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We study the Schrödinger operator with a constant magnetic field in the exterior of
a compact domain in Euclidean space. Functions in the domain of the operator are
subject to a boundary condition of the third type (a magnetic Robin condition). In
addition to the Landau levels, we obtain that the spectrum of this operator consists
of clusters of eigenvalues around the Landau levels and that they do accumulate to
the Landau levels from below. We give a precise asymptotic formula for the rate of
accumulation of eigenvalues in these clusters, which is independent of the boundary
condition. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954500]

I. INTRODUCTION

Magnetic Schrödinger operators in domains with boundaries appear in several areas of physics.
For example, the Ginzburg–Landau theory of superconductors, the theory of Bose–Einstein conden-
sates, and of course the study of edge states in quantum mechanics. We refer the reader to Refs. 1,
10, and 16 for details and additional references on the subject. From the point of view of spectral
theory, the presence of boundaries has an effect similar to that of perturbing the magnetic Schrödinger
operator by an electric potential. In both cases, the essential spectrum consists of the Landau levels
and the discrete spectrum form clusters of eigenvalues around the Landau levels. Several papers are
devoted to the study of different aspects of these clusters of eigenvalues in domains with or without
boundaries. For results in the semi-classical context, see Refs. 11, 12, 14, 17, and 18. In case of do-
mains with boundaries, see Refs. 21 and 22. Analogous results have been obtained in the context of
perturbations by electric fields in Ref. 23. The results in this paper correct a gap in the proof of the
main result in Ref. 21 and extend these results to Robin boundary conditions.

Let us consider a compact domain K ⊂ R2d with a Lipschitz boundary. Let us denote by K◦

the interior of K , Ω = R2d \ K and ∂Ω the common boundary of Ω and K . Given a real valued
function τ ∈ L∞(∂Ω,R) and a positive constant b (the intensity of the magnetic field), we define the
Schrödinger operator Lτ

Ω,b
with domain D(Lτ

Ω,b
) as follows:

D
�
Lτ
Ω,b

�
=

�
u ∈ L2(Ω) : (∇ − ibA0) ju ∈ L2(Ω), j = 1,2,

νΩ · (∇ − ibA0)u + τu = 0 on ∂Ω
	
, (1.1)

Lτ
Ω,bu = −(∇ − ibA0)2u ∀ u ∈ D

�
Lτ
Ω,b

�
. (1.2)

Here, A0 is the magnetic potential in the symmetric gauge defined by

A0(x1, x2, . . . , x2d) = 1
2 (−x2, x1, . . . ,−x2d, x2d−1) , (1.3)

and νΩ is the unit outward normal vector of the boundary ∂Ω. We also introduce the boundary
Neumann and Robin differential notations
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∂N = νΩ · (∇ − ibA0) and ∂R = ∂N + τ = νΩ · (∇ − ibA0) + τ. (1.4)

The operator Lτ
Ω,b

is actually the Friedrichs self-adjoint extension in L2(Ω) associated with the
semi-bounded quadratic form

l
τ
Ω,b(u) =


Ω

|(∇ − ibA0)u|2 dx +

∂Ω

τ |u|2 dS , (1.5)

defined for all functions u in the form domain

D
�
l
τ
Ω,b

�
= H1

A0
(Ω) = �

u ∈ L2(Ω) : (∇ − ibA0)u ∈ L2(Ω)	 ⊆ H1
loc(Ω) . (1.6)

We introduce the (multidimensional) Landau levels Λq, q ∈ N, as

Λq B
�
2(q − 1) + d

�
b, q ∈ N \ {0} , Λ0 B −∞.

The name is motivated by the fact that these numbers (for q ∈ N \ {0}) are the eigenvalues of the
Landau Hamiltonian in R2d, see Section II B.

We are now able to state the first main result, concerning the essential spectrum of Lτ
Ω,b

together with the non-accumulation of eigenvalues to the Landau levels from above.

Theorem 1.1. Let Ω ⊂R2d be a compactly complemented Lipschitz domain and τ ∈ L∞(∂Ω,R).
The essential spectrum of the operator Lτ

Ω,b
consists of the Landau levels,

σess
�
Lτ
Ω,b

�
=

�
Λq : q ∈ N \ {0}	

. (1.7)

Moreover, for all ε ∈ (0,b) and q ∈ N \ {0}, the spectrum of Lτ
Ω,b

in the open interval
�
Λq,Λq + ε

�

is finite.

Next, we restrict our attention to the case that ∂Ω is C∞ and τ ∈ C∞(∂Ω,R). For ε > 0, we let
N

�
Λq−1,Λq − ε,Lτ

Ω,b

�
denote the number of eigenvalues of Lτ

Ω,b
in the open interval

�
Λq−1,Λq − ε

�
,

counting multiplicity. We also denote by Cap(K) the logarithmic capacity of the domain K =
R2 \Ω.

Theorem 1.2. Let Ω ⊂ R2d be a compactly complemented domain with a smooth boundary and
τ ∈ C∞(∂Ω,R).

(A) Assume d = 1. For all q ∈ N \ {0}, denoting by
�
ℓ
(q)
j

	
j ∈N the nondecreasing sequence of

eigenvalues of Lτ
Ω,b

(counting multiplicities) in the interval (Λq−1,Λq), the following holds:

lim
j→+∞

(
j!

�
Λq − ℓ(q)j

�)1/ j
=

b
2

�
Cap(K)�2

. (1.8)

(B) Assume d ≥ 1. The counting function N
�
Λq−1,Λq − ε,Lτ

Ω,b

�
has the asymptotics,

N
�
Λq−1,Λq − ε,Lτ

Ω,b

�
∼ *

,

q + d − 1
d − 1

+
-

1
d!

( | log ε|
log | log ε|

)d
as ε → 0+. (1.9)

Remark 1.3. The asymptotics in Equation (1.9) is weaker than that in Equation (1.8). It remains
an open problem to finding an analogue for Equation (1.8) when d > 1.

Remark 1.4. Theorems 1.1 and 1.2 were obtained for the Neumann case (τ ≡ 0) by the third
author in Ref. 21, and our proofs will follow the same idea as in Ref. 21. However, in Ref. 21,
the full details concerning the reduction to Toeplitz type operators were not written out explicitly.
In this paper, we aim not only to generalize the Neumann result, but also to make the proof of
Theorem 1.2 more transparent.

Remark 1.5. Our proof of Theorem 1.2 is carried out for τ being a self-adjoint pseudo-
differential operator of order 0 on ∂Ω. The proof can be generalized to self-adjoint pseudo-
differential operators of order t < 1. We also note that the pseudo-differential nature of the proof of
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Theorem 1.2 requires a fair amount of regularity on the boundary. Any considerable reduction of the
regularity assumptions in Theorem 1.2 would require a new approach or a perturbation result for the
left hand side of Equations (1.8) and (1.9).

The rest of the paper is devoted to the proof of Theorem 1.1 and Theorem 1.2. The proof of
Theorem 1.1 is contained in Section II. The proof of Theorem 1.2 is divided into two sections: the
bulk of the proof is contained in Section III except for a technical lemma, Lemma 3.14, which is
proved in Section IV. Similarly to Refs. 21 and 22, the main idea in both proofs is to compare the
resolvent of Lτ

Ω,b
with the resolvent of the Landau Hamiltonian. Roughly speaking, the resolvents

are compact perturbation of one another.
Section II goes analogously to Ref. 21 [Section 3.1]. It is included for completeness and provid-

ing a notational introduction. As mentioned above, it relies heavily on the resolvent techniques
introduced in Ref. 22, [Proposition 2.1].

The asymptotics in Theorem 1.2 comes from the spectral asymptotics of Toeplitz operators
on the Landau levels; these deep results were proven in Refs. 9 and 20. We recall them in
Subsection III A. The key step in obtaining the asymptotic accumulation of eigenvalues described
in Theorem 1.2 is the reduction to the case of Toeplitz operators from Refs. 9 and 20 via a
certain pseudo-differential operator on the boundary. The relevant pseudo-differential operators,
e.g., boundary layer potentials and Dirichlet to Robin operators, are introduced in Subsections III B,
III C, and III D. The reduction is carried out in Subsection III E apart from a technical lemma.
Technical Lemma 3.14 states the equivalence of the quadratic form associated with a certain
pseudo-differential operator of order 1 and the H1/2-norm on the boundary. It is proven via standard
pseudo-differential techniques in Section IV.

II. PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1. As remarked above, the proof goes along the lines of
Ref. 21 [Section 3.1]. After adding on a Landau Hamiltonian L−τ

K,b
on K (the sign of −τ comes from

the orientation on the boundary), we can consider an operator densely defined in L2(R2d) coinciding
in form sense on the form domain of the usual Landau Hamiltonian. While L−τ

K,b
has a discrete

spectrum, the proof of Theorem 1.1 is deduced below in Corollary 2.6 from the abstract results from
Refs. 6 and 22 reviewed in Sec. II A.

A. Two abstract results

In this section, we state two abstract results. We will use the first result to conclude positivity
of difference of resolvents and the second one to obtain the finiteness of eigenvalues above each
Landau level.

Lemma 2.1 (Pushnitski-Rozenblum Ref. 22 [Proposition 2.1]). Assume that A and B are two
self-adjoint positive operators satisfying the following hypotheses:

• 0 < σ(A) ∪ σ(B).
• The form domain of A contains that of B, i.e., D(B1/2) ⊂ D(A1/2).
• For all f ∈ D(B1/2), �

A1/2 f
�
=

�
B1/2 f

�
, i.e., the quadratic forms of A and B agree on the

form domain of B.

Then, B−1 ≤ A−1 in the quadratic form sense, i.e.,


B−1 f , f

�
≤



A−1 f , f

�
∀ f .

Lemma 2.2 (Ref. 6, Theorem 9.4.7). Assume A is a self-adjoint operator and V a compact
and positive operator such that the spectrum of A in an interval (α, β) is discrete and does not
accumulate at β. Then the spectrum of the operator B = A + V in (α, β) is discrete and does not
accumulate at β.
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B. Some facts about the Landau Hamiltonian in R2d

In this section, we review classical results concerning the Landau Hamiltonian

L = −(∇ − ibA0)2 in R2d . (2.1)

Here A0 is the magnetic potential of a unit constant magnetic field of full rank introduced in (1.3),
and b is a positive constant. The form domain of L is the magnetic Sobolev space

H1
A0
(R2d) = �

u ∈ L2(R2d) : (∇ − ibA0)u ∈ L2(R2d)	 ⊆ H1
loc(R2d) .

The spectrum of L consists of infinitely degenerate eigenvalues called Landau levels,

σ(L) = σess(L) = �
Λq : q ∈ N \ {0}	

.

We denote by Lq the eigenspace associated with the Landau level Λq, i.e.,

Lq = Ker(L − Λq) ∀ q ∈ N \ {0} . (2.2)

We use the notation Pq for the orthogonal projection onto the eigenspace Lq.
The operator L can be expressed in terms of creation and annihilation operators. We introduce

the complex notation z j = x2 j−1 + ix2 j, j = 1, . . . ,d, and let Ψ = b
4 |z |2 be a scalar potential for the

magnetic field, i.e., ∆Ψ = b. The differential expressions

Q j = −2ie−Ψ
∂

∂z j
eΨ, Q j = −2ieΨ

∂

∂z j
e−Ψ

formally satisfy the following well known identities:

Q j = Q∗j, 1 ≤ j ≤ d,
�
Q j,Qk

�
= 2bδ jk, 1 ≤ j, k ≤ d,

L =
d
j=1

Q jQ j + bd.

(2.3)

C. Extension of LΩ to an operator in L2(R2d)
We introduced the operator Lτ

Ω,b
with quadratic form lτ

Ω,b
in (1.5). We will use also the corre-

sponding operator in K◦, namely, L−τ
K,b

. We will throughout the paper work under the assumption
that the two quadratic forms lτ

Ω,b
and l−τ

K,b
are strictly positive. This is always attainable after a shift

of the quadratic forms by a constant. The effect of the constant is merely a shifting of the spectrums
of all involved operators; hence we will for notational simplicity always assume that this constant
is 0.

Remark 2.3. Notice that, for u ∈ H1
A0
(R2d),

l
τ
Ω,b(uΩ) + l−τK,b(uK) =


R2d

|(∇ − ibA0)u|2 dx.

This motivates the usage of −τ for the quadratic form on K . For uΩ ∈ D(Lτ
Ω,b

) and uK ∈ D(L−τ
K,b

),
∂RuΩ = ∂RuK = 0 on ∂Ω,

where ∂R denotes the Robin differential expression from (1.4).

When there is no ambiguity, we will skip b and τ from the notation and write LΩ, LK , lΩ, and lK
for the operators Lτ

Ω,b
, L−τ

K,b
, the quadratic forms lτ

Ω,b
and l−τ

K,b
, respectively.

Since Ω and K are complementary in R2d, the space L2(R2d) is decomposed as a direct sum
L2(Ω) ⊕ L2(K). This permits us to extend the operator LΩ in L2(Ω) to an operator L in L2(R2d).
We let L = LΩ ⊕ LK in D(LΩ) ⊕ D(LK) ⊂ L2(R2d). More precisely, L is the self-adjoint extension
associated with the quadratic form

l(u) = lΩ(uΩ) + lK(uK) , u = uΩ ⊕ uK ∈ L2(R2d), uΩ ∈ D(lΩ), uK ∈ D(lK) . (2.4)
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Since lΩ and lK are strictly positive, we may speak of the inverse L−1 of L. We have the following
lemma.

Lemma 2.4. With L and LΩ defined as above, we have the following:

(1) σess(LΩ) = σess(L).
(2) λ ∈ σess

�L−1�
\ {0} if and only if λ , 0 and λ−1 ∈ σess(LΩ).

Proof. Since L = LΩ ⊕ LK , then σ(L) = σ(LΩ) ∪ σ(LK). But K is compact and has a Lipschitz
boundary, hence LK has a compact resolvent in Ref. 13 [Theorem 1.4.3.2]. Thus σess(LK) = ∅ and
the first assertion in the lemma above follows. Moreover, LΩ and LK are both strictly positive by the
hypothesis, hence 0 < σ(L). It is straight forward that

σess(L) =

λ ∈ R \ {0} : λ−1 ∈ σess

�L−1�
. �

D. Essential spectrum of LΩ

With the operator L introduced above, we can view LΩ as a perturbation of the Landau Hamil-
tonian L in R2d introduced in (2.1). Actually, we define V : L2(R2d) → L2(R2d) as

V = L−1 − L−1.

Then we have the following result on the operator V .

Lemma 2.5. The operator V is positive and compact. Moreover, for all f , g ∈ L2(R2d),

⟨ f ,Vg⟩L2(R2d) =

∂Ω

∂Ru · (vΩ − vK) dS , (2.5)

where u = L−1 f and v = L−1g.

Proof. Notice that the form domain H1
A0
(R2d) of L is included in that of L, and that for

u ∈ H1
A0
(R2d), we have

l(u) =

R2d

|(∇ − ibA0)u|2 dx .

Invoking Lemma 2.1, we get that the operator V is positive.
Let us establish the identity in (2.5). Set f = Lu and g = Lv = LΩvΩ ⊕ LKvK . Then

⟨ f ,Vg⟩L2(R2d) =

Ω

Lu · vΩ dx +

K

Lu · vK dx −

Ω

u · LΩvΩ dx −

K

u · LKvK dx .

The identity in (2.5) then follows by integration by parts and by using the boundary conditions
∂RvΩ = ∂RvK = 0.

Knowing that the zeroth order trace operators H s1(K) → H s2(∂Ω) and H s1
loc(Ω) → H s2(∂Ω) are

compact whenever s1 > s2 + 1/2 > 1/2, cf. Ref. 19 [Theorem 9.4, Chap. 1], we conclude from (2.5)
that V is a compact operator. �

The localization of V to the boundary carried out in Lemma 2.5 is by now a common triviality
used in studying boundary value problems, but a sensation around the time of its invention by
Birman, see more in Refs. 4 and 5. Theorem 1.1 follows as a corollary of Lemma 2.5.

Corollary 2.6. It holds that

σess(LΩ) = �
Λq : q ∈ N \ {0}	

,

and for all ε ∈ (0,b) and q ∈ N \ {0},

σ(LΩ) ∩ (Λq,Λq + ε) is finite.
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Proof. Invoking Lemma 2.4, it suffices to prove that

σess
�L−1�

\ {0} = �
Λ
−1
q : q ∈ N \ {0}	

in order to get the result concerning the essential spectrum of LΩ. Notice that L−1 = L−1 + V with V a
compact operator. Hence by Weyl’s theorem, σess

�L−1�
= σess(L−1). But we know from Section II B

that σess(L−1) \ {0} = �
Λ−1

q : q ∈ N \ {0}	
as was required to prove.

