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Abstract. Computable versions of Kolmogorov complexity have been
used in the context of pattern discovery [1]. However, these complexity
measures do not take the psychological dimension of pattern discovery
into account. We propose a method for pattern discovery based on a
version of Kolmogorov complexity where computations are restricted to
a cognitive model with limited computational resources. The potential
of this method is illustrated by implementing it in a system used to
solve number sequence problems. The system was tested on the number
sequence problems of the IST IQ test [2], and it scored 28 out of 38
problems, above average human performance, whereas the mathematical
software packages Maple, Mathematica, and WolframAlpha scored 9, 9,
and 12, respectively. The results obtained and the generalizability of the
method suggest that this version of Kolmogorov complexity is a useful
tool for pattern discovery in the context of AGI.
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1 Pattern discovery

Pattern discovery is a general cognitive ability that is critical to the survival
of animals as a heuristic principle for finding food and shelter. It also plays a
central role in human everyday life, aiding in decision making and predictions,
and in application areas such as science and finance. Moreover, pattern discovery
is crucial for performing on the human level and beyond on progressive matrix
problems and number sequence problems appearing in IQ tests [3–6]. In fact,



some IQ tests, e.g., Raven’s progressive matrices [5] and PA [4], consist exclu-
sively of such problems.

For these reasons among others, automatic pattern discovery is a central
challenge to AGI. Since both humans and machines have limited computational
resources, a useful side-condition here is that all patterns need to be identifiable
with limited computational resources. In this paper we focus on a special kind
of pattern discovery. In fact we shall consider patterns in number sequences and
aim for average human-level performance and beyond in this particular case.
We shall use a method for pattern discovery which is relevant to AGI since it
generalizes readily beyond the case of number sequences.

1.1 Number sequence problems

In the context of IQ tests, a number sequence problem is a finite sequence of inte-
gers [7]. A unique answer integer is associated with each problem. For instance,
the (Fibonacci-inspired) number sequence problem 2, 2, 4, 8, 32 has the answer
256. The answer is unique as it is the only number that yields points on the
IQ test. Manuals accompanying IQ tests commonly state that the participants
should be instructed to find the number that “fits the pattern.” The criteria used
to judge whether the answer fits the pattern are usually not explained further,
but rather are illustrated by examples.

Many mathematical methods have been proposed to solve number sequence
problems. The methods include neural network models, hidden Markov models,
dynamic programming models, reinforcement learning models, graph theoreti-
cal models, evolutionary models, and symbolic planning models [8–10]. Several
studies have explored human problem solving in relation to letter sequences and
number sequences [11–13]. Mathematical software packages that include special-
ized functions for number sequence problems are considered in Section 4.

1.2 Kolmogorov complexity

A common approach to the analysis of patterns in number sequences and other
structures is Kolmogorov complexity and its variations, particularly those of
Levin and Solomonoff [1]. The idea is that the shortest description of an object
captures its essence. A version of Kolmogorov complexity K(x) of an object x
could be defined as the length of the shortest program p (in a given program-
ming language) that outputs x and then halts. Because of the halting problem,
Kolmogorov complexity is not computable and thus is not useful as a basis for
automatic pattern discovery. A computable version of Kolmogorov complexity is
Levin’s Kt, defined as a combination of the program length and the number of
steps that the program executes before halting [1]. This approach has been used
in applications including the generation of IQ tests [14]. Other versions of Kol-
mogorov complexity have been defined in terms of the computational resources
(time and space) used by universal Turing machines, including certain measures
that are used in simplicity theory [15–17].



1.3 Structure of the paper

Section 2 defines a version of Kolmogorov complexity in terms of a cognitive
model of a human problem solver. In Section 3, a computational model for
number sequence problems is constructed based on this complexity measure. In
Section 4, this computational model is benchmarked on the IST IQ test. Sections
5 and 6 present the discussion and conclusions, respectively.

2 Bounded Kolmogorov complexity

Patterns are subjective in the sense that different people can observe different
patterns in the same structure, as illustrated by the Rorschach tests [18]. As
a further example, consider the number sequence 1,2. What might the next
number be? Is it 1 (considering the repetitive sequence 1,2,1,2), 2 (considering the
mirroring sequence 1,2,2,1), 3 (considering the incremental sequence 1,2,3,4), or
4 (considering the doubling sequence 1,2,4,8)? These observations indicate that
(i) number sequence problems are not strictly mathematical problems, and that
(ii) number sequence problems have subjective components, i.e., components
that depend on the subject. This subjective component led us to introduce a
cognitive model of the subject and to focus exclusively on the patterns and
computations that are available within that cognitive model.

