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Summary
In this paper, we propose a doubly robust method to estimate the heterogeneity of the

average treatment effect with respect to observed covariates of interest. We consider

a situation where a large number of covariates are needed for identifying the average

treatment effect but the covariates of interest for analyzing heterogeneity are of much

lower dimension. Our proposed estimator is doubly robust and avoids the curse of

dimensionality. We propose a uniform confidence band that is easy to compute, and

we illustrate its usefulness via Monte Carlo experiments and an application to the

effects of smoking on birth weights.

1 INTRODUCTION

In this paper, we propose a doubly robust method to estimate the heterogeneity of the average treatment effect with respect
to observed covariates of interest. To describe our methodology, we consider the potential outcome framework. Let Y1 and
Y0 be potential individual outcomes in two states, with treatment and without treatment, respectively. For each individual, the
observed outcome Y is Y = DY1+(1−D)Y0, where D denotes an indicator variable for the treatment, with D = 0 if an individual
is not treated and D = 1 if an individual is treated. We assume that independent and identically distributed observations
{(Yi,Di,Zi) ∶ i = 1, … , n} of (Y,D,Z) are available, where Z ∈ Rp denotes a p-dimensional vector of covariates.

Suppose that a researcher is interested in evaluating the average treatment effect conditional on only a subset of covariates X,
which is of a substantially lower dimension than Z, where Z ≡ (X⊤,V⊤)⊤ ∈ Rd × Rm, p ≡ d + m. That is, we are interested in
a case where d ≪ p.
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The main object of interest in this paper is the conditional average treatment effect function (CATEF); namely:

g(x) ≡ E[Y1 − Y0|X = x]. (1)

When d ≥ 3, it is difficult to plot g(x), not to mention low precision due to the curse of dimensionality. Hence, for practical
reasons, we focus on the case that d = 1 or d = 2, while p is often of a much higher dimension.

To achieve identification of the CATEF, we assume that Y1 and Y0 are independent of D conditional on Z (known as the
unconfoundedness assumption):

(Y1,Y0) ⟂ D|Z, (2)

where ⟂ denotes the independence. For Equation 2 to be plausible in applications, applied researchers tend to consider a large
number of covariates Z. Note that in our set-up the treatment may be confounded in the sense that the treatment assignment
may not be independent of the potential outcome variables given X only. To satisfy the unconfoundedness condition, a much
larger set of conditioning variables Z needs to be employed.

Different roles of covariates between X and V are noted in the recent literature. For example, Ogburn, Rotnitzky, and Robins
(2015) consider a similar issue in the context of the local average treatment effect (LATE) of Imbens and Angrist (1994).
Ogburn et al. emphasize that conditioning on a large number of covariates Z may be required to make it plausible that the binary
instrument is valid. In their empirical example, Ogburn et al. revisit the analyses of Poterba, Venti, and Wise (1995) and Abadie
(2003) to examine whether participation in 401(k) pension plans increases household savings. In their example, the vector of
covariates Z for the identifying assumption consists of income, age, marital status, and family size, whereas the variable of
interest X is income. Abrevaya, Hsu, and Lieli (2015) also consider the case of investigating the effect of smoking during
pregnancy on birth weights. They are interested in estimating Equation 1 with X being the age of mother; however, as noted in
Abrevaya et al., it is unlikely that conditioning only on the age of the mother would achieve the unconfoundedness assumption
with nonexperimental data. As a result, it is necessary to consider a high-dimensional Z, including the age of the mother.

The fact that a high-dimensional Z needs to be employed for Equation 2 to be plausible in an application makes a fully
nonparametric estimation approach impractical because of the curse of dimensionality. For example, the propensity score is
not nonparametrically estimable in moderately sized samples, if the dimension of Z is high. One obvious alternative is to use a
parametric model for the propensity score; however, it may lead to misleading results if the parametric model is misspecified.

With the aim of providing a practical method and, at the same time, reducing sensitivity to model misspecification, we propose
to use a doubly robust method based on parametric regression and propensity score models. Our estimator of the CATEF is
doubly robust in the sense that it is consistent when at least one of the regression models and the propensity score model
is correctly specified. Specifically, we first estimate CATEF(Z) using a doubly robust procedure: We estimate a parametric
regression model of the outcome on Z for each treatment status and a parametric model for the probability of selecting into
the treatment given Z; we then combine the parametric estimation results in a doubly robust fashion to construct an estimate
of CATEF(Z). We then obtain an estimate of CATEF(X) by adopting the local linear smoothing of CATEF(Z). As a result, we
avoid high-dimensional smoothing with respect to Z but mitigate the problem of misspecification by both the doubly robust
estimation and low-dimensional nonparametric smoothing with respect to X.

We emphasize that we are willing to assume parametric specifications for the propensity score and regression models as func-
tions of Z to avoid the curse of dimensionality, but not for CATEF(X). One may consider parametric estimation of CATEF(X),
as Ogburn et al. (2015) estimate their LATE parameter using least squares approximations. However, note that even if the para-
metric specification of CATEF(Z) is correct, the resulting specification of CATEF(X) may not be correctly specified since, for
example, E[Z|X] is possibly highly nonlinear. To avoid this misspecification, we estimate CATEF(X) nonparametrically.

Because the CATEF is a functional parameter, as a tool of inference, we propose to use a uniform confidence band for the
CATEF. Our construction of the uniform confidence band is based on some analytic approximation of the supremum of a
Gaussian process using arguments built on Piterbarg (1996), combined with a Gaussian approximation result of Chernozhukov,
Chetverikov, and Kato (2014) and an empirical process result of Ghosal, Sen, and van der Vaart (2000). Our method is simple
to implement and does not rely on resampling techniques.

This paper contributes to the literature on doubly robust estimation by demonstrating that the doubly robust procedures are
useful for estimating the CATEF. In this paper, we focus on the so-called augmented inverse probability weighting estimator that
was originally proposed by Robins, Rotnitzky, and Zhao (1994) for the estimation of the mean (see also Robins & Rotnitzky,
1995; Scharfstein, Rotnitzky, & Robins, 1999). Their estimator appears to be the first to be recognized as being doubly robust.
Since then, many other alternative doubly robust estimators have been proposed in the literature. For example, the inverse
probability weighting regression adjustment estimator (Kang & Schafer, 2007; Wooldridge, 2007, 2010) is widely known and
has been implemented in statistical software packages. See the introduction of Tan (2010) for a comprehensive summary of other
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doubly robust estimators. Doubly robust estimators have been advocated for use in many different areas of application: See, for
example, Lunceford and Davidian (2004) for medicine, Glynn and Quinn (2010) for political science, Wooldridge (2010) for
economics, and Schafer and Kang (2008) for psychology. There are also doubly robust estimators available for different settings
including instrumental variables estimation (Okui, Small, Tan, & Robins, 2012; Tan, 2006) and estimation under multivalued
treatments (Uysal, 2015). It would not be difficult to extend our method to allow these other doubly robust estimators and to
consider different settings. However, to keep the analysis simple, in this paper we focus on the augmented inverse probability
weighting estimator of the CATEF.

The CATEF is mathematically equivalent to the “V-adjusted variable importance” of van der Laan (2006), who proposes
it as a measure of variable importance in prediction. van der Laan proposes a doubly robust estimator of V-adjusted variable
importance. Contrary to ours, he considers the projection of the V-adjusted variable importance on a parametric working model
and does not consider a nonparametric estimation. Moreover, a uniform confidence band is not examined by van der Laan.

