
Thesis for The Degree of Licentiate of Engineering

Understanding Software Design for Creating Better
Design Environments

Rodi Jolak

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Göteborg University
Göteborg, Sweden, 2017

Understanding Software Design for Creating Better Design Environ-
ments

Rodi Jolak

Copyright ©2017 Rodi Jolak
except where otherwise stated.
All rights reserved.

Technical Report No 168L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and Göteborg University
Göteborg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Göteborg, Sweden 2017.

ii

“There is no unique picture of reality”
- Stephen Hawking

iv

Abstract

Context: Software design is considered an essential activity to analyze soft-
ware requirements in order to produce a description of the software’s internal
structure that will serve as the basis for its construction. Models are a means
to describe complex systems at several levels of abstraction and from a diversity
of perspectives. Surprisingly, most of the current software design environments
are not based on understanding of real needs of software designers in practice.

Objective: As a first step towards supporting realistic software design pro-
cesses, this thesis focuses on understanding software design practices, as well as
on proposing and assessing of a new generation of software design environments.

Method: To achieve the objective of this research, design science and empir-
ical methods are employed. In particular, a new generation software design
environment, called OctoUML, is created. Furthermore, to understand whether
there is a need to improve modeling tools, the modeling process is analyzed
in order to reveal how much effort is given to designing (i.e. thinking about
the design of software systems), and how much effort is given to drawing the
model (i.e. tool interaction).

Result: This thesis describes two areas of contributions: On the one hand,
OctoUML is perceived a usable environment in terms of ease of use, efficiency
and user satisfaction. Moreover, it seems that OctoUML supports the design
process by bridging the gap between early-phase design process and later
on documentation and formalization process. Further results show that Oc-
toUML was not only enjoyed by the designers, but also enhanced the efficiency
of the software design process. On the other hand, we proposed experiments to
increase our understanding of the software design process. We elicit many issues
that need to be considered in such experiments. Our initial findings suggest
that the majority of the modeling effort is devoted on design thinking. However,
the effort spent on using modeling tools should be reduced by investigating
better modeling-tool support.

Keywords: Software Engineering, Software Modeling, Design Effort, Soft-
ware Design Environments, UML, Empirical Software Engineering

Acknowledgment

I would like to express my sincere gratitude to a number of people who helped
me in accomplishing this research:

To my main supervisor Michel R.V. Chaudron for his continuous support,
inspiring discussions and precious suggestions. To my co-supervisors: Morten
Fjeld and Eric Knauss for their collaboration, tips, feedback and interesting
discussions. To my examiner Ulf Assarsson for his constructive feedback during
the follow-up meetings. To professor Matthias Book for accepting to be the
discussant of my licentiate seminar.

To Arif Nurwidyantoro, Boban Vesin, Eric Umuhoza (the great ninja),
Marco Brambilla, Marcus Isaksson, Truong Ho-Quang for their contributions
to the papers appended in this licentiate thesis.

To all my colleagues (researchers, administrative officers and coordinators)
at the software engineering division for their support and help. Special thanks
to all the PhD students. In particular, I would like to thank my office-mate
Truong for his support, funny discussions, gym & ping-pong sessions and also
for ruining my flight to MODLES 2016. Special thanks to Grischa Liebel for
reviewing the kappa. Furthermore, I would like to thank: Salome Maro, Hugo
Sica de Andrade and Federico Giaimo for being such nice neighbours, and Hiva
Alahyari for showing me that Soran̂ı is not too much different from Kurmanĉı.

To Bilal karasneh, Alexandru Dancu, Duy Le Khanh and Dave Stikkolorum
for their feedback and interesting discussions regarding OctoUML.

To my parents for motivating me to work hard and persevere to achieve my
goals. To my sisters and finacée for their love, constant support and continuous
encouragement.

vii

List of Publications

Included publications

This thesis is based on the following publications:

[A] M.R.V. Chaudron, R. Jolak “A Vision on a New Generation of Software
Design Environments”
In First International Workshop on Human Factors in Modeling (HuFaMo
2015). CEUR-WS, pp. 11-16. 2015.

[B] R. Jolak, B. Vesin, M. Isaksson, M.R.V. Chaudron “Towards a New
Generation of Software Design Environments: Supporting the Use of
Informal and Formal Notations with OctoUML”
In Second International Workshop on Human Factors in Modeling (Hu-
FaMo 2016). CEUR-WS, pp. 3-10. 2016.

[C] R. Jolak, B. Vesin, M.R.V. Chaudron “Using Voice Commands for UML
Modelling Support on Interactive Whiteboards: Insights and Experi-
ences”
In Proceedings of the 20th Ibero American Conference on Software Engi-
neering (CibSE) @ICSE17, pp. in print. 2017.

[D] R. Jolak, B. Vesin, M.R.V. Chaudron “OctoUML: An Environment for
Exploratory and Collaborative Software Design”
In Proceedings of the 39th International Conference on Software Engi-
neering, pp. 7-10. 2017.

[E] R. Jolak, E. Umuhoza, T. Ho-Quang, M.R.V. Chaudron, M. Brambilla
“Dissecting Design Effort and Drawing Effort in UML Modeling”
In Proceedings of 43th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pp. in print. 2017.

ix

x

Other publications

The following publications were published during my PhD studies, or are
currently in submission. However, they are not appended to this thesis, due to
contents overlapping that of appended publications or contents not related to
the thesis.

[a] B. Karasneh, R. Jolak, M.R.V. Chaudron “Using Examples for Teaching
Software Design: An Experiment Using a Repository of UML Class
Diagrams”
2015 Asia-Pacific Software Engineering Conference (APSEC). IEEE, pp.
261-268. 2015.

[b] R. Jolak, E. Umuhoza, M.R.V. Chaudron, M. Brambilla, A.Pierantonio
“Analyzing the Effort of Software Modeling”
In Submission to the Third International Workshop on Human Factors
in Modeling (HuFaMo 2017). CEUR-WS, 2017.

Research Contribution

My contributions to Paper A are mainly based on identifying challenges in
software design processes and consulting the related work. I also contributed
in writing the vision on new generation software design environments.

The design decisions of OctoUML were performed by Michel R.V. Chaudron
and me. The first version of OctoUML was mainly created by Marcus Isaksson
and Christophe Van Baalen. Between whiles, I also contributed in the develop-
ment of different functionalities of OctoUML. The voice recognition component
was added into OctoUML by Johan Hermansson and Emil Sundklev, under my
supervision and assistance.

In Paper B and Paper C, I did the majority of the paper writing. In
particular, my contributions are the related work, approach, user studies
preparation, results analysis and discussion.

In Paper D, the demonstration video was done in collaboration with Boban
Vesin. The main contributions of this paper are the demo video and the
discussion of the evaluations done in Papers B and C. Boban Vesin and I did
the majority of paper writing.

Finally in Paper E, the experiments were conducted in collaboration with
Polytechnic University of Milan and Gadjah Mada University. My major efforts
were experiment design, effort estimation approach, data analysis and results
discussion. In terms of paper writing, I was the major author of all sections,
but the experiment definition and execution details.

xii

Contents

Abstract v

Acknowledgment vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Research Motivation . 3
1.2 Research Focus . 5

1.2.1 Research Goals . 5
1.2.2 Research Questions . 6

1.3 Background . 7
1.3.1 Software Design and Modeling 7
1.3.2 Software Modeling Tools 10

1.4 Related Work . 10
1.4.1 Understanding Software Design 10
1.4.2 Supporting Software Design 12

1.5 Research Methodology . 12
1.5.1 Design Science . 13
1.5.2 Empirical Methods . 14

1.6 Contributions . 15
1.6.1 Paper A: A Vision on a New Generation of Software

Design Environments . 15
1.6.2 Paper B: Towards a New Generation of Software De-

sign Environments: Supporting the Use of Informal and
Formal Notations with OctoUML 17

1.6.3 Paper C: Interaction With Software Design Environ-
ments Via Voice For UML Design Support on Interactive
Whiteboards: Insights And Experiences 19

xiii

xiv CONTENTS

1.6.4 Paper D: OctoUML: An Environment for Exploratory
and Collaborative Software Design 20

1.6.5 Paper E: Dissecting Design Effort and Drawing Effort in
UML Modeling . 20

1.7 Conclusion . 21
1.8 Future Work . 22

2 Paper A 25
2.1 Introduction . 26
2.2 Related Work . 27
2.3 Our Vision . 29

2.3.1 Informal Versus Formal Notation 30
2.3.2 Integration . 31
2.3.3 Usability, Interaction and Collaboration 33
2.3.4 Multi-platform . 34

2.4 Conclusion . 35

3 Paper B 37
3.1 Introduction . 38
3.2 Related Work . 39
3.3 Approach . 40

3.3.1 Informality and Formality 41
3.3.2 Recognition . 42
3.3.3 Layering and Multi-touch 43
3.3.4 Other features . 43

3.4 Design . 44
3.5 Evaluation . 45

3.5.1 Participants and Modelling Expertise 46
3.5.2 Design Task . 46

3.5.2.1 Design Task Observations 46
3.5.3 SUS Questionnaire . 47

3.5.3.1 SUS Result . 47
3.5.4 Interviews . 48

3.5.4.1 Interviews’ Results 48
3.6 Discussion . 51
3.7 Threats to Validity . 52
3.8 Conclusion and Future Work 53

4 Paper C 55
4.1 Introduction . 56
4.2 Related work . 57
4.3 The Design Environment: OctoUML 58

4.3.1 Integration of The Voice Control Component 60

CONTENTS xv

4.4 Study . 61
4.5 Results . 63
4.6 Discussion . 66
4.7 Threats to Validity . 68
4.8 Conclusion and Future Work 69

5 Paper D 71
5.1 Introduction . 72
5.2 Related Work . 73
5.3 OctoUML . 74

5.3.1 OctoUML’s Architecture 74
5.3.2 Informal and Formal Notation 75
5.3.3 Interaction Modes and Collaboration 76
5.3.4 Design process in UctoUML: A Scenario 77
5.3.5 Evaluation . 77

5.4 Conclusion and Future Development 79

6 Paper E 81
6.1 Introduction . 82
6.2 Related Work . 83
6.3 Approach . 84

6.3.1 Phase 1: Modeling . 85
6.3.2 Phase 2: Copying . 86
6.3.3 Analyze Effort Difference 86

6.4 Experiment . 88
6.4.1 Experiment Preparation 88

6.4.1.1 Scenarios Definition 88
6.4.1.2 Assigning scenarios to participants 88

6.4.2 Experiment Execution 89
6.5 Results . 90

6.5.1 Design, Notation Expression and Layout Efforts 90
6.5.1.1 EXP1 . 90
6.5.1.2 EXP2 . 90
6.5.1.3 Quality of the models 92

6.5.2 Comparison between the results of EXP1 and EXP2 . . 92
6.5.3 Impacts of The Topic/Size of The Modeling Scenarios

on DEP, NEEP and LEP 93
6.5.4 Subjects Questionnaire 96

6.6 Discussion . 96
6.7 Threats to Validity . 97

6.7.1 Construct Validity . 97
6.7.2 Internal Validity . 98
6.7.3 External Validity . 98

xvi CONTENTS

6.8 Conclusion and Future Work 99

Bibliography 101

Chapter 1

Introduction

In this chapter, we discuss the context of the thesis, the research motivation,
research goals and research questions. Also, we outline the research methods
and research contributions. Finally, we conclude and discuss future directions.

Models are useful means to comprehend large and complex software systems.
In fact, models increase the abstraction level and consequently provide a
simplified representation of a system [1]. Software models provide means for
expressing software designs. Software designers often use software modeling
tools to create software designs.

We classify modeling tools into two categories: informal and formal. On the
one hand, we mean by informal tools any tool that supports informal modeling
in the sense that it does not constrain the modeling notations that can be used
by software designers. Examples of informal tools are whiteboards and pen &
paper (see Figure 1.1). These tools are flexible, easy to use and allow designers
to unleash their expressiveness. On the other hand, we mean by formal tools
any Computer Aided Software Engineering (CASE) tool (see Figure 1.1) that
supports the creation of designs expressed through formal modeling notations.

Figure 1.2 presents different purposes of using informal and formal modeling.
The main purpose of using informal tools is their simplicity and flexibility.
In particular, these tools promote ideation, problem exploration and under-
standing, communication and creative thinking [2]. The main purpose of using
formal tools is documentation and code generation [3].

Current informal tools do not serve well for persistence and transfer of
designs. What typically happens in practice is that software designers go to
the whiteboard, create a software design, take a picture of the created design,
go back to their desks, run a CASE tool, and try to re-draw or formalize the
design that they have previously created on the whiteboard. In this process,
redrawing is an additional step using a separate tool.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Tools supporting informal and formal software modeling

Figure 1.2: The purposes of using informal and formal modeling

A common weakness in formal tools is poor support of realistic design
practices [4]. Indeed, they support one or few formal modeling notations, and
hence restrict designers’ expressiveness. To make matters worse, the majority
of CASE tools are not designed for user experience, and their usability leaves to
be desired [5]. In fact, there are reports showing that CASE tools are perceived
complex and difficult to use [6, 7]. Moreover, the complexity of CASE tools is
considered to be a reason that adversely affect the adoption of model-based
approaches [8].

Both informal and formal modeling have their advantages and disadvantages.
Yet, neither serves all purposes in software designing. Therefore, in this thesis
we study new forms of software design tools which could better serve the
multitude of purposes.

1.1. RESEARCH MOTIVATION 3

In the next section, we provide more details regarding the aforementioned
issues. In particular, we give an overview of existing software design challenges
and describe the motivation of this research.

The rest of the this Chapter is structured as follows: The research motivation
and focus are presented in Sections 1.1 and 1.2, respectively. Section 1.3
describes the background on software modeling and design 1.3.1, as well as on
software design environments 1.3.2. The related work are described in Section
1.4. The methodology of the research is described in Section 1.5. Section 1.6
reports the contributions of this thesis. Finally, the conclusion is stated in
Section 1.7, and the future work is illustrated in Section 1.8.

1.1 Research Motivation

In this section, we describe existing software design challenges that motivate
this research. Our aim is to find solutions to accommodate these challenges.

C1. Support of Informal and Formal Modeling. Software designers
often go to the whiteboard to discuss requirements, explore domain problems
and sketch design solutions. This is because whiteboards are flexible mediums
and at easy disposal. Furthermore, whiteboards allow informal modeling i.e.
there are no restrictions on the type or formality of the modeling notations
that can be used. However, whiteboards do not offer means for data processing
and persistence. Thus, the sketched diagrams often need to be formalized and
re-modeled again using a CASE tool. The transition between informal and
formal tools introduces a discontinuity that can be a source of errors. Indeed,
rationale, ideas and the logical basis for design solutions can be easily lost when
moving from the whiteboard to the CASE tool [4]. Moreover, CASE tools
provide environments where only one or few formal modeling notations are
supported. This may actually limit the expressiveness of designers, especially
in early-phase software design. Table 1.1 is based on [9], and describes some
advantages of informal and formal modeling tools.

The main challenge is to provide a ‘one stop’ environment capable of
supporting both informal and formal modeling, while preserving the advantages
of both informal and formal tools.

C2. Usability. CASE tools are criticized of being complex and difficult to
use [6,8]. The Complexity of CASE tools often costs companies extra money for
training and learning endeavor. In particular, the interaction with these tools
is not always well-designed for a user experience, easy learning and effective
use [8]. As a consequence, CASE tools are often considered as barriers to the
adoption of model-based approaches [11]. The challenges are to

4 CHAPTER 1. INTRODUCTION

Table 1.1: Advantages of informal and formal modeling tools

Informal Tools Formal Tools

Clarity
High clarity because of strict
adherence to syntax

Flexibility Caters for improvisation of notation
Ease of continuous
design

In tools based on digital editing, editing (move, resize, delete, undo, etc.)
is easier than in sketch-based tools such as whiteboards.

Ease of learning
Notation

Formal syntax checking helps
in learning the proper syntax

Intuitiveness of
using tool

Very simple to use; but limited in
functionality

More difficult to learn, but
advanced functionalities
supported

Collaboration
Multiple people collaborating on a
shared design prefer to use informal
representations [10]

Integration
Absence of a formal syntax
(and semantics) prohibits
exchange of designs

Formal syntax allows a formal
representation of the design that
can be exchanged with other tools

• provide, as well as combine rich features in a simple and intuitive User
Interface (UI), and

• make CASE tools fit easily into users’ activities, rather than forcing users
to fit their activities into the dictates of the tools [12].

C3. Interaction Modalities. One key aspect of usability is the manner in
which people interact with the system. The interaction with current CASE-
tools takes place essentially by using the mouse and keyboard. However, in
recent times interaction technologies such as touch, voice and gesture [13] have
matured, and become commonly used as interaction modalities with software
systems. Such interaction modalities shift the balance of human-computer
interaction much closer to the human. This leads to the following challenges in
the area of software design tools:

• to open up new cognitive dimensions , and

• to provide more intuitive and effective interaction with CASE tools.

C4. Collaboration. In practice, typically multiple engineers work together
on creating a design. CASE tools are often deployed on personal computers,
and only one designer can effectively interact with the PC at any one time.
This actually limits the collaboration between designers. Furthermore, in some
situations designers are geographically distributed and need tool-support to
accommodate remote-collaborative design sessions [14]. The challenges are to:

• provide efficient support for collocated software design sessions, and

1.2. RESEARCH FOCUS 5

• accommodate distributed software design, while preserving the natural,
effortless kind of awareness and communication that happens in collocated
settings.

C5. Modeling Effort. Regardless of the reported benefits of model-based
approaches in literature, e.g. [15, 16], the use of modeling is still debated
in practice. This is because modeling is believed as an unnecessary and
superfluous activity that introduces an extra-effort in the process of software
development [17]. Part of the modeling effort is actually devoted to reasoning
and thinking about the design solution, while other parts of the effort are
dedicated to drawing the design solution (i.e. representing the solution via a
modeling notation). Here the challenge is to increase our understanding of the
amount of effort spent on design thinking and model drawing, as well as on
how to reduce the drawing effort (i.e. the modeling cost).

1.2 Research Focus

In this section, the research goals are described in detail. Afterwards, the
research questions are presented.

1.2.1 Research Goals

This research is motivated to address the aforementioned challenges in Section
1.1. The overall goal of the PhD research is “to support a realistic software
design process by understanding software design practices, as well as proposing
and assessing a new generation of software design environments”.

As first steps towards achieving the overall research goal, the following goals
are addressed in this licentiate thesis:

• Goal 1: To better understand the process of software design, in particular
in relation to different design-purposes,

• Goal 2: to propose a vision on a new generation of software design
environments,

• Goal 3: to create a proof of the proposed concept, and

• Goal 4: to assess the created concept, as well as evaluate the efficiency
and usability thereof.

To achieve Goal 1, we study and analyze the process of software design. We
investigate existing software design challenges and study modeling tool-support.
In practice, software modeling is criticized of being a time-consuming, excessive

6 CHAPTER 1. INTRODUCTION

and unnecessary approach [18]. Indeed, one argument in the discussion about
the adoption of model-based approaches in industry is the supposedly large
effort it takes to do modeling. As a first step to achieve Goal 1, we observe the
modeling process and reveal how much effort is given to design (i.e. thinking
about the design of software systems), and how much effort is given to drawing
the model (i.e. tool interaction). Based on our findings, we explore whether
it is worthy to do modeling, and whether there is a need to investigate better
tool-support.

For Goal 2, we present a vision for a more intuitive, inspiring and efficient
software design environments to support exploratory and collaborative software
modeling. In particular, we describe innovative ideas and novel concepts which
we consider relevant in supporting the software design process.

To realize the vision of the conceptual solution, a new generation software
design environment (called OctoUML) is created (Goal 3). OctoUML can be
deployed on a number of input devices ranging from desktop computers over
large touch screens to large interactive whiteboards. The main objective of
OctoUML is to build a bridge between informal modeling and formal modeling

CASE tools are frequently considered complex and time-consuming [6–8].
Software design environments should provide efficient support for designing
software system. For this, we perform an evaluation of our created concept
by assessing its efficiency and usability (Goal 4). Furthermore, Cohen and
Oviatt [13] illustrated the importance of systems that support multiple modes
of interactions in reshaping daily computing tasks. For this, we investigate ex-
periences from enabling new interaction modalities within our created concept.

1.2.2 Research Questions

To reach the goals of this licentiate thesis, the following research questions are
formulated:

• RQ1. How can a software design environment integrating the power of
both formal and informal tools be achieved?

• RQ2. How can modeling tools be improved to be easier to use and more
productive?

• RQ3. What are the perceptions regarding the usability of the proposed
conceptual solution, OctoUML?

• RQ4. Does tool-support for mixing informal and formal notation better
support the software design process?

• RQ5. Could the employment of voice interaction modality within the
software design environments enhance the efficiency of the software design
process?

1.3. BACKGROUND 7

Table 1.2: The research questions and the targeted research goals

Licentiate
Goal

G1 G2 G3 G4

Description

To better
understand the

process of
software design

Propose a vision
on a new generation
of software design

environments

Create a proof
of the

proposed concept

Assess the
created concept

Research
Questions

RQ6, RQ6.1 & RQ6.2 RQ1 & RQ2 RQ1 & RQ2 RQ3, RQ4 & RQ5

• RQ6. Can we dissect the design effort and drawing effort in software
modeling?

RQ6.1. How much of the modeling effort is spent on design?

RQ6.2. How much of the modeling effort is spent on drawing the
design solution?

Table 1.2 reports the research questions and the targeted research goals. In
particular, RQ1 and RQ2 aim to achieve Goal 2 and Goal 3. RQ3, RQ4
and RQ5 target Goal 4. Finally RQ6 and its sub-questions RQ6.1 and
RQ6.2 address Goal 1.

1.3 Background

In the first part of this section, we present the concepts of software design and
modeling. In particular, we give an overview about the characteristics of these
two activities. Later on, we provide details about existing modeling tools and
their types.

1.3.1 Software Design and Modeling

Design. According to Ralph and Wand [19], design is “a specification of
an object, manifested by some agent, intended to accomplish goals, in a
particular environment, using a set of primitive components, satisfying a
set of requirements, subject to some constraints”.

Their conceptual model of design is presented in Figure 1.3. The design
specification is a detailed description of the structure of an object or entity that
is being developed. The design agent is the entity that specifies the structural
properties of the design object. The environment is the context in which the
design object is intended to exist. Goals are what the design object should
achieve, while the primitives are the elements that compose the object. The
requirements are set of structural (unresponsive to environment changes or
stimuli) or behavioural (responsive to environment changes) characteristics

8 CHAPTER 1. INTRODUCTION

Figure 1.3: Conceptual model of “Design”

that the design object should have, whereas the constrains could be structural
or behavioural restrictions on the design object.

The nature of software design. Bourque et al. [20] define software design
as “the software engineering life cycle activity in which software requirements
are analyzed in order to produce a description of the software’s internal structure
that will serve as the basis for its construction”.

The purpose of the design is to produce a solution to a problem [21]. The
problem is basically described by means of the requirements specification,
and the solution is given by the designer via describing how the requirements
can be addressed. Therefore, design is a problem-solving task which asks
designers to consider and evaluate different design decisions (i.e. considering
size, performance, complexity, etc.). Given that the design process lacks any
analytical form, there might be many acceptable solutions to the same design
problem. This gives the design problem a wicked nature. In a wicked problem,
designers do not have a clear understanding of what can be the final solution
and have only a vague goal in their mind in the beginning [22]. A solution of
one aspect of a wicked problem simply changes the problem, and may also pose
more problems.

In problem-solving, abstraction is useful to separate the logical and physical
aspects of the design of a system. Abstraction has a central role in design. It
is a technique for dealing with complexity of software systems. Furthermore,
it enables to consider the problem by removing low-level details from the
description and retaining the essential properties. Kramer [23] stated that
abstraction is especially essential in solving complex problems, as it allows the
problem solver to think in terms of conceptual ideas rather than in terms of
their details.

1.3. BACKGROUND 9

Figure 1.4: In MDE, models are the main artifacts of software development

Software Modeling. In practice, modeling and design go hand-in hand. A
model is a simplified or partial representation of reality, defined in order to
accomplish a task or to reach an agreement. Software models provide means
for expressing a software design. Indeed, they allow to describe, reason, predict
and evaluate both software problems and solutions based on different levels of
abstraction and from multiple perspectives [1]. Model Driven (MD) approaches
are introduced in software engineering since many years. These approaches
are increasingly considered promising for large or critical systems as a solution
to issues of large, complex or critical software systems. Modeling languages
can be General Purpose Language (GPL) or Domain Specific Language (DSL).
GPLs can be applied to any domain. Examples of GPLs are: Petri nets [24]
and the Unified Modeling Language (UML1). DSLs are designed specifically
for a certain application domain or context. Examples of DSLs are: HTML2

and SQL [25].
There are many model-driven approaches adopted in practice. To mention

some of them:

• Model Based Engineering (MBE): exploits models in (document-centric)
activities. Models play an important but not the primary role [26].