Our main strategy for pattern discovery is as follows [19, 20]. Let Alice be a
human problem solver. Introduce (i) a language modeling the terms that Alice
might use to describe the patterns, (ii) a term rewriting system (TRS) modeling
how Alice might compute the terms of this language, and (iii) a bounded version
of this TRS, obtained by adding resource bounds reflecting Alice’s cognitive
resources. Finally, look for the smallest term that computes the object in question
in the bounded TRS.

In the specific case of number sequence problems, the strategy is as follows:

1. Construct a language consisting of terms that describe number sequences.
For example, the sequence 2, 2, 4, 8, 32, . . . is described by the term f(n−2)∗
f(n− 1).

2. Define a TRS to compute terms t(n) with numerical values inserted for n.
For example, 8 ∗ 32 and 32 ∗ 256 may be computable in this TRS.

3. Define a bounded version of this TRS reflecting the bounded cognitive re-
sources of Alice. For example, 8 ∗ 32 may be computable in this bounded
TRS, while 32 ∗ 256 may not.

4. Given an input sequence a0, a1, . . . , an, check whether a shortest term t(n)
exists such that (1) t(i) reduces to ai in the bounded TRS for 0 ≤ i ≤ n, and
(2) t(n+ 1) reduces to some number a in the bounded TRS. If such a term
exists, then use a preference relation to select one such t(n) and output the
corresponding a. Otherwise, report failure for that sequence.



3 Computational model

This section will provide details on the computational model used to solve num-
ber sequence problems, as outlined above.

3.1 Terms

Terms are strings of symbols that are intended to describe number sequences.

Definition 1 (Term). The set of terms is defined by the following clauses:

– Numerals: 0, 1, 2, . . ., are terms.
– The variable n is a term.
– f(n− c) is a term, where c is a numeral greater than 0.
– If t1 and t2 are terms, then so is (t1 ? t2), where ? is one of +, −, ·, or ÷.

Parentheses are sometimes omitted in order to facilitate reading. Informally,
a term describes a number sequence if all numbers in the sequence except for
a limited number of base cases can be calculated using the term in which the
functional symbols +,−, ·, and ÷ are interpreted as addition, subtraction, mul-
tiplication, and integer division; n is interpreted as the position in the sequence
and f(n− c) as the number at position n− c.

In the formal definition below, it is helpful to think of b as the number of
base cases. To exclude trivialities, we require this number b to be less than half
of the sequence length.

Definition 2 (Description). Let t be a term and let b be the largest c such
that f(n − c) occurs in t. Then t is a description of the number sequence
a0, a1, . . . , al−1 if the following holds:

– b < l/2,
– If b ≤ i < l, then t(i) evaluates to ai when f(j) is interpreted as aj, for

0 ≤ j < i.

Example 1. The term f(n−2)·f(n−1) is a description of the sequence 2, 2, 4, 8, 32.

Example 2. The term f(n − 1) + k is a description of the arithmetic sequence
a, a+ k, . . . , a+m · k and f(n− 1) · k is a description of the geometric sequence
a, a · k, . . . , a · km.

Suppose t is a description of the number sequence a0, a1, . . . , al−1. Then we
say that t predicts the number t(l) for this sequence.

Example 3. As already mentioned, the term f(n− 2) · f(n− 1) is a description
of the sequence 2, 2, 4, 8, 32. It predicts the number 256 for this sequence.



3.2 Bounded computations

In this section, we define a simple cognitive model in the form of a TRS together
with a notion of bounded computation for that TRS. The terms of the TRS
are those that were introduced above. The rewrite rules are given by a set of
simple arithmetic facts, including 10 × 10 tables for addition, multiplication,
subtraction, and integer division, together with a small number of algebraic
rules. For instance, the TRS contains the rules 5 + 7 → 12, 2 · 3 → 6, and
x · (y + z) → x · y + x · z, where x, y, z represent arbitrary terms. This TRS is
similar to the one used in [19]. Examples of computations (rewrite sequences) in
this TRS are given in Examples 4 and 5.

Example 4. Here is a simple arithmetic computation.

