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A single nanoconstriction spin Hall oscillator (NC-SHNO) in out-of-plane fields is presented as a non-linear amplitude and
frequency modulator operated by radio frequency (RF) current modulation. The current modulation was carried out in different
NC-SHNO nonlinearity regimes corresponding to negative, zero, and positive values of df/dI , in order to investigate the device
response to an 80 MHz modulating current. Our study showed that current modulation of SHNOs can be quantitatively predicted
by a nonlinear frequency and amplitude modulation (NFAM) model using the values of df/dI and d2f/dI2 extracted from the
free-running f vs. I profile. The NFAM model reproduces the asymmetric sideband amplitude as well as the red and blue shift
of the frequency in excellent agreement with the experimental results. The ability to predict the modulation process is a necessary
benchmark in designing SHNO modulators for future integrated microwave circuits.

Index Terms—Spintronics, spin Hall nano-oscillator, non-linear frequency and amplitude modulation.

I. INTRODUCTION

Spin transfer torque (STT) [1], [2], [3] devices hold great
promise for a wide range of applications [4], such as mag-
netic memory [5], [6], [7], [8], microwave assisted magnetic
recording [9], [10], microwave signal generation [11], [12] and
detection [13], spin wave generation [14], [15], [16], [17], [18],
[19], [20], high frequency modulators [21], [22], and, more
recently, in neuromorphic computing [23], [24], [25]. STT
devices operate through the transfer of angular momentum
from a spin-polarized current to the local magnetization, which
can fully compensate the local spin wave damping and lead
to spin wave auto-oscillations. Through the magnetoresistance
of the device, these auto-oscillations can then generate an
electrically tunable microwave voltage in devices known as
spin torque nano-oscillators (STNOs) [26], [27], [28], [4].

Recently, a new class of STT devices, called spin Hall nano-
oscillators [29], [30], [31], [32], [33], [34] (SHNOs) were
realized, in which the spin Hall effect [35] (SHE) from a non-
magnetic (NM) layer with large spin-orbit coupling drives a
pure spin current into an adjacent ferromagnetic (FM) layer.
Nano-constriction based SHNOs are particularly attractive as
their fabrication only requires a NM/FM bilayer and a single
lithography step. Their device geometry also provides for
direct optical access of the auto-oscillating regions, and when
connected in series, can exhibit robust mutual synchronization
[36], [37].

In order to use SHNOs for communication applications, it
is required that their microwave signal can be modulated. In
this letter, we demonstrate efficient modulation of a nano-
constriction SHNO via its drive current. We study its mod-
ulation properties at different operating points characterized
by different sign and magnitude of its non-linear frequency
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and amplitude coefficients, and find that the non-linear fre-
quency and amplitude modulation (NFAM) model [38], [39]
accurately predicts the SHNO modulation performance based
on its un-modulated behavior.

II. FABRICATION AND MEASUREMENT TECHNIQUE

The SHNO stack consisted of a 5 nm Pt and 5 nm
Py (Ni80Fe20) bilayer, and a 5 nm SiO2 protective layer, all
magnetron sputtered at room temperature onto 20×20 mm2

C-plane sapphire substrates using a 3 mTorr argon plasma
pressure in an AJA sputtering chamber with a 10−8 Torr
base pressure. 80–200 nm wide nano-constrictions were then
fabricated using electron beam lithography and Argon ion
beam dry etching. Coplanar wave guide (CPW) structures were
defined using conventional optical lithography followed by
Cu/Au deposition and lift-off.

Fig. 1(a) depicts the measurement setup. The direct drive
current was applied through a microwave bias tee. The SHNO
microwave signal was transmitted via the high-frequency port
of the bias tee and subsequently amplified using a low noise
+56 dB (4-10 GHz) amplifier before being recorded using a
spectrum analyzer. A microwave circulator (4-12 GHz) was
also connected to the high frequency port of the bias tee in
order to inject the 80 MHz RF modulating current from a
signal source into the free-running SHNO in addition to the
direct current. The circulator insertion loss was measured to
be 3.9 dB at the frequency of the modulating current using a
network analyzer. A SHNO with a 200-nm constriction width
was used in all measurements. The magnetic field was applied
at an out-of-plane angle of θ=80◦ and an in-plane angle of
ϕ=23◦, defined in the inset of Fig. 1(b). The strength of the
applied magnetic field was kept constant at 0.76 T.
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III. RESULTS AND DISCUSSION

Fig. 1(b) shows the power spectral density (PSD) vs. applied
direct current (Idc) of the free-running SHNO in a tilted out-of-
plane field, with the characteristic non-monotonic current de-
pendence of its microwave frequency (f ) [37], [40]. Fig. 1(c)
shows the corresponding current dependence of the integrated
power, extracted using Lorentzian fits to the PSD, including
error bars.

