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Relative velocities in bidisperse turbulent suspensions
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We investigate the distribution of relative velocities between small heavy particles of different sizes in
turbulence by analyzing a statistical model for bidisperse turbulent suspensions, containing particles with two
different Stokes numbers. This number, St, is a measure of particle inertia which in turn depends on particle size.
When the Stokes numbers are similar, the distribution exhibits power-law tails, just as in the case of equal St.
The power-law exponent is a nonanalytic function of the mean Stokes number St, so that the exponent cannot
be calculated in perturbation theory around the advective limit. When the Stokes-number difference is larger, the
power law disappears, but the tails of the distribution still dominate the relative-velocity moments, if St is large
enough.
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I. INTRODUCTION

The dynamics of small heavy particles in turbulence plays
a crucial role in many scientific problems and technological
applications. Any model of the particle dynamics must refer to
the turbulence the particles experience. This is a challenge
for realistic modeling of such systems, for their direct
numerical simulation (DNS), and for experiments. Novel
particle-tracking techniques and improved DNS algorithms
have made it possible to uncover striking phenomena in
turbulent aerosols. For example, heavy particles tend to avoid
the vortices of the turbulent fluid, and they form small-scale
fractal patterns. Nearby particles can have very high relative
velocities, an effect caused by “caustic” singularities in the
particle dynamics. The analysis of statistical models has led to
substantial progress in explaining these phenomena, reviewed
in Ref. [1]. This analysis has offered fundamental insights
about how caustics shape the distribution of relative velocities
of nearby particles [2–10].

These results apply only to “monodisperse” suspensions
of identical particles. An important question is therefore how
particles of different sizes cluster and move relative to each
other. Spatial clustering of such “bidisperse” suspensions was
analyzed in Refs. [11,12]. The particles cluster onto two
distinct attractors, and the fractal distribution of separations
between differently sized particles is cut off at a small
spatial scale, rc, that can be much larger than the particle
size.

Here we analyze the distribution of relative velocities of
particles with different sizes. Our results are important for
the physics of turbulent aerosols, because the distribution
of relative velocities determines the relative speeds of col-
liding particles, their collision rate, and collision outcomes
[13–16].

In a dilute suspension of small, heavy, spherical particles
the dynamics of a single particle is approximately given by
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Stokes law with constant γ ≡ 9ρf ν/(2a2ρp):

d

dt
x = v,

d

dt
v = γ [u(x,t) − v]. (1)

Here x and v are particle position and velocity, a is the particle
size, ν is the fluid viscosity, and ρf and ρp are fluid and particle
densities. We model the turbulent fluid velocities by a random
Gaussian velocity field u(x,t) with zero mean, correlation time
τ , correlation length η, and typical speed u0, representing the
universal small spatial scales of turbulence [17], neglecting
intermittent, non-Gaussian features [1]. It has been shown that
many important features of the dynamics of heavy particles in
turbulence are explained by this model [1]. Equation (1) as-
sumes that the particle and shear Reynolds numbers are small.
Gravitational settling [18–22] is disregarded; this is valid
when the turbulence is intense enough. The dimensionless
parameters of the model are the Stokes number St ≡ 1/(γ τ ), a
measure of particle inertia, and the Kubo number, Ku ≡ u0τ/η,
measuring the persistence of the flow.

II. RELATIVE VELOCITIES

Figure 1(a) summarizes results of statistical-model simula-
tions in two spatial dimensions, for the distribution �(vr,r) of
relative radial velocity vr and separation r between particles
with slightly different Stokes numbers. Color coding and the
black isolines in Fig. 1(a) are logarithmic. As a consequence,
regions of equidistant isolines correspond to power laws.
Figure 1(a) thus shows that the distribution exhibits a power-
law tail as a function of r for small vr and becomes uniform for
small r . The crossover between the tail and the plateau defines
the cut-off scale rc, observed and discussed in Refs. [11,12].

