—V-(AVu) = f(u), inQx(0,T],
u=0, ondQ2x(0,T], 5.D
u(-,0) =up, in,

where f : R — R is twice continuously differentiable and 2 is a polygonal/poly-
hedral boundary in RY, ford < 3. Ford = 2,3, f is assumed to fulfill the growth
condition

IFO@E < ca+ g, forl=1,2, (5.2)

where § = 2 if d = 3 and § € [1, 00) if d = 2. Furthermore, we assume that the
diffusion A fulfills assumption (Al) and ug € V.

Example 5.1 The Allen—Cahn equation 2 — V - (AVu) = —(u? — u) fulfills the
assumption (5.2).
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Define the ball B := {v € V : ||v||;n < R}. Using Holder and Sobolev inequalities
the following lemma can be proved, see [12].

Lemma 5.2 If f fulfills assumption (5.2) and u, v € Bg, then

If @l = C, I1f' Wzllg-1 = Clizll, I1f @zl < Clizllgrs I1f"@zllg-1 < Cllzll,

and

If @) = fllg-1 = Cllu —vll,

where C is a constant depending on R.
From (5.1) we derive the variational form; find u(¢) € V such that
(i, v) + (AVu, Vv) = (f(u),v), Yv eV, (5.3)
and u(0) = ug. For this problem local existence of a solution can be derived given
that the initial data ug € V, see [12].

Theorem 5.3 Assume that (Al) and (5.2) are satisfied. Then, for uy € B, there exist
To = To(R) and C1 > 0, such that (5.3) has a unique solution u € C(0, Ty; V) and

lull Loo0,10:v) < C1R.

For the Allen—Cahn equation it is possible to find an a priori global bound of
u. This means that for any time 7 there exists R such that if u is a solution then
lu@llL a1y < R forz € [0, T]. Thus we can apply the local existence theorem
repeatedly to attain global existence, see [12].

5.2 Numerical approximation
The assumptions and definitions of the families of triangulations {7}, } ;>0 and {7y } g1

and the corresponding spaces Vy and Vj remain the same as in Sect. 3. For the
discretization in time we use a uniform time discretization given by

O=1<tj<---<ty=Ty, wheret, —1t,_1=r1, 5.4)

and Tj is given from Theorem 5.3. With these discrete spaces we consider the semi-
implicit backward Euler scheme where U,, € V), satisfies

(0 Up, v) + (AVUy, Vv) = (f(Up—1),v), Yv € Vj, (5.5

forn =1,..., N where Uy € Vj, is an approximation of ug. It is proven in [11] that
this scheme satisfies the bound

U, — u@tn)|l < Cty 2 (02 + 1),
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if we choose, for instance, Uy = Ppug, where Pj, denotes the L,-projection onto Vj,.
Note that C in this bound depends on the variations of A.
The following theorem gives some regularity estimates of the solution to (5.5).

Theorem 5.4 Assume that (Al) and (5.2) are satisfied. Then, for Uy € Bg, there
exist Ty = To(R) and C1 > 0 such that (5.5) has a unique solution U, € Vj, for
1 <n < N, and maxi<u<n ||Un|lg1 < C1R. Moreover, the following bounds hold

13,Unll < Cty 0 =1, 13Ul < Ct7' s n > 1, [13,8,Unll < Cty 2 n > 2,

where C depends on o1, Ty, and R, but not on the variations of A.
Proof We only prove the estimate || 9,0,U, | <Crt; 3/2 here. The other two follow by
similar arguments.

From (5.5) we get

(00:Un, v) + a(0;Un, v) = 0, f (Un—1),v), Yv € Vj, n =2, (5.6)
@PU,, v) + a(3:8,Up, v) = (3:3: f Un_1),v), Yo eVp, n=3. (57

Choosing v = 9,0, U,, in (5.7) gives
| 1 - - - - - - _
;”atatUnHZ - ;(atazUn—ls 319 Un) + 13:3; Unlll* = (39 f (Un—1), 8;9;Un),

which gives the bound
18:8;UnlI* = 118:3 Un—1 11> < CTN3:0; f (Up—1)ll g1 (5.8)