In a recent paper, Abrevaya et al. (2015) consider the estimation of the CATEF;1 however, there are two main differences of this
paper relative to Abrevaya et al. First, we propose the doubly robust procedure to estimate the CATEF. Abrevaya et al. consider
the inverse probability weighting estimator. The inverse probability weighting estimator suffers from model misspecification
when the propensity score model is misspecified and from the curse of dimensionality when it is estimated nonparametri-
cally. Second, we present a method to construct a uniform confidence band, whereas Abrevaya et al. only provide a pointwise
confidence interval.

The remainder of the paper is organized as follows. Section 2 presents the doubly robust estimation method, Section 3 gives an
informal description of how to construct a two-sided, symmetric uniform confidence band when the dimension of X is one, and
Section 4 deals with a general case and provides formal theoretical results. In Section 5, the results of Monte Carlo simulations
demonstrate that in finite samples our doubly robust estimator works well, and the proposed confidence band has desirable
coverage properties. Section 6 gives an empirical application and Section 7 concludes. The proof of the main theorem is given
in Section 8. Supporting Information appendices provide additional materials that are omitted from the main text.

2 DOUBLY ROBUST ESTIMATION OF THE AVERAGE TREATMENT
EFFECT CONDITIONAL ON COVARIATES OF INTEREST

In this section, a doubly robust method for estimating the CATEF is proposed. We first estimate the CATEF for all the covariates
using a doubly robust method. We then obtain the CATEF for the covariates of interest using a nonparametric approach.

Define

𝜋(z) ≡ E [D|Z = z] ,
𝜇j(z) ≡ E

[
Y|Z = z, D = j

]
forj = 0, 1,

where 𝜋(z) is the propensity score and 𝜇j(z) for j = 0, 1 are called regression functions. Note that 𝜇j(z) = E(Yj|Z = z) for
j = 0, 1 under unconfoundedness. Let 𝜋(z, 𝛽) and 𝜇j(z, 𝛼j) for j = 0, 1 denote parametric models of 𝜋(z) and 𝜇j(z), respectively.2

A doubly robust procedure requires that either 𝜋(z) or 𝜇j(z) for j = 0, 1 should be correctly specified, thereby allowing for
misspecification in 𝜋(z) or in 𝜇j(z). Let 𝜃0 ≡ (𝛼⊤10, 𝛼

⊤
00, 𝛽

⊤
0 )

⊤ denote the vector of true or pseudo-true parameter values that
optimize some criterion functions.

We consider the augmented inverse probability weighting approach. Let

𝜓1(W, 𝛼1, 𝛽) ≡ DY
𝜋(Z, 𝛽)

− D − 𝜋(Z, 𝛽)
𝜋(Z, 𝛽)

𝜇1(Z, 𝛼1),

𝜓0(W, 𝛼0, 𝛽) ≡ (1 − D)Y
1 − 𝜋(Z, 𝛽)

+ D − 𝜋(Z, 𝛽)
1 − 𝜋(Z, 𝛽)

𝜇0(Z, 𝛼0),

𝜓(W, 𝜃) ≡ 𝜓1(W, 𝛼1, 𝛽) − 𝜓0(W, 𝛼0, 𝛽),

where W ≡ (Y,Z⊤)⊤and 𝜃 ≡ (𝛼⊤1 , 𝛼
⊤
0 , 𝛽

⊤)⊤. The first terms in 𝜓1(W, 𝛼1, 𝛽) and 𝜓0(W, 𝛼0, 𝛽) correspond to inverse probability
weighting. The second terms are augmented terms that make the procedure doubly robust.

The following lemma gives regularity conditions under which g(x) is identified.

1Our paper is independent of Abrevaya et al. (2015) and it is started without knowing their work.
2𝜇j(z, 𝛼j) may also be called “marginal structural models” of Robins (2000).
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Lemma 1. (Identification of the CATEF) Assume that Equation 2 holds and 0 < 𝜋(Z, 𝛽0) < 1 almost surely. Suppose that
either 𝛽0 satisfies E [D|Z] = 𝜋(Z, 𝛽0) almost surely or 𝛼10 and 𝛼00 satisfy E [Y1|Z] = 𝜇1(Z, 𝛼10) and E [Y0|Z] = 𝜇0(Z, 𝛼00)
almost surely. Then

g(x) = E [𝜓(W, 𝜃0)|X = x] .

Lemma 1 suggests that one may estimate g(x) by running the nonparametric regression of𝜓(W, 𝜃̂) on Xi, where 𝜃̂ is a consistent
parametric estimator of 𝜃0. Moreover, this lemma implies that the CATEF can be identified through 𝜓(W, 𝜃0) if either the
regression models (𝜇1(z, 𝛼1) and 𝜇0(z, 𝛼0)) or the propensity score model (𝜋(z, 𝛽)) is correctly specified (or both). That is, even
if 𝜇1(z, 𝛼1) and 𝜇0(z, 𝛼0) do not represent the true conditional expectation functions, provided that 𝜋(z, 𝛽) is correct, the CATEF
is identified. Similarly, even if 𝜋(z, 𝛽) is misspecified, provided that 𝜇1(z, 𝛼1) and 𝜇0(z, 𝛼0) are correct, the CATEF is identified.

Remark 1. In this paper, we focus on cases in which X is continuous. When X is discrete, the CATEF can be estimated by the
sample average of 𝜓(W, 𝜃̂) using the subsample for each possible value of X and an estimator 𝜃̂ of 𝜃0. Moreover, constructing
a confidence band is standard when X takes a finite number of values.

2.1 Parametric estimation of 𝜃
For concreteness, we consider the following estimation procedure for 𝜃0. However, how 𝜃0 is estimated does not alter our results
provided that the rate of convergence is sufficiently fast so that Assumption 1(7) given below is satisfied. For each j = 0, 1, we
estimate 𝛼j by least squares:

𝛼̂j ≡ arg min
𝛼j

n∑
i=1

Dj
i(1 − Di)1−j[Yi − 𝜇j(Zi, 𝛼j)]2. (3)

We estimate 𝛽 by maximum likelihood (e.g., probit or logit):

𝛽 ≡ arg max
𝛽

n∑
i=1

(Dilog𝜋(Zi, 𝛽) + (1 − Di)log(1 − 𝜋(Zi, 𝛽))) . (4)

Remark 2. When the dimension of Z is not too high, an alternative to parametric estimation of 𝜓(W, 𝜃0) is to estimate its
nonparametric counterpart via local polynomial estimators as in Rothe and Firpo (2016). However, this would not work when
the dimension of Z is sufficiently high (see related remarks in Rothe and Firpo). The latter is the case we focus on in the paper.

2.2 Local linear estimation of g
We consider a local linear estimator of g(x). Assume that g(x) is twice continuously differentiable. For each x = (x1, … , xd),
the local linear estimator of g(x) can be obtained by minimizing

Sn(𝛾) ≡
n∑

i=1

[
𝜓(Wi, 𝜃̂) − 𝛾0 − 𝛾⊤1 (Xi − x)

]2K
(

Xi − x
hn

)

with respect to 𝛾 ≡ (𝛾0, 𝛾
⊤
1 )

⊤ ∈ Rd+1, where K(·) is a kernel function on Rd and hn is a sequence of bandwidths. More
specifically, let ĝ(x) = e⊤1 𝛾̂(x), where 𝛾̂(x) ≡ arg min𝛾∈Rd+1 Sn(𝛾) and e1 is a column vector whose first entry is one, and the rest
are zero.

