Learning to compose spatial relations with grounded neural language models
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composite spatial relations based on Logan and

Sadler (1996).

Spatial Templates
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» Spatial templates are representations of regions » We use a one layer vanila long short-term » Any input phrase, paired with a location c,
of acceptability with aligned frame of reference memory (LSTM) with an embedding layer and provides probability of the phrase conditioned
associated with a spatial relation, centered on dropout. with c.

reference object. Does the probability correlates with judgment

scores?

Generating Synthetic Compositions

Grounded Neural Language Model 1 Negative compositions (e.g. not right of)
Interesective compositions (e.g. above and Evaluation and results
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» The training samples pairs of location and
description (phrase). The frequency of each
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1 i i sample is based on the acceptability score. - o | p};_ 1
- ull sentence compositions. In this case, the
First we scale down all these scores between 1 er of P racticall h,' i ;
: L f s | number of parameters, are drastica igher an
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our preliminary results doesn’'t show clear success.
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Lo . |eeeeeee The S lations for all sent -
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toward minimizing the categorical cross-entropy - N

between predicted probability and delta TR

distribution of observed samples. Similar to B I
Graves (2013).
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» Degree of applicability scores as probabilities or
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degrees of belief; (Ramsey 1926) and (Coventry o | | . | . | » Neural language models can be used for modeling
et al 2004) 8 8 8 grounded meaning.
» With the same argument: o] o o] » Growing the non-grounded vocabulary makes it

Score(w.T, ¢) o< Pr(w.T, c) harder to converge to meaningful representation.

Pr(wy.1,c) = Pr(wy.t|c) X Pr(c)
» By assuming that all locations on map are
equally accessible, Pr(c) is constant, then:

» Future work: expand our dataset with natural
corpus, with more complicated constituent
structure

» Explore transfer learning on word distributions for
Score(wy.1, c) oc Pr(wy.7|c) words not directly grounded.

This formula can be used for evaluation of the
learned representation from language model
comparing to human judgments.
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