Using Lemma 5.2 we have for §; € (min{U,,—;, U,—j—1)}, max{U,—;, Uy,—j—n})

- 1
19:0: f (Un)l g1 = ﬁ”fl(%-l)(Un —Un—1) = f'(E)(Un—1 = Upn-2) g1

IA

1
ﬁll(f/(&) — (&) WUp — Up—)ll g1
1
+ ?”f/(EZ)(Un —2Uy—1 + Un—2)||H*1
1 _
< ﬁ”(él — &)Uy — Up— D) + ClI0,0, Uy I,

Note that |§] — &| < |Uy—2 — Up—1| + |Uy—1 — Uy|. By using Sobolev embeddings
we get

1 _ _
SIE - &)U, — Uyl = max 2(@GU) < max_ 2(3,Ujl7,
T n—1<j<n n—1<j<n

<C max [3U;|%, < Ct,% < Ct%
n

n—1<j<
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where we recall the bounds %tj < tj_1 < tjfor j > 2. Multiplying by ttf{ in (5.8)
and summing over n gives

n
100, Ul < €Y (et 1180, f (U)o + (¢ = £ DI3d, U111
Jj=3
+r§‘||ézétUz||2
<CZ (F19:0:Uj 1 17 + 1552 + 1651 19:0: U1 11%)
Jj=3
+f§||ézétU2||2
<CZ 180U |7 46, 119:0, U1 17).
+15 ||a,a,Uz||2 +Cty

for n > 3. Using |13, U || < Ct; -1z

for j > 1 we get
518:3 V21> < C2(18, U2)I> + 19, U117 < €2ty ' + 171 < Ce.

Now, to bound Z?:z t; 119, 3, U,ll, we choose v = 9,0, U, in (5.6) to derive

33 LT , 1= 2 3 2

10 0: Un | +;|||8tUn||| _;|||atUn—1||| <10 f (Un-DII" (5.9)
and with &; as above, we get

13 f Un—0DIl = ' (E2)8Un—11l < ClI3Up—1lll < Ct;, "},

where we used Lemma 5.2 and |||9 Ujlll < Ctj_1 for j > 1. Multiplying (5.9) with
rts and summing over n gives

S B IBAU1E + B <CZ(n3r;21+(t — ) 18,U;-111P)

j=2
+ 18,1117

n
= CY (vt + T B U 1) + 1B, U 1P
j=2

Using |13, U Il < Ctj_l for j > 1 we get

n
Yo wllad Ul < € (t,f + i+ fl) < Ciy,
j=2
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where C now depends on t, < T. So we have proved

n
100Ul < C Yt} 18,0,Uj 111> + Cty + T

j=3
n—1 n—1

< CY i 8,0,U; 1> + Ctag1 < CY_t718,0,U;|I* + Cty.
j=2 j=2

Applying the classical discrete Gronwall’s lemma gives
i3 18:3:Un1* < Ci,
which proves [|3,9; Uy || < Ctn_3/2 for n > 3. For n = 2 we proved
4.3 3 2
5 110:0;Uz||” < Ct < Cna,

which completes the proof. O

We use the same GFEM space as in Sect. 3, thatis, V™ = Vg — Rf Vg and the local-
ized version Vkms =Vyg — R,‘z Vp . Furthermore, for the completely discrete scheme,
we consider the time discretization defined in (5.4) and the linearized backward Euler
method thus reads; find U ,ﬁ“; € V™S guch that U, ,?13 = P"™Up and

(B U v) +a (U v) = (f (UT=1) » v) s (5.10)

forn =1, ..., N where P is the Ly-projection onto V™.
To derive an error estimates we represent the solution to (5.10) by using Duhamel’s
principle. Note that U " is the solution to the equation

+ AU, = PO f U0,

and by Duhamel’s principle we get
Ui = EnUg "‘TZEkn i P WU ).
Note that we use ¢ = 1 in the definition of the solution operator E}") in Sect. 3.2.