2.3 Effect of first-stage estimation
In our setting, we can carry out inference as if 𝜃0 were known. This result would not be a surprise given that our first-stage esti-
mation is parametric and our second-stage estimation is nonparametric: the rate of the convergence in the first-stage estimation
is faster than that of the second stage. This feature of no first-order effect of the first-stage estimation in the second stage turns
out to be more general than our set-up. It is indeed closely related to doubly robustness.
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If we model g(x) parametrically or more generally approximate g(x) by linear projection, it can be estimated by running an
ordinary least squares (OLS) of 𝜓(W, 𝜃̂) on X. Because of the built-in feature of double robustness, it can be shown that the
limiting distribution of the OLS estimator of 𝜓(W, 𝜃̂) on X is equivalent to that of the infeasible OLS estimator of 𝜓(W, 𝜃0) on
X. Furthermore, even if we estimate 𝜋(·) and 𝜇j(·)(j = 0, 1) nonparametrically when the dimension of Z is moderate, there will
be no estimation effect from the first stage as well. For example, see Chen, Hong, and Tarozzi (2008), Rothe and Firpo (2016),
and Chernozhukov, Escanciano, Ichimura, and Newey (2016), among others, for related results.

3 AN INFORMAL DESCRIPTION OF A UNIFORM CONFIDENCE BAND

In this section, we provide an informal description of how to construct a two-sided, symmetric uniform confidence band. For
simplicity, we focus on the leading case where d = 1. Let  ≡ [a, b] denote an interval of interest for which we build a uniform
confidence band. Assume that  is a subset of the support of X. We use nonbold x to mean that x is one-dimensional.

Algorithm. Carry out the following steps to construct a (1 − 𝛼) uniform confidence band.

1. Obtain ĝ(x) using a local linear estimator with a bandwidth hn such that

hn = ĥ × n1∕5 × n−2∕7,

where ĥ is a commonly used optimal bandwidth in the literature (e.g., the plug-in method of Ruppert, Sheather, and Wand
(1995), which is explained in Supporting Information Appendix A). We use the Gaussian kernel in our simulations and
empirical application.

2. Obtain the pointwise standard error ŝ(x)∕(nhn)1∕2 of ĝ(x) by constructing a feasible version of the asymptotic standard error
formula:

ŝ(x)
(nhn)1∕2

≡
{
[nhnf̂X(x)]−1 ∫ K2(u)du 𝜎̂2(x)

}1∕2

, (5)

where f̂X is the kernel density estimator:

f̂X(x) =
1

nhn

n∑
i=1

K
(

Xi − x
hn

)
,

and 𝜎̂2(x) is the conditional variance function estimator:

𝜎̂2(x) = 1
(n − dim(𝜃))hn

N∑
i=1

Û
2
i

f̂X(x)
K
(

Xi − x
hn

)
. (6)

Here, Ûi = 𝜓(Wi, 𝜃̂) − ĝ(Xi) and dim(𝜃) is the dimension of 𝜃.
3. To compute a critical value c(1 − 𝛼), define

𝜆 ≡ − ∫ K(u)K′′(u)du
∫ K2(u)du

.

Note that 𝜆 = 0.5 if K(·) is the Gaussian kernel.3 Let

an ≡ an() =
(

2log(h−1
n (b − a)) + 2log

𝜆1∕2

2𝜋

)1∕2

.

Now set the critical value for the two-sided symmetric uniform confidence band by

c(1 − 𝛼) ≡ (
a2

n − 2log{log[(1 − 𝛼)−1∕2]}
)1∕2

.

4. For each x ∈ , we set the two-sided symmetric confidence band:

3Note that 𝜆 = 1.98 for the biweight kernel and 𝜆 = 2.5 for the Epanechnikov kernel.
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ĝ(x) − c(1 − 𝛼) ŝ(x)√
nhn

≤ g(x) ≤ ĝ(x) + c(1 − 𝛼) ŝ(x)√
nhn

.

We make some remarks on the proposed algorithm. In step 1, the factor n1/5×n−2/7 is multiplied in the definition of hn to ensure
that the bias is asymptotically negligible by undersmoothing. In step 2, one can estimate fX and 𝜎2(x) ≡ var [𝜓(W, 𝜃0)|X = x]
using the standard kernel density and regression estimators with the same kernel function K(·) and the same bandwidth h and
also with an estimator of 𝜃0. In step 3, we may restrict the bandwidth such that hn ≪ (b− a) (which is satisfied asymptotically),
thereby imposing the condition that log(h−1

n (b − a)) is positive. The critical value proposed in step 3 is strictly positive if 𝛼 is
not too close to one or if n is large enough.

Remark 3. It is straightforward to modify the algorithm above to construct one-sided symmetric confidence bands. Define a
new critical value by

cone-sided(1 − 𝛼) ≡ (
a2

n − 2log{log[(1 − 𝛼)−1]}
)1∕2

.

Then, for each x ∈ , we set the one-sided symmetric confidence bands:

ĝ(x) − cone-sided(1 − 𝛼) ŝ(x)√
nhn

≤ g(x),

or
g(x) ≤ ĝ(x) + cone-sided(1 − 𝛼) ŝ(x)√

nhn
.

Remark 4. When x is more than one dimension, the algorithm may be revised as follows. Obviously, we need to use multivariate
kernels, and pointwise standard errors should be adjusted because the rate of convergence becomes nhd

n. The value of 𝜆 stays
the same when we use a product kernel. For example, if K is the product Gaussian kernel, then 𝜆 = 0.5. The formulas of an and
c(1 − 𝛼) need to be changed. an is the largest solution to the following equation:

mes()hn
−d𝜆d∕2(2𝜋)−(d+1)∕2ad−1

n exp(−a2
n∕2) = 1,

where mes() is the Lebesgue measure of . When d = 2, the critical value has the form c(1 − 𝛼) ≡ an + c∕an, where c is the
smallest value that satisfies

exp
(
−2e−c−c2∕2a2

n

)(
1 + c

a2
n

)
≥ 1 − 𝛼.

When d = 3, we have that c(1 − 𝛼) ≡ an + c∕an, where c is the smallest value that satisfies

exp
(
−2e−c−c2∕2a2

n

)((
1 + c

a2
n

)2

− 2
1
a2

n

)
≥ 1 − 𝛼.

We note that, in this paper, we assume that d < 4 (see Assumption 1).

Remark 5. We may compare our proposal with the critical value based on the (1 − 𝛼) quantile of the Gumbel distribution,
which is given by

c∞(1 − 𝛼) ≡ an +
−log{log[(1 − 𝛼)−1∕2]}

an
.

Note that

c∞(1 − 𝛼) − c(1 − 𝛼) =
[
−log{log[(1 − 𝛼)−1∕2]}

an

]2

,

which is strictly positive for small 𝛼 but converges to zero as an diverges. Hence we expect that in finite samples the confidence
band based on c∞(1−𝛼) is too wide and has a higher coverage probability than the nominal level. It is shown in the next section
that the critical value based on the Gumbel distribution is accurate only up to the logarithmic rate, where our proposed critical
value is precise in a polynomial rate. This is because our proposal uses a higher-order expansion of Piterbarg (1996), whose
approximation error is of a polynomial rate. See Theorem 2 in Section 4 for details.
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Remark 6. Our construction of critical values is based on a simple analytic method that is easy to compute. Alternatively, one
may rely on bootstrap methods to compute critical values for the uniform confidence band. For example, see Claeskens and
Keilegom (2003) for smoothed bootstrap confidence bands and Chernozhukov, Lee, and Rosen (2013) for multiplier bootstrap
confidence bands. Chernozhukov, Chetverikov, and Kato (2013) show that in general settings including high-dimensional mod-
els Gaussian multiplier bootstrap methods yield critical values for which the approximation error decreases polynomially in
the sample size. Roughly speaking, both our simple analytic correction and multiplier bootstrap methods yield critical values
that are accurate at polynomial rates. A refined theoretical analysis is necessary to determine which type of critical value is
better asymptotically.