Fig. 1(d) shows d2f/dI2 vs. Idc after some smoothing
of the experimental data in Fig. 1(b). For our modulation
experiments, we chose four different direct currents as shown
by the dashed lines in Fig. 1(d).

In the NFAM model [38], [39], it is assumed that the in-
stantaneous frequency depends non-linearly on the modulating
signal m(t) = Im sin(2πfmt) as:

fi(t) =

v∑
h=0

khm
h(t) (1)

where Im is the modulating current amplitude, fm is the
modulating frequency, kh is the hth-order frequency sensitivity
coefficient, and k0 is the unmodulated SHNO frequency. The
NFAM model also assumes that the instantaneous amplitude
depends non-linearly on the modulation as:

Ac(t) =

u∑
l=0

λlm
l(t) (2)

Here, the λl specifies the lth-order amplitude sensitivity
coefficient. The coefficients kh and λl are calculated by
fitting polynomials to f vs. Idc and P vs. Idc of the free-
running oscillator; in our case we chose fifth and third order
polynomials for f vs. I and P vs. I , respectively. The output
voltage amplitude spectrum predicted by the NFAM model
can then be represented as follows:

S(f) =

1

4

3∑
h=0

γh

∞∑
n,m,p,q,r=−∞

Jm(β1)Jn(β2)Jp(β3)Jq(β4)Jr(β5)

×
{
δ[f − fc − (n+ 2m+ 3p+ 4q + 5r + h)fm]

+δ[f − fc − (n+ 2m+ 3p+ 4q + 5r − h)fm]

+δ[f + fc − (n+ 2m+ 3p+ 4q + 5r + h)fm]

+δ[f + fc − (n+ 2m+ 3p+ 4q + 5r − h)fm]
}

(3)
where, β1 = k1Im/fm + 3k3I

3
m/4fm, β2 = k2I

2
m/4fm +

k4I
4
m/4fm, β3 = k3I

3
m/12fm, β4 = k4I

4
m/32fm, β5 =

k5I
5
m/80 stand for the frequency indices of different orders,

while γ0 = λ0 + λ2I
2
m/2, γ1 = λ1Im + 3λ3I

3
m/4, γ2 =

λ2I
2
m/2, γ4 = λ3I

3
m/4 are the amplitude modulation indices

of different orders.
The frequency also depends non-linearly on the modulation:

fc = k0 + k2I
2
m + 3k4I

4
m/8 + . . . (4)

Knowing ki and λi from the free-running behavior of the
SHNO, the NFAM model can thus predict both fc and the
amplitudes of all sidebands located at +−sfm relative to fc.
Here s = n+ 2m+ 3p+ 4q + 5r+−h is an integer identifying
the sideband order.

Fig. 1. (a) Schematic of the measurement setup. (b) Color map of the power
spectral density (dB over noise) vs. current of the free-running SHNO in an
out-of-plane field configuration with ϕ=23◦ and θ=80◦. Inset shows schematic
of the SHNO with definitions of ϕ and θ. (c) Integrated power vs. current.
Inset: plot of the inverse integrated power vs. current, together with a linear fit
at low currents (red line). (d) dI2/dI2 vs. current. The four operating points
are marked by vertical dash black lines.

Four different operating points were selected to experimen-
tally investigate current modulation of the SHNO and its effect
on the magnetization dynamics: Three (3.9 mA, 4.13 mA, and
4.4 mA) with positive d2f/dI2 (upward concave), having a
negative, zero, and a positive df/dI , respectively, and a fourth
(4.75 mA) with negative d2f/dI2 (downward concave). It is
worth noting that the maximum current (including RF current)
that the device can withstand without failure is limited, due to
the finite heat dissipation of the substrate and electromigration
of the metallic bilayer in the constriction region. This in turn
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Fig. 2. Modulation of the SHNO at the four different dc bias currents marked
in Fig. 1(d): (a) 3.9 mA, (b) 4.1 mA, (c) 4.4 mA and (d) 4.75 mA. The first
three operating points correspond to a positive df2/dI2, while the dc current
of 4.75 mA corresponds to a negative df2/dI2. The white hollow circles are
calculations based on the NFAM model.

leads to a decrease of the maximum allowed RF current when
the Idc operating point is high.