Since the operator V is compact and positive, invoking Lemma 2.2, we get that σ
�L−1�

∩
(Λ−1

q − ε,Λ−1
q ) is finite. This implies that σ(LΩ) ∩ (Λq,Λq + ε) is finite. �

III. PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2. The main idea of the proof is, as mentioned above, to
reduce the spectral asymptotics in (1.8) and (1.9) to a similar asymptotics for Toeplitz operators on
the Landau levels from Refs. 9 and 20. The reduction to Toeplitz operators is by means of localizing
to the boundary. The localization to the boundary is carried out using the identity (2.5).

A. The spectrum of certain Toeplitz operators

For q ∈ N \ {0} and a measurable set U ⊂ R2d, the Toeplitz operator SUq is defined by

SUq = Pq χUPq in L2(R2d) . (3.1)

Here χU is the characteristic function of U. If U is bounded, the theorem of Arzela–Ascoli implies
that χUPq is a compact operator, because Cauchy estimates for holomorphic functions can be
generalized to the Landau levels. In particular, the Toeplitz operator SUq is compact. We state the
following deep results on these Toeplitz operators.

Theorem 3.1 (Ref. 9 [Lemma 3.2]). Assume that U ⊆ R2 is a bounded domain with a Lips-
chitz boundary. Given q ∈ N \ {0}, denote by s(q)1 ≥ s(q)2 ≥ . . . the decreasing sequence of eigen-
values of SUq . Then,

lim
j→+∞

�
j!s(q)j

�1/ j
=

b
2
(Cap(U))2.

Theorem 3.2 (Ref. 20 [Proposition 7.1]). Assume that U ⊆ R2d is a bounded domain. Given
q ∈ N, we let n

�
ε,SUq

�
denote the number of eigenvalues of SUq greater than ε. Then

n
�
ε,SUq

�
∼ *

,

q + d − 1
d − 1

+
-

1
d!

( | log ε|
log | log ε|

)d
as ε → 0+.

The reader will recognize the structure of these results and notice that our main results look
very much like them. Indeed, our main task will be to reduce our situation so that these results can
be applied.

B. The resolvent of the Landau Hamiltonian

Since L is strictly positive, L−1 is a bounded operator in L2(R2d) with range D(L). Furthermore,
L−1 is an operator with an integral kernel that we denote by G0. This integral kernel is well-known
(see Ref. 25) to be

G0(z, ζ) = 2bd−1

(4π)d eb(z ·ζ−ζ ·z)/4I
(

b|z − ζ |2
4

)
, (3.2)

where

I(s) =
 +∞

0

e−s coth(t)

sinhd(t) dt.
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Remark 3.3. The formula for G0(x, y) when d = 1 is more commonly known,

G0(x, y) =
 +∞

0

b
2π sinh(bs) exp

( ib
2

x ∧ y − b
4 tanh(bs) |x − y |2) ds, (3.3)

where x ∧ y = x1y2 − x2y1 = (z · ζ − ζ · z)/2 if z = x1 + ix2, ζ = y1 + iy2.

Lemma 3.4. L−1 is an integral operator with kernel G0(z, ζ) that has the following singularity
at the diagonal z = ζ: there exist a j ∈ C∞(R2d × R2d), for j ∈ N \ {0}, and bj ∈ C∞(R2d × R2d),
for j ∈ N \ {0} with j ≥ max(1,d − 1), such that for any large enough N, there exists a function
ãN+1 ∈ CN(R2d × R2d) such that

G0(z, ζ) = 1
2π

log
� 1
|z − ζ |

�
+

N
j=1

a j(z, ζ)|z − ζ |2 j

+

N
j=1

bj(z, ζ)|z − ζ |2 j log |z − ζ | + ãN(z, z − ζ), d = 1,

G0(z, ζ) = Γ(d − 1)
2πd

|z − ζ |2−2d +

N
j=1

a j(z, ζ)|z − ζ |2−2d+2 j (3.4)

+

N
j=d−1

bj(z, ζ)|z − ζ |2−2d+2 j log |z − ζ | + ãN(z, z − ζ), d > 1.

The corresponding expansions, obtained by the term-wise differentiation, exist also for ∂NG0(z, w)
whenever z, w ∈ ∂Ω. Moreover, G0(z, w) decays as a Gaussian as |z − w | → +∞ uniformly in both
z and w.

The proof of this lemma is of a computational nature and is deferred to the Appendix, where
also the asymptotic expansion is computed explicitly.

Remark 3.5. For d = 1, the integral (3.3) can be expressed in terms of the Whittaker function
(see Ref. 8 [Section 4.9, formula (31)] and Ref. 7 [Chap. 6]) as

G0(x, y)= π3/2

b

( b
8
|x − y |2)−3/4

exp
( ib

2
x ∧ y

)
×


W 1

2 ,−
1
2

( b
2
|x − y |2) + 1

2
W− 1

2 ,−
1
2

( b
2
|x − y |2)

.

Lemma 3.4 follows in this case from asymptotic formulae for Whittaker functions.7

C. Boundary layer operators

Recall that K ⊂ R2d has been assumed to be a compact subset of R2d with a smooth boundary
and that we defined the domain Ω = R2d \ K . Since Ω and K are complementary, the Hilbert space
L2�
R2d�

is naturally decomposed as the orthogonal direct sum L2(Ω) ⊕ L2(K) in the sense that any
function u ∈ L2(R2d) can be uniquely represented as uΩ ⊕ uK , where uΩ and uK are the restrictions
of u toΩ and K , respectively.

We let Ψ∗(∂Ω) denote the filtered algebra of classical (also known under the name 1-step
polyhomogeneous) pseudo-differential operators on the common boundary ∂Ω of Ω and K . For
a reference on pseudo-differential operators, the reader is referred to Ref. 3 [Chap. 5], Ref. 15
[Chap. 18], or Ref. 24 [Chap. I]. We fix a classical pseudo-differential operator τ ∈ Ψ0(∂Ω). The
proofs also work for τ ∈ Ψt(∂Ω), for t < 1, but become notationally more complicated. We restrict
our attention to the case that τ is self-adjoint, in the current one and Sec. III D this assumption is
needed merely to simplify proofs.

For the boundary considerations of this section, more care in the analysis of the Robin bound-
ary differential expressions on ∂Ω defined in (1.4) is needed. We note that by Ref. 19 [Theorem 9.4,
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Chap. 1] the magnetic normal derivative, cf. (1.4), gives well defined continuous operators for
s ∈ R \ {Z + 1

2 } such that s > 3/2,

∂N,Ω : H s
loc(Ω) → H s−3/2(∂Ω) and ∂N,K : H s(K) → H s−3/2(∂Ω).

We remind the reader that the normal derivatives appearing in ∂N,K and ∂N,Ω are both with respect
to the unit outward normal vector to the boundary of Ω. Again following Ref. 19 [Theorem 9.4,
Chap. 1], the trace operators

γ0,Ω : H s
loc(Ω) → H s−1/2(∂Ω) and γ0,K : H s(K) → H s−1/2(∂Ω),

mapping a function to their boundary value, are continuous for s ∈ R \ {Z + 1
2 } such that s > 1/2.

For s ∈ R \ Z + 1
2 such that s > 3/2, we define the Robin boundary operators on ∂Ω, following the

expressions (1.4), by means of

∂R,Ω B ∂N,Ω + τγ0,Ω : H s
loc(Ω) → H s−3/2(∂Ω) and

∂R,K B ∂N,K + τγ0,K : H s(K) → H s−3/2(∂Ω). (3.5)

As a rule, we suppress the K and the Ω from the notation in these operators whenever the domain is
clear from the context. We sometimes write (∂R)x in order to stress that the differentiation in (3.3) is
with respect to the variable x.

With G0(x, y) as in (3.2), we define the operators A, B, A, and B, acting on functions defined
on ∂Ω, as

Au(x) =

∂Ω

G0(x, y)u(y) dS(y), x ∈ R2d \ ∂Ω,

Bu(x) =

∂Ω

�(∂N)yG0(x, y)�u(y) dS(y), x ∈ R2d \ ∂Ω,

Au(x) =

∂Ω

G0(x, y)u(y) dS(y), x ∈ ∂Ω,

Bu(x) =

∂Ω

�(∂N)yG0(x, y)�u(y) dS(y), x ∈ ∂Ω.