Furthermore, Fig. 1(a) shows that there is a second cut-off
scale, vc, that distinguishes between a power law as a function
of vr for large vr , and a plateau for small vr . Our numerical
results demonstrate that this new scale vc does not depend on
r [Fig. 1(a)]. This is in marked difference to the monodisperse
case, where the distribution has no plateau in the limit
of r → 0. Panel (b) shows that vc depends linearly on the pa-
rameter θ ≡ |St1 − St2|/(St1 + St2) measuring the difference
between the Stokes numbers. Panel (c) shows distributions
for r � rc as functions of vr , for different values of θ . The
dashed line is the power law |vr |μc−d−1, where d = 2 is the
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FIG. 1. Distribution �(vr ,r) of relative velocities between parti-
cles with different Stokes numbers. Statistical-model simulations in
two dimensions (d = 2) for Ku = 1. (a) Contour plot of �(vr ,r)/rd−1

for St = 1 and θ = 10−2 (see text). Dotted lines show cut-off scales rc

and vc. (b) Dependence of rc on θ (green �), and of vc on θ (red ◦), for
St = 1. (c) �(vr ,r)/rd−1 evaluated at r < rc, for St = 1 and θ = 10−3

(green line), θ = 10−2 (solid black line), and θ = 0.1 (magenta line).
Crossover scales vc (arrows). (d) Power-law exponent μc versus St for
small θ . Exponent for power-law tails in vr for fixed r with θ = 10−3

(green �) and θ = 10−2 (red ◦). Exponent for power-law tails in r for
fixed vr with θ = 10−2 (blue ♦). Numerical data for min(D2,d + 1)
where D2 is the phase-space correlation dimension (solid blue line).

spatial dimension. Panel (d) demonstrates that the exponent
μc is approximately equal to min(D2,d + 1) where D2(St)
is the phase-space correlation dimension of a suspension of
identical particles with Stokes number St ≡ (γ τ )−1 and γ =
1
2 (γ1 + γ2).

The shape of the distribution shown in Fig. 1(c) has a
strong effect on the moments of vr . For bidisperse suspensions,
the plateau of �(vr,r) (r < rc and |vr | < vc) yields an rd−1

contribution to the moments 〈|vr |p〉, just as the caustic
contribution for identical particles [23]. For St � 1, when
caustics are rare, the dominant contribution to the moments
of vr at small r comes from the plateau of the distribution. But
for St ∼ 1, caustics are abundant and for p � 1 the moments
〈|vr |p〉 are dominated by the tails of the distribution.

The plateau of the bidisperse distribution below rc and vc

affects the tails indirectly. Comparing the normalized mono-
and bidisperse distributions we see that the tails for θ 	= 0
must lie above those for θ = 0. This means that the moments
〈|vr |p〉 must have a minimum for θ = 0 (at fixed St and
fixed small separation). This is consistent with the findings of
Refs. [24–28].

III. ANALYSIS OF THE WHITE-NOISE LIMIT

We now show that all of the above observations can
be explained qualitatively by analyzing a one-dimensional
white-noise model for the dynamics of a pair of particles.
A particle pair in one dimension is described by the four
coordinates (x1,v1) and (x2,v2). It is convenient to transform
to the relative coordinates 	x =x2−x1, 	v=v2−v1, x̄ =
1
2(x1+x2), and v̄= 1

2(v1+v2). At small spatial separations, we

can linearize the flow field: u(x2,t)−u(x1,t)∼A(t)	x. The
spatial dependence in A(x,t) ≡ ∂xu(x,t) is neglected here.
This disregards preferential sampling which is absent in the
white-noise limit [1]. The gradient A(t) has zero mean and cor-
relation function 〈A(t1)A(t2)〉 = 3(u0/η)2 exp(−|t2 − t1|/τ ).
For θ 	= 0 there is an additional stochastic driving, u(x1,t)+
u(x2,t) ∼ 2u(x,t). Neglecting the spatial dependence we
write B(t) ≡ 2u(x,t). The two noise terms A(t) and B(t)
are uncorrelated, and 〈B(t1)B(t2)〉 = 4u2

0 exp(−|t2 − t1|/τ ).
We use the de-dimensionalization t̃ ≡ tγ , x̃ ≡ x/η, ṽ ≡
v/(ηγ ), ũ ≡ u/(ηγ ). Dropping the tildes we find

d

dt
	x =	v and

d

dt

[
	v

2v

]
=

[
1 θ

θ 1

][
A(t)	x−	v

B(t)−2v

]
. (2)

Note that the equation for x̄ decouples and is not considered
here. The white-noise limit is taken by letting St → ∞ and
Ku → 0 such that ε2 ≡ 3Ku2 St stays finite. In this limit
we obtain 〈A(t1)A(t2)〉 = 3

4 〈B(t1)B(t2)〉 = 2ε2δ(t2 − t1). The
white-noise parameter ε is a measure for the degree of inertia
in the problem (2) and plays a similar role as St [1] in the
two-dimensional system described above. We are thus left
with three coupled dynamical variables, 	x and 	v as in
the monodisperse case, and the mean velocity v. We write
�(	v,	x) ≡ ∫

dv P (	v,	x,v̄), where P (	v,	x,v̄) is the
steady-state distribution of 	v, 	x, and v̄.