• Model Driven Engineering (MDE): is a model-centric paradigm where
models are the main artifacts of software development [27]. Documents
such as code and test cases can be obtained automatically (see Figure
1.4). The main benefits of MDE are to improve productivity and quality,
as well as support early defect detection and maintenance.

• Model Driven Development (MDD): is a development paradigm that

1http://www.omg.org/spec/UML
2https://www.w3.org/html/

10 CHAPTER 1. INTRODUCTION

uses models as the primary artifact of the development process [28].
The idea is that through the use of diagrams, systems can be specified
to a modeling tool and then the code is generated in a conventional
programming language.

• Model Driven Architecture (MDA): is the particular vision of MDD
proposed by the Object Management Group (OMG3).

MBE has been applied effectively in several application sectors, e.g. em-
bedded systems [29] and telecommunication [30]. Indeed, most increments in
software productivity are obtained by increasing the abstraction level.

1.3.2 Software Modeling Tools

Software designers often use software modeling tools to perform a software
design. Design support tools can be divided in two categories: informal tools
and formal tools.

Informal tools support the creation of informal designs (i.e. elements and
symbols that do not adhere to a modeling language or syntax). Such tools
are typically used for problem domain exploration, ideation, creativity and
solution discussion. A typical example of an informal tool is the whiteboard
(see Figure 1.5). Whiteboards are flexible mediums and do not constraint the
notation that can be used.

Formal tools enforce the use of formally defined syntax of some modeling
languages. Indeed, they typically provide support for the creation of one or more
formal notations that are adherent to one or more modeling languages, such as
the UML. Typical examples are CASE tools (like Rational Rose, Enterprise
Architect, Visual Paradigm, StarUML etc.). These tools are mainly used to
describe the software system, as well as to provide instructions for software
implementation.

1.4 Related Work

In this section we describe some related work that focus on understanding and
supporting software design.

1.4.1 Understanding Software Design

Petre and Van Der Hoek [31] organized a workshop to study professional
software designers in action. They provided video-recordings and transcripts of
three two-person teams who were assigned to create a software design for the

3http://www.omg.org/

1.4. RELATED WORK 11

Figure 1.5: Informal modeling on the whiteboard

same set of requirements on a whiteboard. Over fifty researchers were invited
to participate in the workshop. They were asked to explore the videos to
understand design strategies and types of activities that professional designers
engage in during software design sessions. In the following paragraphs, we
report the findings of some of the researches who took a part in the workshop.

Tang et al. [32] tried to understand how software designers make design
reasoning and decisions, and how the decision making process influences the
effectiveness of the design process. They found that planning design discussions
in an opportune way improves the exploration of design solutions. They also
found that the manners by which the decisions are made have an impact on the
use of design time and derived solutions. Furthermore, it seems that the use of
design reasoning techniques contribute to the effectiveness of software design.

Sharif et al. [33] analyzed the video-recordings and explored the software
design strategies and activities that happened in each design session. They
identified some of time-consuming design activities such as decisions about the
logic, discussion of uses cases, drawing class diagrams, and drawing the user
interface. Furthermore, they found that planning and high degree of agreement
between designers play a significant role in delivering a detailed design that
covers most of the requirements.

Baker and Van Der Hoek [34] studied the video recordings in order to
understand how software designers address software design problems. In
particular, they evaluated the design sessions in terms of the discussed subjects,
generated ideas and design cycles. They found that the design sessions were
highly incremental and designers repeatedly returned to high level subjects, as
well as to previously discussed ideas.

12 CHAPTER 1. INTRODUCTION

Budgen [4] tried to observe the design sessions and identify principles for
designing software deign environments. He found that: (i) informal diagrams
and notations are often used, (ii) there was a frequent switching between
viewpoints and sections of the whiteboard, and (iii) the whiteboard annotations
were chiefly performed by one person.

1.4.2 Supporting Software Design

Based on his observations that are reported previously, Budgen [4] provided
some recommendations for future design support tools. In particular, informal
diagrams and lists need to be integrated with other more formal notations.
Ideally, a tool should be simple and support the transition from informal
notations to formal notations. He also stated that unless it transformed into
more formal description during early-phase design, much of reasoning and
rationale would quickly be lost.

Cherubini et al. [2] highlighted how the software design on whiteboards is
prevalent and transient, serving a crucial role in supporting the development
process. They stated that whiteboards are preferred for design because of their
flexibility and simplicity.

Derkel and Herbsleb [35] observed collocated object-oriented design collabo-
rations and focused on representation use. They found that teams intentionally
improvise representations and sketch informal diagrams in varied represen-
tations that often diverge from formal notations or languages. To support
collaborative software design, they suggest that collaborative software design
environments should focus on preserving contextual information, while allowing
unconstrained mixing and improvising of notations.

Whittle et al. [8] explored tool-related issues in affecting the adoption of
MDE in industry. Based on interviews conducted with twenty companies, they
observed that the interviewees emphasized tool immaturity, complexity, and
lack of usability as major barriers against the adoption of MDE. Usability
issues were reported to be related to the complexity of user interfaces. There is
a lack of consideration of how people work and think. The authors suggested to
match modeling tools to people, not the other way around, by producing more
useful and usable tools, as well as supporting early-phase design and creativity
in modeling.

1.5 Research Methodology

To achieve the research goals of this thesis, design science and empirical methods
are employed.

1.5. RESEARCH METHODOLOGY 13

1.5.1 Design Science

Design science methodology is defined as the design and investigation of
artifacts in a given context [36]. In particular, it is an iterative process in
which researchers engage in several cycles of three main activities: problem
identification and opportunities representation, development of solutions (i.e.
software prototyping), and evaluation of the proposed solutions in a given
context to figure out whether the solutions effectively accommodate the problem.

A conceptual research [37] was performed in Paper A (Chapter 2) where
a vision on a new generation software design environment was presented. In
particular, innovative ideas and new concepts were proposed to tackle the
challenges (previously described in Section 1.1) that adversary affect the design
process.

Gould and Lewis [38] defined three principles that were believed to lead to
develop useful and easy to use computer systems: (i) early focus on users and
tasks, (ii) empirical measurement, and (iii) iterative design by performing user
tests, identifying and fixing problems, and observing effects of the fixes. For the
development and evaluation of the proposed conceptual solution, OctoUML,
the interaction design development approach was followed. As described by [39],
the concern of interaction design is to design for a user experience by developing
interactive systems that are usable. Interaction design consists of four main
activities (See Figure 1.6): (a) identifying needs and establishing requirements,
(b) developing alternative designs, (c) building a prototype of the system, and
(d) evaluating the developed prototype. The purpose of using the interaction
design approach is to make technology fit easily into peoples’ activities, rather
than forcing their activities to fit the dictates of technology [12].

In order to perform an early assessment of the different prototypes of
OctoUML, we carried out an interdisciplinary collaboration with the Human-
Computer Interaction (HCI) division at the University of Gothenburg. In
particular, expert researchers in HCI gave their feedback and suggestions on
how to improve the user experience, as well as the usability of the design
environment.

User studies offer a scientifically sound method to evaluate the strengths
and weaknesses of different visualization and interaction techniques, as well
as to investigate social and cognitive processes surrounding them [40]. User
studies were conducted in papers B, C, and D to evaluate the concept (i.e.
OctoUML), as well as the functionalities and usability thereof. In brief, these
studies were based on collecting both quantitative and qualitative data based
on questionnaires that assessed perceived usability, efficiency and effectiveness.
Often semi-structured interviews were also performed after the completion of
the questionnaires.

14 CHAPTER 1. INTRODUCTION

Figure 1.6: A simple model of the interaction design life-cycle

1.5.2 Empirical Methods

The aim of empirical research methods is to gain knowledge and increase
understanding by observing and evaluating processes, software tools and human-
based activities [41].

In paper C (Chapter 4), a comparative empirical study was conducted to
compare two versions of OctoUML; one version is enabled to support voice
commands and the other one is not. This was done to understand whether the
efficiency of the software design process, as well as the tool usability, can be
enhanced when supporting new interaction modalities.

Controlled experiments help to investigate a testable hypotheses where
one or more independent variables are manipulated to measure their effect on
one or more dependent variables [42]. In paper E (Chapter 6), a controlled
experiment was conducted to dissect the design effort and drawing effort in
UML modeling. The experiment was controlled in order to limit variables
other than the chosen independent variables form affecting the experiment
results. Furthermore, a subject questionnaire was used after the experiment in
order to collect qualitative data regarding the experiences of the people who
participated in the experiment.

1.6. CONTRIBUTIONS 15

1.6 Contributions

In this section the main contributions of the five papers included in this
licentiate thesis (see Chapters 2, 3, 4, 5 and 6) are summarized.

1.6.1 Paper A: A Vision on a New Generation of Soft-
ware Design Environments

This paper is a vision paper. The main contributions are based on answering
the following research questions:

• RQ.A1. How can an integrated design environment having the power of
both formal and informal tools be achieved?

• RQ.A2. How can modeling tools be easier to use and more productive?

In order to answer these research questions, some key aspects to generalize
existing modeling tools are presented. In particular, the paper proposes that
software design environments should:

• integrate informal and formal modeling notations,

• support multiple modes of interaction,

• support collaborative software design,

• integrate other software engineering tools, and

• be usable and deployable on multiple platforms.

In the next paragraphs, more details regarding each of these aspects are
presented. In order to get further details, see Chapter 2 for the complete paper.

I. Mixing informal with formal notations. While exploring software
design problems and discussing solution alternatives, software designers often
go to the whiteboard and use informal notations in order to prototype their
thoughts and ideas. This is because the whiteboard does not limit designers’
expressiveness. CASE tools are usually used to formalize and document the
design solution that are created on the whiteboard. There is a gap between
early-phase software design exploration process where designers often use an
informal tool (e.g. a whiteboard) and formalization/documentation process
where a formal tool is used (e.g. a CASE tool).

As a remedy of the aforementioned gap, software design environments
should support the creation of both informal and formal modeling notations.
Furthermore, they should allow the transformation of informal models into
formal contents using a recognition mechanism. This to:

16 CHAPTER 1. INTRODUCTION

• let such contents be easily exchanged with other software tools, and

• enable the gradual transition into more detailed models used in later stages
of development.

II. Support for multiple modes of interaction. The interaction with
the majority of CASE tools is based on using the mouse and keyboard. This
actually limits the amount of interaction with the design environment when
there is more than one designer involved in the software design activity. The
interaction with whiteboards is intuitive. It is based on using the hands (holding
a stylus or a piece of a chalk) for sketching. Moreover, during software design
sessions, software designers usually use gestures by waving their hands or
pointing to one part of the diagram in order to explain or communicate their
ideas.

Some forms of disability prevent people from using their hands. In this
case, interaction with software design environments via voice commands would
re-mediate such inconvenience. Touch-based devices such as large touch screens
and interactive whiteboards are intuitive and becoming common in class room
environments, as well as in meeting rooms.

To support practical design sessions, software design environments should
support multiple modes of interaction e.g. mouse, keyboard, voice, hand gesture
and touch-input.

III. Supporting collaborative software design sessions. Software de-
sign is often a collaborative activity. Multiple designers meet on-site or remotely
in order to discuss design problems and create design solutions. Whiteboards
support collocated software design sessions, but do not provide means for
supporting remote software design sessions between geographically distributed
designers. CASE tools cannot be used by more than one designer simultane-
ously.

Software design tools should support both collocated and remote collaborative
software design session.

IV. Integration of other software engineering tools. Software design
affects and is also affected by other software engineering activities. A change
in the requirements could lead to a changes in the design. Similarly, going with
one design solution rather than with another one could affect the performance
of the developed software system. Therefore, Software design environments
should be integrated with other software management tools in order to provide
effective support for software modeling across a project’s lifecycle.

In particular, software design environments should be capable of addressing
issues like requirements analysis and management, programming and coding,
performance and security analysis, testing and model version management.

1.6. CONTRIBUTIONS 17

Figure 1.7: The main goal of OctoUML

V. Usability and multi-platform. The usability of current CASE tools
is a common source of criticism. Indeed, these tools are difficult to use and
not designed for a user experience. Moreover, the majority of CASE tools are
designed to run on standard PCs and tailored to be used by one designer at a
time.

Software design environments should rather be designed for an intuitive
software modeling experience and deployable on multiple devices e.g. PCs, large
touch-screens, tablets and interactive whiteboards.

1.6.2 Paper B: Towards a New Generation of Software
Design Environments: Supporting the Use of In-
formal and Formal Notations with OctoUML

The contributions of this paper are two-fold: design and creation of a new
generation software design environment, OctoUML, and a qualitative evaluation
and accompanying usability and efficiency discussion of the environment.

To realize the vision that was described in Paper A, a new generation soft-
ware design environment, called OctoUML, is created. OctoUML combines the
advantages of both whiteboards and CASE tools, and supports the achievement
of informal and formal modeling purposes (see Table 1.3).

Figure 1.7 shows the main goal of OctoUML. Indeed, the goal is to bridge
the gap between early-phase software design process (when designers often do
reasoning and sketch their ideas) and the formalization and documentation
process (when CASE tools are usually used to document the designs).

OctoUML can be deployed on different platforms, e.g., desktop computers,
personal computers, large electronic touch screens and interactive whiteboards.
OctoUML enables users to create and mix both informal and formal modeling

18 CHAPTER 1. INTRODUCTION

Table 1.3: Informal and formal modeling purposes as supported by the func-
tionalities of OctoUML

Modeling Purpose

Id
ea

ti
on

E
x
p

lo
ra

ti
on

C
ol

la
b

or
at

io
n

C
om

m
u

n
ic

a
ti

on

D
o
cu

m
en

ta
ti

on

C
o
d

e
G

en
er

at
io

n

Informal Notations (IF) 3 3 3 3
Formal Notations (F) 3 3 3 3
Transition from IF to F 3 3
Integration of Analysis Tools 3
Version Management 3 3
Multi-User Interaction 3 3 3 3
Remote Interaction 3 3 3 3
Saving Design as XMI 3 3

F
u

n
c
ti

o
n

a
li

ty

Sharing Design 3 3

notations at the same time. It provides a selective recognition mechanism that
is used to transform informal elements into formalized contents. Furthermore,
OctoUML supports collocated software design sessions thanks to the adopted
multi-touch mechanism. This mechanism actually enables more than one user
to interact with the environment simultaneously.

A user study [40] was conducted in order to assess and evaluate the system.
In particular sixteen subjects were engaged in a design assignment. After that,
the subjects were asked to assess the usability using the SUS questionnaire [43].
Furthermore, the subjects were involved in semi-structured interviews in order
to collect their feedback and perceptions. The following research questions
were addressed:

• RQ.B1 Does the proposed conceptual solution, OctoUML, provide a
usable environment?

• RQ.B2 Does support for mixing informal and formal notation better
support the software design process?

The results show that OctoUML provides a usable and user-friendly envi-
ronment. Moreover, OctoUML is perceived to have the potential to effectively

1.6. CONTRIBUTIONS 19

support the activities of software designers by supporting the creation and
mixing of both informal and formal modeling notations.

Chapter 3 provides more details on the characteristics and functionalities
of OctoUML, as well as on the evaluation process and the obtained results.

1.6.3 Paper C: Interaction With Software Design Envi-
ronments Via Voice For UML Design Support on
Interactive Whiteboards: Insights And Experiences

Multi-modal systems use multiple integrated interaction modalities (e.g. sketch,
touch, voice, etc.). Cohen and Oviatt [13] illustrated the importance of multi-
modal systems in reshaping daily computing tasks and predicted their future
role in shifting the balance of human-computer interaction much closer to the
human. To improve usability, efficiency and accessibility, we proposed in Paper
A that software design environments should be equipped with microphones to
record the spoken discussions, and have a recognition component to interpret
users’ voice-commands. To achieve such improvements, a voice recognition
component was added into OctoUML.

The contributions of this paper are three-fold: the addition of a voice
recognition system to OctoUML; the results of a qualitative evaluation of the
voice recognition system and its functionalities; and the results of a quantitative
comparative study in which the efficiency of two versions of OctoUML were
compared. One version is equipped with the voice recognition system, Oc-
toUML-V and the other one is not, OctoUML-Lite. The following research
question was addressed:

• RQ.C Does the employment of voice interaction modality within the
software design environments enhance the efficiency of the software design
process?

The results of the evaluation show that:

• Generally all the functionalities of OctoUML were perceived suitable
to be evoked by voice-commands. In particular, the task of using the
keyboard for text input is perceived as most important to be supported
by voice-commands. The main reason is that using a keyboard is not
ergonomic and a time-consuming task.

• The perceptions regarding the usability of the voice interaction modality
supported by OctoUML are positive. Moreover, OctoUML-V is perceived
more enjoyable than OctoUML-Lite.

• The employment of voice interaction modality within the software design
environments enhances the efficiency of the software design process by
reducing the time required for text input.

20 CHAPTER 1. INTRODUCTION

Chapter 4 provides more details on the motivation for adding the voice recog-
nition system to OctoUML, the types of voice-commands that are supported,
and the evaluation process together with the obtained results.

1.6.4 Paper D: OctoUML: An Environment for Exploratory
and Collaborative Software Design

This paper is a demonstration paper of OctoUML. The contribution of this
paper is the demonstration video which was specially recorded to disseminate
the concept of OctoUML. A demonstration is an effective way to show the idea
and functionalities of a system in action in order to enable people to fully grasp
its value and potential. In this paper the architecture and functionalities of
OctoUML are presented, and the design process is described with a scenario.
Furthermore, the results of the evaluations performed in Papers B and C are
re-presented in this paper. The demonstration video can be viewed via the
following link: https://youtu.be/fsN3rfEAYHw

1.6.5 Paper E: Dissecting Design Effort and Drawing Ef-
fort in UML Modeling

Model-based approaches are considered to be beneficial in improving software
development productivity and product quality (e.g. [15]). However, these
approaches are criticized of the supposedly large effort they require to do
modeling. Regardless of its reported benefits, software modeling is still believed
as an unnecessary approach by some developers [17].

In this paper, the process of software modeling is analyzed in order to find
out: (i) how much effort is spent on the design of a solution (i.e., thinking and
making design decisions), and (ii) how much effort is spent on drawing of the
design solution with a modeling tool (i.e. tool interaction). In particular, the
modeling activity is considered to consist of three main cognitive sub-activities:

• Design: ideation and thinking about the design.

• Notation Expression: representation of a design via the modeling notation.

• Layout : spatial organization of the elements of a model.

The drawing effort is the effort spent on notation expression and layout.
The following questions were addressed:

• RQ.E. How can the design effort and drawing effort in software modeling
be dissected?

RQ6.E1. How much of the modeling effort is spent on design?

RQ6.E2. How much of the modeling effort is spent on drawing the
design solution?

https://youtu.be/fsN3rfEAYHw

1.7. CONCLUSION 21

To compute the effort spent in each sub-activity, two-phase experiments
were conducted. In the first phase, the effort required to make the initial model
of a system (modeling effort) was measured. In the second phase, the effort
required to recreate the same model again is measured, simply by redrawing
the already defined solution (copying effort). At the end, the design, notation
expression, layout efforts are calculated by assessing the time difference between
the two phases.

The initial findings suggest that the majority of the modeling effort is
devoted to the design (design effort). This means that projects that create
models incur at least significant thinking about the design. However, the effort
spent on using modeling tools (drawing effort) could be reduced by investigating
better modeling-tool support.

Chapter 6 provides more details on the design of the controlled experiments,
as well as on the approach which is used to calculate the effort of each modeling
sub-activity.

1.7 Conclusion

The overall goal of the PhD research is to better support a realistic software
design process by understanding software design practices, as well as proposing
and assessing a new generation of software design environments. As a first
steps towards achieving the overall goal of the research, the following four goals
are addressed in this licentiate thesis:

First, a number of challenges that adversely affect the process of software
design were discussed. Such challenges are mainly related to current modeling
tools, as they lack of proper support of the software design process. To overcome
the challenges and effectively support the software design process, a vision on a
new generation software design environments was presented in Paper A (Goal 2).
In particular, software design environments are proposed to integrate informal
and formal modeling notations, support multiple modes of interaction, support
software design collaboration sessions, integrate other software engineering
tools, and be usable and deployable on multiple platforms.

Second, a new generation environment for exploratory and collaborative
software design, called OctoUML, was designed and subsequently created (Goal
3). Table 1.4 provides a comparison between the characteristics and supported
functionalities of informal tools, formal tools and OctoUML. OctoUML is
an open source system. It supports multiple modes of interaction such as
mouse, keyboard, touch and voice-commands. It also supports the creation
of both informal and formal modeling notations simultaneously. To open up
new opportunities for interactive collaborative design, OctoUML is enabled to
support both collocated and remote collaborative design sessions.

22 CHAPTER 1. INTRODUCTION

Table 1.4: Comparison between the characteristics and supported functionalities
of informal tools, formal tools and OctoUML

Functionality Informal Tools Formal CASE Tools OctoUML
Informal Notations (IF) 3 3

Formal Notations (F) 3 3 3

Transition from IF to F 3

Version Management Sometimes (ST) 3

Integration of Analysis Tools 3

Collocated Design 3 3(multi-touch)
Remote Design ST 3

Saving Design as XMI 3 3

Design Sharing Electronically 3 3

Characteristic
Simplicity 3 3

Flexibility 3 3

Designed for UX 3 3

Ease of Use 3 3

Ease of Learning 3 ST 3

Third, the efficiency and usability of OctoUML was assessed through user
studies (Goal 4). The perceptions regarding the usability and efficiency of
OctoUML were positive. Furthermore, OctoUML was perceived to have the
potential to effectively support the activities of the designers.

Fourth, two experiments were conducted to increase the understanding of
the software design process (Goal 1). In particular, the software modeling
process was analyzed in order to dissect the effort spent on thinking about the
design (design effort) and the effort spent on drawing the design solution in a
modeling tool (drawing effort). It turned out that the majority of the modeling
effort is dedicated to design thinking, whereas the effort dedicated to draw the
design solution, i.e. tool interaction, cannot be neglected. To reduce such an
effort, better modeling-tool support should be investigated.

1.8 Future Work

The goals of this licentiate thesis are considered as first steps towards achieving
the overall goal of the PhD research (see Section 1.2). In this section, the
future directions are presented and discussed (see Figure 1.8).

The first direction is to enrich the body of knowledge regarding the software
design practices. With regards to the estimation of design and drawing efforts,
more experiments will be conducted to increase the validity of the results
already obtained so far. Some aspects that will be investigated are: software
design experience, professionalism, modeling tools and modeling languages.

1.8. FUTURE WORK 23

The second direction is to perform a further assessment of the functionalities
of OctoUML, as well as to investigate new approaches for supporting the
software design process. More details are presented in the next two paragraphs.

Further assessment of OctoUML. Software design is usually a collabora-
tive activity. In fact, more often than not several designers work together to
understand a domain problem and come up with a design solution. OctoUML is
enriched with a multi-touch mechanism by which more than one designer can
interact with interface simultaneously. Moreover, OctoUML allows multiple
designers geographically distributed to collaborate remotely. To investigate
collaborative design and modeling in software engineering, several collaborative
design sessions will be conducted and observed. Substantially, the goals are to:
(i) acquire knowledge to build better software design tools, (ii) understand the
effect of modeling in distributed design, and (iii) explore and understand the
choice of formality in distributed design.

Navigation and Understanding. Models are characterized of being high-
level abstraction software artefacts. In contrast, code fragments are charac-
terized of being low-level abstraction software artefacts. In MDE, models are
mainly used to generate code fragments. Most of the tools that enable forward,
reverse and round-trip engineering lack support for an effective visualization
of, navigation and linking between models and code. As a remedy, novel
approaches to visualize models and code via OctoUML will be investigated
and provided. The main goals are to: (i) reduce the gap in abstraction level
between models and code, (ii) support traceability and navigation between the
two artefacts, and (iii) support overall software comprehensibility.

Analysis. Another direction is to integrate other software engineering tools
within OctoUML. For example, Smith and Williams [45] state that performance
is a critical quality for the success of today’s software system. A performance
analysis tool will be integrated with OctoUML. The overall goal is to give a view
on the performance of software systems during early-phase design processes,
when design choices are usually explored, confronted and made.

24
C
H
A
P
T
E
R

1
.