(3.6)

The potentials A and B are usually called the single and double layer potentials. They satisfy
LAu(x) = 0 and LBu(x) = 0 in R2d \ ∂Ω. We will write limit relations at the boundary for these
potentials. We refer to Ref. 2 [Chap. 3, Section 12] where the corresponding potentials are consid-
ered for the Helmholtz operator, see also Ref. 3 [Section 5.7] for the low-dimensional case. Since,
according to Lemma 3.4, the Green functions for both L and the Helmholtz operator are glob-
ally estimated pseudo-differential operators with the same asymptotics in the leading terms as
x − y → 0, the limit relations in Ref. 3 apply here as well. For all x0 ∈ ∂Ω, it holds that

lim
x∈K◦
x→ x0

(Au)(x) = (Au)(x0), lim
x∈K◦
x→ x0

(Bu)(x) = 1
2

u(x0) + (Bu)(x0),

lim
x∈Ω
x→ x0

(Au)(x) = (Au)(x0), lim
x∈Ω
x→ x0

(Bu)(x) = −1
2

u(x0) + (Bu)(x0), (3.7)

lim
x∈Ω
x→ x0

∂N(Au)(x) − lim
x∈K◦
x→ x0

∂N(Au)(x) = u(x0).

We recall from Refs. 2 and 3 that any function u = uΩ ⊕ uK ∈ H s
loc(Ω) ⊕ H s(K) exponentially

decaying at∞ and solving Lu = 0 inΩ∪̇K◦ admits the representation by the formulas

u = B(γ0,KuK) − A�
∂N,KuK

�
, in K◦,

u = A
�
∂N,ΩuΩ) − B(γ0,ΩuΩ), inΩ.

Using the limit values (3.7), we obtain the following formulas connecting Dirichlet and Robin data
at the boundary ∂Ω:
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(
B + Aτ − 1

2

)
γ0,KuK = A(∂R,KuK),(

B + Aτ +
1
2

)
γ0,ΩuΩ = A(∂R,ΩuΩ).

(3.8)

We will use these relations to define the Dirichlet to Robin and Robin to Dirichlet operators
in Section III D below. Before doing so, we present some results on the operators A and B. Recall
that for p ≥ 1, the symmetrically normed ideal of weak Schatten class operators Jp,w(L2(∂Ω))
consists of those compact operators C on L2(∂Ω) whose singular values {µk(C)}k ∈N behave like
µk(C) = O(k−1/p) as k → ∞. See more in Ref. 26.

Lemma 3.6. The operators A and B are classical pseudo-differential operators of order −1.
Furthermore,

(1) A defines a self-adjoint operator on L2(∂Ω);
(2) A is elliptic with a constant principal symbol;
(3) A defines a Fredholm operator A : L2(∂Ω) → H1(∂Ω) whose index vanishes;
(4) A and B, considered as operators on L2(Ω), belong to the weak Schatten class J2d−1,w

(L2(∂Ω)).

Proof. It follows directly from the asymptotics in Lemma 3.4 that A and B are classical
pseudo-differential operators of order −1, see for instance Ref. 15 [Theorem 18.2.8]. As such, the
Weyl law on ∂Ω implies that A and B belong to the weak Schatten class J2d−1,w(L2(∂Ω)). It is
also clear from Lemma 3.4 that σ−1(A) = Γ(d−1)

2πd . Hence A is elliptic. Furthermore, Equation (3.2)

implies that G0(z, w) = G0(w, z) so A is self-adjoint on L2(∂Ω). Since σ−1(A) is a constant mapp-
ing, it is a lower order perturbation of an invertible pseudo-differential operator and the statement
ind(A : L2(∂Ω) → H1(∂Ω)) = 0 follows. �

Lemma 3.7. The elliptic operator A defines an isomorphism A : L2(∂Ω) → H1(∂Ω).

Proof. To prove that A is an isomorphism, we follow the proof of Ref. 27 [Chap. 7, Propo-
sition 11.5] with the necessary modifications. Since the index of A : L2(∂Ω) → H1(∂Ω) vanishes,
it suffices to prove that the operator A is injective. By elliptic regularity, it suffices to prove that
A : C∞(∂Ω) → C∞(∂Ω) is injective.

Assume that h ∈ C∞(∂Ω) with Ah = 0. If we define u ∈ C∞(K◦) by u(x) = Ah(x), x ∈ K◦, then
u satisfies




−(∇ − ibA0)2u = 0 in K◦,
u = 0 on ∂Ω.

We use (2.3) and integrate by parts, to get

0 =


−(∇ − bA0)2u,u�

L2(K ) = bd∥u∥2
L2(K ) +

d
j=1

∥Q ju∥2
L2(K ).

This implies that u ≡ 0 in K , i.e.,

Ah(x) ≡ 0 in K◦. (3.9)

It follows from the limit relations (3.7) that ∂N(Ah)(x) makes a jump across the boundary ∂Ω
of size h, so if we let w(x) = Ah(x), x ∈ Ω, then it satisfies




−(∇ − ibA0)2w = 0 inΩ,
∂Nw = h on ∂Ω.

(3.10)

Since, again by (3.7),Ah does not jump across ∂Ω, we see by (3.9) that w = 0 on ∂Ω.
From the exponential decay of G0(x, y) as |x − y | → +∞, it follows that w(x) = O(|x |−N) as

|x | → +∞ for all N > 0. This also applies to all derivatives of w. Moreover w is smooth. Hence we
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can integrate by parts inΩ to find

0 =


−(∇ − ibA0)2w,w�

L2(Ω) = bd∥w∥2
L2(Ω) +

d
j=1

∥Q jw∥2
L2(Ω),

and hence w ≡ 0 inΩ. From (3.10), we see that h = 0 on ∂Ω. �

D. The Dirichlet to Robin and Robin to Dirichlet operators

Let ϕ ∈ L2(∂Ω) be given, and let u be a solution with exponential decay at infinity to the
exterior Robin problem




Lu = 0, inΩ,
∂Ru = ϕ, on ∂Ω.

We will see below in Equation (3.11) that the existence of u is guaranteed in a subspace of finite
codimension. This solution is unique, provided that certain orthogonality conditions are imposed.
We denote by TR→D

Ω
ϕ the boundary values of u at ∂Ω, whenever ϕ admits a solution u. The operator

TR→D
Ω

: ϕ → TR→D
Ω

ϕ is called the exterior Robin to Dirichlet operator for the differential equation
Lu = 0. We define the interior Robin to Dirichlet operator TR→D

K in a similar way. Their inverse
operators associating Robin data of solutions to their Dirichlet data are called the exterior and
interior Dirichlet to Robin operators and are denoted by TD→R

Ω
and TD→R

K , respectively.
Using the relations in (3.8), we find that these operators in fact are independent on the choice of

solution u for ϕ outside a finite-dimensional subspace. It follows from (3.8) that(
B + Aτ − 1

2

)
TR→D
K = A, on A−1

(
B + Aτ − 1

2

)
C∞(∂Ω),(

B + Aτ +
1
2

)
TR→D
Ω = A, on A−1

(
B + Aτ +

1
2

)
C∞(∂Ω),

TD→R
K = A−1

(
B + Aτ − 1

2

)
,

TD→R
Ω = A−1

(
B + Aτ +

1
2

)
.

(3.11)

These equations determine TR→D
K , TR→D

Ω
, TD→R

K , and TD→R
Ω

outside a finite-dimensional subspace
while B + Aτ ± 1

2 are elliptic pseudo-differential operators of order 0. After a choice of exten-
sion, Equation (3.11) allows us to consider the operators TR→D

K , TR→D
Ω

, TD→R
K , and TD→R

Ω
as

pseudo-differential operators on ∂Ω. More precisely, we have the following standard result for
Dirichlet to Robin operators. The proof can be found in Ref. 27 [Appendix C of Chap. 12].

Proposition 3.8. The interior and exterior Robin to Dirichlet and Dirichlet to Robin operators
are given by the relations in (3.11) and are elliptic pseudodifferential operators with constant
principal symbols,

TR→D
K ,TR→D

Ω ∈ Ψ−1(∂Ω) and TD→R
K ,TD→R

Ω ∈ Ψ1(∂Ω).
Very often, Equation (3.11) determines the Dirichlet to Robin operators; the operators B +

Aτ ± 1
2 are, in a sense made precise below, generically invertible. This fact is based on the following

lemma.

Lemma 3.9. Assume that M is a closed manifold and that s > 0. Let T ∈ Ψ0(M) be an elliptic
operator of index 0 and A ∈ Ψ−s(M) be an invertible operator A : L2(M) → H s(M). Viewing A−1

and A−1T as unbounded operators on L2(M), then for any ε < −σ(A−1T), the bounded operator

T + εA : L2(M) → L2(M)
is invertible.

The statement of the lemma makes sense because T is a pseudo-differential operator of order
zero and as such it preserves the domain H s(M) of A−1. We also note that by elliptic regularity,
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the set −σ(A−1T) is the same when changing the domain and range of A−1T to H t(M) for
any t.