Fig. 2 shows the experimental results (color maps) when
modulating the SHNO at the four operating points. The modu-
lation is characterized by the appearance of multiple sidebands
with increasing modulation current. During modulation, a
frequency shift is also observed. The frequency shifts upwards
(blue shift) for Idc = 3.9, 4.13 and 4.4 mA while it shifts
downwards (red shift) for Idc = 4.75 mA, consistent with
the sign of d2f/dI2. This behavior can be well reproduced
by the NFAM model (white hollow circles). The frequency
shift is calculated directly from Eq. (4) using the second order
frequency sensitivity coefficients shown in Table I.

Fig. 2 also indicates that the power of the upper and lower
sidebands are not identical. In order to investigate the evolution
of the carrier and sideband powers, we plot the integrated
power for the carrier signal (CS), the first lower (LSB) and
upper (USB) sidebands as a function of modulation current
in Fig. 3, for the first three operating points in Fig. 2. The
behavior of the CS, LSB, and USB powers can again be
quantitatively reproduced by the NFAM model using Eq. (3),
as shown by the solid lines. In particular, the opposite sign of
k1 for the cases of 3.9 and 4.4 mA, leads to the LSB having
higher power than the USB for 3.9 mA (large negative k1),
whereas the opposite is true at 4.4 mA (large positive k1). The
much smaller k1 for 4.13 mA leads to a much later onset of
modulation, and the LSB and USB powers are determined by
a combination of the higher order coefficients. By knowing
the free-running behavior of the SHNO we can hence predict
its modulation behavior in all cases. The predictable modula-
tion behavior together with the easy fabrication hence make
SHNOs highly promising for communication applications. The
fact that the NFAM model provides an accurate quantitative

Fig. 3. Integrated power vs. modulation current of the CS, LSB, and USB
at three dc operating points: (a) 3.9 mA, (b) 4.13 mA, and (c) 4.4 mA. The
solid lines are fits based on the NFAM model using parameters from the
un-modulated SHNO.

description of the modulated behavior also provides bounds of
at least 80 MHz and at most 4 ns−1 for the SHNO modulation
bandwidth (fp) and its amplitude relaxation rate (Γp = πfp),
respectively [21], [22], [26].

IV. CONCLUSION

In conclusion, current modulation of nano-constriction
based spin Hall oscillators has been presented. Using modula-
tion sensitivity coefficients obtained from free running oscilla-
tor, we find that the nonlinear frequency and amplitude mod-
ulation model (NFAM) can precisely predict the modulated
behavior for both frequency shift and sideband amplitudes.
The nonlinear behavior of the SHNO allows us to consider it
as flexible modulator for use in future communication systems.
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TABLE I
MODULATION SENSITIVITY COEFFICIENTS EXTRACTED FROM FITTED POLYNOMIALS TO THE FREE-RUNNING BEHAVIOR OF f VS. I AND P VS. I .

Current(mA) k0(GHz) k1(GHz/mA) k2(GHz/mA2) k3(GHz/mA3) k4(GHz/mA4) k5(GHz/mA5) λ0(pW1/2) λ1(pW1/2/mA) λ2(pW1/2/mA2) λ3(pW1/2/mA3)
3.9 8.5590 -0.2099 0.4737 -0.0007 0.2287 -0.0716 2.3281 0.9725 0.8116 3.5954

4.13 8.5357 -0.02501 0.5789 0.2442 -0.3345 -0.9367 2.6545 1.6235 1.9751 2.6632
4.4 8.5847 0.3107 0.3276 -0.6333 -0.1591 0.6520 3.4212 3.5014 0.4954 -4.8189
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and J. Åkerman, “Nonlinear frequency and amplitude modulation of a
nanocontact-based spin-torque oscillator,” Phys. Rev. B, vol. 81, no. 14,
p. 140408, Apr. 2010.

[39] G. Consolo, V. Puliafito, G. Finocchio, L. Lopez-Diaz, R. Zivieri,
L. Giovannini, F. Nizzoli, G. Valenti, and B. Azzerboni, “Combined
frequency-amplitude nonlinear modulation: Theory and applications,”
IEEE Transactions on Magnetics, vol. 46, no. 9, pp. 3629–3634, Sept
2010.

[40] H. Mazraati, S. Chung, A. Houshang, M. Dvornik, L. Piazza, F. Qe-
jvanaj, S. Jiang, T. Q. Le, J. Weissenrieder, and J. Åkerman, “Low
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