5.3 Error analysis

For the error analysis we need the following generalized discrete Gronwall lemma,
see, e.g., [12].
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Lemmas.5 Let A,B>0,61,82>00<t <t, <T,and0 < ¢, <R If

n—1
1
on < At A 4 Bthn jflzgo,,

j=1

then there is a constant C depending on B, B1, B2, and, T, such that,
¢n < CAt, TP
Next lemma states a result for A" which is needed in the analysis. A proof of the
bound can be found in [12].
Lemma 5.6 The following bound holds
AT 2R fIl < Cllf g1, f € Lo,

where C depends on o, but not on the variations of A.

Theorem 5.7 For given R > 0 and Ty > 0 let U, be the solution to (5.5) and U, ,f‘;
be the solution to (5.10), such that U,,, U,f‘fl € BR. Then, for1 <n <N,

2
10 = Ul = € (H + K92k ) 112, (5.11)

where C depends on a1, an, 0, R, and Ty, but not on the variations of A.

Proof First we define e, = Ulznfl —Up = (U —R™®U)+(RU,—Uy) = 0p+ p-
For p; we use Lemma 3.5 to prove the bounds

2
lojll = € (H+k2uk) 7120 g =,

and
= 2
18,00 = € (H+KPuk) 72, =2

For 6,, we have
6, = E™ Go—i—rZEkn P (f(Ukj l)—f((],-,l)—z')t,oj).

To bound ||6 || we first assume n > 2 and use summation by parts for the first
part of the sum. Defining 7, to be the integer part of n/2 we can write

ny

—TZEI?,IZ—jHPIEHSétPj = E P po — E5_p, P s
=1
np

a ms ms ..
- TzatEk,n—jJrlPk Pj>
Jj=1
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and 6,, can be rewritten as

na
_ ms ms a ms ms .
On = Ei Peo — Epy_y, Py pnz_fzatEk,n7j+1Pk Pj
j=1

ms q
-t Z Ef o j1 P 0ip,
j=na+1

FT Y AMPEDS L APHTEPISFWURS ) = £U ).

where we note that P;"*ep = 0. To estimate these terms we need the following bounds
for B1, B2 > 0

1+, —1+8 —14+81+ 1+ +
thn]Hlj 2 < Cp, oty TP thn]H] 2 < Cp oty PP

see [11]. Using Lemma 3.6 we get

116 ||<||pn2||+cfzt Ziallejll+Ce Z 19y 0%, 1
j=1 Jj=na+1

—-1/2
+Cr Zt MNP = FU Dl
and together with Lemmas 3.5 and 5.2 this gives

—-3/2
||9||<C(H+kd/2uk)< +th Lty P Z /)
Jj=n2+1

1/2
—l—Cth” U — Ui

n
—1/2 —1/2
< C(H + k292 2 o Y02 eyl
=

Now consider 0;. We can rewrite

01 = E00 + TEP PP (FWUSS) — £(Uo) — 1)
= EP P™eq — EP P p1 + TERS PPS(F(UTS) — f (Vo).
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and using similar arguments as above

2
2 —1/2 —1/2
1010 = € (M +k2u) 72 o el
Hence, we arrive at the estimate

2 n
—1/2 —1/2
leall < Cty (H+kd/2uk) +Cty A lejall, n= 1,

J=1

and we can use Lemma 5.5 to conclude (5.11). m]

6 Numerical results

In this section we present two numerical examples to verify the predicted error esti-
mates presented for the linear problem in Sect. 4 and the semilinear problem in Sect. 5.
In both cases the domain is set to the unit square 2 = [0, 1] x [0, 1]and T = 1. The
domain €2 is discretized with a uniform triangulation and the interval [0, T'] is divided
into subintervals of equal length.

The method is tested on two different problems. One with constant coefficients

a0 =1, A1<x>=((]) (1’)

and one with multiscale coefficients

c(x) =Dx), Axlx)= <BE)X) B?X)) ’

where B and D are piecewise constant with respect to a uniform Cartesian grid of
size 279, see Fig. 1 for a plot of a typical coefficient. This choice of B and D imposes
significant multiscale behavior on the coefficients. We expect quadratic convergence in
the space of classical finite element with piecewise linear and continuous polynomials
(PI-FEM) when A = A; and ¢ = cy, but poor convergence when A = A; and
¢ = ¢3. For the GFEM we expect quadratic convergence in both cases. Note that in
the semilinear case we have ¢ = ¢; in both examples.