Proof. As ind(T) = 0 and A is of negative order, the operator T + εA is an elliptic pseudo-
differential operator of order 0. As such, it defines an operator H t(M) → H t(M) with index 0
for any ε and t. Hence T + εA is invertible if and only if ker(T + εA) = 0. However, A is invert-
ible so ker(T + εA) = 0 holds if and only if ker(A−1T + ε) = 0. By elliptic regularity, these sub-
spaces do not depend on the choice of domain in the Sobolev scale. The operator A−1T is an
elliptic pseudo-differential operator of order s with index 0. It follows that ind(A−1T + ε) = 0. Thus
ker(A−1T + ε) = 0 holds if and only if −ε < σ(A−1T). �

We say that τ is generic if the operators

T±,τ B B + Aτ ± 1
2

are invertible. Note the following well-known consequence of elliptic regularity and the Fredholm
property of elliptic operators, an elliptic pseudo-differential operator D of order m is invertible as
an operator between Sobolev spaces D : H s(∂Ω) → H s−m(∂Ω), for some s ∈ R, if and only if D is
invertible inside the algebra of pseudo-differential operators. The following corollary motivates the
terminology generic.

Corollary 3.10. Letting τ, A, and B be as above. For all ε ∈ [−1,1] outside a finite subset,
τ + ε is generic.

Proof. By Ref. 24 [Theorem I.8.4], if the spectrum σ(A−1T±,τ) is not equal to C, it is a discrete
subset of C and [−1,1] ∩ σ(−A−1T+,τ) ∩ σ(−A−1T−,τ) is a finite set. The corollary follows from
Lemma 3.9 provided that there exists λ± ∈ C such that A−1T±,τ + λ± are invertible. We note that
the principal symbols ±σ1(A−1T±,τ) are positive constant functions on S∗∂Ω. Existence of λ± ∈ C
follows from the Gårding inequality Ref. 15 [Theorem 18.1.14]). �

We turn our attention to associating Robin data on ∂Ω to Dirichlet data for functions in the
Landau subspace Lq or more generally to solutions of the homogeneous equation (L − Λq)u = 0
in K◦. The construction is well known and can be found in, for instance, Ref. 27 [Chap. 7.12 and
Appendix C of Chap. 12].

Let QK
q ⊆ C∞(K) denote the space of solutions u ∈ C∞(K) to (L − Λq)u = 0 in K◦ and let

Q∂Ω
q ⊆ C∞(∂Ω) be the image of QK

q under the restriction mapping C∞(K) → C∞(∂Ω). Since L −
Λq is a strongly elliptic operator in K , the space Q∂Ω

q ⊆ C∞(∂Ω) has finite codimension. Since the
eigenvalue multiplicities of L in K equipped with Dirichlet conditions on ∂Ω are finite, the kernel of
QK

q → Q∂Ω
q is finite-dimensional.

This means that we can, for any function ϕ ∈ Q∂Ω
q , solve




(L − Λq)u = 0, in K◦,
u = ϕ, on ∂Ω.

The condition that u is L2-orthogonal to ker
�
QK

q → Q∂Ω
q

�
guarantees a unique solution. Define the

corresponding solution operator
0TD→R

q : Q∂Ω
q → C∞(∂Ω), 0TD→R

q ϕ B ∂R,Ku.

We let TD→R
q : C∞(∂Ω) → C∞(∂Ω) denote any extension of this operator, which exists since

Q∂Ω
q ⊆ C∞(∂Ω) has finite codimension. The following result is standard and follows from Ref. 27

[Chap. 7].

Lemma 3.11. The operator TD→R
q possesses the following properties.

(1) TD→R
q is an elliptic pseudo-differential operator of order 1 with a constant positive principal

symbol.
(2) For any s, ind

�
TD→R
q : H s(∂Ω) → H s−1(∂Ω)� = 0.
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(3) There exists a number c = c(∂Ω,q) ∈ R such that TD→R
q : H1/2(∂Ω) → H−1/2(∂Ω) is invert-

ible as an operator on L2(∂Ω) as long as τ ≥ c.

Proof. The computation of the principal symbol of TD→R
q can be found in Proposition C.1 of

Ref. 27 [Chap. 12]. The identity ind
�
TD→R
q : H s(∂Ω) → H s−1(∂Ω)� = 0 follows in the same way

as in the proof of Lemma 3.6. From the index computation for TD→R
q , we conclude that TD→R

q is
an isomorphism if and only if TD→R

q is injective. It follows from the Gårding inequality that there
exists a positive constant c such that for τ ≥ 0, for a certain constant c′τ > 0,

Re


TD→R
q u,u

�
≥ c′τ∥u∥2

H1/2(∂Ω) − c∥u∥2
L2(∂Ω).

Hence, as long as τ ≥ c, we have Re⟨TD→R
q u,u⟩ ≥ c′τ−c∥u∥2

H1/2(∂Ω). Injectivity of TD→R
q : H1/2(∂Ω)

→ H−1/2(∂Ω) assuming τ ≥ c follows. �

Remark 3.12. We note that by construction, TD→R
q coincides with ∂R,K outside a finite-

dimensional subspace. Hence, for q ∈ N \ {0}, a finite rank smoothing operator Sq ∈ Ψ−∞(∂Ω)
exists, such that, as long as u ∈ C∞(K) satisfies (L − Λq)u = 0 in K◦, then

∂R,Ku = (TD→R
q + Sq)γ0,Ku.

E. Reduction to a Toeplitz operator

In this subsection, we prove Theorem 1.2 modulo a technical lemma that we prove in Sec. IV.
We assume as above that K ⊂ R2d is compact with a smooth boundary upon which τ is a classical
pseudo-differential operator which we for simplicity assume to have order 0. In Sec. III C, we made
the assumption that τ was self-adjoint to simplify proofs while in this subsection it is necessary for
the results to hold. Let q ∈ N \ {0} and pick δ > 0 such that(�

Λ
−1
q − 2δ,Λ−1

q + 2δ
�
\

�
Λ
−1
q

	)
∩ σess(L−1) = ∅.

Denote by
�
r (q)j

	
j≥1 the decreasing sequence of eigenvalues of L−1 in the interval (Λ−1

q ,Λ−1
q + δ). For

each q ∈ N \ {0}, we introduce the operator

Tq = PqV Pq , (3.12)

where, as before, Pq is the orthogonal projection onto the eigenspace Lq associated with Λq and
V = L−1 − L−1. By Lemma 2.5, V is a positive and compact operator. These properties are inherited
by Tq. Denote by {t(q)j } the decreasing sequence of eigenvalues of Tq. The next lemma, proved in

Ref. 22 [Proposition 2.2], shows that r (q)j − Λ
−1
q are close to the eigenvalues of Tq.

Lemma 3.13 (Ref. 22, Proposition 2.2). Given ε > 0 there exist integers l and j0 such that

(1 − ε)t(q)
j+l
≤ r (q)j − Λ

−1
q ≤ (1 + ε)t(q)

j−l, ∀ j ≥ j0.

The spectrum of Tq will be related further to the spectrums of Toeplitz operators for generic
operators τ. Recall that given a compact domain U ⊂ R2d, we introduced in (3.1) the Toeplitz
operator SUq . We will prove now the following result.

Lemma 3.14. For all q ∈ N \ {0}, there exists a finite-dimensional subspace Wq ⊆ Lq such
that if K0 ⊂ K ⊂ K1 are compact domains with ∂Ki ∩ ∂K = ∅ (for i = 0 and i = 1) there exists a
constant C > 1 such that

1
C
⟨ f ,SK0

q f ⟩L2(R2d) ≤ ⟨ f ,Tq f ⟩L2(R2d) ≤ C⟨ f ,SK1
q f ⟩L2(R2d) ∀ f ∈ Lq ⊖Wq . (3.13)

The proof of Lemma 3.14 is by reduction of the operator Tq to a pseudo-differential operator
on the common boundary ∂Ω of Ω and K . We postpone the proof to Section IV below and continue
instead with the proof of (1.8).
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Corollary 3.15. Whenever K ⊂ R2 is compact with C∞-boundary,

lim
j→+∞

(
j!

�
r (q)j − Λ

−1
q

�)1/ j
=

b
2

�
Cap(K)�2

.

In particular, (1.8) holds true.

Proof. Invoking the variational min-max principle, the result of Lemma 3.14 provides us with a
sufficiently large integer j0 ∈ N such that, for all j ≥ j0, we have,

1
C

s(q)j,K0
≤ t(q)j ≤ Cs(q)j,K1

.

Here {s(q)j,K0
} j and {s(q)j,K1

} j are the decreasing sequences of eigenvalues of SK0
q and SK1

q , respectively.
Applying the result of Theorem 3.1 in the inequality above, we get

b
2
(Cap(K0))2 ≤ lim

j→+∞

(
j!t(q)j

)1/ j
≤ b

2
(Cap(K1))2.