IN
T
R
O
D
U
C
T
IO

N

Figure 1.8: Future Directions

Chapter 2

Paper A

A Vision on a New Generation of Software Design Envi-
ronments

M.R.V. Chaudron, R. Jolak

In First International Workshop on Human Factors in Modeling
(HuFaMo 2015). CEUR-WS, pp. 11-16. 2015.

25

Abstract

In this paper we illustrate our vision for a new generation software design
environment. This environment aims to generalize existing modeling tools in
several ways - some key extensions are: integration of rigorous and informal
notations, and support for multiple modes of interaction. We describe how
we can consolidate the environment by integrating it with other software
engineering tools. Furthermore, we describe some methods which could permit
the environment to provide a flexible collaborative medium and have a practical
and inspiring user experience.

Keywords: Software Engineering; Modeling Tools; Collaborative Design;
IDE.

26 CHAPTER 2. PAPER A

2.1 Introduction

Software systems have an important role in the technological evolution which we
are witnessing nowadays, and as a consequence, software systems are becoming
more and more complex. The increasing complexity of such systems has
raised some certain challenges, such as e.g. design uncertainty and run-time
changes, making it difficult to meet continuous customer demands for a better
software quality [46, 47]. Software modeling plays a pivotal role in software
development. Models present an understandable description of complex systems
at several levels of abstraction and from a diversity of perspectives. Furthermore,
they provide an essential medium matching between problem and software
implementation by describing users needs and prescribing the product to be
developed.

Software modeling is a highly complex and demanding activity [32]. Software
designers often use software modeling tools to perform a software design. There
are two dimensions of these tools that we will challenge in this paper: i) the
formality of the notation used, and ii) the modes of interaction supported by
the tools. Next, we briefly explain our views on these dimensions.

First, we classify modeling tools into two groups: informal and formal. We
mean by informal any tool that supports informal design in the sense that it
does not constrain the notation used. Examples of such tools are whiteboards,
paper and pencil. Whiteboards are often used to collaboratively sketch software
modeling ideas, discover architectural solutions, capture design discussions,
etc. [2, 48]. Whiteboards are normally used for sketching when more than two
people are involved [10]. Generic diagramming tools such as PowerPoint and
Visio are informal in the sense that they do not constrain the notation, but they
do provide mature digital editing functionality (move, delete, undo). While on
the other hand we mean by formal tools any CASE tool which supports one
or more formalized notations. Typical examples are UML CASE tools (like
Rational Rose, Enterprise Architect, Visual Paradigm, StarUML etc.). Also for
many other modeling languages, tools are often dedicated to a single notation
(Archimate for Enterprise Modeling, ARIS-tool for Business Process Modeling,
etc.). All CASE tools support mature digital edition functionality.

Table 2.1 is based on Hammouda [9] and describes some relative advantages
of informal and formal modeling tools. We envision our environment to have
the advantages of both formal and informal tools.

The second dimension we challenge is that of the modes of interaction
supported by modeling tools. Oviatt and Cohen [13] illustrated the importance
of multimodal systems in reshaping daily computing tasks and predicted their
future role in shifting the balance of human-computer interaction much closer
to the human. Based on that, we want to support multimodal communication
interactions by recognizing touch, voice and gesture for a more intuitive software
modeling experience.

2.2. RELATED WORK 27

Table 2.1: Relative Advantages of Informal and Formal Modeling Approaches

Informal Formal

Clarity
High clarity because of strict
adherence to syntax

Flexibility Caters for improvisation of notation
Ease of continuous
design

In tools based on digital editing, editing (move, resize, delete, undo, etc.)
is easier than in sketch-based tools such as whiteboards.

Ease of learning
Notation

Formal syntax checking helps
in learning the proper syntax

Intuitiveness of
using tool

Very simple to use; but limited in
functionality

More difficult to learn, but
advanced functionalities
supported

Collaboration
Multiple people collaborating on a
shared design prefer to use informal
representations [10]

Integration
Absence of a formal syntax
(and semantics) prohibits
exchange of designs

Formal syntax allows a formal
representation of the design that
can be exchanged with other tools

Summarizing, the following questions are addressed:

• Q.1. How can we achieve an integrated design environment having the
power of both formal and informal tools?

• Q.2. How can we make modeling tools easier to use and more productive?

– How can tools better support tasks of software developers? Our
focus is on tasks related to the design of systems.

– Which sources of knowledge and information can be connected to
provide information needed at easy disposal (right information at
the right moment, place and format)?

The paper is organized as follows: in Section 2.2 we describe the related
work. Section 2.3 illustrates our vision. Finally we conclude and discuss ideas
for future work in Section 2.4.

2.2 Related Work

Many empirical studies of formal tools usage have pointed out that software
designers consider these tools overly restrictive and this often lead to poor
utilization [48, 49]. By doing a HCI study, Plimmer et al. [50] revealed that in
early software design phases, the designers prefer to sketch by hand rather than
using a keyboard or a mouse. Whiteboards support informal design. They are
frequently used by software designers during project meetings to sketch ideas
and thoughts about system goals, requirements and design solutions [2, 48].

28 CHAPTER 2. PAPER A

Electronic interactive whiteboards offer the potential for enhanced support
by allowing the manipulation of the content, handling of sketches, and doing
collaborative distributed works. Mangano et al. [51] identified some behaviors
that occur during informal design. They implemented an interactive whiteboard
system to support these behaviors, and identified some ways where interactive
whiteboards can enable designers to work more effectively. The main goal of
the system that they implemented, called Calico, is to maintain fluidity and
flexibility allowing software designers to focus on the content of their sketches
rather than the tool used to make it. Mangano et al. [51] revealed a number
of weaknesses in Calico ranging from usability issues to challenges inherent to
interactive whiteboards. In particular, designers reported that some gestures
were not rapidly interpreted, and the large e-whiteboard diminished the quality
of their handwriting, forcing them to write slower or larger. We want to support
software design not only with interactive whiteboards, but with PCs, touch
pads and smart phones.

Baltes and Diehl [10] investigated the use of sketches in software engineer-
ing activities by conducting an exploratory study in three different software
companies. Their results showed that the majority of the sketches were in-
formal, and the purposes of sketches were related to designing, explaining, or
understanding. Baltes and Diehl also showed that the sketches were archived
digitally for re-visualization and future use. Like us, they think software design
tools should enable informal design sketching.

West et al. [52] stated that software engineers often use paper and pencil to
sketch ideas when gathering requirements from stakeholders, but such sketches
on paper often need to be modelled again for a further processing. A tool,
FlexiSketch, was prototyped by them to combine freeform sketching with the
ability to interactively annotate the sketches for an incremental transformation
into semi-formal models. The users of FlexiSketch were able to draw UML-like
diagrams and introduced their own notation. They were also able to assign
types to drawn symbols. Users liked the informality provided by the tool, and
stated that they would be willing to adopt it in practice. FlexiSketch runs on
tablet computers. It is a single user tool, and does not support collaborative
sketching. We think running FlexiSketch on electronic whiteboards could allow
for multi-user input and facilitate collaboration. We also think that software
design tools should be able to support sketch recognition and its transformation
into a kind of formal diagrams as well as allow the exportation of such diagrams
to other programs e.g. CASE tools. FlexiSketch Team [53] is an extended
version of FlexiSketch, which supports a collaborative sketching via ad-hoc
local Wi-Fi network, but it does not allow for a distributed collaboration.

Chen et al. [54] have developed SUMLOW. A sketching-based UML design
tool for electronic whiteboard technology. It allows to preserve hand drawn
diagrams and supports for manipulation of the diagrams using pen-based

2.3. OUR VISION 29

actions. UML sketches can be formalized and exported to a 3rd party CASE
tool. Their tool does not support design sketching on different platforms like
mobiles and tablets. Again as all works previously mentioned, it does not
support a collaborative distributed software modeling.

MaramaSketch [55] includes a meta-modeling editor. This editor allows
to define a conventional modeling language which is then used to compile a
modeling tool for the defined language. However, MaramaSketch needs to
create the complete language definition first, and after that, users must strictly
follow it. So as a consequence, it prevents any flexible sketching.

Magin and Kopf [56] have created a multi-touch based system allowing users
to collaboratively design UML class diagram on touch screens. They have also
implemented new algorithms to recognize the gestures drawn by the users and
to improve the layout of the diagrams. However, it does not support a remote
collaboration, and as they stated, their tool has some usability challenges in
creating and editing of sketches, and in the recognition process of hand written
text.

In the area of integration of software development tools Open Services for
Life-cycle Collaboration OSLC [57] is an emerging standard. This standard
defines API’s through which development tools can interoperate. OSLC could
be a technology that underlies the integration aspects of our vision.

Brosch et al. [58] showed the importance of model versioning in enabling
efficient team-based development of models. Based on that, we think a version
management tool should be integrated within software design environments
to track modeling processes and their evolution. There is a fair amount of
work ongoing in versioning for software models [59], but none of this has been
integrated in mainstream CASE tools yet.

IBM integrated development environments [60] allow for a collaborative
software development. In particular, they provide teams with rich capabili-
ties for continuous developing, testing, analyzing and optimizing applications.
For example, IBM Rational Business Developer is an Eclipse-based environ-
ment. It allows complex applications to be modeled graphically and simplifies
their development. Anyway, IBM does not permit for a free access to these
environments.

While a comprehensive theory of IDE’s does not exist, there are proposals
for theoretical models that can serve to support the design of NGDE. Notable
approaches are the Cognitive Dimensions approach [61] and the ‘Physics of
Notations’ [62].

2.3 Our Vision

In this section we present our vision for a more intuitive, inspiring and efficient
tool to support exploratory and collaborative software modeling. In particular,

30 CHAPTER 2. PAPER A

we are going to describe some ideas which we consider to be relevant to achieve
such a tool. We will refer the next generation software design environment as
NGDE.

One first point is that in practice modeling and designing go hand-in hand.
A modeling language provides the notation in which to express a design. As
such a modeling language is a part of the toolbox that a designer uses in the
creative process of designing a solution. Currently, most case tools are modeling
(or even diagramming) tools. Instead, the next generation of tools should take a
holistic view on supporting all design activities in which developers are engaged.

Next, we discuss several key aspects in which NGDE can provide better
support for the design activities of software developers.

2.3.1 Informal Versus Formal Notation

Informal tools like whiteboards provide a useful mean for flexible collaborative
modeling. In fact, software designers can easily create/extend diagrams, add
comments and highlight some parts of their sketches. Even more, they can
sketch diagrams of multiple notations without following any restrictive rule
imposed by the formality of a one modeling language or syntax. However,
re-modeling is a difficult and a time consuming task. Moreover, whiteboards do
not support data persistence and transference. Formal tools like CASE tools
are restrictive in that they require designers to use some specific notations for
modeling. We propose that NGDE tools should support the mix of both formal
and informal modeling notations that designers use. Ideally, NGDEs should
maintain the characteristics of formal tools in their support of design transfer
and persistence. To support informal modeling, tools should allow designers
to create different types of diagrams on the same canvas [51]. Furthermore,
they should not constrain designers to sketch only some specific notations. For
instance, designers should be able to draw and create a variety of sketches
e.g. use case diagrams, work-flows, arrows, state charts, data models, etc.
In general, NGDE should enable designers to add domain specific icons or
notations. These kind of notations help to better describe a specific domain
problem.

NGDEs should keep from existing editors the abilities to organize diagrams
by moving, resizing, grouping and separating sketches, and the ability to modify
and evolve sketches.

NGDEs should have the ability to transform sketches into formalized content
by providing a recognition unit. This enables designs be formally represented
and hence easily exchanged with other software tools. Furthermore, they should
have the power of formal tools in maintaining and transferring the designs for
further processing tasks.

2.3. OUR VISION 31

2.3.2 Integration

In their daily work, many software designers work concurrently on different
artefacts: changes to a design and followed closely by changes in code and
changes in requirements. Unfortunately, with current tools the developer
needs to switch to different applications. We propose to design an integrated
environment. This does not need to become a ‘Swiss army knife’ that integrates
all functionality in a single tool. Integration of development tools needs to
address a shared data model of software development artefacts, but also a
shared UI-concept.

The goal behind the idea of integrating other software management tools
within a software modeling tool in a ‘one stop’ environment is to provide
effective support for an effective software modeling process.

Software requirements, for instance, evolve over time and they are frequently
subject to changes during initial development and later on to delivery. Designers
generate many ideas in order to understand a problem and find a solution for
it. These ideas are often compared, modified, evaluated and enriched as the
modeling process evolves. In order to realize how useful could be having a
trace of the requirements within a software modeling tool, let us think about
the following scenario: a group of software designers start to document and
gather needs of a specific software product, after that, they proceed to create
a first design of the product using for example a traditional whiteboard or a
CASE tool. Let us also consider that the software needs, written on a simple
paper sheet, are given by a client. In both cases, using either a whiteboard
or a CASE tool, software designers have to meet again and again whenever
new requirements come out or having earlier requirements exposed to changes.
This is a time consuming task and especially when designers have to recollect
their designs and re-model them according to the new set of requirements.

Here, a NGDE should be able to handle notes written on paper as an
artefact. Ideally, this paper is not only stored as a (jpeg) picture, but contents
are (partially) recognized and can be transformed into formal concepts.

Modeling involves several stakeholders who conduct the creation of the
design in elicitation and formalization phases, and since requirements evolve
over time, modeling usually comprises several iterations of elicitation and
formalization resulting in an evolving process [63]. Therefore, we think that
software modeling tools should be integrated with other software engineering
tools to deliver a ‘one stop’ environment capable of addressing and supporting
issues like requirements analysis and management, programming and coding,
generation of bug reports, performance and security analysis, testing, versioning,
etc. This is in line with the Twin Peaks model by Nuseibeh [64]. This model
states that in reality requirements and designs develop progressively in concert
and mutually influence each other.

Of course, source code is also essential in the development of software. Hence

32 CHAPTER 2. PAPER A

throughout the development process, models and code must be combined - in
the sense that developers must be able to view them side by side and jump
between editing one and keeping the other synchronized. One challenge is
the linking between models and code. It is typical that models are used at
various and varying levels of abstraction. Models start out at a high level of
abstraction and gradually get refined by adding details.

The integration of code and models also raises the question of debugging.
While we can always use the IDE’s debugging functionality, it usually does not
make sense to debug the generated code itself. The developer is more familiar
with the model than the code, and if a problem is found, we want to correct it
in the model not the code. Modeling tools should support the usage of models
in debugging the functionalities at a higher level of abstraction in order to
know if the application is doing what it was designed to do.

Modeling tools should support multiple people and teams working on the
same design from different locations. In particular, they should provide means
to achieve an effective coordination between geographically distributed project
members. Version management, for example, should be adapted to support
collaborative modeling and design. We think modeling tools should provide a
repository to keep track of the version history of the models stored in it, as
well as provide the ability to observe who is changing what artifacts in the
environment. Following the checkout-update-commit interaction paradigm, the
repository would offer an interactive model merging tool to resolve conflicts
when two users change the same model data. It would increase the potential
for parallel and distributed work, improve ability to track and merge changes
over time and automate management of revision history. It would also allow
multiple designers to work with the same models concurrently, supporting tight
collaboration and a fast feedback loop.

Finally, and to provide an effective communication medium for a geographi-
cally distributed software modeling teams, we propose integrating social media
and chat tools within the modeling tools. The goal is to make software modeling
activity more efficient. For instance when two designers from two different
locations want to exchange ideas about a specific design, they could make use
of the integrated social media or chatting tools to do such a task, and of course,
this reduces the time spent handling emails. In fact, these communicative
facilities play an important role in establishing a basis for discussions and
negotiations, information exchanging, and sharing data e.g. images, videos,
etc.

In general, modeling tools should be “open” providing various integration
mechanisms among the different platforms. In particular, they should have
programmable interfaces, import/export formats, and enable plug-ins for in-
tegration (see Figure 2.1), thus offering an ideal support for team work, and
letting the overall development process becomes easier and faster. On this

2.3. OUR VISION 33

topic, we will explore to what degree OSLC helps solve this issue. In summary,
integration has several facets:

• Integration of rigorous and informal notation,

• Integration of different tools for different activities in the software devel-
opment life-cycle,

• Integration of (machine and human) knowledge sources.

Figure 2.1: An illustrative view of NGDEs and the integration mechanism

2.3.3 Usability, Interaction and Collaboration

The usability of current CASE tools is a common source of criticism. One key
aspect of usability is the manner in which humans interact with the system.
Currently this is by using the keyboard and the mouse - essentially we are
using the computer as an enriched typewriter. Other modes of interaction have
gained popularity because of their intuitive nature and these should also be
employed in the area of software design environments.

Touch-based interfaces have become common in tablets and smart phones,
and also smart-whiteboards with touch-based interaction have been introduced
in class room environments. This introduces the dimension of modality of
interaction. While traditional interaction with a computer is via a keyboard

34 CHAPTER 2. PAPER A

(and mouse) currently there are many options available: voice, touch, gesture,
eye-focus or laser-focus as pointing. Computers are capable of handling such
new types of inputs. This will make interacting with NGDEs much more
intuitive.

Whiteboards allow multiple users to draw software models together. In
order to emulate this informality in our environment, we propose enabling it
to support a collaborative multi-touch modeling. Multi-touch is an interaction
technique that permits the manipulation of graphical entities with several
fingers at the same time. Making use of multi-touch screens allows users to
design complex diagrams simultaneously by performing simple intuitive touch
gestures to draw their part of the diagram.

Such joint drawing sessions typically also trigger a lot of discussion. Such
discussion may contain valuable information about a design, such as e.g. its
rationale. However, traditional tools do not capture the discussion. NGDE
can be equipped with microphones and also record the spoken discussion. New
challenges in this area will be to search through this type of recorded spoken
text. Inspiring work in this direction is the work by Nakakoji et al. [65]. They
describe a system that makes video-recordings of the design discussion in
front of the whiteboard. Their system does automated voice recognition and
produced a textual transcript of the discussion. Also, their system offers a
way of navigating through the discussion using a time-line. The recording of
discussions is effortless for (i.e. without any explicit action) the developers. In
such a way NGDE can relieve the developer by lowering the cognitive attention
needed for inputting relevant information into the system and linking it to
related artefacts.

A task that is commonly forgotten is that of design review. Designers
frequently review the design progress in order to know what is done and what
they have still to do. For that, NGDEs should support design review “on the
fly”, as well as in detail whenever designers want to add some additional items
to their previously sketched design. One approach in this direction is offered
by the recent version of the Altova UModel tool. This tool provides a layering-
mechanism: here review comments are part of one layer and the software design
is part of another layer. The user can then select to see combined layers or
layers in isolation.

2.3.4 Multi-platform

Rather than tying the development process down to any specific hardware
environment, the NGDE should aim to facilitate multiple platforms: smart
whiteboards, tables, smart phones, and traditional desktops and laptops. This
increases the accessibility of the environment. Also, in classroom environments,
this will open up new opportunities for interactive collaborative design.

2.4. CONCLUSION 35

2.4 Conclusion

Other application domains have gone before software development CASE tools
and have shown that rich interaction with computer-based systems is enhancing
productivity [13]. Next generation software design tools must keep up with this
trend and offer improvements over existing tools in the following dimensions:

• Rich support for multiple modes of interaction (touch, audio, video,
gesture),

• Support for mixing formal notations with informal notations (e.g. UML
diagrams with additional sketching),

• Higher level of integration of tools: on the one hand integrating tools
for different development tasks (requirements, testing, coding) and also
analysis tools (performance, security). On the other hand, integration of
social/organizational sources of knowledge via ((video) chat),

• Rich support for multiple platforms: work does not only happen behind
a PC, there is also discussions at the whiteboard and via tablets. NGDE
should offer a seamless environment for this.

The design of software design environments should be driven by studying
the needs of actual software developers. We consider it very important that
more observation studies are performed about the actual tasks that software
developers perform. From this we can learn how to best support them.

This paper describes our vision. It is beyond our own capacity to realize
this vision. We therefore call on the community to collaboratively work on the
next generation of software design environments.

36 CHAPTER 2. PAPER A

Chapter 3

Paper B

Towards a New Generation of Software Design Environ-
ments: Supporting the Use of Informal and Formal Nota-
tions with OctoUML

R. Jolak, B. Vesin, M. Isaksson, M.R.V. Chaudron

In Second International Workshop on Human Factors in Modeling
(HuFaMo 2016). CEUR-WS, pp. 3-10. 2016.

37

Abstract

Software architects seek efficient support for planning and designing models.
Many software design tools lack flexibility in combining informal and formal
design. In this paper, we present OctoUML, a proof of a concept of a new
generation software design environment that supports an effective software
design process. The system provides options for collaborative software design
and different input methods for creation of software models at various levels of
formality. The design and architecture of OctoUML are also presented. The
evaluation shows that OctoUML provides a user-friendly environment and has
the potential to effectively support the activities of the designers.

Keywords: Sketching; Informal and Formal Desing; Recognition; Multi-
touch; Design Environment, UML.

38 CHAPTER 3. PAPER B

3.1 Introduction

As software systems are gaining increased complexity, the importance of efficient
software design tools is also increasing. Software models change frequently and
are quite often updated by many designers simultaneously [66]. These models
should present a description of systems at multiple levels of abstraction and
from different perspectives. Therefore, it is crucial to provide software design
tooling that provides possibilities for efficient and collaborative development as
well as options for creation and evolution of software models and architectures.

Sketches, or depictive expressions of ideas, pre-date written languages by
thousands of years [67]. Many designers tend to sketch their initial ideas on
the whiteboard [68]. These sketches present an intuitive way to prototype,
communicate and record their thoughts. Sketches can facilitate discovery of
new objects and foster new design ideas [69]. They effectively support the
process of software design and serve designers to inspect and develop one design
idea as well as reflect on some other alternatives [70].

On the one hand, whiteboards are commonly used for sketching initial
software design, quite often by many people simultaneously [10]. They support
informal design and do not constrain the notation being used. However,
standard whiteboards lack of integration with subsequent software elaboration
tools. Hence, re-modelling is difficult and a time-consuming task. On the other
hand, CASE tools (e.g. StarUML, Rational Rose, Enterprise Architect, etc.)
provide means to store and modify designs. However, they support one or
more formal notations and hence restrictively require designers to use those
specific notations for modelling. Actually, designers often sketch and use ad hoc
notations that rarely adhere to standards like the Unified Modelling Language
UML [18].

In previous work, we presented our vision on a new generation of software
design environments [71]. One of the characteristics which we proposed for
such environments is that they should be capable of supporting both informal
and formal modelling. In other words, they would combine the advantages of
both whiteboards and CASE tools, and therefore be able to bridge the gap
between early design process (when designers often sketch their ideas) and
formalization/documentation process. To realize our vision, we developed a
software design environment called OctoUML1 [72]. This environment can
be run using a number of input devices ranging from desktop computers over
large touch-screens to large electronic whiteboards. It allows simultaneous
creation of both informal freehand sketches (using fingers or styluses) and
formal computer-drawn notations, e.g., UML class diagrams. We have enriched
our tool with some features, functionalities and services in order to support
designers’ activities and provide a practical and inspiring user experience.

1demo video: https://goo.gl/PmuUf8

3.2. RELATED WORK 39

Further details on these aspects will be described in Section 3. To assess our
concept, we asked some subjects to evaluate OctoUML and give feedback on
its usability. The following questions are addressed:

• R.Q.1 Does our tool provide a usable environment considering issues
like ease of use, efficiency and user satisfaction?

• R.Q.2 Does support for mixing informal and formal notation better
support the software design process?

This paper is organized as follows: Section 3.2 describes the related work.
Illustration of our approach for supporting exploratory and collaborative soft-
ware design is presented in Section 3.3. We provide the design architecture
details of OctoUML in Section 3.4. Evaluation and results are presented in
Section 3.5. We discuss the results in Section 3.6. Threats to validity are
presented in Section 3.7. Finally, we conclude the paper and illustrate our plan
for future work in Section 3.8.

3.2 Related Work

CASE tools support software development activities such as diagramming, code
generating and documentation [49]. However, software designers consider such
formal tools overly restrictive and limitative of their expressiveness [49, 54,73].
Whiteboards are rather simple to use. In fact, they are frequently used by
software designers due to their role in promoting creativity, idea generation
and problem solving [2]. Electronic whiteboards provide the perspective for
better software design support by permitting the management, control and
maintenance of the contents [51,54].

Mangano et al. [51] identified some behaviors that occur during informal
design. In particular, designers sketch different kind of diagrams (e.g. box
and arrow diagrams, UI mockups, generic plots, flowcharts, etc.) and use
impromptu notations in their designs. The authors implemented an interactive
whiteboard system (called Calico) to support these behaviors and identified
some ways where interactive whiteboards can enable designers to work more
effectively.