We compute the localized GFEM in (3.16) and (5.10), denoted U m:l, for 5 different
values of the coarse grid width, H = +/2-272,/2-273, /2274, /2-275, and
V/2-27%. The time step is chosen to 7 = 0.01 for all problems. The reference mesh
T, is of size h = /2 - 277 and defines the space V}, on which the localized corrector
problems ¢y  are solved. To measure the error, the solution U, in (3.3) is computed
using P1-FEM on the finest scale & = +/2 - 277 with T = 0.01.

Note that this experiment measures the error | U, — U ,?‘fl I. The total error ||u(t,) —
U ,?‘2 || is also affected by the difference ||u(#,) — Uy||, which is dominating for the
smaller values of H. We now present the results in two separate sections.
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Fig. 1 A plot of a coefficient that is piecewise constant on a Cartesian grid of size 276

6.1 Linear parabolic problem

For the linear parabolic problem (2.1) the right hand side is set to f(x, ) = ¢, which
fulfills the assumptions for the required regularity. For simplicity the initial data is set
to ug = 1. To construct B and D we choose, for each cell in the Cartesian grid, a value
from the interval [10~!, 103]. Note that we choose different values for B and D. This
procedure gives both B and D rapidly varying features, see Fig. 1.

For each value of H the localized GFEM, U,"}, and the corresponding P1-FEM,
denoted Uy, are computed. The patch sizes k are chosen such thatk ~ log(H ™~ 1), that
isk=1,2,2,3, and 4, for the five simulations. When computing Uy , the stiffness
matrix is assembled on the fine scale / and then interpolated to the coarser scale. This
way we avoid quadrature errors. The convergence results for the two examples are
presented in Fig. 2, where the error at the final time 7y is plotted against the degrees
of freedom |\|. Comparing the plots we can see the predicted quadratic convergence
for the localized GFEM. Note that even though the multiscale features of ¢ are not
included in the construction of the multiscale space we get convergence without pre-
asymptotic effects, as suggested by the theory. However, as expected, the P1-FEM
shows poor convergence on the coarse grids when the coefficients have multiscale
features. We clearly see the pre-asymptotic effects when H does not resolve the fine
structure of B.

6.2 Semilinear parabolic problem
For the semilinear problem we study the Allen—Cahn equation, which has right hand

side f(u) = — (13 —u) that fulfills the necessary assumptions. We define the initial data
tobe ug(x, y) = x(1 —x)y(1 —y), which is zero on 9€2. The matrix B constructed as
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10°

107"

107

107

107° 10 . .
102 10° 10* 102 10° 104

Fig. 2 Relative Ly errors HUIZI;\, — Up NI/IUp NI (blue circle) and Uy y — Up NI/ IIUp Nl (red

asterisk) for the linear parabolic problem plotted against the number of degrees of freedom |N| ~ H -2,
The dashed line is H?. a Constant coefficients c1 and Aj. b Multiscale coefficients ¢» and A7 (color figure
online)

10? 10° 10* 10? 10° 10*
Fig. 3 Relative L, errors HU]?‘]S\, — Up NI/IUp NI (blue circle) and Uy y — Up NI/ IIUp Nl (red

asterisk) for the semilinear parabolic problem plotted against the number of degrees of freedom |N| ~ H -2,
The dashed line is H2. a Constant coefficient A1. b Multiscale coefficient A, (color figure online)

in the linear case but with values varying between 10~ and 1. Note that, for simplicity,
we have ¢ = 1 in both cases.

As in the linear case, we now compute the localized GFEM approximations U;")
and the corresponding P1-FEM, Up ,. The patch sizes are chosen to k = 1,2, 2, 3,
and 4, for the five simulations. The convergence results for the two examples are
presented in Fig. 3. We can draw the same conclusions as in the linear case. The
localized GFEM shows predicted quadratic convergence in both cases, but P1-FEM
shows poor convergence on the coarse grids when the coefficients have multiscale
features.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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