Since both K0 ⊂ K ⊂ K1 are arbitrary, we get by making them close to K ,

lim
j→+∞

(
j!t(q)j

)1/ j
=

b
2
(Cap(K))2 .

Applying the above asymptotic limit in the estimate of Lemma 3.13, we get the announced result in
Corollary 3.15 above. �

Corollary 3.16. Equation (1.9) holds true.

Proof. This is clear from Lemma 3.14 and Theorem 3.2. �

Summing up the results of Corollaries 2.6, 3.15, and 3.16, we end up with the proof of
Theorem 1.2. All that remains is to prove Lemma 3.14. That will be the subject of Sec. IV.

IV. PROOF OF LEMMA 3.14

The aim of this section is to prove Lemma 3.14. The proof in this subsection goes along similar
lines as in Subsection 4.2 of Ref. 21. Recall the operators A and B from (3.6).

Lemma 4.1. Consider the elliptic operators T±,τ = B + Aτ ± 1
2 ∈ Ψ

0(∂Ω). There exist elliptic
operators R±,τ ∈ Ψ0(∂Ω), with principal symbol σ0(R±,τ) = ±2, such that the operators

T±,τR±,τ − 1 ∈ Ψ−∞(∂Ω) and R±,τT±,τ − 1 ∈ Ψ−∞(∂Ω)
are of finite rank.

Lemma 4.1 could be considered folklore. In lack of a reference, we provide a proof of its
statement.

Proof. We let Ψ−∞fin (∂Ω) ⊆ Ψ0(∂Ω) denote the ideal of finite rank smoothing operators. We
consider the unital algebras

Afin B Ψ 0(∂Ω)/Ψfin
−∞(∂Ω) an d A B Ψ0(∂Ω)/Ψ−∞(∂Ω).

There is a quotient mapping Afin →  A  w hose k ernel i s Ψ −∞(∂Ω)/Ψfin
−∞(∂Ω). It  fo llows by  means

of the standard techniques of pseudo-differential operators that an element T  ∈  Ψ 0(∂Ω) i s elliptic
if and only if the equivalence class T mod Ψ−∞(∂Ω) is an invertible element of A. Hence the
lemma follows if we can prove that if ã ∈ Afin satisfies that a B ã mod Ψ−∞(∂Ω)/Ψfin

−∞(∂Ω) ∈ A  is
invertible, then so is ã.

We choose a lift r̃  ∈ Afin of a−1 and consider the elements in Ψ−∞(∂Ω)/Ψfin
−∞(∂Ω) defined by

sL B r̃ ã − 1Afin and sR B ãr̃  − 1Afin.
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We can lift sL and sR to smoothing operators SL, SR ∈ Ψ−∞(∂Ω). The operators 1 + SL and 1 + SR

are elliptic operators of index 0. Fredholm operators of index 0 are invertible modulo finite rank
operators. If follows by elliptic regularity that 1 + SL and 1 + SR are invertible modulo finite rank
smoothing operators. Hence 1Afin + sL and 1Afin + sR are invertible elements of Afin.

Let us define r̃R B r̃(1Afin + sR)−1 and r̃L B (1Afin + sL)−1r̃ . A direct computation shows that

ãr̃R = r̃Lã = 1Afin.

Multiplying the identity ãr̃R = 1Afin with r̃L from the left proves that r̃R = r̃L. It follows that ã is
invertible with inverse r̃L. �

By Lemma 3.9, it is generically the case that T±,τ is invertible. To simplify notation we set
F̂±,τ B R±,τT±,τ − 1.

Lemma 4.2. Let q ∈ N \ {0}. There exists a finite rank smoothing operator Fq : L2(R2d) →
L2(∂Ω) such that for all f , g ∈ L2(R2d),

⟨ f ,Tqg⟩L2(R2d) =
1
Λ2

q


∂Ω

(Pq f ) · Tτ,q(Pqg) dS + ⟨γ0Pq f ,Fqg⟩L2(∂Ω) , (4.1)

where Tτ,q is the elliptic operator defined by

Tτ,q B
(
TD→R
q + Sq

)∗(R−,τ − R+,τ)A
(
TD→R
q + Sq

)
∈ Ψ1(∂Ω).

Proof. We set u = L−1Pq f = Λ−1
q Pq f , v = L−1Pqg = vΩ ⊕ vK , and w = L−1Pqg = Λ

−1
q Pqg.

Notice that

⟨ f ,Tqg⟩L2(R2d) = ⟨Pq f ,V Pqg⟩L2(R2d)
where V is the operator defined in (2.5). Invoking Lemma 2.5, we write,

⟨Pq f ,V Pqg⟩L2(R2d) =

∂Ω

∂Ru · (vΩ − vK) dS =

∂Ω

∂Ru · (vΩ − w + w − vK) dS.

Note that since u ∈ H1
A0
(R2d), ∂Ru = ∂R,Ku = ∂R,Ωu. Using (3.11) and Lemma 4.1, we can write

further,

⟨Pq f ,V Pqg⟩L2(R2d) =

∂Ω

∂Ru · (R+,τA(∂R,Ω(vΩ − w)) + R−,τA(∂R,K(w − vK))) dS (4.2)

−

∂Ω

∂Ru · F̂+,τ(vΩ − w) + F̂−,τ(w − vK)) dS.

Notice that vΩ and vK are in the domain of the operators LΩ and LK , respectively, hence ∂RvΩ =
∂RvK = 0. By construction, Lqu = Lqw = 0 in K , and Remark 3.12 implies that

∂Ru = (TD→R
q + Sq)γ0u and ∂Rw = (TD→R

q + Sq)γ0w, (4.3)

for some finite rank smoothing operator Sq ∈ Ψ−∞(∂Ω). Consequently, after applying this identity to
the first term in (4.2), we get

⟨Pq f ,V Pqg⟩L2(R2d) +

∂Ω

∂Ru · F̂+,τ(vΩ − w) + F̂−,τ(w − vK)) dS

=


∂Ω

(TD→R
q + Sq)u · (R−,τ − R+,τ)A(TD→R

q + Sq)w dS = ⟨u,Tτ,qw⟩L2(∂Ω).

As for the second term in (4.2),
∂Ω

∂Ru · F̂+,τ(vΩ − w) + F̂−,τ(w − vK)) dS

=


∂Ω

u · (TD→R
q + Sq)∗(Λ−1

q (F̂−,τ − F̂+,τ) + (F̂+,τL−1
Ω − F̂−,τL−1

K ))Pq                                                                                                                                            
ΛqFq

g dS.

Since F̂±,τ are of finite rank, it is clear that Fq is of finite rank. �
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Lemma 4.3. The operator Tτ,q has a discrete spectrum, and there exists a finite rank operator
Sτ,q ∈ Ψ−∞(∂Ω) such that for some b,C > 0,

∥ϕ∥H1/2(∂Ω) ≤ C
(
Re⟨ϕ,Tτ,qϕ⟩L2(∂Ω) + b∥Sτ,qϕ∥L2(∂Ω)

)
.

Proof. By an argument similar to that of Corollary 3.10, it follows from Ref. 24 [Theorem I.8.4]
and the Gårding inequality that Tτ,q has a discrete spectrum. We define the elliptic self-adjoint first
order pseudo-differential operator

T̃τ,q B
1
2
(Tτ,q + T∗τ,q).

Since Tτ,q has a positive principal symbol, we see that Tτ,q − T̃τ,q ∈ Ψ0(∂Ω) defines a bounded
operator. The Gårding inequality implies that for some b,C > 0,

∥ϕ∥H1/2(∂Ω) ≤ C
(⟨ϕ,T̃τ,qϕ⟩L2(∂Ω) + b∥ϕ∥L2(∂Ω)

)
.

Since T̃τ,q is of order 1, elliptic, and self-adjoint, its spectrum is a discrete subset of R. The Gårding
inequality implies that T̃τ,q is bounded from below, so the spectrum of T̃τ,q only accumulates at +∞
and there are only finitely many non-positive eigenvalues. We define Sτ,q ∈ Ψ−∞(∂Ω) as the finite
rank projection onto the non-positive eigenspace of T̃τ,q. For a, possibly new, constant C, the lemma
follows because

Re⟨ϕ,Tτ,qϕ⟩L2(∂Ω) = ⟨ϕ,T̃τ,qϕ⟩L2(∂Ω). �

Proposition 4.4. The linear operator

H1(K) → H−1(K) ⊕ H1/2(∂Ω), f → (L − Λq) f ⊕ γ0,K f , (4.4)

is Fredholm.