A. Crossover scales

In the equation for 	v, Eq. (2), we identify three competing
terms: the two noise terms V1 ≡ A	x and V2 ≡ θ (B − 2v),
and the damping term −	v:

d

dt
	v = −	v︸ ︷︷ ︸

damping

+A(t)	x︸ ︷︷ ︸
V1

+ θ (B(t) − 2v̄)︸ ︷︷ ︸
V2

. (3)

The multiplicative-noise term V1 together with the damping
term leads to the power-law tails of the relative-velocity dis-
tribution in monodisperse suspensions [7]. The additive-noise
term V2 is proportional to θ and contains the Gaussian white
noise B(t), responsible for diffusive behavior at small scales.

Consider first how to estimate rc. Since the relative strength
of V1 and V2 depends on 	x, we expect that rc corresponds
to the value of 	x for which V1 and V2 are of compara-
ble intensity. We define the noise intensity X as X ≡∫ 1
−1dt〈X(t)X(0)〉. Demanding V1 ∼ V2 yields the estimate

rc ∼
√

V2

A

∝ θ. (4)

This linear dependence upon θ is consistent with the
conclusions of Refs. [11,12], and it is confirmed by the two-
dimensional numerical data in Fig. 1(b) (green �). It must be
emphasized, however, that the estimate is not precise enough to
explain a weak ε dependence that we observe in our numerical
simulations of the one-dimensional model (not shown).

Let us now find an estimate for the new crossover scale vc.
To this end we consider small separations and small relative ve-
locities, so that V1 � V2 . This allows us to neglect the term
A(t)	x in Eq. (2). The resulting closed set of equations for
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v ≡ [	v,2v̄] gives rise to a Gaussian steady-state distribution

lim
	v,	x→0

P (	v,	x,v̄) ∝ e−(1/2)vT Mv, (5a)

M = 3

2ε2(1 − θ2)

[
2−θ2

θ2 − 1
θ

− 1
θ

1

]
. (5b)

From Eqs. (5) we derive the marginal distribution of 	v and
estimate v2

c by its variance. This leads to a linear dependence
of vc on both ε and θ :

vc ∝ εθ. (6)

In Fig. 1(b) (red ◦), we observe excellent agreement of the
two-dimensional numerical data with the linear θ dependence
predicted by Eq. (6). The linear dependence on ε was also
confirmed in statistical-model simulations but is not shown.

Finally, consider the case where V1 � V2 , that is,
either |	x| � rc or |	v| � vc. In this limit the dynamics
is essentially that of monodisperse suspensions, but with
mean Stokes number St. For |	x| � rc or |	v| � vc the
distribution is therefore expected to show the same power-law
tails as the monodisperse case [Fig. 1(c)], with exponent μc

that depends on St.

B. Power-law tails

It follows from the analysis above that the relative dynamics
is diffusive for |	x| � rc and |	v| � vc. In this case
P (	v,	x,v̄) is given by the Gaussian distribution (5). In
the tails, i.e., for |	x| � rc or |	v| � vc, by contrast, the
dynamics is that of the monodisperse suspension and we can
decompose the joint distribution according to P (	v,	x,v̄) =
�0(	v,	x)p(v) + δP (	v,	x,v). Here, �0(	v,	x) equals
the distribution for monodisperse particles (θ = 0) and
δP (	x,	v,v̄) is negligible sufficiently far out in the tails.
In order to find �0(	x,z) we follow Ref. [7] and make the
separation ansatz �0(	x,z) = ∑

μ aμgμ(	x)Zμ(z) with z ≡
	v/	x and expansion coefficients aμ. Inserting this ansatz
into the Fokker-Planck equation corresponding to Eq. (2) we
obtain

gμ(	x)=|	x|μ−1 and
d

dz

(
z+z2+ε2 d

dz

)
Zμ =μzZμ.