Wüest et al. [74] stated that software engineers often use paper and pencil to
sketch ideas when gathering requirements from stakeholders, but such sketches
on paper often need to be modelled again for further processing. A tool,
FlexiSketch, was prototyped by them to combine freeform sketching with the
ability to annotate the sketches interactively for an incremental transformation
into semi-formal models. The users of FlexiSketch were able to draw UML-like
diagrams and introduced their own notation. They were also able to assign

40 CHAPTER 3. PAPER B

types to drawn symbols. Users liked the informality provided by the tool, and
stated that they would be willing to adopt it in practice.

Chen et al. have developed SUMLOW [54], a sketching-based UML design
tool for electronic whiteboard technology. It allows the preservation of hand-
drawn diagrams and supports the manipulation of them using pen-based actions.
UML sketches can be formalized and exported to a 3rd party CASE tool.

Damm et al. [49] conducted user studies in order to understand the prac-
tice of software modelling. They observed that designers alternate between
whiteboards and CASE tools, extend the semantics of the notations to support
the design activities and allow expressiveness, sketch new ideas informally, and
actively collaborate when they work in teams. The authors considered that a
usable modelling tool should be designed to come across the aforementioned
observed behaviours. They developed a tool called Knight. Knight supports
informal and formal modelling using gestures on an electronic whiteboard.
In order to achieve intuitive interaction, Knight uses composite gestures and
eager recognition of hand-drawn elements. Damm et al. showed that infor-
mal drawings were temporary and usually erased after producing the formal
diagram.

Magin and Kopf [56] created a multi-touch based system allowing users to
collaboratively design UML class diagrams on touch-screens. They have also
implemented a new algorithm to recognize the gestures drawn by the users and
to improve the layout of the diagrams. However, their tool does not allow for
informal freehand sketching of arbitrary notations.

Baltes and Diehl [10] examined the usage of sketches in software engineering
activities by conducting an exploratory study in software companies. The results
showed that the majority of the sketches were informal, and the purposes of
sketches were related to modelling, explaining or understanding. Baltes and
Diehl also revealed that the sketches were archived digitally for re-visualization
and future use. Like us, they think software design tools should enable informal
design sketching.

3.3 Approach

Our motivation for creating OctoUML is to provide a more intuitive, inspiring
and efficient tool to support exploratory and collaborative software design. Key
innovations of our approach are: (i) enabling users to create and mix both
informal hand-drawn sketches and formal computer-drawn notations at the
same time on the same canvas, (ii) providing a selective recognition mechanism
that is used to transform hand-drawn sketches into formalized contents, and (iii)
enabling of multi-user support on a single input device. In the next subsections,
we describe those novel aspects in more detail. Table 3.1 shows the differences
between our approach and the related work.

3.3. APPROACH 41

Table 3.1: Comparison of OctoUML with some other tools mentioned in the
Related Work section

Tool Notation : Informal(IF)/Formal(F) Recognition Multi-touch
Flexisketch IF (hand-drawn) predict symbols based N/A

on incremental learning
SUMLOW IF and F, but not simultaneously holistic recognition N/A
Knight IF and F, but not simultaneously eager recognition N/A
Calico IF (hand-drawn) beautification of shapes N/A
OctoUML mix of IF and F (simultaneously) selective recognition enabled

3.3.1 Informality and Formality

Based on studies done by [49, 51, 70], we report some common practice be-
haviours that occur during software modelling meetings:

• Designers combine informal and formal models.

• Designers often alternate between CASE tools and whiteboards.

• Designers prefer all-purpose sketches which refer to many scenarios over
sketches dedicated to a single scenario.

• Sketches rarely follow notational convention.

• Sketches are used at different levels of abstraction.

• Designers sketch different types of diagrams with different perspectives.

• Designers extend formal notations in order to explain their ideas to others.

Whiteboards support informal design by ensuring the users a total freedom
in creating and using a variety of modelling notations. For example, informal
hand-drawn sketches can be used to express abstract ideas representationally,
allow checking the entirety and the internal consistency of an idea as well
as facilitate the development of new ideas [69]. Informal sketches, as well
as various informal tools are used by software developers during their work
activities [51,54,75]. However, some tasks like model transfer and persistence are
difficult and require a redundant work by re-drawing the design solution using
a Computer-Aided Software Engineering (CASE) tool. CASE-tools provide
a limited set of modelling notations, hence restrict designers’ expressiveness
by imposing the notation that can be used. Modelling tools should be holistic
in order to support software designer’s imagination and creativity. To that
end, our tool allows a simultaneous creation of both informal and formal
notations on the same canvas. The informal notations can be created using free-
hand sketches, while the formal notations can be either hand-drawn following a
specific syntax or created using computer-drawn ready-to-use elements available
in the menu. At the moment, and for the creation of formal elements, our tool

42 CHAPTER 3. PAPER B

Figure 3.1: Combination of different notations on the same canvas

mainly supports UML class diagrams, but in the future we aim to support
other types of UML diagrams. Figure 3.1 illustrates the main canvas of our
tool. It shows how our tool allows the combination of informal and formal
notations on the same canvas. Moreover, it shows how designers can transform
the notations from one state to another i.e. from informal to formal and vice
versa.

3.3.2 Recognition

Walny et al. [75] demonstrated that sketches have a life-cycle. In particular, a
sketch starts as an informal representation of one idea and later on ends up
having a formal representation. To facilitate that process as well as support
tasks like: model transfer to third-party CASE tools, code generation and
model documentation, our tool supports the transformation of UML hand-
drawn elements to formalized computer-drawings and vice versa at any time
during the modelling sessions. This has been made available using PaleoSketch,
a primitive sketch recognition system [76]. There are two aspects that favor
the flexibility and elasticity of the recognition process. Firstly, we allow users
to select what they want to recognize in advance. Secondly, users can use
undo/redo commands in order to move easily between the two forms; sketchy
and formal.

3.3. APPROACH 43

3.3.3 Layering and Multi-touch

Having been inspired by the recent version of the Altova UModel tool 2, we
decided to equip our tool with a layering mechanism. In particular, the software
design is part of one layer which we call the formal layer. While another layer,
the informal layer, contains the informal sketchy elements e.g. hand-written
comments, illustrative drawings, highlighting arrows or circles, etc. The user
can then select to see combined layers or layers in isolation. A key advantage of
such layers is that they allow the isolation of informal and formal elements. As
a consequence, designers will be able to move and edit the content of each layer
independently without disturbing the rest of the design. For instance, users
might want to archive, print or share the formal designs without including
the sketchy elements. In that case, the formal layer can be a solution for
them. On the other hand, having the two layers combined could help reveal
some existing ambiguities in diagrams as well as give more insights to increase
one’s understanding of concepts, mainly, during diagram reviewing cycles.
Baltes and Diehl stated that quite often two or more people are involved in
sketching when the whiteboard is used as a medium [10]. We enabled our tool
to support multi-touch. Multi-touch is an interaction technique that permits
the manipulation of graphical entities with several fingers at the same time.
This option allows concurrent collaborative modelling. In particular, it enables
two or more designers to simultaneously work on the same canvas of the same
device, especially when the device is an interactive whiteboard or a large touch
screen.

3.3.4 Other features

CASE tools are better than whiteboards when we consider some aspects such as
undo/redo and re-sizing utilities. For that, we enabled our tool to support the
aforementioned features in order to allow designers to easily correct mistakes
and have liberty to change the size of the elements. Sometimes designers
complain about the limited size of tools’ modelling space or canvas which may
not be enough to capture all their design ideas. To overcome this inconvenience,
the drawing canvas of our tool supports panning and zooming in/out actions.
Panning allows users to drag the canvas in all directions in order to find more
space for their designs. In addition, zooming helps to change the scale of the
canvas, hence to enhance the visibility and readability of the designs.

2http://www.altova.com/umodel.html

44 CHAPTER 3. PAPER B

(currently implemented components are presented in green)

Figure 3.2: Architectural Components of OctoUML

3.4 Design

In this section we present the current architecture of OctoUML. The architecture
is organized in a way to effectively fit with complex business work-flows, data,
and security needs as well as to allow for future integration of different modules
and other enterprise applications.

The key architectural components of OctoUML are presented in Figure
3.2. The environment contains three major components: UI component, Data
cloud and Services. The current version of the system offers only the UI
and data cloud components. Additional services will be added during future
development.

UI component consists of two separated but interconnected parts: Presen-
tation manager and Input unit. The Presentation manager provides means
for performing stylus or touch-based input commands on devices being used.
Drawing layers include support for both informal and formal modelling layers.
Depending on the chosen layer, users are presented with an appropriate toolbar.
The Command tools are responsible for transferring the inputs from users to
different controllers. The Graph controller allows switching between different
input techniques as well as combining of different layers. The Input unit is
responsible for processing different inputs. In particular, a Sketch recognizer is

3.5. EVALUATION 45

(currently supported activities are presented in green)

Figure 3.3: The Modelling Process

provided to recognize and transform informal models into formal concepts, and
hence allows to maintain and transfer the designs for further processing tasks.
A Multi-touch controller captures and coordinates the inputs from different
touch-points. All the program data are saved and stored in the Data cloud.
Our tool uses a set of data structures to manage and maintain the sketched
elements, formalized designs, and session control for users. The modelling
process and dynamic aspects of the system are presented in Figure 3.3.

3.5 Evaluation

In order to answer the research questions presented in Section 1, we prepared
user studies. Sixteen subjects were engaged in a design assignment. The
assignment was to create a UML class diagram of a given scenario using our
tool. To give a global overview of the subjective assessment of our tool’s
usability, we asked our subjects to answer the System Usability Scale (SUS)
questionnaire [77]. Furthermore, we planned semi-structured interviews using
both closed and open questions. The interviews were held after the completion
of the design assignment. Our main concern was to get feedback from the
participants regarding their experience in using OctoUML, so we focused on
qualitative data more than quantitative data. We followed the grounded theory
methodology [78], and used NVivo3 in the qualitative data analysis process.
More details together with the results are reported in the following subsections.

3http://www.qsrinternational.com/

46 CHAPTER 3. PAPER B

3.5.1 Participants and Modelling Expertise

Sixteen software engineering students and researchers were involved in doing
the assignment and subsequently the interviews. In particular, there were four
master students, ten PhD students and two post-doctoral researchers. Five
participants have an experience in industry for some period of time. Twelve
people worked on the design task in pairs, while the rest worked individually.
Overall, the participants are experts in software modelling and have some
experience in using UML. In fact, nine participants claimed to have high
expertise in software modelling, five have a moderate expertise, while only two
have low expertise. All participants believe that software design is a critical
task for successful software development and evolution. In previous occasions,
all but one participant did software modelling with other people in teams
(collaborative modelling). The participants have a practical experience with a
variety of modelling tools. These tools range from whiteboards, pen&paper to
CASE tools like Enterprise Architect, Visual Paradigm, Dia, ArgoUML and
Papyrus.

3.5.2 Design Task

We formulated a simple design problem, and asked the participants to design a
domain model class diagram solution of it using OctoUML. Before starting with
the task, we gave the participants a brief introduction regarding the features
and functionalities of our tool. We directly observed the design processes and
took notes. When the participants asked some specific questions about the
design assignment, we told them that it is up to their interpretation. They
could, however, ask questions concerning the design environment e.g. how to
use certain tools. The participants did not get any help unless they asked for
it. An interactive whiteboard was chosen as an input medium, and the design
sessions were video-recorded. The text of the design assignment is presented in
the following paragraph.

E-Learning System. The system is used by teachers, students and an
administrator (who is also a teacher). One teacher is responsible for many
courses. Consider that courses consist of many topics. Students can enroll into
different courses. There is a news section within the system. Teachers add
news for a specific course and the students can read them. Every course ends
with an evaluation test. Teachers create a test and the students have to do it.
The students get one of these grades: fail, pass, good, or very good.

3.5.2.1 Design Task Observations

While carrying out the design task, the participants were observed in order
to understand their activities. This was done in two different ways: First, we

3.5. EVALUATION 47

directly observed the behaviour of the participants as they were performing
the task and took notes. Second, the participants were recorded via a digital
video-camera. This let us observe their behaviour indirectly through records of
the task. The notes which we took were expanded by transcribing elements
of the video recordings. At the beginning of the task the participants spent
around one minute reading the assignment, then they proceeded with designing
the solution. While carrying out the design task, some participants first created
many UML classes then they associated them with different kind of relations.
Other participants followed another strategy by creating two classes in the first
place, then, they defined the relation between the two classes before continuing
to create other UML classes. Even when two people were working on the
same design at the same time, they rarely interacted with the e-whiteboard
at the exact same time. Most of the participants tended to create the classes
sequentially, and they discussed the properties of one class before proceeding
with the creation of another class. Furthermore, they often divided the work
between themselves, e.g. one was interacting with the tool to create classes,
and the other one was reading the assignment as well as providing ideas for the
solution. The participants were given a brief introduction about functionalities
of the tool. Nevertheless, during the design task, some of the participants were
confused and hesitant about using some features being provided by our tool.
This was actually observable at the beginning of the task, but seemed to be
overcome later on. In fact, the participants became more confident as they
were gradually and progressively interacting with the tool. Moreover repeating
some actions, such as selection and creation of classes, let them in some manner
experience our environment’ functionalities.

3.5.3 SUS Questionnaire

The System Usability Scale is an easy, standard way of evaluating the usability
of a system [77]. It is a form containing ten statements, and users provide
their feedback on a 5-point scale (1 is strongly disagree and 5 is strongly agree).
It effectively differentiates between usable and unusable systems by giving a
measure of the perceived usability of a system. It can be used on small sample
sizes and be fairly confident of getting a good usability assessment [79]. The
participants were given the forms directly after they finished with the design
task. We considered the SUS score as a “preliminary feedback” on the usability
of our tool. However, in order to consolidate the current findings, more people
will be involved in testing our tool and answering the SUS questionnaire.

3.5.3.1 SUS Result

All sixteen participants filled out the SUS questionnaire. We calculated the SUS
score reported by each participant. After that, we calculated the average of

48 CHAPTER 3. PAPER B

the usability values of all participants to obtain the overall OctoUML usability
score4. The lowest score was 65 and the highest was 95, with an average score
of 78.75. It falls at around the 80th percentile, and would result in a grade of
a “B” which is a high usability score according to [43].

3.5.4 Interviews

After answering the SUS questionnaire, each participant was involved in a
semi-structured interview. The conversations were recorded using a digital voice
recorder. The interviewers took some notes which were expanded afterwards
by transcribing the audio recordings. Both closed and open questions were
used, and respondents’ answers were quantitatively and qualitatively analyzed.

3.5.4.1 Interviews’ Results

Several threads run through the interviews. Such threads are categorized as
themes and reported subsequently.

A. Tool Usability

Ease of Use. All participants pointed out that our tool is intuitive, simple and
easy to use.

“Easy to get started with, I do not have to understand the UML-
standard”, “It’s simple to use”, “Easy to change things”

Learn-ability. The participants also stated that the tool is easy to understand
and learn.

“easy to understand”, “Easy to grasp what is what”, “Intuitive for
the most part”, “So easy to learn”

Efficiency. We let our environment inherit the fluidity and immediacy of a
standard whiteboard. Furthermore, we wanted to maintain the recognition
process to be as smooth and fast as possible. Some participants were impressed
by the fluidity and immediacy of our tool in drawing and creating notations as
well as in recognizing the sketchy elements.

“Very quick to draw classes and associations compared to CASE
tools”, “Very smooth and quick recognition”

Satisfaction. The basic functions of our tool met the expectations of most of
the participants. Overall, the participants liked our tool. Two participant
highlighted the eligibility of our tool in collaborative team modelling. One
participants stated that he likes the “selective recognition” mechanism.

4https://goo.gl/uwlwIp

3.5. EVALUATION 49

“Very straightforward once you get used to it”, “It is really good
for team design”, “Nice that you select what to recognize”

However, some challenges in tool usability were identified. one participant
asked for more flexible switching between informal and formal input modes .

“I did not like how I switch between input modes”

Some of the participants did not like the manner by which the elements are
being selected i.e. by activating a dedicated button.

“Should select by just clicking on element without selecting the
selection tool first”

One participant stated that “typing-in” classes name and their properties using
the virtual keyboard was inconvenient task due to the time that it takes, and
asked us to find a better solution.

“Typing-in is a bit slow”

We previously mentioned that our tool mainly supports UML class diagrams
when creating formal “computer-drawn” elements. Some participants expressed
the need of being able to create other types of UML diagrams as well as having
more tool options.

“I want more features, options, more types of diagrams”

We consider those challenges, hence they will be used together with the overall
feedback of the users as a basis for future improvement of our tool.

B. Informal and Formal Notation

There was a strong belief among the participants (12 people agreed, 2 were
undecided and 2 disagreed) that informal notations (i.e. sketches) support the
formal design. Sketches can be used to interconnect different components

“define the components involved and the interactions among them”.

Sketches are valuable artefacts beyond being just explorative drawings

“obtain a formal document, not just a sketch”.

There was also a strong belief among participants (11 people agreed, 2 were
undecided and 3 disagreed) that having sketches beside the formal design can
allow for a better expression of ideas

“map out the domain of the functionality and make sure everyhting
is been covered”, “get an idea of how things fit together”.

50 CHAPTER 3. PAPER B

Eleven people claimed that sketches can enhance the understandability and
readability of the formal designs

“it is mostly for myself to get a clear understanding”, “it is helpful
to make you understand what you are gonna build”

On the other hand, one person said that having sketches beside the formal
design could complicate the diagram

“No, sketching will introduce complexity”.

Half of the participants think that being able to sketch beside creating formal
designs in one tool can replace the need of sketching on a whiteboard or a
paper.

“Yes, you could perform all the functions that you can do on stan-
dard whiteboard. Be able to quickly show ideas, and you do not have
to take pictures of the whiteboard”.

While some participants claim that still people will not stop using standard
whiteboards as well as pen and paper. The dependency on such tools, as the
participants argued, arises from their immediacy and ease of use as well as
being at easy disposal.

“No, because you will never remove the paper from offices”, “right
now still very dependent on paper”

Sketching down thoughts and ideas on paper or whiteboard when designing
software is a common behaviour when designing software. In fact, all partici-
pants do sketches to some degree. Some participants mentioned that it depends
on the complexity of the problem

“I do not sketch when it comes to simple stuff ”.

According to the participants’ responses, the main purposes of sketching are to:

[a] understand problems and start to explore solutions

“to define the components involved and the interactions among
them”, “start putting the solution together”

[b] brainstorm as well as explore ideas

“to brainstorm”, “to facilitate how to express our ideas”, “to
visualise what is in my head”.

[c] communicate and discuss their ideas

“give an explanation for other people about the system or a
specific problem”, “communication of ideas in teams”.

3.6. DISCUSSION 51

3.6 Discussion

Before starting with the design task, the participants were given a short
introduction about our environment and its functions. However, while we were
observing the participants creating their designs, we noticed that they were not
very inclined to use the sketching feature which was illustrated during the short
introduction. In fact, only six (out of sixteen) participants used the sketching
feature. We think that the time of the introduction part was most likely not
enough to make the participants feel comfortable in using free-hand sketches.
Furthermore, the design problem that we have chosen for the design task was
simple and easy to solve. We tried to simplify it as much as possible to make it
solvable in a short time. We believe that the simplicity of the design task could
have defeated the need of sketching it up. The participants could easily get a
good grasp of the design task simply by reading it. However when we did the
interviews, the majority of the participants did agree that being able to mix
informal and formal notations could support the design process and flow, thus
could bridge the gap between the process of prototyping ideas on a paper and
the process of entering a formalized version of such ideas in a CASE-tool. Next,
we discuss the research questions based on our interpretation of the results.

• RQ.1 Does our tool provide a usable environment considering issues like
ease of use, efficiency and user satisfaction?

OctoUML is designed to offer a usable interactive environment. First we
focused on understanding some common practice activities that occur during
software modelling sessions. Then, we tried to consider and adopt some novel
interaction modalities which could interactively support the design process.
The interviews’ results show that the current version of our tool is easy to
learn, effective to use, and provides an enjoyable user experience. Moreover,
the results that we got from the SUS questionnaire on the usability of our tool
consolidate the previous findings. Of course these results hold only for the
device which is used as an input medium, the interactive whiteboard. Other
media like tablets and standard PCs have different characteristics. Tablets have
a smaller interaction interface when compared to interactive whiteboards, and
this could raise some usability challenges. To assess these challenges further
tests on different input media are required. On the other hand, our tests
revealed some usability challenges related to our system. The main issue is the
selection tool. The participants had to click on a specific button to activate the
selection mode. According to some participants, that was not a user-friendly
choice. Moreover, we asked the participants for their opinion about some new
interaction techniques that could be adopted by our environment in the future.
These techniques were appreciated by the participants and are discussed in the
conclusion and future work section.

52 CHAPTER 3. PAPER B

• RQ.2 Does support for mixing informal and formal notation better support
the software design process?

In practice, software systems are becoming more and more complex, and
the design of complex systems needs more effort and hence more sophisticated
designing tools. In such cases, having the possibility to use informal notations
beside the formal ones can better support designers’ activities in understanding
the problems, exploring solutions, brainstorming and communicating ideas.
This is in line with the study of Mangano et al. [70]. They stated that informal
notations, i.e. sketches, allow software designers to discuss design alternatives
as well as mentally simulate the behaviour of complex systems.

Apart from the fact that our subjects did not sketch informal elements
frequently, the majority of them think that being able to simultaneously create
sketches and formal designs in one design environment could support the design
process. Indeed, software designers often sketch their early-design ideas on a
paper. However, when they want to preserve the design, they do a redundant
work by re-drawing the solution using CASE-tools. Furthermore, they may
forget to include some sketched ideas in the design formalization process.

There was a strong belief among the interviewees that having the possibility
to create informal elements, i.e. sketches, assists the process of ideas expression
and enhance the understandability of formal designs. The informal notations
can be used both in brainstorming sessions and while creating the formal design.
In the former case, they are used for design exploration and can be volatile.
While in the latter case, the informal elements could be used to sustain and
describe a specific design problem as well as support the formal design in
conveying and reinforcing the information that they carry. Informal sketches,
for example, may have a very close mapping to the problem domain. As a
result, they could be valuable artefacts beyond being just explorative means.

3.7 Threats to Validity

Construct Validity. The design task was simple, specific and easy to do.
Moreover, it is relatively small compared to real world design problems. This
might limit the creativity of the designers as well as influence the amount
of discussions and usability interactions. However, during the interviews, we
asked the participants to give their general opinion about the efficiency of our
tool when it comes to handling different design problems that vary in size and
complexity.

Internal Validity. None of our subjects was familiar with our tool and
its functions. To mitigate this, we gave the participants a short introduction
explaining the features of the tool. Moreover, during the interviews, the
participants might want to please the interviewers by giving them a positive

3.8. CONCLUSION AND FUTURE WORK 53

feedback. To mitigate this, we asked the participants to answer the SUS
questionnaire which allowed them to give feedback anonymously.

External Validity. The participants being involved in both the design
task and the interviews may not represent the general population of software
designers. This could threaten the generality of the results. However we
involved people with different backgrounds, modelling expertise and academical
degrees.

3.8 Conclusion and Future Work

Currently, most CASE-tools are modelling (or even diagramming) tools. Indeed,
they lack support for the majority of design activities in which developers are
engaged. In this paper, we presented a proof of concept of a new generation
software design environment. Basically, our tool allows for simultaneous creation
of both informal freehand sketches and formal computer-drawn notations. The
users of OctoUML can create software designs by performing simple intuitive
touch gestures. Moreover, they can manipulate the graphical entities with
several fingers at the same time thanks to the multi-touch technology being
adopted by our system. Furthermore, OctoUML supports the transformation
of models from informal to formal at any time during the design sessions. We
evaluated our tool by conducting user studies. The results show that OctoUML,
as perceived by our subjects, provides a usable environment in terms of ease
of use, efficiency and user satisfaction. Moreover, it seems that giving the
possibility to create informal and formal notations in one software design
environment could support both the design process and its flow.

Future Work. We will continue to realize our vision [71] of a new generation
of software design environment. OctoUML will be equipped with microphones
to record the spoken discussions, and a recognition system will be provided
to interpret users’ voice commands. To open up new opportunities for remote
interactive collaborative design, our tool will be enabled to support remote
collaborative sessions between geographically distributed teams as well as
in class room environment between students and teachers. We also aim to
integrate OctoUML with other software engineering tools to provide effective
support for different development tasks (e.g. requirements gathering, testing,
coding and versioning) and analysis tasks (e.g. performance).