Proof. We note that the strongly elliptic differential operator L − Λq defines an elliptic bound-
ary value problem when equipped with the Dirichlet condition as in (4.4). It follows that the
linear operator given in (4.4) is Fredholm because it is a compact perturbation of the operator
f → (L + λ) f ⊕ γ0,K f which is invertible forℜ(λ) large enough. �

Remark 4.5. As a consequence of Proposition 4.4, there exists a bounded linear extension
mapping Qq : H1/2(∂Ω) → H1(K) satisfying γ0Qqϕ = ϕ and (L − Λq)Qqϕ = 0 in K◦ for ϕ outside
a finite-dimensional subspace of H1/2(∂Ω). This finite-dimensional subspace can be chosen as the
orthogonal complement of the space γ0,K

�
ker

�(L − Λq) : H1(K) → H−1(K)��
. We conclude that

there exists a finite rank operator FK on H1(K), smoothing in the interior, such that whenever
f ∈ H1(K) satisfies (L − Λq) f = 0 in K◦,

∥ f ∥H1(K ) ≤ C
(∥γ0 f ∥H1/2(∂Ω) + ∥FK f ∥H1(K )

)
,

for some constant C.

Lemma 4.6. Let q ∈ N \ {0} and let Fq : L2(R2d) → L2(∂Ω) be the finite rank operator of
Lemma 4.2, Sτ,q ∈ Ψ−∞(∂Ω) the finite rank operator of Lemma 4.3 and Pq the orthogonal projec-
tion on the Landau level Lq. There exist constants b > 0, C > 1, such that for all f ∈ L2(R2d), it
holds that

1
C
∥γ0 Pq f ∥H1/2(∂Ω)(∥γ0Pq f ∥H1/2(∂Ω) − ∥Fq f ∥L2(∂Ω) − b∥Sτ,qγ0Pq f ∥L2(∂Ω))
≤ ⟨ f ,Tq f ⟩L2(R2d) ≤ C∥γ0Pq f ∥H1/2(∂Ω)(∥γ0Pq f ∥H1/2(∂Ω) + ∥Fq f ∥L2(∂Ω)) .

Proof. Lemma 3.6 states that the operator Tτ,q from Lemma 4.2 is an elliptic pseudo-differential
operator of order 1 with a positive principal symbol. Hence, by Lemma 4.3, there are constants
b,C > 1 such that

1
C
∥ϕ∥H1/2(∂Ω)(∥ϕ∥H1/2(∂Ω) − b∥Sτ,qϕ∥L2(∂Ω)) ≤ Re⟨ϕ,Tτ,qϕ⟩L2(∂Ω) ≤ C∥ϕ∥2

H1/2(∂Ω),
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for all ϕ ∈ H1/2(∂Ω). Applying the above estimates with ϕ = γ0Pq f and f ∈ L2(R2d) and recall-
ing (4.1), we get that the double inequality announced in the above lemma holds for all f ∈ L2(R2d)
due to Lemma 4.2 and the fact that

Re⟨ϕ,Tτ,qϕ⟩L2(∂Ω)= ⟨ f ,Tq f ⟩ + Re⟨ϕ,Fq f ⟩L2(∂Ω). �

Proof of Lemma 3.14. Let Sτ,q ∈ Ψ−∞(∂Ω) denote the finite rank operator from Lemma 4.2.
The operator Sτ,qγ0Pq : L2(R2d) → L2(∂Ω) is a well defined finite rank operator since Sτ,q is finite
rank and PqL2(R2d) ⊆ C∞(R2d). Recall the finite rank operator FK on H1(K) from Remark 4.5 and
let FKPq : L2(R2d) → H1(K) denote the finite rank operator f → (Pq f )|K → FK

�(Pq f )|K�
which is

well defined since (Pq f )|K ∈ C∞(K). We define the spaceWq ⊆ Lq by means of

Lq ⊖Wq B ker
�
Sτ,qγ0Pq

�
∩ ker Fq ∩ ker FKPq ∩ Lq ⊆ Lq.

The spaceWq is of finite dimension because all operators Sτ,qγ0Pq, Fq, and FKPq are of finite rank.
Step 1. Lower bound.
We prove that the lower bound in (3.13) is valid for all f ∈ W⊥

q . For simplicity, we set
ϕ B γ0 f . By the definition of Tq from (3.12), the estimate of Lemma 4.6 gives

⟨ f ,Tq f ⟩L2(R2d) ≥
1
C
∥ϕ∥2

H1/2(∂Ω) .

So it suffices to prove that

⟨ f ,SK
q f ⟩L2(R2d) ≤ C ′∥ϕ∥2

H1/2(∂Ω) ,

for some positive constant C ′. Recalling the definition of SK
q , and using that ∥ f ∥L2(K ) ≤ ∥ f ∥H1(K ),

this follows once showing the estimate

∥ f ∥H1(K ) ≤ C ′∥ϕ∥H1/2(∂Ω) . (4.5)

Since (L − Λq) f = 0, this estimate follows from Remark 4.5.
Step 2. Upper bound.

Now we establish the upper bound in (3.13). Let f ∈ L2(R2d) and u = Pq f , the projection of f
onto the eigenspace Lq. Notice that the trace theorem, Ref. 19 [Theorem 9.4, Chap. 1] gives

∥γ0u∥H1/2(∂Ω) ≤ C∥u∥H2(K ) ,

for some positive constant C. Notice that (L − Λq)u = 0. By the elliptic regularity, given a domain
K1 such that K ⊂ K1, there exists a constant CK1 such that

∥u∥H2(K ) ≤ CK1

(∥Lqu∥L2(K1) + ∥u∥L2(K1)
)
= CK1∥u∥L2(K1).

Summing up, we get

∥γ0Pq f ∥H1/2(∂Ω) ≤ C∥Pq f ∥L2(K1) , ∀ f ∈ L2(R2d) .
Substituting the above inequality in the estimate of Lemma 4.6, we obtain the upper bound
announced in (3.13). �
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APPENDIX: PROOF OF LEMMA 3.4

The proof of Lemma 3.4 and the expansion of the function G0 defined in (3.2) are based on an
expansion of the function I.
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Lemma A.1. The function

I(s) B
 +∞

0

e−s coth(t)

sinhd(t) dt

can be written as

I(s) = I0(s) + I∞(s),
where

(1) I0(s), I∞(s) = O(e−s) as s → +∞.
(2) I∞ ∈ C∞(R).
(3) The function I0 ∈ C∞(R+) admits an asymptotic expansion for small s,

I0(s) =
+∞

j=1−d
(e−sacj − c′j)s j −

+∞
j=0

d js j log(s), (A1)

where

cjB




⌊(d− j)/2⌋−1
k=0

(−1)k
( d−2

2

k

)
(d − 2(k + 1)) j+1ad−2k−1− j, 1 − d ≤ j < 0,

+∞
k=⌈(d− j−1)/2⌉−1

(−1)k
( d−2

2

k

)
ad−2k−1+ j

(2k + 1 − d) j+1
, 0 ≤ j ≤ d − 2,

0, j > d − 2,

c′jB





j≥k≥1

j−k−d≡1 mod 2

(−1)( j+k+d−1)/2ak

( j − k)!k · k!
*
,

d−2
2

j−k+d−1
2

+
-

+
(−1)( j+d−1)/2

j!
*
,

d−2
2

j+d−1
2

+
-
(γ + log(a) + 1), j − d ≡ 1 mod 2, j ≥ 1,


j≥k≥1

j−k−d≡1 mod 2

(−1)( j+k+d−1)/2ak

( j − k)!k · k!
*
,

d−2
2

j−k+d−1
2

+
-
, j − d ≡ 0 mod 2, j ≥ 1,

γ + log(a) + 1, j = 0 and d is odd,

0, j = 0 and d is even,

d jB

j≥k≥1

j−k−d≡1 mod 2

(−1)( j+k+d−1)/2ak

( j − k)!k · k!
*
,

d−2
2

j−k+d−1
2

+
-
.

Here a = coth(1) and γ is the Euler–Mascheroni constant.

Proof. We write

I0(s) B
 1

0

e−s coth(t)

sinhd(t) dt and I∞(s) B
 +∞

1

e−s coth(t)

sinhd(t) dt.

It is easily verified that I∞ ∈ C∞(R). Since coth(t) ≥ 1 for t ≥ 1, I∞(s) = O(e−s) as s → +∞. Since
coth(t) ≥ 6/5 for t ∈ [0,1], I0(s) = O(e−s) as s → +∞ follows once one notices that the singularity
at t = 0 from the sinhd(t) is canceled by e−s coth(t)/6.