(7)

This is the equation for a suspension of identical particles [7]
with Stokes number St. In a slightly different form, Eq. (7)
was used to model the effect of wall collisions in turbulent
suspensions [29].

Particle-exchange symmetry [7] requires that Zμ(z) is sym-
metric for large |z|, limz→∞ Zμ(z)/Zμ(−z) = 1. Numerical
analysis shows that Eq. (7) exhibits a discrete set of such
solutions [15]. For small ε only two values are allowed: μ = 0
and μ = μc(ε).

In the monodisperse case, μc(ε) equals D2 for ε > εc.
For ε < εc, by contrast, particle paths coalesce exponentially
[30], there is no power-law steady state, and μc(ε) becomes
negative and loses its meaning as correlation dimension. As
a consequence the distribution gμc (	x) = |	x|μc−1 is not
normalizable for μc � 0.

In the bidisperse case, this divergence is regularized since
diffusion dominates for |	x| � rc and |	v| � vc. Thus
a power-law steady-state distribution is obtained, even for
ε < εc. This is analogous to the effect of small-scale diffusion

that regularizes the power-law steady-state distribution of
separations [31].

The full solution of (7) consists of a sum of two terms,
a0|	x|−1Z0(z) + aμc |	x|μc−1Zμc (z). As was discussed in
[7], the separation ansatz for �(	x,z) is strictly valid only for
|	x| � 1. The term that contains a0 is therefore subdominant
for μc < 0. For μc > 0 we expect a0 ∼ θ � aμc since a0

must vanish in order for the distribution to be normalizable
over 	x = 0 as θ → 0, consistent with the numerical small-θ
results in Fig. 2(a). Therefore we disregard the μ = 0 term
for all values of ε.

Figure 2(b) shows that for θ � 1 the exponents of both
the 	x and 	v distributions (symbols) equal the numerically
calculated μc(ε̄) (solid blue line). The asymptote Zμc (z) ∼
|z|μc−2 for large |z| gives rise to the power-law tails in the
relative-velocity distribution of the form |	v|μc−2. In d spatial
dimensions a similar argument yields tails of the form v

μc−d−1
r .

This explains the power laws observed in Figs. 1(c) and 2(a).
In summary, the white-noise analysis qualitatively explains

not only the existence of the plateau in the relative-velocity
distribution and the corresponding crossover scales rc and vc,
it also yields the linear dependence of these scales upon θ ,
and explains the power-law tails. Thus, the one-dimensional
white-noise analysis qualitatively explains all the important
features in Fig. 1.

C. Failure of perturbation theory in ε

Figure 2(b) demonstrates that the exponent μc depends very
sensitively on ε, for small ε. Here we show that this dependence
is nonanalytic. This means that it cannot be obtained by
perturbation theory in ε, and this in turn is a likely reason
[32] why Borel resummation of perturbation theory does not
yield accurate results for the correlation dimension D2 (Fig. 1
in Ref. [33]). There is, to date, no theory explaining these
observations.

The exponent μc appears as a generalized eigenvalue in
Eq. (7), but exact solutions to Eq. (7) are known only for
μ = 0 [30], μ = −1 [34], and in the large ε limit [35]. The
physical solution at small ε corresponds to the eigenvalue
μc(ε). The solution for μ = −1 is unphysical since it does not
obey particle-exchange symmetry.

Numerical analysis reveals that μc(ε) → −1 as ε → 0. We
write μc =−1+δμ, where δμ � 0 is an “eigenvalue splitting”
that vanishes as ε → 0, and attempt to find the physical
solution by perturbation theory in δμ:

Zμc (z) = Z(0)(z) + δμZ(1)(z) + δμ2Z(2)(z) + . . . . (8)

Substituting (8) into (7) we obtain a hierarchy of differential
equations for Z(n) given by

d

dz

[
z + z2 + ε2 d

dz

]
Z(0)

μ + zZ(0)
μ = 0, (9a)

d

dz

[
z + z2 + ε2 d

dz

]
Z(n)

μ + zZ(n)
μ = zZ(n−1)

μ , n � 1. (9b)