Remark 7. The proposed confidence band can be used to test whether the CATEF is constant. Suppose our null hypothesis
is that g(x) is constant in . This null hypothesis can be written as g(x) = g , where g = E[g(x)|x ∈ ]. Since g can be
estimated at the parametric (

√
n ) rate and the estimator thus converges faster than ĝ(x), we can ignore the estimation error for

g . We reject the constancy of g(x), if the confidence band does not include the estimate of g for some x ∈ .

4 ASYMPTOTIC THEORY

In this section, we establish asymptotic theory. Let U ≡ 𝜓(W, 𝜃0) − g(X) and let Ui ≡ 𝜓(Wi, 𝜃0) − g(Xi) for i = 1, … , n. Let
ŝ2(x) be the estimator of the asymptotic variance of ĝ(x). Let s2

n(x) denote the population version of the asymptotic variance of
the estimator:

s2
n(x) ≡ 1

hd
n
E

[
U2

f 2
X(x)

K2

(
X − x

hn

)]
.

Assume that the d-dimensional kernel function is the product of d univariate kernel functions. That is, K(s) =
∏d

j=1 K(sj), where

s ≡ (s1, … , sd) is a d-dimensional vector and K(·) is a kernel function on R. Let 𝜌d(s) =
∏d

j=1 𝜌(sj), where

𝜌(sj) ≡ ∫ K(u)K(u − sj)du
∫ K2(u)du

, (7)

for each j. We make the following assumptions.

Assumption 1. Let d < 4.

1.  ≡ ∏d
j=1[aj, bj], where aj < bj, j = 1, … , d, and  is a strict subset of the support of X.

2. The distribution of X has a bounded Lebesgue density fX(·) on Rd. Furthermore, fX(·) is bounded below from zero with
continuous derivatives on .

3. The density of U is bounded, E[U2|X = x] is continuous on , and supx∈RdE[U4|X = x] < ∞.
4. g(·) is twice continuously differentiable on .
5. K(s) =

∏d
j=1 K(sj), where K(·) is a kernel function on R that has finite support on [−1, 1], ∫ 1

−1 uK(u)du = 0, ∫ 1
−1 K(u)du = 1,

symmetric around zero, and six times differentiable.
6. hn = Cn−𝜂 , where C and 𝜂 are positive constants such that 𝜂 < 1∕(2d) and 𝜂 > 1∕(d + 4).
7. infn≥1infx∈sn(x) > 0 and sn(x) is continuous for each n ≥ 1. Furthermore, x → E

[
U2|X = x

]
fX(x) is Lipschitz continuous.

8. There exists an estimator ŝ2(x) such that

sup
x∈

|||ŝ2(x) − s2
n(x)

||| = Op(n−c)

for some constant c > 0.
9. max

{
(nhd

n)1∕2|𝜓(Wi, 𝜃̂) − 𝜓(Wi, 𝜃0)| ∶ i = 1, … , n
}
= Op(n−c) for some constant c > 0.

Most of the assumptions are standard. Condition 2 of Assumption 1 rules out discrete covariates. If all regressors are discrete,
then the estimation problem reduces to a parametric estimation problem. In this case, one may consider a multiple testing
approach as in Lee and Shaikh (2014) by defining subpopulations with observed cells of discrete covariates. If some covariates
are discrete and others are continuous, then one may use a smoothing approach proposed in Li and Racine (2004).

Condition 5 assumes that the kernel function has finite support. This assumption is for the simplicity of the paper and can
be dropped at the expense of complicated proofs. It also assumes that the kernel function is differentiable. This assumption is
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crucial and excludes, for example, the uniform kernel. One of the bandwidth conditions in hn (i.e., 𝜂 > 1∕(d+4) in condition 6)
imposes undersmoothing, so that we can ignore the bias asymptotically. The rule-of-thumb bandwidth proposed in Section 3
satisfies the required rate conditions.

Remark 8. Note that d < 4 is necessary to ensure that 𝜂 < 1∕(2d) and 𝜂 > 1∕(d+4) can hold jointly. It is possible to extend our
asymptotic theory to the case that d ≥ 4 using a higher-order local polynomial estimator under stronger smoothness conditions.
In this paper, we limit our attention to the local linear estimator since we are mainly interested in low-dimensional x.

Remark 9. An estimator of ŝ2(x) is readily available. For example, we may consider

ŝ2(x) = 𝜎̂2(x)
f̂X(x) ∫ K2 (u) du, (8)

where f̂X(·) is the kernel density estimator and 𝜎̂2(x) is a nonparametric estimator of 𝜎2(x) using {(Û2
i ,Xi) ∶ i = 1, … , n} with

Ûi ≡ 𝜓(Wi, 𝜃̂) − ĝ(Xi). Recall Equation 6 for its concrete form for the one-dimensional case. Alternatively, we may set

ŝ2(x) = 1
nhd

n

n∑
i=1

Û2
i

f̂ 2
X(x)

K2

(
X − x

hn

)
.

For either estimator, it is straightforward to verify condition 8 of Assumption 1 using the standard results in kernel estimation.

Remark 10. Note that condition 9 of Assumption 1 is merely a sufficient (but not necessary) condition. This condition is
satisfied, for example, if ||𝜃̂ − 𝜃0|| = Op(n−1∕2), functions 𝛽 → 𝜋(Z, 𝛽) and 𝛼j → 𝜇j(Z, 𝛼j), j = 0, 1, are Lipschitz continuous,
𝜋(Z, 𝛽0) is bounded between 𝜖 and 1 − 𝜖 for some constant 𝜖 > 0, provided that some weak moment conditions on (Y,Z) hold.

Let an ≡ an() be the largest solution to the following equation:

mes()hn
−d𝜆d∕2(2𝜋)−(d+1)∕2ad−1

n exp(−a2
n∕2) = 1, (9)

where mes() is the Lebesgue measure of ; that is, mes() = ∏d
j=1(bj − aj) and

𝜆 =
− ∫ K(u)K′′(u)du

∫ K2(u)du
. (10)

The following is the main theoretical result of our paper.

Theorem 2. Let Assumption 1 hold. Then there exists 𝜅 > 0 such that, uniformly in t, on any finite interval:

P

(
an

[
max
x∈

|||| ĝ(x) − g(x)
ŝ(x)

|||| − an

]
< t

)
= exp

(
−2e−t−t2∕2a2

n

) ⌊(d−1)∕2⌋∑
m=0

hm,d−1a−2m
n

(
1 + t

a2
n

)d−2m−1

+ O(n−𝜅), (11)

as n → ∞, where hm,d−1 ≡ (−1)m(d−1)!
m!2m(d−2m−1)!

and ⌊·⌋ is the integer part of a number.

Note that the approximation error is of a polynomial rate. As a result, a critical value based on the leading term of the
right-hand side of Equation 11 provides a better approximation than one based on the Gumbel approximation. The result in
Theorem 2 may be of independent interest for constructing the uniform confidence band in nonparametric regression beyond
the scope of estimating the CATEF in our context.