54 CHAPTER 3. PAPER B

Chapter 4

Paper C

Using Voice Commands for UML Modelling Support on
Interactive Whiteboards: Insights and Experiences

R. Jolak, B. Vesin, M.R.V. Chaudron

In Proceedings of the 20th Ibero American Conference on Software
Engineering (CibSE) @ICSE17, pp. in print. 2017.

55

Abstract

The ultimate goal of software design tools is to provide efficient support for
designing software systems. In our previous work we presented OctoUML, a
prototype of a new generation software design environment. OctoUML supports
collaborative software design and enables different input methods for creation
of software models at various levels of formality. Recently, we added a voice
recognition unit into the system and provided users with possibilities of giving
voice commands. This paper presents insights and gathers experiences from
enabling a voice interaction modality within software design environments. By
conducting two user studies, we found that (i) the general perception regarding
the usability is positive, (ii) the voice interaction modality is mostly preferred
for text input, and (iii) the employment of voice interaction modality within
the software design environments enhances the efficiency of the software design
process.

Keywords: MDE; software design environments; interaction modalities; voice
recognition; accessibility; integration with HCI.

56 CHAPTER 4. PAPER C

4.1 Introduction

The Unified Modelling Language (UML) is a well-known and commonly used
language for software design [18, 80]. Various Computer-Aided Software En-
gineering (CASE) tools can help software developers to create a UML-model
of software. Although these tools can be run today on different devices (e.g.
computers, tablets, etc.), the input methods that they support are still limited,
and therefore diminishing their usability [81]. Moreover, the interaction with
such tools is not always well-designed for user experience, easy learning and
effective use. Consequently, many software designers tend to avoid using CASE
tools which are considered complex and time-consuming [6, 82].

Multimodal systems use integrated multiple interaction modalities (e.g.
sketch, touch, voice, etc.). Oviatt and Cohen [13] illustrated the importance of
multimodal systems in reshaping daily computing tasks and predicted their
future role in shifting the balance of human-computer interaction much closer to
the human. Harris [83] highlighted the importance of voice, as an incorporated
modality within multi-modal interfaces, in both opening up a new cognitive
dimension and overcoming the barriers of “era-ending” graphical interfaces.
The usability of software design environments could be enhanced by introducing
voice recognition, as this could terminate the need of using the keyboards and
counteract the matter of menus hierarchy. Yet, the effectiveness could be also
improved even further [84].

Interactive whiteboards support touch-input and are useful tools for creating
knowledge and sharing information. They increase the learning outcome for
students in the classroom [85,86] and enhance the effectiveness and interaction
at company meetings [87]. Such capabilities of interactive whiteboards make
them potential input devices for software design tools.

In a previous work, we presented our vision on a new generation of software
design environments [71]. One of the characteristics which we proposed for
such environments is that they should be equipped with microphones to record
the spoken discussions, and have a recognition component to interpret users’
voice-commands.

Recently, we created a software design environment, called OctoUML [88],
that provides efficient support for the design of hardware and software archi-
tectures. OctoUML can be run using different input devices ranging from
desktop computers, over touch screens, to large electronic whiteboards. Beside
supporting the creation of software models at different levels of formality, Oc-
toUML is equipped with tools for multi-touch and sketch recognition which
enable concurrent collaborative modelling and sketch formalization, respectively.
Our current goal is to improve the usability and efficiency of OctoUML by
supporting and evaluating new modes of interaction. To this end, we added
a voice recognition component into OctoUML. This component is capable of
accommodating the most commonly used functions of the system (watch the

4.2. RELATED WORK 57

demo videos1 2).
This paper presents insights and gathers experiences from supporting voice

interaction modality within software design environments. The contribution
of this work is mainly based on answering and discussing the following three
research questions:

• (RQ1) For which features of a software design environment do users find
it practical to interact through voice commands?

• (RQ2) What are the perceptions of users regarding the usability of the
voice interaction modality supported by OctoUML?

• (RQ3) Does the employment of voice interaction modality within the
software design environments enhance the efficiency of the software design
process?

To answer these questions, we conducted two user studies. In the first user
study, USS1, a version of OctoUML without the voice recognition feature was
used (OctoUML-Lite), while for the second user study, USS2, we enabled the
voice recognition feature (OctoUML-V). Details regarding the two user studies
are presented in Section 4.4.

4.2 Related work

A single interaction modality does not allow for an effective execution of tasks
and use of environments [89]. Multimodal systems provide possibilities to use
a combination of modalities or change to a better-suited modality, depending
on the specifics of the task [90].

Like [90], we believe that supporting multiple interaction modalities within
software design environments would make the interaction: (i) more intuitive,
especially during software design processes when designers discuss and commu-
nicate their ideas to each other via voice and gestures, and (ii) more effective
by allowing the users to switch to a better-suited modality for the execution of
one particular task. Moreover like [13], we believe that multi-modal systems
have the potential to shift the balance of human-computer interaction much
closer to the human.

Repetitive Strain Injury (RSI) is a condition where pain and other symptoms
occur in muscles, nerves and tendons after doing repetitive tasks (e.g. using
a keyboard frequently) [91]. Several studies have been carried out to help
programmers with RSI by using voice recognition techniques [92–94]. However,

1http://goo.gl/JP4Mfg
2https://goo.gl/uU6Zm3

58 CHAPTER 4. PAPER C

Mills et al. [95] pointed out that such techniques have a high rate of faults and
errors which negatively influences their usability.

Lahtinen and Peltonen [81] presented an approach to build speech interfaces
to UML tools. The authors set up a spoken language to manipulate the UML
models, and built a prototype (called VoCoTo) of a speech control system
integrated with a CASE-tool (Rational Rose3). They stated that speech
recognition is applicable to be used to enhance the interaction with UML
tools. Soares et al. [96] presented a framework, VoiceToModel. It allows the
creation of requirements models, e.g. conceptual UML class diagram, from
speech recognition mechanisms. They evaluated their prototype through an
experiment with fourteen computer science students. The users experienced
some difficulties in using VoiceToModel. However, they were overall satisfied
and liked the interaction model provided by the framework.

The objectives of the two aforementioned related works [81, 96] were to
assess the viability of their systems and get a proof of concept instead of making
a statistical proof for their approaches. In this study, we aim to discover which
tasks in the software design process are better qualified to be supported by a
voice interaction modality. Moreover, we want to assess the efficiency of our
approach by comparing two versions of OctoUML; one version is enabled to
recognize voice-commands and the other one is not.

Nishimoto et al. [97] designed a multi-modal generic drawing tool that sup-
ports speech, mouse, and keyboard inputs. Their tool has a speech recognition
system based on Hidden Markov Models [98]. The evaluation showed that
their multi-modal drawing tool with speech recognition reduces the required
operation time per task, mouse movement, and commands number.

We assess the efficiency of the employment of the voice interaction modality
in software design environments by following a similar evaluation approach
to [97]. In particular, we measure the amount of time and number of steps that
are required to accomplish a specific task using two different input modalities
(keyboard/touch and voice) that are supported by OctoUML. Furthermore,
we run formative evaluations in order to get feedback on the usability and
usefulness of our approach as well as get suggestions for improvement.

4.3 The Design Environment: OctoUML

OctoUML was mainly designed to bridge the gap between early software
design process, when informal tools (e.g. whiteboards) are typically used for
brainstorming and design reasoning, and subsequent formalization process,
when formal tools (e.g. CASE-tools) are used for documentation purposes.
Such a gap or discontinuity was reported by Budgen [4] in his study on why

3http://www-03.ibm.com/software/products/en/rosemod

4.3. THE DESIGN ENVIRONMENT: OCTOUML 59

Figure 4.1: Architecture of OctoUML (Currently implemented components are
presented in green.)

software design environments do not support realistic design practices. Indeed,
ideas and logical basis for the design solution can be easily lost when moving
from the early design reasoning process to the formalization process, especially
when there is a non-short timespan between the two processes.

OctoUML is a collaborative software design environment that allows the
creation and modification of diagrams at different levels of formality. In
particular, the environment allows mixing of both informal (e.g. sketches) and
formal (e.g. UML class diagrm) modelling notations. Furthermore, OctoUML
is equipped with tools for multi-touch and sketch recognition, and supports the
transition from informal notations to formal ones. The users of OctoUML are
provided with options for moving, resizing, grouping and separating software
elements, regardless of their informal or formal character [72].

Figure 4.1 shows the architecture of OctoUML. The architecture is organized
in a way to effectively fit with complex business work-flows as well as to support
future integration of different modules and other enterprise applications.

The design environment contains three major components: UI component,
Data cloud and Services. The current version of the system offers only the UI
and Data cloud components. Additional services will be added during future
developments. The UI component consists of two separated but interconnected
parts: Presentation manager and Input unit. The Presentation manager
provides means for performing stylus or touch-based input commands on

60 CHAPTER 4. PAPER C

devices being used. Drawing layers include support for both informal and
formal modelling styles. Depending on the chosen layer, users are presented with
an appropriate toolbar. The Command tools are responsible for transferring the
inputs from users to different controllers. The Graph controller allows switching
between different input techniques as well as combining of different layers. The
Input unit is responsible for processing different inputs. In particular, a
Sketch recognizer is provided to recognize and transform informal models into
formal concepts, hence allows to maintain and transfer the designs for further
processing tasks. A Multi-touch controller captures and coordinates the inputs
from different touch-points. Sketched elements as well as formalized designs
are saved and stored in the Data cloud. The Voice control component is the
main focus of this paper and is described in the following subsection.

4.3.1 Integration of The Voice Control Component

In order to improve the usability of OctoUML and increase its accessibility, we
integrated a voice-commands control component within the Input unit. The
component is capable of handling the most commonly used functions during
the design process. Thus, users can use voice commands in order to create and
manage various elements of software diagrams. The Voice control component
was implemented using Sphinx4. Sphinx4 is an open source voice recognition
library developed by Carnegie Mellon University [99].

Figure 4.2: The main canvas of OctoUML.

4.4. STUDY 61

There are two main types of commands that trigger the Voice control
component, and therefore allow the interaction with OctoUML via voice:

• Type α: activation/execution of the different interaction tools available
on the top of the main canvas (see Figure 4.2) such as create class, select,
undo/redo, etc.

• Type β: assign names to the created packages and classes.

For the latter type of commands (β), the current version of the voice control
component is based on a predefined dictionary that contains a list of expected
words to be used. Table 4.1 provides more details on the voice commands of
types α and β.

Table 4.1: Different types of voice commands.

Type α
Command Description

Create Class selects the class drawing tool
Create Package selects the package drawing tool
Create Edge selects the edge drawing tool
Selection Mode selects the select tool
Moving Mode selects the moving/panning tool
Undo/Redo undo/redo actions

Type β
Command Description

Name give names to classes and packages. For instance:
double tap on one class, then say “Name” followed
by the desired name.

4.4 Study

We conducted two user studies to answer the research questions that are
presented in Section 4.1. The two studies were conducted in two different
sessions. In the first user study, USS1, a version of OctoUML without the voice
recognition feature was used (OctoUML-Lite), while in the second user study,
USS2, we enabled the voice recognition feature (OctoUML-V). The purpose
of carrying out the user studies was to gather experiences, identify faults and
discover areas of improvement of OctoUML. Furthermore, we wanted to get
and subsequently compare quantitative data regarding the time and steps that
are required for the accomplishment of a specific task using the two versions of
OctoUML.

62 CHAPTER 4. PAPER C

USS1 involved fourteen software engineering students (ten PhD and four
M.Sc. students) and two post-doctorate software engineering researchers,
whereas USS2 involved fourteen participants (three PhD and eleven M.Sc.
software engineering students). All the subjects are familiar with software
design and have experience in using the UML. Moreover, they think that
software modelling is a critical task for successful software development and
evolution (See Figure 4.3: the range of ratings is [1 to 5] where 1 is the most
negative score and 5 is the most positive score).

The subjects have a practical experience with a variety of modelling and
design tools. These tools range from whiteboards, pen&paper to CASE-tools
like Enterprise Architect4, Visual Paradigm5, Dia6, ArgoUML7 and Papyrus8.

Figure 4.3: Expertise in UML modelling and perceived importance of modelling.

We deployed the two versions of our tool OctoUML-Lite and OctoUML-
V on a multi-touch interactive whiteboard (78 1/2” W x 53 3/8” H) that
was connected to a Windows 7 PC with a Core Duo 3.00 GHz processor.
Later on, each subject was introduced to the functionalities of OctoUML. The
introduction lasted around 10 minutes on average. After that, the subjects were
given a software design assignment which consisted of a short text describing a
system to be designed using UML class diagram. The text of the assignment is
provided in the following paragraph:

E-Learning System. The system is used by teachers, students and an
administrator (who is also a teacher). One teacher is responsible for many
courses. The courses may consist of many topics. Students can enroll into

4http://www.sparxsystems.com/products/ea/
5https://www.visual-paradigm.com/
6http://dia-installer.de/shapes/UML/index.html.en
7http://argouml.tigris.org/
8https://eclipse.org/papyrus/

4.5. RESULTS 63

different courses. There is a news section within the system. Teachers add
news for a specific course and the students can read them. Every course ends
with an evaluation test. Teachers create a test and the students have to do it.
The students get one of these grades: fail, pass, good, or very good.

The subjects involved in USS2 were also given a sheet of paper containing
a list of detailed voice commands. While carrying out the design assignment,
the subjects were observed and video-recorded using a digital video camera
in order to note and understand their activities. On average, each subject
completed the design assignment in 20 minutes. After the completion of the
design assignment, we asked the subjects to answer a System Usability Scale
(SUS) questionnaire [77] in order to give a global overview of the subjective
assessment of the usability of the two versions of OctoUML. SUS can be
used on small sample sizes and be fairly confident of getting a good usability
assessment [79]. After answering the SUS questionnaire, each participant was
involved in a semi-structured interview. The conversations were recorded
using a digital voice recorder. The interviewers took some notes which were
expanded afterwards by transcribing the audio recordings, and the data were
quantitatively and qualitatively analysed.

4.5 Results

The results are presented in a form of answers to the research questions that
we posed and reported previously in Section 1.

R.Q.1. For which features of a software design environment do users find
it practical to interact through voice commands?

We asked the subjects who were involved in the user study USS2 to rate the
eligibility (suitability) of the supported voice commands of type α (create class,
create package, create edge, selection mode, moving mode and undo/redo) and
β (name class and name package), together with two additional commands
that could be supported in the future: (i) add attribute/method, to allow the
creation of attributes and methods via voice commands; and (ii) delete class,
to allow the deletion of selected classes. The results are presented in Table 4.2,
where the scale that is used for the rating ranges from 1 (not important) to 5
(very important).

We also asked our subjects if there are any other functionalities that are
desired to be supported by voice commands. The following list reports these
desired functionalities, where every functionality was mentioned by at least
one subject:

• naming and changing the type of association,

• save, open, import and export files,

64 CHAPTER 4. PAPER C

Table 4.2: Suitability (eligibility) of different types of voice commands.

Voice Commands Results
User Study Median 1st Quartile 3rd Quartile Inter-Quartile Range

Type α (Creation) USS2 4.00 3.00 5.00 2.00
Type α (Selection) USS2 4.00 2.25 5.00 2.75
Type α (Moving) USS2 4.00 3.00 4.00 1.00
Type α (Undo/Redo) USS2 4.50 3.25 5.00 1.75
Type α (all) USS2 4.00 3.00 5.00 2.00
Type β USS2 4.50 4.00 5.00 1.00
Other Voice Commands Results

User Study Median 1st Quartile 3rd Quartile Inter-Quartile Range
Add attribute/method USS2 4.00 4.00 5.00 1.00
Delete Class USS2 3.00 2.00 4.00 2.00

• create a new diagram,

• re-arrange the classes and packages,

• select and deselect classes, packages or edges,

• zoom in and out,

• exit the application,

• define your own voice commands.

R.Q.2. What are the perceptions of the users regarding the usability of the
voice interaction modality supported by OctoUML?

The perceptions regarding the usability of the two versions of OctoUML
(OctoUML-Lite and OctoUML-V) were collected via: (i) the SUS questionnaire
and (ii) the semi-structured interviews that were run after the completion of
the design assignment. As a matter of fact, the collected perceptions reflect
satisfaction, comfort and acceptability of use. The results are presented in Table
6.9. The median is indeed the same for all the measurements concerning the
usability of the two versions, except the measurement of the required learning
effort to get going with the system (OctoUML-V required more learning effort).

During the semi-structured interviews, various emotional responses and
experiences were shared with the interviewers. The subjects enjoyed the
experience of using and interacting with the software design environment,
especially via voice. Perceptions regarding the simplicity and ease of use of
OctoUML were positive, and the subjects valued these aspects when comparing
OctoUML to other software design environments that they used previously.
The experience of naming the classes in UML class diagram via voice was much
more appreciated compared to the experience of using the keyboard to do the
same task. OctoUML-V was perceived useful for simplifying the process of
class diagram creation and recommended to people with disabilities.

4
.5
.

R
E
S
U
L
T
S

65

Table 4.3: Perceptions regarding the usability of OctoUML-Lite & OctoUML-V

Measurement Results
OctoUML version Median 1st Quartile 3rd Quartile Inter-Quartile Range

OctoUML-Lite 4.00 3.00 4.00 1.00
Willing to use the system frequently OctoUML-V 4.00 3.25 4.00 0.75

OctoUML-Lite 2.00 1.00 2.00 1.00
Complexity of the system OctoUML-V 2.00 1.00 2.00 1.00

OctoUML-Lite 4.00 4.00 5.00 1.00
Ease of use OctoUML-V 4.00 4.00 4.75 0.75

OctoUML-Lite 2.00 1.00 2.00 1.00
Need of support to use the system OctoUML-V 2.00 1.25 2.00 0.75

OctoUML-Lite 4.00 3.00 4.00 1.00
Integrity of various functions OctoUML-V 4.00 4.00 4.00 0.00

OctoUML-Lite 2.00 1.00 2.25 1.25
Inconsistency in the system OctoUML-V 2.00 1.00 2.00 1.00

OctoUML-Lite 5.00 4.00 5.00 1.00
Intuitiveness OctoUML-V 5.00 4.00 5.00 1.00

OctoUML-Lite 2.00 1.00 2.25 1.25
Cumbersomeness to use OctoUML-V 2.00 1.00 2.00 1.00

OctoUML-Lite 4.00 3.75 5.00 1.25
Feeling confident when using the system OctoUML-V 4.00 3.25 4.00 0.75

OctoUML-Lite 1.50 1.00 2.00 1.00
Required learning-effort OctoUML-V 2.00 1.25 2.00 0.75

Ease of using the Voice Interaction Modality (VIM) OctoUML-V 4.00 3.25 4.75 1.50

Perceived effectiveness of VIM OctoUML-V 4.00 3.00 4.00 1.00

66 CHAPTER 4. PAPER C

R.Q.3.Does the employment of voice interaction modality within the soft-
ware design environments enhance the efficiency of the software design process?

During the semi-structured interviews that were held in the user study USS2,
a few subjects (5 out of 14) perceived that the voice commands of type α did not
significantly enhance the design process as it was not that big of a reach or hassle
for the subject to click on the buttons in order to activate/execute the tools of
the software design environment. However the subjects considered this type of
commands useful for people with disabilities. While the voice commands of type
β were much more appreciated by the subjects who predicted their potential in
replacing the use of the keyboard which was perceived a time-consuming task.
For that, we only considered the voice commands of type β in the assessment
of the efficiency of the employment of the voice interaction modality in the
software design environment (OctoUML). To assess the efficiency, we measured
the amount of time and number of steps (interactions) that are required for
naming classes and packages in all UML diagrams that were created during
the two user studies (USS1 and USS2) using OctoUML-Lite and OctoUML-V,
respectively. The results are presented in Table 4.4. They show that the
process of naming the classes and packages via voice requires the same number
of steps (3 steps: select then name then confirm), but less amount of time with
respect to the same process using the keyboard. In fact, the difference in time
is significant according to Mann-Whitney’s test [100] (p-value is 0.047 < 0.05).
Furthermore, the standard deviation of the naming effort for OctoUML-V
(SD = 0.32) is lower than OctoUML-Lite (SD = 1.76), and indicates that the
calculated times for naming class diagram elements via voice are more closely
clustered around the mean (the variance of the required time to name different
elements via voice is small).

Table 4.4: Naming effort: keyboard (OctoUML-Lite) vs. voice (OctoUML-V).

OctoUML Version Number of steps Amount of time (Seconds)
Mean St.Dev. Difference in mean rankings

OctoUML-Lite 3 2.12 1.76 Mann-Whitney test (p-value)
OctoUML-V 3 1.35 0.32 0.047

4.6 Discussion

According to our subjects, the better-suited task in software design that should
be supported by voice interaction modality is when the user needs the keyboard
for text input i.e. naming classes and packages via commands of type β. The
main reason is that using a keyboard is not ergonomic and a time-consuming

4.6. DISCUSSION 67

task. In fact, it is easier, faster and more comfortable to use voice instead of
typing [96]. When we asked the subjects to rate the eligibility (suitability) of
the different voice commands, the voice commands of type α got less suitability
score than the commands of type β (α’s median is 4.0 against 4.5 for β).
Even if such commands are of less suitability to the subjects, their support
was strongly recommended because of two reasons: (i) the interaction with
the software design environment via voice is more enjoyable than using the
traditional way e.g. keyboard or touch inputs, and (ii) the potential of the voice
interaction modality that was perceived by the subjects in supporting people
with disabilities. Indeed, some of our subjects wanted to be able to create UML
class diagrams by using only voice commands. Of course for such a scenario,
every possible feature and functionality of the software design environment is a
candidate for voice recognition.

Overall, the perceptions regarding the usability of the two versions are
similar. The median is indeed the same for all the measurements concerning
the usability of the two versions, except the measurement of the required
learning effort to get going with the system (see Table 6.9). In fact, the
required learning effort for using OctoUML-V is more than that of OctoUML-
Lite (OctoUML-V’s median score is 2 against 1.5 of OctoUML-Lite). This is
because the subjects had to learn a list of various voice commands that are
necessary for using of the voice-interaction-enabled version; OctoUML-V. We
have also noticed the learning effort issue during the software design session.
Indeed, before starting with the design session, we supplied the subjects with a
sheet of paper (short manual) containing a list of the supported voice commands.
At the beginning of the session, the subjects often looked to the manual in
order to remember the commands. However, after practicing and getting more
used to the commands, the subject learned exactly how to master them without
consulting the manual.

We found that the employment of voice interaction modality within the
software design environments enhances the efficiency of the software design
process by reducing the time required to name UML class diagram’ classes
and packages. However, numerous factors (e.g. the distance of the microphone,
white noise, human pronunciation, etc.) may affect the effectiveness or accuracy
of the voice recognizer, and as a consequence affect the enhancement in the
efficiency of the software design process. This is in-line with Mills et al. [95]
who pointed out that voice recognition techniques have a high rate of faults
and errors which negatively influences their usability. In order to assess this
issue, we counted how many voice commands were used during the user study
USS2, and how many times the voice recognizer failed to correctly interpret
such commands. In particular, we noted:

• Unintended Commands. Happen when a given voice command acti-
vates/executes a task different from the desired one.

68 CHAPTER 4. PAPER C

• Faulty Name Inputs . Happen when a class or package gets a name different
from the one assigned via a voice command of type β (recognition error).

• Unrecognized Commands. Stand for voice commands that could not pro-
voke any consequence, in the sense that OctoUML-V could not interpret
and even react to such commands.

The average number of used voice commands is 27 (the lowest is 9 and the
highest is 42). Overall, the failure rate for using voice commands is 26% (see
Figure 4.4). Such a rate was obtained via dividing the total number of voice
recognition faults (100) by the total number of executed voice commands (381).
Whereas the failure rate for using the voice commands of type β (faulty name
inputs’ failure rate) is 12%. This rate is small, however, it still affects the
enhancement in the time required for naming the UML class diagram elements.
In order to minimize the failure rate, more sophisticated recognizers are needed
to reduce the effects of the factors that may compromise the recognition process.

Figure 4.4: Usage and faults of voice commands.

4.7 Threats to Validity

Construct Validity. We assigned a design task which was relatively simple
compared to real world problems. This might have influenced the amount of
discussions and usability interactions. However during the interviews, all the
subjects perceived the potential of OctoUML in managing any kind of software
design problems, even complex ones.

4.8. CONCLUSION AND FUTURE WORK 69

Internal Validity. None of the subjects were familiar with OctoUML. To
mitigate this, we gave the participants a short introduction explaining the
features and functionalities of OctoUML. Moreover, we provided the subjects
involved in USS2 with a list of all voice commands that are supported and
could be used during the software design session. During the interviews, the
participants might have wanted to please the interviewers by giving them a
positive feedback. To mitigate this, we asked the participants to answer the
SUS questionnaire which allowed them to give feedback anonymously.