Equation (9a) is solved by the unphysical solution discussed
above, i.e., Z(0) = Z−1. The general form of the latter is known
[34]:

Z−1 = C1(z+1)e−U (z) + C2(z + 1)
∫ z

−∞
dt

eU (t)−U (z)

(t + 1)2
. (10)
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FIG. 2. (a) Distribution of 	v at small 	x from white-noise simulations of Eq. (2), for ε2 = 2 and θ = 10−3, θ = 10−2, and θ = 10−1;
green, black, and pink curves, respectively. (b) Exponent μc as a function of ε from simulations of Eq. (2) for θ = 0.01, obtained from fit to 	x

tails (blue ♦), and from fit to 	v tails (red ◦). Result for equal St obtained by numerical solution of Eq. (7) (solid blue line) and the analytical
prediction, Eq. (12) (dashed black line). (c) Same data as for the solid and dashed lines in panel (b), but plotted here as − log(1 + μc) versus
ε−2.

Here U (z) ≡ ( 1
3z3 + 1

2z2)/ε2, and C1 and C2 are constants.
The first-order solution reads

Z(1) = z + 1

ε2

∫ z

−∞
dt

eU (t)−U (z)

(t + 1)2

∫ t

−1
dt ′t ′(t ′ + 1)Z−1(t ′). (11)

The integrand involves Z−1, and we must take C1 = 0 in
Eq. (10) for Z−1 since the first term in (10) is not normalizable.
We further choose C2 = −ε2 because it normalizes the large-z
tails of Z−1 to Z−1 ∼ −z−3. To evaluate (11) we use the
fact that δμ → 0 as ε → 0 and apply a WKB approximation
[36] of Z−1 that becomes exact in the limit ε → 0. The
equation for Z−1 has two “turning points” at z = −1,0
where the WKB approximation breaks down. We find locally
exact solutions and use these to match the WKB solutions
across the turning points. Details of this asymptotic-matching
method are given in the Supplemental Material [37]. In this
way we find Z(1) ∼ |z|−3 log |z| for large negative values of
z, and Z(1) ∼ |z|−3[2πe1/(6ε2) − log |z|] for large positive z.
Imposing particle-exchange symmetry yields

μc ∼ −1 + δμ with δμ = π−1exp[−1/(6ε2)]. (12)

The splitting δμ is shown as a dashed black line in Figs. 2(b)
and 2(c). It agrees with the numerical data for μc (blue) for
small ε2 but breaks down for ε2 ≈ 0.1.

We emphasize that the nonanalytic dependence (12) can-
not be obtained by the ε-perturbation theory described in
Refs. [1,38,39]. That approach starts by rescaling z → εz, and
solves the resulting equation d

dz
(z + εz2 + d

dz
)Zμ = εμzZμ

perturbatively in ε. The solution remains essentially Gaussian.
Even for very small ε, however, the z dynamics can escape
from z ≈ 0 to −∞ by forming caustics [1]. This gives rise
to power-law tails that are not described by perturbation
theory. Higher orders in ε improve the accuracy only locally,
inside an ε-sized “boundary layer” [40] around z = 0, but
not in the tails. Consequently, perturbation theory fails to
give the nonanalytical dependence (12) since all perturbative
corrections to μc ∼ −1 vanish [32].

Our theory, by contrast, provides a uniform approximation
valid for small ε and arbitrary z. It allows one to compute the
exponentially small eigenvalue splitting δμ because it captures
the formation of caustics. For small ε, the rate J of caustic for-
mation is J ∼ (2π )−1e−1/6ε2

[1]. It follows that μc ∼ 2J − 1
at small ε.

We now show that caustics cause similar problems in small-
St expansions [1,11,41–44]. In one dimension, the equation for

z reads in dimensional units

d

dt
z = −γ z − z2 + γA(x,t). (13)

The Stokes number used in DNS of heavy particles in
turbulence [45,46] is κ ≡ u0/(ηγ ) [1]. We take A in Eq. (13)
to be constant. In this “persistent limit” the local fluid-
velocity gradients are roughly constant during the time
η/u0 [1]. As κ → 0 we find that z ∼ A, with distribution
P (A) = (6πu2

0/η
2)−1/2 exp[−A2/(6u2

0/η
2)], localized around

zero. As in the white-noise case, this local approximation
fails when caustics allow z to escape to −∞. Kramers-escape
theory for weak colored noise [47,48] reveals that caustics
occur in the persistent limit when A < −γ /4, with proba-
bility p=∫ −γ /4