Remark 11. In a setting different from here, Lee, Linton, and Whang (2009) propose analytic critical values based on Piterbarg
(1996) in order to test for stochastic monotonicity, compare its performance with the bootstrap critical values in their Monte
Carlo experiments, and find that both perform well in finite samples. However, the discussions in Lee et al. are informal and
rely on the results of Monte Carlo experiments without the formal proof of establishing the polynomial approximation error.
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The conclusion of the theorem can be simplified for special cases. In particular, if d = 1, then

P

(
an

[
max
x∈

|||| ĝ(x) − g(x)
ŝ(x)

|||| − an

]
< t

)
= exp

(
−2e−t−t2∕2a2

n

)
+ O(n−𝜅),

where an is the largest solution to mes()hn
−1𝜆1∕2(2𝜋)−1 exp(−a2

n∕2) = 1. Also, if d = 2, then

P

(
an

[
max
x∈

|||| ĝ(x) − g(x)
ŝ(x)

|||| − an

]
< t

)
= exp

(
−2e−t−t2∕2a2

n

)(
1 + t

a2
n

)
+ O(n−𝜅),

where an is the largest solution to mes()hn
−2𝜆2(2𝜋)−3∕2an exp(−a2

n∕2) = 1.

Remark 12. It is standard to obtain pointwise confidence intervals based on normal approximations. Recall that our two-sided
symmetric uniform confidence band has the form

ĝ(x) − c(1 − 𝛼) ŝ(x)√
nhd

n

≤ g(x) ≤ ĝ(x) + c(1 − 𝛼) ŝ(x)√
nhd

n

, (12)

where c(1−𝛼) is obtained from Theorem 2. To obtain two-sided symmetric pointwise confidence intervals, we just need to replace
c(1−𝛼) with the usual normal critical value Φ−1(1−𝛼∕2), where Φ(·) is the standard normal cumulative distribution function.
The pointwise confidence interval given in Equation 12 is different from the one resulting from Abrevaya et al. (2015, Theorem
2) in terms of the formula for ŝ(x) in Equation 8. In their case, they need to estimate 𝜎̂2(x) using {(Ũ2

i ,Xi) ∶ i = 1, … , n} with

Ũi ≡ DiYi

𝜋(Zi, 𝛽)
− (1 − Di)Yi

1 − 𝜋(Zi, 𝛽)
ĝ(Xi).

Remark 13. A one-sided version of the uniform confidence band is readily available. Combining Theorems 14.1 and 14.2 of
Piterbarg (1996) with arguments identical to those used in the proof of Theorem 4.7 yields the following proposition. Under
Assumption 1, there exists 𝜅 > 0 such that, uniformly in t, on any finite interval:

P

(
an

[
max
x∈

ĝ(x) − g(x)
ŝ(x)

− an

]
< t

)
= exp

(
−e−t−t2∕2a2

n

) ⌊(d−1)∕2⌋∑
m=0

hm,d−1a−2m
n

(
1 + t

a2
n

)d−2m−1

+ O(n−𝜅), (13)

as n → ∞. Note that the only differences between Equations 11 and 13 are that (i) there is no absolute value on the left side of
the equation in 13 and (ii) there is no factor 2 inside the exponential function in 13. Hence, for example, if d = 1, then

P

(
an

[
max
x∈

ĝ(x) − g(x)
ŝ(x)

− an

]
< t

)
= exp

(
−e−t−t2∕2a2

n

)
+ O(n−𝜅).

4.1 Construction of critical values
We use the leading term on the right-hand side of Equation 11 as a distribution-like function to construct a uniform confidence
band. For example, if d = 1, we may construct a critical value c(1 − 𝛼) that satisfies

Fn,1(c) ≥ 1 − 𝛼,

where Fn,1(t) ≡ exp
(
−2e−t−t2∕2a2

n

)
. This yields the critical value presented in the Algorithm of Section 3. Similarly, if d = 2,

we can use

Fn,2(c) ≥ 1 − 𝛼,

where Fn,2(t) ≡ exp
(
−2e−t−t2∕2a2

n

)(
1 + t

a2
n

)
. In finite samples, it might be useful to impose monotonicity of Fn,j(·) by

rearrangement (see, e.g., Chernozhukov, Fernández-Val, & Galichon, 2009).
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Remark 14. Theorem 2 implies that

lim
n→∞

P

(
an

[
max
x∈

|||| ĝ(x) − g(x)
ŝ(x)

|||| − an

]
< t

)
= exp

(
−2e−t) .

Thus one may construct analytical critical values based on the Gumbel distribution. However, this approximation is accurate
only up to the logarithmic rate in view of Theorem 2.

5 MONTE CARLO EXPERIMENTS

In this section, we present the results of Monte Carlo experiments. These experiments are conducted to see the finite-sample
performance of the proposed doubly robust estimator and the proposed uniform confidence band. The simulations are conducted
using R 3.3.1 with Windows 10. The number of replications is 5,000.

5.1 Data-generating process
The data-generating process follows the potential outcome framework. The notations for the variables are the same as those
used in the theoretical part of the paper. We consider cases with p = 10, 30 and N = 500, 2000.

The data-generating process is the following. The vector of covariates Z = (X1, … ,Xp)⊤ is generated by Z ∼ N(0, Ip), where
Ip is the p-dimensional identity matrix. The potential outcomes are generated by

Y1 = 10 +
p∑

k=1

1√
p

Xk + v, Y0 = 0,

where v ∼ N(0, 1) and v is independent of Z. The treatment status D is generated by

D = 1

{
Λ

( p∑
k=p∕2

1√
p∕2

Xk

)
> U

}
,

where U ∼ U[0, 1], U is independent of (Z⊤, v) and 𝛬 is the logistic function. Thus the propensity score is 𝜋(Z) =
Λ
(∑p

k=p∕2 Xk∕
√

p∕2
)

. The observed outcome is Y = DY1.

The parameter of interest is the CATEF for X = X1. In our specification, the CATEF can be written as

CATEF(x1) = 10 + x1∕
√

p.

We examine the performance of various statistical procedures regarding this CATEF.

5.2 Model specification
To estimate and conduct statistical inferences on CATEF(x1) using our doubly robust procedure, we need to specify a model
for the regression 𝜇j(z) for j = 0, 1 and a model for the propensity score 𝜋(z). We consider two regression models and two
propensity score models. One of two models is correctly specified, but the other model is misspecified. We note that our doubly
robust procedure is predicted to work well provided that at least one of the regression model and the propensity score model is
correctly specified.

We first discuss the model specifications for the regression part. The first regression model is

𝜇1(z, 𝛼1) = 𝛼10 +
p∑

k=1

𝛼1kXk, 𝜇0(z, 𝛼0) = 𝛼00 +
p∑

k=1

𝛼0kXk.

This model is correctly specified. The coefficients are estimated by OLS using (1,X1, … ,Xp) as the explanatory variable.
The second regression model, which is misspecified, is
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𝜇1(z, 𝛼1) = 𝛼10 +
p∕2∑
k=1

𝛼1kXk, 𝜇0(z, 𝛼0) = 𝛼00 +
p∕2∑
k=1

𝛼0kXk.

The model is estimated by OLS using (1,X1, … ,Xp∕2) as explanatory variables. This model is misspecified because it suffers
from sample selection bias introduced by omitting the second half of the regressors, which affects the treatment status.

We also consider two models for propensity score. The model for propensity score is

𝜋(z, 𝛽) = Λ

(
𝛽0 +

p∑
k=1

𝛽kXk

)
.