Let us turn to the unpleasant computation of I0. After the change of variables u = coth(t), the
integral defining I0 transforms to

I0(s) =
 +∞

a

e−su(u2 − 1) d−2
2 du =

 +∞

a

e−suud−2
(
1 − 1

u2

) d−2
2 du.
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Here a B coth(1) > 1. Using the Taylor expansion of
(
1 − 1

u2

) d−2
2 , which converges uniformly for

u ≥ coth(1), we arrive at the identity

I0(s) =
+∞
k=0

(−1)k
( d−2

2

k

)  +∞

a

e−suud−2(k+1) du (A2)

=

+∞
k=0

(−1)k
( d−2

2

k

)
s2k+1−dgd−2(k+1)(sa),

where

gm(t) B
 +∞

t

e−uum du.

After an integration by parts, one arrives at the identity

gm(t) =




e−t
m
j=0

(m) j+1tm− j, m ≥ 0,

e−t
−m−1
j=1

tm+ j

(−m − 1) j −
γ + log(t) ++∞

j=0(−1) j t j

j · j!

(−m − 1)! , m < 0.

Here (m)l B m(m − 1) · · · (m − l + 1) denotes the Pochhammer symbol. Putting this into (A2),

I0(s) =
⌊(d−2)/2⌋

k=0

d−2(k+1)
j=0

(−1)k
( d−2

2

k

)
(d − 2(k + 1)) je−saad−2(k+1)− js− j−1

+

+∞
k=⌊d/2⌋

(−1)k
( d−2

2

k

)
e−sa

2(k+1)−d
j=1

ad−2(k+1)− j

(2k + 1 − d) j s j−1

−
+∞

k=⌊d/2⌋
(−1)k

( d−2
2

k

)
s2k+1−d(γ + log(a) + 1) + s2k+1−d log(s)

(2k + 1 − d)!

−
+∞

k=⌊d/2⌋

+∞
j=1

(−1)k+ j
( d−2

2

k

)
a j

j · j!
s2k+1−d+ j

(2k + 1 − d)! .

Rearranging these terms leads to the expression (A1). �

Proof of Lemma 3.4. Using Lemma A.1, we have that

G0(z, ζ) =
+∞

j=1−d

bj+d−1

22d+2 j−1πd
eb(z ·ζ−ζ ·z)/4�

e−ab |z−ζ |
2/4cj − c′j

�|z − ζ |2 j

−
+∞
j=0

d j
bj+d−1

22d+2 j−1πd
eb(z ·ζ−ζ ·z)/4|z − ζ |2 j log

( b|z − ζ |2
4

)
+

2bd−1

(4π)d eb(z ·ζ−ζ ·z)/4I∞
( b|z − ζ |2

4

)
.

From these expressions, the lemma follows. �

1 Aftalion, A. and Helffer, B., “On mathematical models for Bose-Einstein condensates in optical lattices,” Rev. Math. Phys.
21(2), 229–278 (2009).

2 Agranovich, M. S., Sobolev Spaces and Their Generalizations Elliptic Problems in Domains with Smooth and Lipschitz
Boundary (Moscow Center for Continuous Mathematical Education, 2013) (Russian).

3 Agranovich, M. S., Katsenelenbaum, B. Z., Sivov, A. N., and Voitovich, N. N., Generalized Method of Eigenoscillations in
Diffraction Theory (Wiley-VCH Verlag Berlin GmbH, Berlin, 1999) (Translated from the Russian manuscript by Vladimir
Nazaikinskii).

4 Birman, M. Š., “On the spectrum of singular boundary-value problems,” Mat. Sb. (N.S.) 55(97), 125–174 (1961).
5 Birman, M. Š., “Perturbation of the spectrum of a singular elliptic operator under variation of the boundary and boundary

conditions,” Sov. Math. Dokl. 2, 326–328 (1961).

http://dx.doi.org/10.1142/S0129055X0900361X


063510-19 Goffeng, Kachmar, and Persson Sundqvist J. Math. Phys. 57, 063510 (2016)

6 Birman, M. S. and Solomjak, M. Z., Spectral Theory of Selfadjoint Operators in Hilbert Space, Mathematics and Its Appli-
cations (Soviet Series) (D. Reidel Publishing Co., Dordrecht, 1987) (Translated from the 1980 Russian original by S.
Khrushchëv and V. Peller).

7 Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Higher Transcendental Functions (McGraw-Hill Book
Company, Inc., New York-Toronto-London, 1953), Vols. I and II. Based, in part, on notes left by Harry Bateman.

8 Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Tables of Integral Transforms (McGraw-Hill Book Company,
Inc, New York-Toronto-London, 1954), Vol. I. Based, in part, on notes left by Harry Bateman.

9 Filonov, N. and Pushnitski, A., “Spectral asymptotics of Pauli operators and orthogonal polynomials in complex domains,”
Commun. Math. Phys. 264(3), 759–772 (2006).

10 Fournais, S. and Helffer, B., Spectral Methods in Surface Superconductivity, Progress in Nonlinear Differential Equations
and Their Applications Vol. 77 (Birkhäuser, 2010).

11 Fournais, S. and Kachmar, A., “On the energy of bound states for magnetic Schrödinger operators,” J. London Math. Soc.
80(1), 233–255 (2009).

12 Frank, R. L., “On the asymptotic number of edge states for magnetic Schrödinger operators,” Proc. London Math. Soc.
95(1), 1–19 (2007).

13 Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics Vol. 24 (Pitman Advanced
Publishing Program, Boston, MA, 1985).

14 Helffer, B. and Morame, A., “Magnetic bottles in connection with superconductivity,” J. Funct. Anal. 185(2), 604–680
(2001).

15 Hörmander, L., “The analysis of linear partial differential operators. III,” in Classics in Mathematics, Pseudo-Differential
Operators (Springer, Berlin, 2007), reprint of the 1994 edition.

16 Hornberger, K. and Smilansky, U., “Magnetic edge states,” Phys. Rep. 367(4), 249–385 (2002).
17 Kachmar, A., “On the ground state energy for a magnetic Schrödinger operator and the effect of the DeGennes boundary

condition,” J. Math. Phys. 47(7), 072106 (2006), 32.
18 Kachmar, A., “Weyl asymptotics for magnetic Schrödinger operators and de Gennes’ boundary condition,” Rev. Math. Phys.

20(8), 901–932 (2008).
19 Lions, J.-L. and Magenes, E., Non-Homogeneous Boundary Value Problems and Applications (Springer-Verlag, New York,

1972), Vol. I (Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181).
20 Melgaard, M. and Rozenblum, G., “Eigenvalue asymptotics for weakly perturbed Dirac and Schrödinger operators with

constant magnetic fields of full rank,” Commun. Partial Differ. Equations 28(3-4), 697–736 (2003).
21 Persson, M., “Eigenvalue asymptotics of the even-dimensional exterior Landau-Neumann Hamiltonian,” Adv. Math. Phys.

2009, 873704.
22 Pushnitski, A. and Rozenblum, G., “Eigenvalue clusters of the Landau Hamiltonian in the exterior of a compact domain,”

Doc. Math. 12, 569–586 (2007).
23 Raikov, G. D. and Warzel, S., “Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators

with decreasing electric potentials,” Rev. Math. Phys. 14(10), 1051–1072 (2002).
24 Shubin, M. A., Pseudodifferential Operators and Spectral Theory, 2nd ed. (Springer-Verlag, Berlin, 2001) (Translated from

the 1978 Russian original by Stig I. Andersson).
25 Simon, B., Functional Integration and Quantum Physics, Pure and Applied Mathematics Vol. 86 (Academic Press, Inc.

[Harcourt Brace Jovanovich Publishers], New York, 1979).
26 Simon, B., Trace Ideals and Their Applications, 2nd ed. Mathematical Surveys and Monographs Vol. 120 (American Math-

ematical Society, Providence, RI, 2005).
27 Taylor, M. E., Partial Differential Equations. II, Applied Mathematical Sciences Vol. 116 (Springer-Verlag, New York,

1996), Qualitative studies of linear equations.

http://dx.doi.org/10.1007/s00220-006-1520-0
http://dx.doi.org/10.1112/jlms/jdp028
http://dx.doi.org/10.1112/plms/pdl024
http://dx.doi.org/10.1006/jfan.2001.3773
http://dx.doi.org/10.1016/S0370-1573(02)00141-2
http://dx.doi.org/10.1063/1.2218980
http://dx.doi.org/10.1142/S0129055X08003468
http://dx.doi.org/10.1081/PDE-120020493
http://dx.doi.org/10.1155/2009/873704
http://dx.doi.org/10.1142/S0129055X02001491