−∞ dAP (A). Evaluating this integral for κ � 1,
one obtains a nonanalytic dependence, p ∝ exp[−1/(96κ2)],
consistent with Ref. [49]. In DNS a similar nonanalytic
dependence is found [50], albeit of a slightly different form
because the turbulent velocity gradients are non-Gaussian.
We conclude that the perturbation theories in the white-noise
limit and in time-correlated flows fail for the same reason.
Both expansions are valid only locally near z=0 and do not
accommodate caustics.

IV. CONCLUSIONS

We analyzed the distribution of relative velocities in tur-
bulence between small, heavy particles with different Stokes
numbers St. We demonstrated that the difference in St causes
diffusive relative motion at small separations, giving rise to a
plateau in the distribution for relative velocities smaller than
a cut off vc. This is in qualitative agreement with DNS [51].
Figure 2 in Ref. [51] shows the vr distribution for a bidisperse
suspension. The cut off vc depends linearly on both θ , the
parameter characterizing the difference in Stokes numbers,
and ε, which is a measure for the mean Stokes number
of the system. At small values of θ and ε the distribution
exhibits algebraic tails |vr |μc−d−1 as in the monodisperse
case. The exponent μc is determined by the phase-space
correlation dimension of a monodisperse system with mean
Stokes number St. When St is O(1) or larger, the moments
of relative velocities at small separations are dominated by
the tails of the distribution. As the parameters θ and ε become
larger, both our simulations and the analysis of the white-noise
model show that the tails gradually disappear, making space
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for the diffusive (Gaussian) behavior below vc ∝ ε θ . The
DNS of Ref. [51] are for quite large θ and ε. It would be
of interest to perform DNS for smaller parameter values to
find the power-law tails we predict here.

Our analysis shows how sensitive the distribution is to
polydispersity. This is important for experiments tracking the
dynamics of micrometer-size particles in turbulence [9], where
strict monodispersity is difficult to achieve.

We explained these observations by analyzing a one-
dimensional statistical model in the white-noise limit. The
difference in Stokes numbers regularizes the distribution,
so that the bidisperse model has a power-law steady state
at small ε. This makes it possible to compute how the
power-law exponent μc depends on the inertia parameter ε. We
demonstrated that the dependence of μc upon ε is not analytic.

Our theory explains why small-ε expansions fail to give
nonanalytic contributions to physical quantities in the white-
noise limit. It is likely that nonanalytic terms in white-
noise expansions for the correlation dimension [32] and
Lyapunov exponents [38,39] in two and three dimensions
have similar origins, and we speculate that Eqs. (12) are
only the first two terms in an infinite series of the form∑∞

k=0 e−k/(6ε2) ∑∞
m=0 b(k)

m ε2m [52], possibly also containing
logarithmic terms, logn ε2.

We remark that the analysis of μc in the one-dimensional
white-noise model is special insofar as its conventional
perturbation expansion vanishes exactly [32], as mentioned
above. This renders the nonanalytic correction (12) leading. In
higher dimensions this is, however, not the case. We therefore
expect perturbation theory to fail in these cases only when the

nonanalytical terms become comparable to the perturbative
ones. The Borel sum for the correlation dimension in two
dimensions, for instance, fails only at ε ≈ 0.1 [32] where
ε2 ≈ e−1/(6ε2).

More generally we explained that small-St expansions for
heavy particles in turbulence [1,11,41–44] suffer from similar
problems when caustics occur. This indicates that matched
asymptotic expansions (or similar methods) are required to
explain the characteristic minimum [46] of the correlation
dimension as a function of St.

Our predictions can be directly tested by experiments or by
DNS of turbulent bidisperse turbulent suspensions. We note,
however, that our analysis pertains to the dynamics in the
dissipative range. At higher Stokes numbers, when separations
between particle pairs explore the inertial range [53,54], we
expect corrections to the power-law exponents derived here.
Furthermore, strong intermittency is expected to increase the
rate of caustic formation for heavy particles in turbulent flows.
This could imply that the breakdown of perturbation theory
for heavy particles in turbulent flows is perhaps even more
pronounced than predicted by our model calculations.
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