The misspecified model is

𝜋(z, 𝛽) = Λ

(
𝛽0 +

p∕2∑
k=1

𝛽kXk

)
.

Similarly to the case of the regression part, misspecification is introduced by omitting the second half of the regressors. The
models for propensity score are estimated by maximum likelihood.

We estimate CATEF(x1) for x1 ∈ {−1,−0.5, 0, 0.5, 1} and compute the mean bias (“BIAS”), standard deviation (“SD”), the
average of standard error for ĈATEF(x1) (“ASE”), and the root mean squared error (“RMSE”). The local linear regression is
conducted with the Gaussian kernel, and the preliminary bandwidth (ĥ in Algorithm 1) is chosen by the method of Ruppert
et al. (1995). We also compute the “BIAS”, “SE” and “RMSE” of the corresponding inverse probability weighting estimators
and the regression adjustment estimators. Note that the difference between the proposed method and those alternative methods
arises only in the estimation of 𝜓(W𝜃0) and the other steps are the same.

We examine the coverage probability of the uniform confidence band for CATEF(x1) for the range −1 ≤ x1 ≤ 1. The
nominal coverage probabilities that we consider are 99%, 95% and 90%. We compute the empirical coverage (“CP”), the mean
critical value (“Mcri”), and the standard deviation of critical value (“Sdcri”). We also compute the coverage probabilities of the
confidence band based on the critical values computed by the Gumbel approximation (“GCP”).

5.3 Results
Tables 1 and 2 summarize the finite-sample properties of the proposed uniform confidence band. The results show that our
uniform confidence band has a reasonably good coverage property provided that one of the models is correctly specified. When
both models are misspecified, the size distortion is heavy. We observe that the size distortion is heavier when the regression
model is misspecified than that in the case of propensity score misspecification. This result indicates that we should carefully
model the regression part in order to obtain reliable confidence bands. The average values of the 95% critical values are around
2.75. Because the pointwise critical value is 1.96 and is much smaller than the uniformly valid critical value, this demonstrates
the importance of the uniform property of confidence band. The standard deviations of the critical values are small because
they change only if the bandwidth changes. The confidence band based on the Gumbel approximation is very conservative.

We now comment on other properties of the estimators. See Tables 3 and 4 in Supporting Information Appendix C for details.
The proposed doubly robust estimator of the CATEF works well in finite samples. As the theory indicates, the proposed estimator
exhibits small bias provided that at least one of the regression model and the propensity score model is correctly specified.
We find that the regression adjustment estimator is very precise when the regression model is correctly specified. However, it
suffers from substantial bias when the regression model is misspecified. The inverse probability weighting estimator also suffers
from model misspecification. Moreover, its standard deviation is much larger than those of the doubly robust and regression
adjustment estimators. When both models are misspecified, all three estimators suffer from heavy bias. The inverse probability
weighting estimator has the largest RMSE because its distribution is more diverse than those of the other two estimators. All
the estimators have larger standard deviations when x = 1 and x = −1 compared to those in other points. This is because the
number of observations around x = 1 or x = −1 is expected to be smaller than that around, for example, x = 0, which is the
center of the distribution. On the other hand, the magnitude of the bias does not vary much across data points. The standard
error for the proposed doubly robust estimator is slightly smaller than the standard deviation, but the difference is not large.

The results of the Monte Carlo simulation confirm that the proposed doubly robust estimator indeed works well in finite
samples provided that one of the regression and propensity score models is correctly specified. The proposed uniform confidence
band also has good coverage properties.
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TABLE 1 Monte Carlo results, CATEF confidence
band, p = 10

CP Mcri Sdcri GCP
Confidence level N = 500

True propensity score model, true regression model
99% 0.986 3.290 0.091 0.999

95% 0.939 2.750 0.107 0.999

90% 0.887 2.474 0.118 0.995
True propensity score model, false regression model

99% 0.953 3.300 0.112 0.998

95% 0.881 2.762 0.131 0.991

90% 0.823 2.487 0.144 0.979
False propensity score model, true regression model

99% 0.980 3.284 0.075 1.000

95% 0.926 2.743 0.088 0.998

90% 0.856 2.466 0.097 0.994
False propensity score model, false regression model

99% 0.561 3.285 0.079 0.999

95% 0.299 2.744 0.093 0.988

90% 0.186 2.468 0.102 0.965

N = 3, 000
True propensity score model, true regression model

99% 0.988 3.299 0.090 1.000

95% 0.941 2.761 0.106 1.000

90% 0.880 2.486 0.117 0.997
True propensity score model, false regression model

99% 0.966 3.303 0.099 1.000

95% 0.907 2.765 0.116 0.993

90% 0.848 2.491 0.128 0.985
False propensity score model, true regression model

99% 0.987 3.296 0.082 1.000

95% 0.929 2.757 0.097 0.998

90% 0.863 2.482 0.106 0.995
False propensity score model, false regression model

99% 0.014 3.296 0.081 0.986

95% 0.001 2.756 0.096 0.912

90% 0.000 2.481 0.105 0.843

Note. The nominal coverage probabilities that we consider are 99%,
95% and 90%. We compute the empirical coverage (“CP”), the
mean critical value (“Mcri”), and the standard deviation of criti-
cal value (“Sdcri”). We also compute the coverage probabilities of
the confidence band based on the critical values computed by the
Gumbel approximation (“GCP”).

6 AN EMPIRICAL APPLICATION

We apply our uniformly valid confidence band for the CATEF for the effect of maternal smoking on birth weight where the
argument of the CATEF is the mother’s age. Our aim here is to illustrate our confidence band in comparison with alternative
confidence bands. We first discuss the background of this application and the datasets used. We use two different datasets: the
dataset from Pennsylvania and that from North Carolina. We then compute various confidence bands for the CATEF and discuss
the results.

While the purpose of this application is to illustrate our uniformly valid confidence band and not to present new insights
on the effect of smoking, it is still informative to discuss the background of this application. Many studies document that low
birth weight is associated with prolonged negative effects on health and educational or labor market outcomes throughout life,
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TABLE 2 Monte Carlo results, CATEF confidence
band, p = 30

CP Mcri Sdcri GCP
Confidence level N = 500

True propensity score model, true regression model
99% 0.993 3.294 0.096 1.000

95% 0.960 2.754 0.113 0.999

90% 0.915 2.478 0.124 0.997
True propensity score model, false regression model

99% 0.969 3.302 0.113 0.999

95% 0.909 2.763 0.132 0.994

90% 0.853 2.489 0.145 0.985
False propensity score model, true regression model

99% 0.989 3.284 0.078 1.000

95% 0.952 2.742 0.092 0.999

90% 0.904 2.466 0.101 0.996
False propensity score model, false regression model

99% 0.683 3.284 0.077 0.999

95% 0.410 2.743 0.091 0.994

90% 0.264 2.466 0.099 0.977

N = 2, 000
True propensity score model, true regression model

99% 0.990 3.296 0.085 1.000

95% 0.950 2.757 0.100 1.000

90% 0.893 2.481 0.110 0.998
True propensity score model, false regression model

99% 0.975 3.304 0.101 0.999

95% 0.920 2.766 0.119 0.996

90% 0.863 2.492 0.130 0.988
False propensity score model, true regression model

99% 0.987 3.296 0.079 1.000

95% 0.935 2.756 0.093 0.998

90% 0.876 2.481 0.103 0.993
False propensity score model, false regression model

99% 0.021 3.296 0.081 0.990

95% 0.003 2.757 0.096 0.921

90% 0.001 2.482 0.106 0.852

Note. See note to Table 1.

although there has been a debate over its magnitude. See, for example, Almond and Currie (2011) for a review. Maternal smoking
is considered to be the most important preventable negative cause of low birth weight (Kramer, 1987). There are many studies
that evaluate the effect of maternal smoking on low birth weight (Almond & Currie, 2011). The program evaluation approach
is employed, for example, by Almond, Chay, and Lee (2005), da Veiga and Wilder (2008), and Walker, Tekin, and Wallace
(2009), and panel data analysis is carried out by Abrevaya (2006) and Abrevaya and Dahl (2008). Here, we are interested in
how the effect of smoking changes across different age groups of mothers. Walker et al. (2009) examine whether the effect of
smoking is larger for teen mothers than for adult mothers and find mixed evidence. Abrevaya et al. (2015) also consider this
problem in their application.