External Validity. The involved subjects in two the user studies, USS1
and USS2, may not represent the general population of software engineering
community. This could threat the generality of the results. However we involved
people with different background, modelling expertise and academical degrees.

4.8 Conclusion and Future Work

Modelling is a common approach for software development as it allows efficient
definition of software artefacts in order to create a solution that meets the
requirements. There is an evident need for efficient methods and tools for
designing software products. Current software design tools constrain the
realistic design process rather than supporting it [4]. Furthermore, they lack
adaptation and deployment of advanced technologies and need flexibility on
both platforms and used input methods.

The main goal of this study was to find out which features of software design
environments are prioritized to be supported by voice interaction modality, as
well as understand whether the support of such features could: (i) enhance the
usability and efficiency of software design environments, and (ii) be of benefit
for software design processes. To achieve this goal, we designed and evaluated
a multi-modal software design environment, OctoUML, that supports multiple
interaction modalities such as touch, mouse, keyboard and voice. Furthermore,
we conducted two user studies by involving a population sample of thirty
subjects (2 post-docs, 13 PhD and 15 M.Sc. students) to evaluate and compare
the usability as well as the efficiency of two versions of OctoUML; one is
voice-recognition-enabled (OctoUML-V) and the other is not (OctoUML-Lite).

OctoUML-V was more appreciated by the subjects. Moreover, it also
enhanced the efficiency of the software design process by reducing the required
time for naming the elements of the software design diagram.

The collected perceptions regarding the usability will be utilized to conduct
and track the development progress of OctoUML as more improvements could
be done in the future. Furthermore, we will study the impact of employing multi-
touch and remote collaboration techniques in OctoUML, and hence evaluate
the usefulness of these techniques in supporting the software design process.

70 CHAPTER 4. PAPER C

Chapter 5

Paper D

OctoUML: An Environment for Exploratory and Collabo-
rative Software Design

R. Jolak, B. Vesin, M.R.V. Chaudron

In Proceedings of the 39th International Conference on Software
Engineering, pp. 7-10. 2017.

71

Abstract

Software architects seek efficient support for planning and designing models
at multiple levels of abstraction and from different perspectives. For this
it is desirable that software design tools support both informal and formal
representation of design, and also support their combination and the transition
between them. Furthermore, software design tools should be able to provide
features for collaborative work on the design. OctoUML supports the creation
of software models at various levels of formality, collaborative software design,
and multi-modal interaction methods. By combining these features, OctoUML
is a prototype of a new generation software design environment that aims to
better supports software architects in their actual software design and modelling
processes.
Demo video: https://youtu.be/fsN3rfEAYHw
OctoUML Project: https://github.com/Imarcus/OctoUML

Keywords: software design; modelling notations; multi-modal interaction;
collaborative design; user experience; UML

72 CHAPTER 5. PAPER D

5.1 Introduction

Designing software consists of exploring design problems, discussing solutions
and creating software models as design artifacts. Such artifacts provide a
bridge between problem and software implementation by describing user’s
needs as well as the product to be developed. As software systems are gaining
increased complexity, the importance of efficient software design tools is also
increasing. Software models change frequently and are quite often updated by
many designers simultaneously [66]. These models should present a description
of complex systems at multiple levels of abstraction and from a different
perspectives. Therefore, it is crucial to provide software design tools that give
possibilities for efficient and collaborative development as well as options for
multi-modal interaction.

Modelling tools can be classified into two groups: informal and formal [71].
We mean by informal any tool that supports informal design in the sense
that it does not constrain the notation used. Indeed, informal tools are
preferred for their flexibility as well as the role that they play in unleashing
designers’ expressiveness. Examples of such tools are whiteboards, paper
and pencil. While we mean by formal any tool that support one or few
formalized notations. Typical examples are UML CASE-tools (e.g. Rational
Rose, Enterprise Architect, Papyrus, StarUML, etc.). Formal tools are usually
used for code-generation and/or documenting purposes.

During early design phases, software designers often use informal tools (e.g.
whiteboards) to sketch their thoughts and compare design ideas. Once the
designers settle on one possible solution, they proceed to create a formal version
of the sketchy design. In particular, they move from the whiteboard, start-up
the computers, run a formal tool (a CASE-tool), and re-enter the solution
that has been created previously during the early design phase. So there is
a gap between informal designing in early software design phases and formal
design and documentation practices in subsequent development. To bridge
this gap, we present OctoUML, a software design environment that supports
exploratory and collaborative design meetings. OctoUML provides means to
allow the creation of both sketchy hand-drawn elements and formal notations
simultaneously. Moreover, it allows the transformation of sketchy designs into
formal notations.

Oviatt and Cohen [101] illustrated the importance of multi-modal systems
in reshaping daily computing tasks and predicted their future role in shifting
the balance of human-computer interaction much closer to the human. We
enabled OctoUML to support multiple modes of interaction including mouse,
keyboard, touch/multi-touch using fingers and styluses, sketching, and voice
modality.

More often than not, the process of software design involves several designers
working on the same project simultaneously. This could also occur in user-

5.2. RELATED WORK 73

centered design situations where users are involved in the design process. We
implemented OctoUML to support design collaborative sessions, both in-situ
(via the adoption of multi-touch technique) and at a distance “remotely” (by
using a client-server paradigm). OctoUML can be run using a number of
input devices ranging from desktop computers over large touch screens to large
interactive whiteboards.

The paper is organised as follows: the related work is presented in section
two. Further information on OctoUML, its architecture and features, and the
performed evaluation are reported in section three. The future objectives and
concluding remarks are presented in the last section (section four).

5.2 Related Work

Several studies proposed different approaches to enhance the software design
process. Mangano et al. [51] identified some behaviors that occur during
informal design. In particular, designers sketch different kind of diagrams (e.g.
box and arrow diagrams, UI mock-ups, generic plots, flowcharts, etc.) and use
impromptu notations. The authors implemented an interactive whiteboard
system (called Calico) to support these behaviors and identified some ways
where interactive whiteboards can enable designers to work more effectively.

Wüest et al. [74] stated that software engineers often use paper and pencil to
sketch ideas when gathering requirements from stakeholders, but such sketches
on paper often need to be modelled again for further processing. A tool,
FlexiSketch, was prototyped by them to combine free-form sketching with the
ability to annotate the sketches interactively for an incremental transformation
into semi-formal models. The users of FlexiSketch were able to draw UML-like
diagrams and introduced their own notation. They were also able to assign
types to drawn symbols. Users liked the informality provided by the tool, and
had the will to adopt it in practice.

Magin and Kopf [56] created a multi-touch based system allowing users to
collaboratively design UML class diagrams on touch-screens. They have also
implemented a new algorithm to recognize the gestures drawn by the users and
to improve the layout of the diagrams. However, their tool does not allow for
informal freehand sketching of arbitrary notations.

Lahtinen and Peltonen [81] presented an approach to build speech interfaces
to UML tools. The authors set up a spoken language to manipulate the UML
models, and built a speech control system (VoCoTo) integrated with a CASE-
tool (Rational Rose). They stated that speech recognition is applicable to be
used to enhance the interaction with UML tools.

Table 5.1 summarizes the main supported functionalities by OctoUML and
illustrates the differences to the related work.

74 CHAPTER 5. PAPER D

Table 5.1: Comparison between OctoUML and the related work.

Related Work Informal & formal
notations

Interaction Modal-
ities

(Multi-Touch,
Remote Control)

Calico informal hand-drawn
notations

mouse, keyboard and
touch

(no, no)

Flexisketch informal hand-drawn
notations

mouse, keyboard and
touch

(no, no)

Magin&Kopf formal notations cre-
ation via gestures

touch-based (yes, no)

VoCoTo formal notations mouse, keyboard and
voice

(no, no)

OctoUML creation and mix of in-
formal and formal nota-
tions simultaneously

mouse, keyboard,
single touch, multi-
touch, and voice

(yes, yes)

5.3 OctoUML

In a previous work [71], we presented our vision for a new generation software
design environment. To realize our vision, we developed a prototype called
OctoUML [102]. OctoUML is a software design environment that supports
exploratory and collaborative software design. It is used to create and organize
diagrams as well as supports their modification and evolution. Firstly, we
illustrate the architecture of OctoUML. Secondly, we describe the main func-
tionalities that are supported by OctoUML (sections B and C). Later on, we
provide a scenario showing how such functionalities could support the design
process. Lastly, we provide some details on OctoUML evaluation.

5.3.1 OctoUML’s Architecture

The key architectural components of OctoUML are presented in Figure 5.1.
The environment contains three major components: UI component, Data
component and Services. The current version of the system offers only the
UI and Data components. Additional services will be added during future
development. The UI component consists of: Presentation manager and Input
unit. The Presentation manager provides means for performing stylus or
touch-based input commands on devices being used. Drawing layers include
support for both informal and formal modelling layers. The Command tools
are responsible for transferring the inputs from users to different controllers.
The Graph controller allows switching between different input techniques with
combining of multiple layers. The Input unit is responsible for processing
different inputs. In particular, a Sketch recognizer is provided to recognize
and transform informal models into formal concepts, and hence allows to

5.3. OCTOUML 75

Figure 5.1: Architectural Components of OctoUML

maintain and transfer the designs for further processing tasks. A Multi-touch
controller captures and coordinates the inputs from different touch-points. All
the program data are saved and stored in the Data component. Our tool uses
a set of data structures to manage and maintain the sketched elements and
formalized designs.

5.3.2 Informal and Formal Notation

Whiteboards (or any informal tools e.g. paper and pen) are used during early
software design phases because of their flexibility and immediacy, but also
becuase they do not constrain the notation being used. Informal notations
(e.g. sketches) can be used to express abstract ideas representationally, to
allow checking the entirety and the internal consistency of an idea as well as
to facilitate development of new ideas [69]. Furthermore, informal notations
can have a very close mapping to the problem domain. However, the informal
notations often need to be formalized in order to allow their manipulation and
process e.g. sharing, code generation or documentation.

Modelling tools should not constrain designers to create only some specific
notations. Furthermore, they should maintain the characteristics of formal
tools in their support of design transfer and persistence [71].

OctoUML allows the creation of both hand-drawn informal sketches and
computer-drawn formal elements (currently UML class and sequence models)

76 CHAPTER 5. PAPER D

Figure 5.2: Combination of different notations on the same canvas

on the same canvas simultaneously (Figure 5.2). OctoUML bridges the gap
between early software design process, when informal tools are typically used,
and later documentation and formalization process, when formal tools are
used. Beside supporting the creation of software models at different levels of
formality, OctoUML is equipped with a Sketch recognition unit which enables
sketch formalization. In particular, OctoUML allows the transformation of
models from informal to formal and vice versa at any time during the modelling
session. Furthermore, we adopted a layering technique by which the informal
notations belong to one layer that we call the informal layer, and the formal
notations belong to another layer that we call the formal layer. The user can
then select to see the layers in combination or isolation.

5.3.3 Interaction Modes and Collaboration

The usability of current CASE tools is a common source of criticism [7]. The
interaction with such tools is often based on using the mouse and keyboard.
Other modes of interaction (e.g. touch, gesture and voice) could be more
natural and intuitive. In order to improve the user experience of OctoUML and
increase its accessibility, the interaction modalities of OctoUML are enriched
by providing a voice-commands recognition component capable of transforming
designers’ voice-commands into control actions.

The process of software design often involves more than one designer working
on the same project simultaneously. OctoUML promotes collaborative design

5.3. OCTOUML 77

by adopting a multi-touch technique and supporting remote collaboration. Next,
we provide more details on the supported functionalities:

• Multi-touch is an interaction technique that permits the manipulation
of graphical entities by more users at the same time. Our tool allows
multiple users to design diagrams simultaneously by performing simple
touch gestures.

• In order to improve the user experience, we integrated a voice-commands
control component within the Input unit. The component is capable of
handling the most commonly used functions during the design process.
Thus, users can use voice commands in order to create and edit elements
of software diagrams.

• To open up new opportunities for interactive collaborative design, our tool
supports remote collaborative sessions between geographically distributed
teams. One team of designers can run a server instance of OctoUML,
whereas another team can join the session as client connecting to the
server. Video calls and chatting tools will be integrated in order to
support the joint design sessions.

5.3.4 Design process in UctoUML: A Scenario

Figure 5.3 illustrate the design process in OctoUML. Activities that are currently
supported by OctoUML are distinct in green. Let us think about the following
scenario: a group of software designers meet to explore and discuss design ideas
of a specific software product. The designers start with the creation of some
informal sketchy designs using OctoUML being deployed on a large interactive
whiteboard. After that, the designers proceed with a selective transformation
of some informal sketches into a formal model. Later on, the created model
is analyzed to check possible flaws and performance bottlenecks. Finally, the
model is saved and uploaded to a version control repository. The designers
meet again (on-site or from different locations) when new requirements come
out or having earlier requirements exposed to changes. They fetch the design
that was previously shared on the version repository, update the design, and
commit a new version that is now compliant to the new requirements.

5.3.5 Evaluation

Two user studies were performed to evaluate OctoUML. In both studies, the
participants had to do a modelling task using OctoUML, answer a System
Usability Scale (SUS) questionnaire [77], and participate into semi-structured
interviews. The first study involved fourteen software engineering students
(ten PhD and four M.Sc. students) and two post-doc researchers. The main

78 CHAPTER 5. PAPER D

Figure 5.3: Design process in OctoUML

purpose of the first study was to evaluate the usability of OctoUML as well
as to investigate whether supporting the mix of informal and formal notation
could support the design process. OctoUML got an average SUS-score of 78.75
which is a high usability score according to [43]. The participants stated that
informal notations could be valuable artifacts beyond being just explorative
means. They also stated that such notations support designers’ activities
in understanding the problems and communicating ideas. Figure 5.4 shows
the feedback from the participants regarding the use of informal and formal
notations within OctoUML.

Figure 5.4: User study I: informal vs. formal notations

The second study involved fourteen participants (three PhD and eleven
M.Sc. software engineering students). The main purpose was to evaluate the
learnability and usability of OctoUML as well as the role of the voice interaction

5.4. CONCLUSION AND FUTURE DEVELOPMENT 79

Figure 5.5: User study II: usability and learnability of OctoUML

modality in enhancing the user experience and supporting the software design
process. OctoUML got a SUS-score of 74.6 which can be considered a quite
good usability score [43]. The majority of the participants stated that it was
easy to learn and use the different functionalities of OctoUML (including the
voice interaction modality), see Figure 5.5. Furthermore, the voice interaction
modality was perceived helpful in overcoming non-ergonomic tasks e.g. typing
via a keyboard.

5.4 Conclusion and Future Development

In this paper we presented OctoUML, a prototype of a new generation software
design environment for collaborative software design. It provides support for
mixing informal hand-drawn elements with formal notations. Moreover, it
supports different input methods and interaction modalities.

OctoUML combines the advantages of both informal tools e.g. interactive
whiteboards and formal tools e.g. CASE tools, and therefore is able to bridge
the gap between early software design process (when designers often sketch
their ideas) and formalisation/documentation process. OctoUML was evaluated
by conducting two user studies and involving thirty participants in total. The
main goal was to get feedback on the viability and usability of OctoUML. The
results show that the participants enjoyed their experience with OctoUML and
had a positive perception regarding its usability.

The current architecture of OctoUML allows future expansions of the system
with additional functionalities. The goal is to implement and incorporate

80 CHAPTER 5. PAPER D

additional features in the subsequent versions of the system:

– Analysis component. It will perform software model analysis. This tool
will be used to automatically evaluate the created software models to
detect general design flaws, security flaws and performance bottlenecks.

– Versioning component. The purpose is to provide a repository for keeping
track of the version history of stored models, and the ability to observe
changes that are made to specific artifacts in the environment. The
system should also be able to resolve conflicts when two users change
the same model data. Such component would increase the potential for
parallel and distributed work, improve the ability to track and merge
changes over time, and automate management of revision history. It
would also allow multiple designers to work concurrently, supporting tight
collaboration and a fast feedback loop.

– Code management. Models and code must be combined throughout the
development process. Users will be able to generate code from formalized
UML class diagrams as well as view models and codes side by side and
jump between editing one and keeping the other synchronized.

Chapter 6

Paper E

Dissecting Design Effort and Drawing Effort in UML Mod-
eling

R. Jolak, E. Umuhoza, T. Ho-Quang, M.R.V. Chaudron, M. Bram-
billa

In Proceedings of 43th Euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA), pp. in print. 2017.

81

Abstract

One argument in the discussion about the adoption of UML in industry is the
supposedly large effort it takes to do modeling. Our study explores how the
creation of UML models can be understood to consist of different cognitive
activities: (i) designing : thinking about the design (ideation, key-design decision
making), (ii) notation expression: expressing a design in a modeling notation
and (iii) layouting : the spatial organization of model elements in a diagram.
We explain that these different subactivities relate to different short-term
and long-term benefits of modeling. In this study we present two controlled
experiments with a total of 100 subjects creating models for a small system. In
these experiments we focus on software models as represented through UML
class diagram. Our results show that at least 56% of the effort spent on creating
a class model is actually due to designing. Notation expression is around 41%
of the model creation effort and layouting is in the order of 3%. This finding
suggests that a significant part of creating models is devoted to design thinking
about the problem.

Keywords: Software Engineering; Software Modeling; Software Design; Mod-
eling Effort; Designing Effort; Design Thinking; UML

82 CHAPTER 6. PAPER E

6.1 Introduction

Models have emerged in software engineering as a powerful tool to tackle
complexity of system specifications. Indeed, modeling allows to address the
description of software based on different levels of abstraction and from multi-
ple perspectives, in order to accommodate the needs of communication and
description of a variety of stakeholders. In fact, models help to describe, reason,
predict and evaluate both software problems and solutions. Furthermore, they
provide effective means for supporting the communication between stakeholders,
and serve as specifications for implementation [103]. However, software practi-
tioners consider such approaches time-consuming, hence prefer to avoid using
models which are believed as complex, inconsistent, excessive and unnecessary
artifacts [18].

In this study we want to find out how much of the modeling effort is spent
on the design of the solution (i.e. pondering and making the design decisions).
If a significant part of the creation of the models is devoted to design thinking
about the problem, it could means that the fault of supposedly unproductive
processes should not be blamed on modeling, but to the (anyhow necessary)
effort devoted to thinking about the problem and identifying the solution (i.e.
design effort).

In order to assess this, we run a set of experiments about the creation of
models in response to a set of requirements: we measure the effort required
to make the initial model of a system (modeling effort), and then we measure
the effort required to recreate the same model again, simply by redrawing the
already defined solution (copying effort). For the copying of the solution, we
assume a subject does not have to (re)do any design thinking, but only spend
effort on entering a solution into a modeling tool. At the end we calculate
design effort by assessing the time difference between the two activities (see
the details in Section 6.3).

Some empirical studies provided evidence on the benefits of UML modeling
in enhancing the productivity, quality and maintenance of software products
[15, 80, 104, 105]. These studies sustain that benefits of UML modeling take
place after a long-term, in the sense that UML modeling introduces an initial
overhead at the beginning, whereas the benefits start to take place at late
stages – like the two marshmallows reward of the ’one marshmallow now or
two marshmallows later’ experiment [106]. The minority of the kids who
participated in that experiment preferred to have one marshmallow now rather
than two later. Such behaviour may be similar to that of software developers’
who do not prefer to spend time on modeling at early stages, and eat the
marshmallow immediately.

Our hypothesis is that the benefits of UML modeling does not only take
place after a long-term, but also immediately at early stages. To assess this hy-
pothesis, we try to dissect design, notation expression and layout efforts in UML

6.2. RELATED WORK 83

modeling. If design effort dominates the modeling process, then UML modeling
consists mostly of thinking of the domain problem and identifying/designing
the solution. In other words UML modeling would reward three marshmallows;
one immediately (foster design thinking and promote ideation) and two later
(enhance productivity, quality and maintenance).

This paper is organized as follows: in Section 6.2 we discuss the related
work. We describe our approach in Section 6.3. Section 6.4 illustrates the
design of our experiments and details their operational phases. Section 6.5
reports the results of the experiments, which are then discussed in Section 6.6.
We consider the threats to validity in Section 6.7. Finally, we conclude and
discuss the future work in Section 6.8.

6.2 Related Work

More often than not, evaluation of software modeling practices and associated
effort have been left in the realm of myth. As a result, software developers and
also modeling experts have different opinions on the pros and cons of modeling
that rely on beliefs (i.e. factoids) more than facts. This leads to a variety
of situations where no proper guidance can be provided in the selection of
the appropriate design tools for software. More in general, the whole field of
software engineering perceives the discrepancy between scientifically validated
results (e.g., in the empirical software engineering) and developers beliefs,
usually based only on personal perspectives on the development processes.
Various recent studies demonstrate that more in-depth studies that address
the interplay of belief and evidence in software practices are needed [107].

A few studies addressed the monitoring and analysis of modeling practices.
Sharif et al. [33] explored design strategies and types of activities that designers
engage in during software design sessions. They used video-recordings and
transcripts of three two-person teams who were assigned to create a software
design for the same set of requirements on a whiteboard. In addition to the
identified design activities, they also found the sequence of activities for each
session as well as the activity that took the longest by analyzing the duration
of actions and speeches mapped to various design activities. They identified
some of time-consuming activities such as decisions about the logic, discussion
of uses cases, drawing class diagrams, and drawing the user interface.

Some experiments have been conducted to identify strategies during the
modeling task. The works [108,109] recorded the activities of a pool of students
when creating UML class diagrams and analysed the logs using LogViz. Four
different strategies were found, namely Depth First, Breath First, Depthless
and Adhoc. The study also found that students spent most of their time in
understanding assignment tasks and in defining the layout of the model. One
thing that the log failed to say was what students do in the time gaps where

84 CHAPTER 6. PAPER E

they appeared to do “no activity”.
Despite the resistance of software companies in adopting the model-driven

development, few industrial success stories can be found. Brambilla and Frater-
nali [110] presented the industrial success stories (spanning from financial and
banking to utility) and the advantages of adopting Model-Driven Engineering
(MDE) perceived by the customers of WebRatio, a company which focuses on
MDE tools and services since 2001. The study also included a report of amount
of the effort dedicated by the designers to the different modeling activities.

Furthermore, few researches evaluated some of the claimed advantages
brought by MDE. Diaz et al. [111] measured the reuse gains brought by MDE
in comparison with manual coding of blogs. Brambilla et al. [112] analyzed
the productivity gain brought by MDE in comparison of manual coding of
cross-platform mobile applications. They observed that for mobile applications,
model-driven development allows to save more than 20% of the cost.

6.3 Approach

In this section, we provide an overview of the approach used to estimate the
effort devoted to different activities in the process of software modeling. Our
approach considers software modeling as a process that encompasses three
different activities:

[a] Designing of the solution: It represents the activity of reasoning and
thinking about a design solution of a domain problem. We call the time
devoted to this activity: Design Effort (DE).

[b] Notation expression: The expression of the identified solution through a
modeling notation. We call the time devoted to this activity: Notation
Expression Effort (NEE).

[c] Layouting: It represents the activity of organization of the model elements
in a diagram (e.g. to enhance the readability of the model). We call the
time devoted to this activity: Layout Effort (LE).

Based on that, the total effort dedicated to the software modeling process is
simply obtained as a sum of the single efforts spent in each modeling activity.
The total Modeling Effort (ME) in given by Equation Eq.A.

ME = DE +NEE + LE (Eq.A)

To compute the effort spent in each activity, we ran two-phase experiments.
In the first phase, we measure the effort required to make the initial model
of a system (modeling effort). While in the second phase, we measure the
effort required to recreate the same model again, simply by redrawing the

6.3. APPROACH 85

already defined solution (copying effort). At the end, we calculate the design,
notation expression, layout efforts by assessing the time difference between the
two phases.

6.3.1 Phase 1: Modeling

During this phase the participants are asked to create a UML class diagram
that addresses a simple assignment using a modeling tool. The participants
think about the solution, express their solution through a modeling notation,
and may organize the elements of the model on the canvas.

Let us denominate the set of all persistent elements that are part of the
final model with (Π), and the set of all deleted elements that are not in the
final model with (∆). Let us also denominate the set of all elements (persistent
and deleted) with (Σ). We have that:

Σ = Π ∪∆ (Eq.B)

Based on Equation Eq.A and Equation Eq.B, the effort dedicated to the
modeling phase, called modeling effort (ME), is given by the following equation
(unknowns are in bold, whereas the known efforts are obtained via analyzing
the log of the modeling tool):

ME(Σ) = DE(Σ) + NEEm(Π) + NEEm(∆) + LEm(Π) + LEm(∆) (Eq.1)

Where:

• ME(Σ): (known) the total modeling effort,

• DE(Σ): (unknown) design effort, the time spent on thinking about the
solution (including both persisted and deleted elements),

• NEEm(Π): (unknown) notation expression effort of persistent elements
during modeling phase; the time spent on creating elements that are part
of the final model,

• NEEm(∆): (unknown) notation expression of deleted elements during
modeling phase; the time spent on creating elements that are not in the
final model (deleted because of exploring design alternatives),

• LEm(Π): (known) layout effort of persistent elements during modeling
phase; the time spent on organizing elements of the final model,

• LEm(∆): (known) layout effort of deleted elements during modeling
phase; the time spent on organizing elements that are not in the final
model.