6.1 Pennsylvania data
The first dataset consists of observations from white mothers in Pennsylvania in the USA. The dataset is an excerpt from Cattaneo
(2010) and is obtained from the STATA website (http://www.stata-press.com/data/r13/cattaneo2.dta). Note that the dataset was
originally used in Almond et al. (2005). We restrict our sample to white and non-Hispanic mothers, and the sample size is 3754.

http://www.stata-press.com/data/r13/cattaneo2.dta
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The outcome of interest (Y) is infant birth weight measured in grams. The treatment variable (D) is a binary variable that is
equal to 1 if the mother smokes and 0 otherwise. The set of covariates Z includes the mother’s age, an indicator variable for
alcohol consumption during pregnancy, an indicator for the first baby, the mother’s educational attainment, an indicator for the
first prenatal visit in the first trimester, the number of prenatal care visits, and an indicator for whether there was a previous
birth where the newborn died. We are interested in how the effect of smoking varies across different values of the mother’s age.
Therefore, X is the mother’s age in this application.

To estimate the CATEF, we use linear regression models for the regression part and a logit model for propensity score. The
explanatory variables used in the regression models and the logit model consist of all the elements of Z, the square of the
mother’s age, and the interaction terms between the mother’s age and all other elements of Z. We estimate the CATEF in the
interval between ages 15 and 35.

We compute the following three 95% confidence bands for the CATEF. “Our CB” is the confidence band proposed in this
paper. Because X is univariate in this application, we follow the algorithm in Section 3. We use the Gaussian kernel. The
preliminary bandwidth (ĥ) is chosen by the method of Ruppert et al. (1995). “Gumbel CB” is the confidence band in which
c(1−𝛼) in the algorithm is replaced by that based on the Gumbel approximation (see Remark 5). “PW CB” is a pointwise valid
confidence band where we replace c(1 − 𝛼) in the algorithm by the corresponding value from the standard normal distribution
(i.e., 1.96). This provides a valid confidence interval for each point of the CATEF. However, its uniform coverage rate would
be smaller than 95%.

Figure 1 plots the estimated CATEF and the three 95% confidence bands for the range between 15 and 35 years of age. The
figure also contains the average treatment effect estimate (AIPW estimate) for a reference.

The widths of the three confidence bands are substantially different. The confidence band based on the Gumbel approximation
provides the widest band and may not be very informative. The confidence band that is valid only in a pointwise sense gives the
narrowest band. This band is not uniformly valid and so may provide misleading information about the CATEF. On the other
hand, this provides valuable information if we are interested at a particular point of the CATEF. The confidence band we propose
lay between “Gumbel CB” and “PW CB.” Although this band is wider than “PW CB,” it is much narrower than “Gumbel CB”
and is uniformly asymptotically valid. We see from this figure that our confidence band is informative while being uniformly
valid.

The estimated CATEF is decreasing from 15 to around 25 years of age. It is rather stable for the range above 25 years
of age. All confidence bands indicate that the CATEF is estimated imprecisely near the ends of the range. Nonetheless,
the estimated CATEF indicates that smoking may not have a strong impact when the mother is young. The CATEF is esti-

FIGURE 1 CATEF for the effect of smoking on birth weights, Pennsylvania data, 95% confidence bands. “CATEF” = the estimated CATEF; “our
CB” = the uniformly valid confidence band proposed in this paper; “PW CB” = the confidence band that is valid only in a pointwise sense; “Gumbel
CB” = the uniformly valid confidence band based on the Gumbel approximation; “ATE” = the estimated value of the average treatment effect
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mated relatively precisely in the middle of the range. For the range between 20 and 30 years of age, even the band based
on the Gumbel approximation, which is the widest, does not contain 0. This result provides robust evidence that smok-
ing has a negative impact on birth weight at least for mothers who are 20–30 years old. In this particular dataset, the
statistical evidence against a constant smoking effect is somewhat weak. The confidence band that is valid only in a point-
wise sense may provide an impression that the smoking effect depends on the mother’s age. However, the uniformly valid
confidence band that we propose marginally contains the straight line that is equal to the ATE estimate. This result illus-
trates that there is a caveat when we use pointwise confidence intervals, as well as the importance of using uniformly valid
confidence bands.

6.2 North Carolina data
The second dataset is based on the records between 1988 and 2002 by the North Carolina State Center Health Services. This
dataset is used in Abrevaya et al. (2015) and obtained from Robert Lieli’s website (http://www.personal.ceu.hu/staff/Robert_
Lieli/cate-birthdata.zip). We restrict our sample to white and first-time mothers, and the sample size is 433,558. As in the case
of the Pennsylvania data, the outcome is infant birth weight measured in grams and the treatment variable is an indicator for
smoking status. The set of covariates Z includes those used in the analysis of the Pennsylvania data, except an indicator for the
first baby because we focus on first-time mothers, and in addition, it includes indicators for gestational diabetes, hypertension,
amniocentesis, and ultrasound exams. Again, X is the mother’s age in this application. The specification for the estimation of
the CATEF is the same as before.

The purpose of using this much larger dataset is to examine the effect of the sample size. Our method involves nonparametric
kernel regression and it might require a large sample size to yield a reliable result. For example, the result from the Pennsylvania
data indicates that the effect of smoking is very small for very young mothers. One might argue that such a result is an artifact
of small sample size. The other issue is that the confidence bands obtained using the Pennsylvania data are somewhat wide. We
hope that using this larger dataset provides us with narrower confidence bands and more informative statistical results.

Figure 2 plots the estimated CATEF and the three 95% confidence bands for the range between 15 and 35 years of age. Note
that the scale of the vertical axis is different from Figure 1. We now obtain much narrower confidence bands. The widths of the
three (uniform, pointwise and Gumbel) confidence bands are still different. The estimated CATEF for young mothers is negative
and statistically different from 0. The previous result that it is close to 0 may be considered as an artifact of small sample size.
The estimated CATEF is decreasing from around 17 to around 29 years of age. For the range above 30 years of age, we obtain
relatively wide confidence bands. We reject the null hypothesis of no effect of smoking on birth weights uniformly over 15–35
years of age. These confidence bands do not support the hypothesis that the CATEF is constant because the ATE line exceeds
the confidence bands.

One might argue that the difference in the results may stem from the fact that the North Carolina data contain richer infor-
mation and we use a larger set of covariates. We reexamine the North Carolina data based on the same set of covariates
as that for the Pennsylvania data, except an indicator for the first baby. Figure 3 in the Supporting Information Appendix
plots the estimated CATEF and confidence bands obtained using this set of covariates. The results in Figure 3 are qual-
itatively very similar to those in Figure 2. We thus believe that the difference between the results from the Pennsylvania
data and the North Carolina data are not from the difference in the covariates but from the difference in the sizes of these
two samples.

We thus interpret our findings to indicate that the different results come from the difference in sample size, yet our confidence
bands reasonably quantify the uncertainty from small sample size. While two datasets yield different estimates of CATEF,
the confidence bands from the Pennsylvania data include the estimated CATEF and the confidence bands from the North
Carolina data.

While we use the same dataset as that used in Abrevaya et al. (2015), it is somewhat difficult to compare their results
with ours because of differences in the implementations. In particular, the bandwidths are very different. Our choice of band-
width is around 0.2, whereas theirs are between 1.4 and 11.2. Nonetheless, we make several remarks. Using small bandwidths
(1.4 and 2.8), Abrevaya et al. observe almost no effect for young mothers and a large negative effect for 25- to 30-year-old
mothers. We do not observe such a large difference in the effect across different age groups. Our confidence band is as tight
as their confidence band obtained with bandwidth 11.2 even though we use a much smaller bandwidth and our confidence
band is uniform. This is possibly because we use an AIPW method, which yields a more efficient estimate than an IPW
method does.

http://www.personal.ceu.hu/staff/Robert_Lieli/cate-birthdata.zip
http://www.personal.ceu.hu/staff/Robert_Lieli/cate-birthdata.zip
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FIGURE 2 CATEF for the effect of smoking on birth weights, North Carolina data, with 95% confidence bands. See caption to Figure 1 for
further details

7 CONCLUSION

In this paper, we propose a doubly robust method for estimating the CATEF. We consider the situation where a high-dimensional
vector of covariates is needed for identifying the average treatment effect but the covariates of interest are of much lower
dimension. Our proposed estimator is doubly robust and does not suffer from the curse of dimensionality. We propose a uniform
confidence band that is easy to compute, and we illustrate its usefulness via Monte Carlo experiments and an application to the
effects of smoking on birth weights.

There are a few topics to be explored in the future. First, it would be useful to consider the issue of asymptotic biases of
the proposed estimator without relying on undersmoothing. For example, it might be possible to extend the approach of Hall
and Horowitz (2013) that avoids undersmoothing for our purposes. Second, it would be an interesting exercise to develop a
method for estimating the quantile treatment effects conditional on covariates. Third, it is possible to extend our approach to the
local average treatment effect. As mentioned in the Introduction, Ogburn et al. (2015) consider conditioning on Z to achieve
identification, but they estimate the local average treatment effect, say LATE(X), as a function of X. However, their specification
of LATE(X) is parametric. Our approach can be adapted to specify LATE(X) nonparametrically and to develop a corresponding
uniform confidence band. Fourth, this paper does not cover marginal treatment effects that can be identified using the method
of local instrumental variables developed by Heckman and Vytlacil (1999, 2005). It would be interesting to develop a uniform
confidence band for the marginal treatment effects.

8 PROOFS

This section provides the proof of Theorem 2. To save space, the proofs of Lemmas 1, 3, 4, and 5 are given in Supporting
Information Appendix B. We first establish the linear expansion of the local linear estimator.

Lemma 3. Let Assumption 1 hold. Then

sup
x∈

√
nhd

n

||||| ĝ(x) − g(x)
ŝ(x)

− 1
nhd

nsn(x)

n∑
i=1

Ui

fX(x)
K

(
Xi − x

hn

)||||| = Op (n−c)

for some positive constant c > 0.
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Define

Tn(x) ≡ 1
nhd

n

n∑
i=1

UiK
(

Xi − x
hn

)
and cn(x) ≡

{
1
hd

n
E

[
U2K2

(
X − x

hn

)]}−1∕2

.

Note that cn(x) = [fX(x)sn(x)]−1. By Lemma 3

max
x∈

√
nhd

n
|||| ĝ(x) − g(x)

ŝ(x)
− cn(x)Tn(x)

|||| = Op (n−c) .

We now use the result of Chernozhukov et al. (2014) to obtain Gaussian approximations. Define

Wn ≡ sup
x∈

cn(x)
√

nhd
n
[
Tn(x) − ETn(x)

]
. (14)

Chernozhukov et al. (2014) established an approximation of Wn by a sequence of suprema of Gaussian processes. For each
n ≥ 1, let B̃n,1 be a centered Gaussian process indexed by  with covariance function

E[B̃n,1(x)B̃n,1(x′)] = h−d
n cn(x)cn(x′)cov

[
U2K

(
X − x

hn

)
K

(
X − x′

hn

)]
. (15)

Proposition 3.2 of Chernozhukov et al. (2014) establishes the following approximation result.

Lemma 4. Let Assumption 1 hold. Then, for every n ≥ 1, there is a tight Gaussian random variable B̃n,1 in 𝓁∞() with mean
zero and covariance function (Equation 15), and there is a sequence W̃n,1 of random variables such that W̃n,1=dsupx∈B̃n,1(x)
and as n → ∞:

|Wn − W̃n,1| = OP

{
(nhd

n)−1∕6logn + (nhd
n)−1∕4log5∕4n + (n1∕2hd

n)−1∕2log3∕2n
}
.

Next we show that the Gaussian field obtained in Lemma 4 can be further approximated by a stationary Gaussian field.

Lemma 5. Let Assumption 1 hold. Then for every n ≥ 1, there is a tight Gaussian random variable B̃n,2 in 𝓁∞(n) with mean
zero and covariance function

E[B̃n,2(s)B̃n,2(s′)] = 𝜌d(s − s′)

for s, s′ ∈ n ≡ h−1
n , and there is a sequence of random variables such that W̃n,2=dsupx∈ B̃n,2(h−1

n x) and as n → ∞:

|W̃n,1 − W̃n,2| = OP

(
hn

√
logh−d

n

)
.

Proof of Theorem 2. First note that an = O(
√

logn ) because hn = Cn−𝜂 . Lemmas 4 and 5 together imply that

max
x∈

|||| ĝ(x) − g(x)
ŝ(x)

− B̃n,2(h−1
n x)

|||| = op (an) .

Note that B̃n,2, defined in Lemma 5, is a homogeneous Gaussian field with zero mean and the covariance function 𝜌d(s). Because
of the assumption on K(·), the covariance function 𝜌d(s) has finite support and is six times differentiable. The latter property
implies that the Gaussian process B̃n,2 is three times differentiable in the mean square sense (see, e.g., Chapter 4 of Rasmussen
& Williams, 2006). Then by Theorem 14.3 of Piterbarg (1996) and also by Theorem 3.2 of Konakov and Piterbarg (1984), there
exists 𝜅 > 0 such that uniformly in t, on any finite interval:
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P

(
an

[
max
x∈

|||B̃n,2(h−1
n x)||| − an

]
< t

)
= exp

(
−2e−t−t2∕2a2

n

) [(d−1)∕2]∑
m=0

hm,d−1a−2m
n

(
1 + t

a2
n

)d−2m−1

+ O(n−𝜅)

as n → ∞, where an is obtained as the largest solution to the equation

mes()hn
−d
√

detΛ2

(2𝜋)(d+1)∕2
ad−1

n e−a2
n∕2 = 1,

where 𝛬2 is the covariance matrix of the vector of the first derivative of the Gaussian field B̃n,2:

Λ2 ≡ cov grad B̃n,2(t) =
(
−𝜕

2r(0)
𝜕ti𝜕tj

, i, j = 1, … , d
)
,

and [·] is the integer part of a number. Simple calculation yields
√

det Λ2 = 𝜆d∕2 with 𝜆 defined in Equation 10.
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