86 CHAPTER 6. PAPER E

6.3.2 Phase 2: Copying

During the copying phase, the participants are asked to simply re-draw (copy)
the same modeling solution produced in phase 1. In this phase the participants
are asked to do a strict copy without thinking or enhancing the identified
solution in phase 1. Thus, the effort dedicated to this phase, called copying
effort (CE), is obtained via the following equation:

CE(Π) = NEEc(Π) + LEc(Π) (Eq.2)

Where:

• CEc(Π): (known) the total copying effort,

• NEEc(Π): (unknown) notation expression effort of persistent elements
during copying phase,

• LEc(Π): (known) layout effort of persistent elements during copying
phase.

6.3.3 Analyze Effort Difference

By isolating design and layout efforts, the notation expression effort of persistent
elements is the same in both phase 1 and 2. We have that NEEm(Π) = NEEc(Π).
We compute the design effort by subtracting Equation Eq.2 from Equation Eq.1.
The final result is reported as follows:

DE(Σ) = ME(Σ)− CE(Π)− LEm(Π)− LEm(∆)−NEEm(∆) + LEc(Π) (Eq.3)

First of all, LEm(Π) + LEm(∆) = LE(Σ) is the total layout effort (LE) in
the modeling phase. Now let us consider the number of persistent and deleted
elements in the modeling phase as |Π| and |∆|, respectively. Based on Equation
Eq.2, we identify NEEm(∆) via the following equation:

NEEm(∆) =
|∆|
|Π|
·NEEc(Π) (Eq.4)

The (DE) is given by inserting the value of NEEm(∆) in Equation Eq.3.
Furthermore, considering Equation Eq.A, the notation expression effort is given
by the following equation:

NEE = ME −DE − LE (Eq.5)

We are interested in identifying how much of the total modeling effort is
spent on designing, notation expression and layouting. Thus, we can define the

6.3. APPROACH 87

Design Effort Percentage (DEP) as the ratio of the Design Effort (DE) over
the total Modeling Effort (ME):

DEP = DE/ME (Eq.6)

Similarly for NEE and LE, the percentages are given by:

NEEP = NEE/ME (Eq.7)

LEP = LE/ME (Eq.8)

At this point, we want to underline that the DE may also occur during the
process of UML notation expression and/or layouting (as we are capable of
thinking while drawing). Our calculations indeed estimates the lower bound on
DEP (the minimum DEP), in the sense that we do not assume any occurrence
of DE during the process of notation expression and/or layouting. So the real
value of DEP may be more than the minimum found. At maximum, DE could
occur continuously from the beginning to the end of the modeling process (i.e.
Max(DEP) is 100%).

Our experiments were conducted at Polytechnic University of Milan in
Italy and Gadjah Mada University in Indonesia. We formulated three different
modeling scenarios. Every scenario describes a system to be designed (see
Section 6.4.1.1). A mix of 100 B.Sc. and M.Sc. software engineering students
were randomly given the modeling scenarios. To create their models, students
were asked to use WebUML [108] and Papyrus (https://eclipse.org/papyrus)
modeling tools. Both tools allow the logging of the modeling activities. We col-
lected the recorded log files for each participant and assignment. We also setup
an online questionnaire through which participants answered questions about
their background, expertise in UML modeling, tool usability, and assignments
understandability.

Based on the collected results, our research objective has been addressed
by defining and responding to the following research questions:

[a] How much of the modeling effort is design, DEP?

[b] How much of the modeling effort is notation expression, NEEP?,

[c] How much of the modeling effort is layout, LEP?

[d] Does the size of the modeling scenario affect DEP, NEEP and LEP?

[e] Does the topic of the modeling scenario affect DEP, NEEP and LEP?

88 CHAPTER 6. PAPER E

6.4 Experiment

This section describes the modeling experiments conducted to answer the
research questions presented in Section 6.3. For this study, we conducted the
experiments in two different settings: (i) participants create models Individually
and (ii) in teams Collaboratively. We refer to the former setting as EXP1 while
the latter as EXP2.

EXP1 was conducted at Polytechnic University of Milan involving 48
students. During this experiment, the participants were asked to design a
solution for given modeling scenarios using the WebUML editor. EXP2 was
conducted in Gadjah Mada university in Indonesia involving 13 groups of 4
students each. Each group was asked to design a solution for a given modeling
scenario using Papyrus.

6.4.1 Experiment Preparation

6.4.1.1 Scenarios Definition

To make our analysis of the specific case independent, we evaluated the design
effort with three scenarios (scenario 1, scenario 2 and scenario 3) from different
topics and with slightly different size (the number of classes in their solution
is different by one or two). Every scenario describes a simple system to be
designed. In addition, we have defined a test scenario, used at the beginning
of the modeling sessions to explain to the participants how the tool works
and to let them get familiar with it. The description of the scenarios and the
experimental material can be found here: (https://goo.gl/mvz2bm).

6.4.1.2 Assigning scenarios to participants

EXP1 The ideal strategy to get the most generalizable results is to assign
all the three scenarios to each participant. However considering the average
time required to complete one scenario (around 25 minutes), assigning three
scenarios to each participant was not feasible due to the limited time the
students had available for the experiment. Thus, we decided to assign two
scenarios to each participant. In order to limit unintended effects and to
have balanced experiments, we used the Graeco-Latin square theory [113] by
assigning different orders of scenario’s to different groups of students. The
scenarios that are used in this experiment are: scenario 1, scenario 2 and
scenario 3.

EXP2 The purpose of this setting is to study possible effects of group work
and modeling tools on the software modeling effort. The used scenario in

https://goo.gl/mvz2bm

6.5. RESULTS 89

this experiment is: scenario 2. The obtained data from this experiment are
compared to the data that are related to scenario 2 of EXP1.

6.4.2 Experiment Execution

In this phase, the participants model the assigned scenarios using the WebUML
tool for EXP1 and Papyrus for EXP2. Both tools have a logging feature that
logs the participants’ actions (such as the creation, modification, and deletion of
an element). The logs are useful to derive quantitative data which enable us to
compare and evaluate the produced designs and the time spent on interacting
with the tool. The experiments were conducted following these five steps:

[a] Introduction. We introduced the modeling tool to the participants through
a training session.

[b] Instruction. During this phase we explained the procedure of the experi-
ment to the participants, as well as showed them how to save and submit
their designs. Then, a short training exercize of 15 minutes took place
under our supervision in order to get the participants accustomed with
the basic functionality of the tool. This was done using a test scenario,
equal for all the participants.

[c] Modeling assigned scenarios (See Section 6.3, Modeling phase). The
participants have to model the assigned scenario/s.

[d] Copying assigned scenarios (See Section 6.3, Copying phase). The partici-
pants simply copy (re-draw) the proposed model solution that is produced
in the Modeling Phase.

At the end of step 4, the participants of EXP1 were asked to proceed
with the modeling and copying of the other scenarios following the same
way as described in steps 3 and 4, respectively.

[e] Closure. after submitting their models, the participants were asked to
answer a questionnaire about their personal information, knowledge about
UML modeling and perception regarding the usability of the modeling
tools (WebUML for EXP1 and Papyrus for EXP2).

The experiments were performed in a controlled environment. The participants
worked on computers in a lab at both Universities. There were supervisors
that walked around to monitor that the participants worked on the assignment
and not on other tasks or distractions.

90 CHAPTER 6. PAPER E

Figure 6.1: Efforts distribution related to the scenarios of EXP1

6.5 Results

In this section we report the results of the two conducted experiments (EXP1
and EXP2). For EXP1, we present the results of 37 subjects since the ex-
periments of 11 subjects were not valid (8 worked concurrently on the first
and second task while 3 had technical network problems which prevented us
from receiving their data) and then removed from the data set. We used the
statistical package R [114] to perform all tests. We chose a significance level at
0.05, which corresponds to a 95% confidence level.

6.5.1 Design, Notation Expression and Layout Efforts

6.5.1.1 EXP1

For each modeling scenario used during EXP1, we calculated the mean and
the standard deviation of DEP, NEEP and LEP. The results are presented in
Table 6.1.

6.5.1.2 EXP2

We calculated the mean and the standard deviation of DEP, NEEP and LP that
are related to scenario 2 used in experiment EXP2. The results are presented
in Table 6.1. Figure 6.1 and 6.2 provide a better view of the distributions of the
various efforts (DEP, NEEP and LEP) related to the scenarios used in EXP1
and EXP2, respectively. (Note that the red diamond represents the Max(DEP),
as the DE may occur concurrently with notation expression and/or layouting
activities.)

6.5. RESULTS 91

Table 6.1: Statistical results for all scenarios of EXP1 and EXP2

EXP1
Scenario # Subjects DEP NEEP LP

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Scenario 1 21 57.93 18.66 37.93 18.65 4.15 2.69
Scenario 2 25 53.87 18.72 43.10 18.39 3.03 1.75
Scenario 3 22 56.21 16.03 41.26 15.67 2.52 1.20
All 55.88 17.69 40.91 17.51 3.21 2.04

EXP2
Scenario # Subjects DEP NEEP LP

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Scenario 2 52 73.60 8.40 22.14 8.34 4.25 2.88

Figure 6.2: Efforts distribution related to scenario 2 of EXP2

Results for Q1, Q2 and Q3 (EXP1): For all scenarios, we found
that the average Design Effort is 55.88%. While the rest is:
40.91% Notation Expression Effort and 3.21% Layout Effort.

Results for Q1, Q2 and Q3 (EXP2): the average Design Effort for
scenario 2 is 73.60%. While the rest is: 22.14% Notation Expres-
sion Effort and 4.25% Layout Effort.

92 CHAPTER 6. PAPER E

Table 6.2: Quality of the models

I-R. R.
EXP Scenario M Q1 Q3 I-Q. R. Kappa p-value
1 Scenario 1 4.00 3.00 4.00 1.00 0.57 0.000
1 Scenario 2 3.00 3.00 4.00 1.00 0.39 0.000
1 Scenario 3 4.00 3.00 4.00 1.00 0.61 0.000
2 Scenario 2 4.00 3.00 4.00 1.00 0.53 0.002

6.5.1.3 Quality of the models

we consider the quality of the produced models as a further crucial factor.
We wanted to know how well the models reflect the domain problem, because
extremely bad (or rough) models could affect the effort statistics. To grade the
quality of the models, we defined a rubric before running the experiment. The
rubric consists of a 5-point scale grading guidelines (https://goo.gl/mvz2bm).
In advance of the actual grading a set of possible ideal solutions was discussed.
The grading was done in two steps: (i) the assessors graded all models separately
(independently), (ii) the assessors discussed the differences in grading and gave
the model the final mark. Cohen’s κ [115] was run to determine if there was
agreement between the assessors. See Table 6.2 (the range of ratings is [1 to 5]
where 1 is the most negative score and 5 is the most positive score, ratings are
reported in terms of: (EXP: Experiment, M: Median Score, Q1: 1st quartile,
Q3: 3rd quartile, I-Q. R.: Inter-Quartile Range (Q3-Q1), I-R. R.: Inter-Rater
Reliability).

6.5.2 Comparison between the results of EXP1 and EXP2

The same modeling scenario (scenario 2) was used in both experiments EXP1
and EXP2. However, there are two factors that could affect the DEP, NEEP
and LEP: (α) the modeling tool and (β) number of involved subjects per
modeling task. For EXP1, WebUML was used by individuals. Whereas for
EXP2, Papyrus was used by thirteen groups (of 4 people each). In order to
assess the effect of both factors (α and β) on the DEP, NEEP and LEP, we
performed Mann-Whitney’s non-parametric test as the data are not normally
distributed (Shapiro-Wilk test’ p-values are less than 0.05). The following
hypotheses were formed:

• Null Hypothesis H01: There is no statistically significant difference in
the DEP of the two cases.

• Alternative Hypothesis HA1: There is a statistically significant difference
in the DEP of the two cases.

https://goo.gl/mvz2bm

6.5. RESULTS 93

Table 6.3: Impact of modelling tool and collaboration on DEP, NEEP and
LEP (Mann-Whitney tset)

Data Mann-Whitney U sig. 2-tailed
DEP 52.000 0.001
NEEP 42.000 0.000
LEP 125.000 0.249

Table 6.4: Impact of the size of models (Kurskal-Wallis test)

Data Chi-square df p-value
N of Classes 4.151 2 0.126
N of Associations 4.151 2 0.126

• Null Hypothesis H02: There is no statistically significant difference in
the NEEP of the two cases.

• Alternative Hypothesis HA2: There is a statistically significant difference
in the NEEP of the two cases.

• Null Hypothesis H03: There is no statistically significant difference in
the LEP of the two cases.

• Alternative Hypothesis HA3: There is a statistically significant difference
in the LEP of the two cases.

Table 6.3 shows the results of the test. Since the p-values of DEP and NEEP
are less than 0.05, we reject the null hypotheses (H01 and H02) and accept
the alternative hypotheses (HA1 and HA2). In other words, the differences
between the mean rankings of DEP and NEEP of the two cases are statistically
significant. The p-value of LEP is 0.249 > 0.05. We cannot reject the null
hypothesis (H03), and the difference between the mean rankings of LEP of the
two cases is not significant.

We have a statistical evidence to conclude that the DEP and NEEP are
affected by the change of both the modeling tool and the number of involved
subjects per task. While LEP is not affected by such change.

6.5.3 Impacts of The Topic/Size of The Modeling Sce-
narios on DEP, NEEP and LEP

We used three different scenarios for the three modeling tasks that were used
in EXP1. The scenarios are different in topic, but slightly different in size.

In order to statistically assess the difference in the size, we calculated the
number of classes and associations in each solution created by the students

94 CHAPTER 6. PAPER E

Table 6.5: Number of classes and associations in the solutions of each modeling
scenario

Scenario N of classes N of associations
Med. Q1 Q3 I-Q. R. Med. Q1 Q3 I-Q. R.

1 8.00 7.00 8.00 1.00 7.00 6.00 7.00 1.00
2 6.00 4.00 9.00 5.00 5.00 3.00 8.00 5.00
3 6.50 6.00 7.75 1.75 5.50 5.00 6.75 1.75

per scenario. After that, we ran Kruskal-Wallis test [116]. The following two
hypotheses were formed:

• Null Hypothesis H0: There is no statistically significant difference between
the median number of classes/associations in each solution created for
scenario 1, 2 & 3.

• Alternative Hypothesis HA: There is statistically significant difference
between the median number of classes/associations in each solution
created for scenario 1, 2 & 3.

The distributions of the number of classes and associations in the solutions
of each modeling scenario are reported in Table 6.5. The result of Kruskal-
Wallis test is presented in Table 6.4. We cannot reject the null hypothesis (the
significance value p = 0.126 > 0.05). In other words, the difference between
the number of classes/associations in each solution created for scenario 1, 2
and 3 is not significant.

Results for Q4: We cannot assess the impact of the size of the mod-
eling task (scenario) on DEP, NEP and LEP, as we have evidence
that the modeling tasks are not statistically different in size.

At this point we only study the impact of the topic of the modeling scenarios
on DEP, NEEP and LEP. In particular, we want to asses if there is any
statistically significant difference in the mean of DEP, NEEP and LEP between
the three modeling scenarios. To this end, the following set of hypotheses were
formed:

• Null Hypothesis H01: There is no statistically significant difference in
DEP of the three scenarios.

• Alternative Hypothesis HA1: There is statistically significant difference
in DEP of the three scenarios.

6.5. RESULTS 95

Table 6.6: Normality Test results

Data Shapiro-Wilk (p-value)
DEP 0.046
NEEP 0.027
LEP 0.000

Table 6.7: Impact of the topic of the scenario on DEP, NEEP and LEP
(Kruskal-Wallis test)

Data Chi-square df p-value
DEP 1.040 2 0.595
NEEP 1.630 2 0.443
LEP 4.325 2 0.115

• Null Hypothesis H02: There is no statistically significant difference in
NEEP of the three scenarios.

• Alternative Hypothesis HA2: There is statistically significant difference
in NEEP of the three scenarios.

• Null Hypothesis H03: There is no statistically significant difference in
LEP of the three scenarios.

• Alternative Hypothesis HA3: There is statistically significant difference
in LEP of the three scenarios.

The normalities of DEP, NEEP and LEP were checked using Shapiro-Wilk
test [117]. Table 6.6 shows the p-values of the test. The p-values are less than
0.05, and the data are not normally distributed.

Having non-normally distributed data, we applied the non-parametric
Kruskal-Wallis test [116]. Table 6.7 shows the results of the test in detail.
Since the significance values of DEP, NEEP and LEP are > 0.05, we cannot
reject the null hypotheses. In other words, the differences between the mean
rankings of DEP, NEEP and LEP of the given three modeling scenarios are
not significant.

Furthermore, we compared the differences in the mean value of DEP, NEEP
and LEP between every pair of scenarios using Mann-Whitney test [100]. The
results reported in Table 6.8 prove that the difference in the mean rankings
of DEP, NEEP and LEP is not significant between every pair of the three
scenarios (the critical level of significance is 0.05/3 = 0.0167).

96 CHAPTER 6. PAPER E

Table 6.8: Impact of topic between every pair of scenarios (Mann-Whitney
test)

DEP (sig. 2-tailed) NEEP (sig. 2-tailed) LEP (sig. 2-tailed)

S1 - S2 0.408 0.316 0.168
S1 - S3 0.343 0.244 0.046
S2 - S3 0.949 0.733 0.394

Table 6.9: Obtained feedback via the questionnaire

Feedback Results
Experiment Med. Q1 Q3 I-Q. R.

EXP1 2 1 3 2
Expertise in software modeling EXP2 3 2 3 1

EXP1 2 1 2 1
Experience in using UML EXP2 2 2 3 1

EXP1 4 4 4 0
Clarity of the scenarios EXP2 4 3 4 1

EXP1 4 3 4 1
Usability of the modeling tool EXP2 3 2 3 1

Results for Q5: We have statistical evidence to conclude that the
DEP, NEEP and LEP stay the same through different-in-topic
modeling tasks.

6.5.4 Subjects Questionnaire

This subsection resumes the feedback gathered from the participants involved
in the two experiments. These feedback (presented in Table 6.9) complement
the results, and are discussed in Sections 6.6 and 6.7.3.

6.6 Discussion

With the increasing popularity of agile-approaches in software development
there has been a reduced commitment from software development projects to
modeling. Partially this view seems motivated by the seeing of modeling as
an activity that produces ’documentation’ (rather than ’working code’). Our
study shows that a significant part of the effort dedicated to modeling is spent
on thinking about the design. Even though the actual impact of this needs to
be further assessed, we believe that this thinking about the design is valuable.

For EXP1, our results show that at least 56% of the modeling effort is spent

6.7. THREATS TO VALIDITY 97

on design. Whereas for EXP2, at least 74% of the modeling effort is design.
Our assumption is that the participants did not make any design effort while
expressing the model in UML notation as well as doing layout.

One threat to the interpretation of our experiment is whether or not
design-thinking actually happens concurrently with notation expression or
layouting. Given the small size of the layout effort, this would only have a
small impact on our interpretation. If one believes these cognitive tasks overlap,
then the interpretation of our experiment should be that there is indeed more
design thinking - i.e. we have found a lower bound on it through our study.
Consequently, the percentages that we found are minimum, and may increase
as the effort on designing overlaps with the effort on the other two activities
(notation expression and layouting).

The notation expression effort is on average 41% and layouting is on average
3%. These efforts may actually represent a cost of UML modeling. This cost
may be seen as an investment in the communication-value of documentation
within a team. In order to understand whether the cost of notation expression
and layouting is inevitable or not, we may investigate the impact of the usability
of modeling tools on the modeling process. Although the participants of EXP1
used a modeling tool (WebUML) different from the one used in EXP2 (Papyrus),
we could not reveal the impact of the modeling tool on the modeling effort.
This is because the modeling solution of scenario 2 of EXP1 was created
by participants individually, while the same scenario was modeled in by 4
participants collaborating in a team in EXP2. So, the difference in the DE,
NEE and LE between the two settings could be due to the type of the modeling
tool or the number of assigned participants per modeling task. Observing
the perceived usability of the modeling tools by the participants of the two
experiments (see Table 6.9), it might be that the difference in DE and NEE
between EXP1 and EXP2 is due to the factor of collaboration, i.e. design
discussions. As a future work, we aim to isolate the impact of these two factors
(modeling tool and collaboration) on the modeling effort, as well as investigate
better modeling-tool support [88].

6.7 Threats to Validity

6.7.1 Construct Validity

We benefited from the fact that we performed the experiment in a controlled
environment (instead of as a homework assignment): 8 students created the
model and its copy in parallel. We eliminated these cases from our data set
because we could not explicitly calculate the modeling and copying efforts. For
replication of this research, a lesson learned is to instruct students not to do
model and copy simultaneously.

98 CHAPTER 6. PAPER E

We did not aim at maximizing realism and focused on class diagrams for
various reason. We wanted to: (i) ask simple tasks based on a well-known
notation; (ii) reduce confounding factors and thus keep more control over the
experiment compared to drawing multiple types of diagrams; and (iii) have a
preliminary result that can validate our vision.

6.7.2 Internal Validity

It could be possible that thoughts wander off into unrelated territories. The
following reasons limit the impact of this phenomenon: Firstly, the experiment
was performed in a controlled environment. Supervisors walked around the
room. They monitorred that there were no distractions like coffee drinking
or going to the bathroom. Also, they observed that the participants were
indeed working on the task behind their computers. Suppose that indeed some
wandering of thoughts happens, then our expectation is that this happens more
or less equally in the first phase (modeling) and the second phase (copying). In
this case at least the relative ratio between these tasks should not be affected
much.

In the redrawing of a copy of the previously created solution, participants
in the study may have benefited from a learning effect. This could have led
to the notation expression effort being a less than the notation expression
effort in the initial creation of the UML models. We think this affect is small,
and that a more detailed analysis of notation creation activities can lead to a
quantification of this learning effect. However in EXP2, we tried to mitigate
this factor by asking each group to copy the created solution of another group.

Moreover when performing the second modeling task (second scenario) in
EXP1, participants may have benefited from a learning effect as well as suffered
from the fatigue of performing two modeling tasks consecutively. We do not
think there is a large learning effect in the use of the tool, because participants
have been trained in using the tool both before starting and as part of this
assignment. Hence they already have a reasonable fluency in the tool at the
start of the first scenario. We do think the affect of fatigue is small because the
modeling scenarios are simple, and the required time to complete one scenario
is not too much (around 25 minutes).

6.7.3 External Validity

Complexity of the scenarios. The scenarios were kept simple and clear
so that the students can easily understand and complete the tasks in the time
of the experiment. In industry settings, modeling tasks can be much more
complicated in term of size, terminology, languages, level of details, etc. which
we could not cover in our study. This is a limitation on the generalizability
of the findings of this paper when it comes to real-world cases. However, we

6.8. CONCLUSION AND FUTURE WORK 99

consider this threat as acceptable for this preliminary investigation. We are
working on studying larger scenarios to increase the generalizability.

Participants and their modeling expertise. The participants involved
in our experiment may not represent the general population of modeling
practitioners. Moreover, the modeling expertise of our participants is relatively
homogeneous. This limits us from generalizing our findings to other subjects
(i.e. experts, professional software architects, industrial practitioners in the
field). Indeed, familiarity with the modeling tool and experience of designing
may result in different DE, NEE and LE percentages. We consider our findings
as a basis to extend our study to larger community of modeling practitioners.

6.8 Conclusion and Future Work

In order to better understand the effort involved in using software models in
software development, we introduced in this paper the distinction between
design, notation expression and layout efforts. Subsequently, we defined and
ran two experiments in which we measure how much effort each of these
activities takes – both in absolute effort and as a percentage of the total effort
spent on creating class diagrams in a simple student assignment. From these
experiments we conclude that UML modeling should not be considered so very
costly, because it triggers design thinking. According to our results, the effort
spent on thinking about synthesizing the design takes at least 56% of the total
modeling effort.

One implication of this research is that projects that create models concur
at least with significant thinking about the design. This aligns with an earlier
finding that developers report that creating design models in the early stage of
a software development projects, leads to better modularity of the design [80].

Future work: This line of research can be extended in many directions. In
order to increase the external validity, we would like to obtain data from larger
and/or industrial projects about their modeling effort. We have started looking
into two projects where teams of 8 students work for 3 months full time on a
software project. Another extension that is of interest is to study the effect of
usability of modeling tools on the time spent on subtasks of modeling. This
would highlight if tool complexity is a major factor in adoption of modeling.
Complementary questions would be to: (i) explore how much effort is involved
in maintaining models up-to-date in documentation throughout a project, and
(ii) study the impact of the designing and modeling on the speed and quality
of software development.

100 CHAPTER 6. PAPER E

Bibliography

[1] B. Selic, “The pragmatics of model-driven development,” IEEE software,
vol. 20, no. 5, pp. 19–25, 2003.

[2] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to the
whiteboard: how and why software developers use drawings,” in Proceed-
ings of the SIGCHI conference on Human factors in computing systems.
ACM, 2007, pp. 557–566.

[3] K. Lyytinen and V.-P. Tahvanainen, Next generation CASE tools. IOS
Press, 1992, vol. 3.

[4] D. Budgen, “The cobbler’s children: Why do software design environ-
ments not support design practices?” in Software Designers in Action: A
Human-Centric Look at Design Work. Chapman and Hall/CRC, 2013,
pp. 199–216.

[5] S. Abrahão, R. F. Paige, S. Kokaly, B. Cheng, F. Bordeleau, H. Störrle,
and J. Whittle, “User experience for model-driven engineering: Challenges
and future directions,” in ACM/IEEE 20th International Conference on
Model Driven Engineering Languages and Systems, 2017.

[6] N. L. Chervany and D. Lending, “Case tools: understanding the reasons
for non-use,” ACM SIGCPR Computer Personnel, vol. 19, no. 2, pp.
13–26, 1998.

[7] L. Fowler, J. Armarego, and M. Allen, “Case tools: Constructivism and
its application to learning and usability of software engineering tools,”
Computer Science Education, vol. 11, no. 3, pp. 261–272, 2001.

[8] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal, “A
taxonomy of tool-related issues affecting the adoption of model-driven
engineering,” Software & Systems Modeling, vol. 16, no. 2, pp. 313–331,
2017.

101

102 BIBLIOGRAPHY

[9] I. Hammouda, H. Burden, R. Heldal, and M. R. Chaudron, “Case tools
versus pencil and paper: A student’s perspective on modeling software
design.” in EduSymp@ MoDELS, 2014, pp. 21–30.

[10] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 530–541.

[11] F. Tomassetti, M. Torchiano, A. Tiso, F. Ricca, and G. Reggio, “Maturity
of software modelling and model driven engineering: A survey in the
italian industry,” 2012.

[12] B. Moggridge and B. Atkinson, Designing interactions. MIT press
Cambridge, MA, 2007, vol. 17.

[13] P. Cohen and S. Oviatt, “Multimodal interfaces that process what comes
naturally,” Commun ACM, vol. 43, no. 3, pp. 45–33, 2000.

[14] J. D. Herbsleb, “Global software engineering: The future of socio-technical
coordination,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 188–198.

[15] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empiri-
cal assessment of MDE in industry,” in Proceedings of the 33rd Int. Conf.
on Software Engineering. ACM, 2011, pp. 471–480.

[16] P. Mohagheghi and V. Dehlen, “Where is the proof?–a review of expe-
riences from applying MDE in industry,” Lecture Notes in Computer
Science, vol. 5095, no. 2008, pp. 432–443, 2008.

[17] T. Gorschek, E. Tempero, and L. Angelis, “On the use of software design
models in software development practice: An empirical investigation,”
Journal of Systems and Software, vol. 95, pp. 176–193, 2014.

[18] M. Petre, “Uml in practice,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013, pp. 722–731.

[19] P. Ralph and Y. Wand, “A proposal for a formal definition of the design
concept,” Design requirements engineering: A ten-year perspective, vol. 14,
pp. 103–136, 2009.

[20] P. Bourque, R. E. Fairley et al., Guide to the software engineering body
of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society
Press, 2014.

[21] D. Budgen, Software design. Pearson Education, 2003.

BIBLIOGRAPHY 103

[22] H. W. Rittel and M. M. Webber, “Dilemmas in a general theory of
planning,” Policy sciences, vol. 4, no. 2, pp. 155–169, 1973.

[23] J. Kramer and O. Hazzan, “The role of abstraction in software engi-
neering,” in Proceedings of the 28th international conference on Software
engineering. ACM, 2006, pp. 1017–1018.

[24] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[25] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query
language,” in Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)
workshop on Data description, access and control. ACM, 1974, pp.
249–264.

[26] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software engi-
neering in practice,” Synthesis Lectures on Software Engineering, vol. 1,
no. 1, pp. 1–182, 2012.

[27] S. Kent, “Model driven engineering,” in Integrated formal methods.
Springer, 2002, pp. 286–298.

[28] S. J. Mellor, T. Clark, and T. Futagami, “Model-driven development:
guest editors’ introduction.” IEEE software, vol. 20, no. 5, pp. 14–18,
2003.

[29] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-based
engineering in the embedded systems domain: an industrial survey on
the state-of-practice,” Software & Systems Modeling, pp. 1–23, 2016.

[30] P. Baker, S. Loh, and F. Weil, “Model-driven engineering in a large indus-
trial contextmotorola case study,” Model Driven Engineering Languages
and Systems, pp. 476–491, 2005.

[31] M. Petre and A. Van Der Hoek, Software Designers in Action: A Human-
Centric Look at Design Work. CRC Press, 2013.

[32] A. Tang, A. Aleti, J. Burge, and H. van Vliet, “What makes software
design effective?” Design Studies, vol. 31, no. 6, pp. 614–640, 2010.

[33] B. Sharif, N. Dragan, A. Sutton, M. L. Collard, and J. I. Maletic, “Iden-
tifying and analyzing software design activities,” in Software Designers
in Action: A Human-Centric Look at Design Work. Chapman and
Hall/CRC, 2013, pp. 153–174.

[34] A. Baker and A. van der Hoek, “Ideas, subjects, and cycles as lenses
for understanding the software design process,” Design Studies, vol. 31,
no. 6, pp. 590–613, 2010.

104 BIBLIOGRAPHY

[35] U. Dekel and J. D. Herbsleb, “Notation and representation in collaborative
object-oriented design: an observational study,” in ACM SIGPLAN
Notices, vol. 42, no. 10. ACM, 2007, pp. 261–280.

[36] R. Wieringa, Design Science Methodology for Information Systems and
Software Engineering. Springer, 2014.

[37] C. R. Kothari, Research methodology: Methods and techniques. New
Age International, 2004.

[38] J. D. Gould and C. Lewis, “Designing for usability: key principles and
what designers think,” Communications of the ACM, vol. 28, no. 3, pp.
300–311, 1985.

[39] H. Sharp, Y. Rogers, and J. Preece, “Interaction design: beyond human-
computer interaction,” 2007.

[40] R. Kosara, C. G. Healey, V. Interrante, D. H. Laidlaw, and C. Ware,
“Thoughts on user studies: Why, how, and when,” IEEE Computer
Graphics and Applications, vol. 23, no. 4, pp. 20–25, 2003.

[41] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Sci-
ence & Business Media, 2012.

[42] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” Guide to advanced
empirical software engineering, pp. 285–311, 2008.

[43] J. Sauro, A practical guide to the system usability scale: Background,
benchmarks & best practices. Measuring Usability LLC, 2011.

[44] P. D. Cherulnik, Methods for behavioral research: A systematic approach.
Sage Publications, 2001.

[45] C. U. Smith and L. G. Williams, “Performance solutions: a practical
guide to creating responsive, scalable software,” 2001.

[46] J. L. Fiadeiro, “The many faces of complexity in software design,” in
Conquering Complexity. Springer, 2012, pp. 3–47.

[47] A. Filieri, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Conquering
complexity via seamless integration of design-time and run-time verifica-
tion,” in Conquering Complexity. Springer, 2012, pp. 253–275.

[48] E. Lank, J. Thorley, S. Chen, and D. Blostein, “On-line recognition of
uml diagrams,” in Document Analysis and Recognition, 2001. Proceedings.
Sixth International Conference on. IEEE, 2001, pp. 356–360.

BIBLIOGRAPHY 105

[49] C. H. Damm, K. M. Hansen, and M. Thomsen, “Tool support for coop-
erative object-oriented design: gesture based modelling on an electronic
whiteboard,” in Proceedings of the SIGCHI conference on Human Factors
in Computing Systems. ACM, 2000, pp. 518–525.

[50] B. Plimmer and M. Apperley, “Computer-aided sketching to capture
preliminary design,” in Australian Computer Science Communications,
vol. 24, no. 4. Australian Computer Society, Inc., 2002, pp. 9–12.

[51] N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek, “Supporting
informal design with interactive whiteboards,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,
2014, pp. 331–340.

[52] D. Wüest, N. Seyff, and M. Glinz, “Flexisketch: A mobile sketching tool
for software modeling,” Mobile Computing, Applications, and Services,
vol. 110, pp. 225–244, 2013.

[53] ——, “Flexisketch team: Collaborative sketching and notation creation
on the fly,” in Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, vol. 2. IEEE, 2015, pp. 685–688.

[54] Q. Chen, J. Grundy, and J. Hosking, “An e-whiteboard application to
support early design-stage sketching of uml diagrams,” in Human Centric
Computing Languages and Environments, 2003. Proceedings. 2003 IEEE
Symposium on. IEEE, 2003, pp. 219–226.

[55] J. Grundy and J. Hosking, “Supporting generic sketching-based input of
diagrams in a domain-specific visual language meta-tool,” in Proceedings
of the 29th international conference on Software Engineering. IEEE
Computer Society, 2007, pp. 282–291.

[56] M. Magin and S. Kopf, “A collaborative multi-touch uml design tool,”
Technical reports, vol. 13, 2013.

[57] “Open Services for Lifecycle Collaboration OSLC, an open commu-
nity building practical specifications for integrating software,” http:
//open-services.net/, accessed: 2015-07-16.

[58] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wim-
mer, “An introduction to model versioning,” in Proceedings of the 12th
international conference on Formal Methods for the Design of Computer,
Communication, and Software Systems: formal methods for model-driven
engineering. Springer-Verlag, 2012, pp. 336–398.

http://open-services.net/
http://open-services.net/

106 BIBLIOGRAPHY

[59] K. Altmanninger, M. Seidl, and M. Wimmer, “A survey on model ver-
sioning approaches,” International Journal of Web Information Systems,
vol. 5, no. 3, pp. 271–304, 2009.

[60] “IBM Rational Development Family,” http://www-03.ibm.com/software/
products/en/developer, accessed: 2015-09-03.

[61] T. R. G. Green and M. Petre, “Usability analysis of visual programming
environments: a cognitive dimensions framework,” Journal of Visual
Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[62] D. Moody, “The physics of notations: toward a scientific basis for con-
structing visual notations in software engineering,” IEEE Transactions
on Software Engineering, vol. 35, no. 6, pp. 756–779, 2009.

[63] S. J. Hoppenbrouwers, H. Proper, and T. P. van der Weide, “Formal
modelling as a grounded conversation,” 2005.

[64] B. Nuseibeh, “Weaving together requirements and architectures,” Com-
puter, vol. 34, no. 3, pp. 115–119, 2001.

[65] K. Nakakoji, Y. Yamamoto, N. Matsubara, and Y. Shirai, “Toward
unweaving streams of thought for reflection in professional software
design,” IEEE software, vol. 29, no. 1, pp. 34–38, 2012.

[66] M. R. Chaudron, W. Heijstek, and A. Nugroho, “How effective is uml
modeling?” Software & Systems Modeling, vol. 11, no. 4, pp. 571–580,
2012.

[67] B. Tversky, “Visualizing thought,” Topics in Cognitive Science, vol. 3,
no. 3, pp. 499–535, 2011.

[68] J. Walny, S. Carpendale, N. H. Riche, G. Venolia, and P. Fawcett, “Visual
thinking in action: Visualizations as used on whiteboards,” Visualization
and Computer Graphics, IEEE Transactions on, vol. 17, no. 12, pp.
2508–2517, 2011.

[69] B. Tversky, “What do sketches say about thinking,” in 2002 AAAI Spring
Symposium, Sketch Understanding Workshop, Stanford University, AAAI
Technical Report SS-02-08, 2002, pp. 148–151.

[70] N. Mangano, T. D. LaToza, M. Petre, and A. Van Der Hoek, “How
software designers interact with sketches at the whiteboard,” Software
Engineering, IEEE Transactions on, vol. 41, no. 2, pp. 135–156, 2015.

[71] M. R. Chaudron and R. Jolak, “A vision on a new generation of software
design environments,” in First Int. Workshop on Human Factors in
Modeling (HuFaMo 2015). CEUR-WS, 2015, pp. 11–16.

http://www-03.ibm.com/software/products/en/developer
http://www-03.ibm.com/software/products/en/developer

BIBLIOGRAPHY 107

[72] R. Jolak, B. Vesin, and M. R. V. Chaudron, “OctoUML: An environment
for exploratory and collaborative software design,” in Proceedings of 39th
Int. Conference on Software Engineering. ICSE’17, 2017, pp. 7–10.

[73] J. Iivari, “Why are case tools not used?” Communications of the ACM,
vol. 39, no. 10, pp. 94–103, 1996.

[74] D. Wüest, N. Seyff, and M. Glinz, “Flexisketch: A mobile sketching tool
for software modeling,” in Mobile Computing, Applications, and Services.
Springer, 2012, pp. 225–244.

[75] J. Walny, J. Haber, M. Dörk, J. Sillito, and S. Carpendale, “Follow that
sketch: Lifecycles of diagrams and sketches in software development,” in
Visualizing Software for Understanding and Analysis (VISSOFT), 2011
6th IEEE International Workshop on. IEEE, 2011, pp. 1–8.

[76] B. Paulson and T. Hammond, “Paleosketch: accurate primitive sketch
recognition and beautification,” in Proceedings of the 13th international
conference on Intelligent user interfaces. ACM, 2008, pp. 1–10.

[77] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability evalua-
tion in industry, vol. 189, no. 194, pp. 4–7, 1996.

[78] J. Corbin and A. Strauss, Basics of qualitative research: Techniques and
procedures for developing grounded theory. Sage publications, 2014.

[79] T. S. Tullis and J. N. Stetson, “A comparison of questionnaires for assess-
ing website usability,” in Usability Professional Association Conference,
2004, pp. 1–12.

[80] A. Nugroho and M. R. Chaudron, “A survey into the rigor of uml use
and its perceived impact on quality and productivity,” in Proceedings of
the Second ACM-IEEE international symposium on Empirical software
engineering and measurement. ACM, 2008, pp. 90–99.

[81] S. Lahtinen and J. Peltonen, “Adding speech recognition support to uml
tools,” Journal of Visual Languages & Computing, vol. 16, no. 1, pp.
85–118, 2005.

[82] M. B. Albizuri-Romero, “A retrospective view of case tools adoption,”
ACM SIGSOFT Software Engineering Notes, vol. 25, no. 2, pp. 46–50,
2000.

[83] R. A. Harris, Voice interaction design: crafting the new conversational
speech systems. Elsevier, 2004.

108 BIBLIOGRAPHY

[84] A. E. Lackey, T. Pandey, M. Moshiri, N. Lalwani, C. Lall, and P. Bhargava,
“Productivity, part 2: cloud storage, remote meeting tools, screencasting,
speech recognition software, password managers, and online data backup,”
Journal of the American College of Radiology, vol. 11, no. 6, pp. 580–588,
2014.

[85] A. Drigas and G. Papanastasiou, “Interactive white boards in preschool
and primary education.” iJOE, vol. 10, no. 4, pp. 46–51, 2014.

[86] F. Gursul and G. B. Tozmaz, “Which one is smarter? teacher or board,”
Procedia-Social and Behavioral Sciences, vol. 2, no. 2, pp. 5731–5737,
2010.

[87] Å. Fast-Berglund, U. Harlin, and M. Åkerman, “Digitalisation of meetings–
from white-boards to smart-boards,” Procedia CIRP, vol. 41, pp. 1125–
1130, 2016.

[88] R. Jolak, B. Vesin, M. Isaksson, and M. R. Chaudron, “Towards a
new generation of software design environments: Supporting the use of
informal and formal notations with octouml,” in Second International
Workshop on Human Factors in Modeling (HuFaMo 2016). CEUR-WS,
2016, pp. 3–10.

[89] J. Larson, S. Oviatt, and D. Ferro, “Designing the user interface for pen
and speech applications,” in CHI’99 Workshop, Conference on Human
Factors in Computing Systems (CHI’99), 1999.

[90] S. Oviatt, P. Cohen, L. Wu, L. Duncan, B. Suhm, J. Bers, T. Holzman,
T. Winograd, J. Landay, J. Larson et al., “Designing the user interface for
multimodal speech and pen-based gesture applications: state-of-the-art
systems and future research directions,” Human-computer interaction,
vol. 15, no. 4, pp. 263–322, 2000.

[91] M. Van Tulder, A. Malmivaara, and B. Koes, “Repetitive strain injury,”
The Lancet, vol. 369, no. 9575, pp. 1815–1822, 2007.

[92] S. C. Arnold, L. Mark, and J. Goldthwaite, “Programming by voice,
vocalprogramming,” in Proceedings of the fourth international ACM
conference on Assistive technologies. ACM, 2000, pp. 149–155.

[93] A. Begel, “Spoken language support for software development,” in Visual
Languages and Human Centric Computing, 2004 IEEE Symposium on.
IEEE, 2004, pp. 271–272.

[94] T. J. Hubbell, D. D. Langan, and T. F. Hain, “A voice-activated syntax-
directed editor for manually disabled programmers,” in Proceedings of

BIBLIOGRAPHY 109

the 8th International ACM SIGACCESS Conference on Computers and
Accessibility. ACM, 2006, pp. 205–212.

[95] S. Mills, S. Saadat, and D. Whiting, “Is voice recognition the solution to
keyboard-based rsi?” in 2006 World Automation Congress. IEEE, 2006,
pp. 1–6.

[96] F. Soares, J. Araújo, and F. Wanderley, “Voicetomodel: an approach to
generate requirements models from speech recognition mechanisms,” in
Proceedings of the 30th Annual ACM Symposium on Applied Computing.
ACM, 2015, pp. 1350–1357.

[97] T. Nishimoto, N. Shida, T. Koayashi, and K. Shirai, “improving human
interface drawing tool using speech, mouse and key-board,” in Robot and
Human Communication, 1995. RO-MAN’95 TOKYO, Proceedings., 4th
IEEE International Workshop on. IEEE, 1995, pp. 107–112.

[98] L. Rabiner and B. Juang, “An introduction to hidden markov models,”
IEEE ASSP magazine, vol. 3, no. 1, pp. 4–16, 1986.

[99] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gouvea, P. Wolf,
and J. Woelfel, “Sphinx-4: A flexible open source framework for speech
recognition,” 2004.

[100] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[101] S. Oviatt and P. Cohen, “Perceptual user interfaces: multimodal interfaces
that process what comes naturally,” Communications of the ACM, vol. 43,
no. 3, pp. 45–53, 2000.

[102] R. Jolak, B. Vesin, M. Isaksson, and M. R. V. Chaudron, “Towards a
new generation of software design environments: Supporting the use of
informal and formal notations with octouml,” in Second Int. Workshop
on Human Factors in Modeling. CEUR-WS, 2016, p. : in print.

[103] B. Selic, “What will it take? a view on adoption of model-based methods
in practice,” Software & Systems Modeling, vol. 11, no. 4, pp. 513–526,
2012.

[104] B. Anda, K. Hansen, I. Gullesen, and H. K. Thorsen, “Experiences from
introducing UML-based development in a large safety-critical project,”
Empirical Software Engineering, vol. 11, no. 4, pp. 555–581, 2006.

110 BIBLIOGRAPHY

[105] D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, and R. Preto-
rius, “Empirical evidence about the UML: a systematic literature review,”
Software: Practice and Experience, vol. 41, no. 4, pp. 363–392, 2011.

[106] W. Mischel, E. B. Ebbesen, and A. Raskoff Zeiss, “Cognitive and atten-
tional mechanisms in delay of gratification.” Journal of personality and
social psychology, vol. 21, no. 2, p. 204, 1972.

[107] P. Devanbu, T. Zimmermann, and C. Bird, “Belief and evidence in empir-
ical software engineering,” in Proceedings of the International Conference
on Software Engineering. ACM, 2016, p. in print.

[108] D. Stikkolorum, T. Ho-Quang, and M. R. V. Chaudron, “Revealing
students’ UML class diagram modelling strategies with webuml and
logviz,” in SEAA, 2015 41st Euromicro. IEEE, 2015, pp. 275–279.

[109] D. R. Stikkolorum, T. Ho-Quang, B. Karasneh, and M. R. Chaudron,
“Uncovering students’ common difficulties and strategies during a class
diagram design process: an online experiment.” in EduSymp@ MoDELS,
2015, pp. 29–42.

[110] M. Brambilla and P. Fraternali, “Large-scale model-driven engineering of
web user interaction: The WebML and WebRatio experience,” Science
of Computer Programming, vol. 89, Part B, pp. 71 – 87, 2014, special
issue on Success Stories in Model Driven Engineering.

[111] O. Diaz and F. M. Villoria, “Generating blogs out of product catalogues:
An MDE approach,” Journal of Systems and Software, vol. 83, no. 10,
pp. 1970 – 1982, 2010.

[112] M. Brambilla, A. Mauri, and E. Umuhoza, “Extending the Interaction
Flow Modeling Language (IFML) for Model Driven Development of
Mobile Applications Front End,” in MobiWIS, 2014, pp. 176–191.

[113] D. Klyve and L. Stemkoski, “Graeco-Latin Squares and a Mistaken
Conjecture of Euler,” The College Mathematics Journal, vol. 37, no. 1,
2006.

[114] R Core Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2013, ISBN
3-900051-07-0. [Online]. Available: www.R-project.org

[115] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

www.R-project.org

BIBLIOGRAPHY 111

[116] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance
analysis,” Journal of the American statistical Association, vol. 47, no.
260, pp. 583–621, 1952.

[117] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

	Abstract
	Acknowledgment
	List of Publications
	Personal Contribution
	Introduction
	Research Motivation
	Research Focus
	Research Goals
	Research Questions

	Background
	Software Design and Modeling
	Software Modeling Tools

	Related Work
	Understanding Software Design
	Supporting Software Design

	Research Methodology
	Design Science
	Empirical Methods

	Contributions
	Paper A: A Vision on a New Generation of Software Design Environments
	Paper B: Towards a New Generation of Software Design Environments: Supporting the Use of Informal and Formal Notations with OctoUML
	Paper C: Interaction With Software Design Environments Via Voice For UML Design Support on Interactive Whiteboards: Insights And Experiences
	Paper D: OctoUML: An Environment for Exploratory and Collaborative Software Design
	Paper E: Dissecting Design Effort and Drawing Effort in UML Modeling

	Conclusion
	Future Work

	Paper A
	Introduction
	Related Work
	Our Vision
	Informal Versus Formal Notation
	Integration
	Usability, Interaction and Collaboration
	Multi-platform

	Conclusion

	Paper B
	Introduction
	Related Work
	Approach
	Informality and Formality
	Recognition
	Layering and Multi-touch
	Other features

	Design
	Evaluation
	Participants and Modelling Expertise
	Design Task
	Design Task Observations

	SUS Questionnaire
	SUS Result

	Interviews
	Interviews' Results

	Discussion
	Threats to Validity
	Conclusion and Future Work

	Paper C
	Introduction
	Related work
	The Design Environment: OctoUML
	Integration of The Voice Control Component

	Study
	Results
	Discussion
	Threats to Validity
	Conclusion and Future Work

	Paper D
	Introduction
	Related Work
	OctoUML
	OctoUML's Architecture
	Informal and Formal Notation
	Interaction Modes and Collaboration
	Design process in UctoUML: A Scenario
	Evaluation

	Conclusion and Future Development

	Paper E
	Introduction
	Related Work
	Approach
	Phase 1: Modeling
	Phase 2: Copying
	Analyze Effort Difference

	Experiment
	Experiment Preparation
	Scenarios Definition
	Assigning scenarios to participants

	Experiment Execution

	Results
	Design, Notation Expression and Layout Efforts
	EXP1
	EXP2
	Quality of the models

	Comparison between the results of EXP1 and EXP2
	Impacts of The Topic/Size of The Modeling Scenarios on DEP, NEEP and LEP
	Subjects Questionnaire

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion and Future Work

	Bibliography