27 · 3
(30− 3) · 3
30 · 3− 3 · 3
30 · 3− 9
90− 9

80 + 10− 9
80 + 1
81

Next we shall define a basic notion of bounded computation, by bounding
the maximum length of the terms appearing in the computations.

Definition 3 (Term length). The length |t| of a term t is defined by:

– |c| is the number of digits in c, disregarding trailing zeroes, when c is a
numeral.

– |n| = 1
– |f(n− c)| = 1
– If t1 and t2 are terms, then |(t1 ? t2)| = |t1|+ |t2|+ 1.

We put |f(n − c)| = 1, since in practice c will be a very small number (seldom
larger than 2), telling you how far “to the left to look” in a given pattern. It
seems natural to assume that this number is not kept in the working memory.

Definition 4 (Bounded computation). A bounded computation is a com-
putation in which the length of each term is no more than eight.

The number eight was chosen to model a human problem solver with a working
memory capacity above the average level. According to Miller [21], the working
memory can typically hold about seven items. Later findings suggest that the
working memory capacity is about four items in young adults and less than that
in children and elderly [22].

The computations given in Examples 4 and 5 are both bounded. Complex
terms such as 67 · 89, do not have bounded computations, however.

When searching for terms that describe a given number sequence, we shall
restrict the search to bounded computations, in the sense that every number of



the sequence must be computable via a bounded computation. This restriction
also applies when computing the predicted number.

Example 5. Note that the term f(n−1)+f(n−2) is a description of the sequence
2, 3, 5, 8, 13, 21. One may verify that each element of this sequence, and also the
predicted number 34, can be computed by means of bounded computations. For
example, the following is a bounded computation of the element a5:

8 + 13
8 + 10 + 3
10 + 8 + 3
10 + 11

10 + 10 + 1
20 + 1
21

3.3 Subsequences

Some number sequences appearing in IQ tests are described by more than one
term, with each term describing a subsequence of the full sequence.

Example 6. Consider the sequence 1, 2, 1, 3, 1, 4, 1, 5, which contains the follow-
ing subsequences:

– odd-positioned elements 1,_, 1,_, 1,_, 1,_
– even-positioned elements _, 2,_, 3,_, 4,_, 5

In this example, to predict the next number it is enough to consider the odd
positions. However, one subsequence could also work as the base case for the
other subsequence, as in the following example.

Example 7. Every second position of the sequence 5, 10, 1, 2, 22, 44, 3, 6, 7, 14 is
described by f(n− 1) · 2.

Let us define what it means for a term t to describe every second number of
a sequence by a slight variation of Definition 2.

Definition 5 (Description modulo 2). Let t be a term and let b be the largest
c such that f(n− c) occurs in t. Then t is a description modulo 2 of the number
sequence a0, a1, . . . , al−1 if the following holds:

– b < l/2,
– If b ≤ i < l and i ≡ l (mod 2), then t(i) evaluates to ai when f(j) is

interpreted as aj, for 0 ≤ j < i.

Descriptions modulo m > 2 are defined analogously. The notion of predic-
tion extends in the expected way. Suppose t is a description modulo m of the
number sequence a0, a1, . . . , al−1. Then we shall say that t predicts the number
t(l) modulo m.



3.4 Index shifts

The variable n in a term is interpreted as the position in a sequence, with the
first position being 0. However, consider the following two sequences:

– 0, 1, 4, 9, 16
– 1, 4, 9, 16, 25

The first sequence is described using the term n ·n of length 3, while the second
is described by (n + 1) · (n + 1) of length 7. To avoid this pathology, we allow
the starting value of n to vary from −9 to 9.

3.5 Term preference

As the following example illustrates, different terms can describe the same se-
quence, which sometimes results in different predictions.

Example 8. The sequence 4, 7, 12, 20 is described by both

– f(n− 1) + f(n− 2) + 1 and
– (f(n− 1)− f(n− 2)) · 4.

Both these terms are of length 5, but they make different predictions, 33 and 32,
respectively.

Because of such ambiguities, we need to define a preference order on the terms
that describe a given sequence:

– Shorter terms are preferred over longer terms. This is motivated by Occam’s
razor [23].

– Descriptions are preferred over descriptions modulo 2, which in turn are
preferred over descriptions modulo 3, and so on. This ensures that complete
descriptions are preferred over partial descriptions.

– Terms not including n (except as f(n−c)) are preferred over terms containing
n. This is motivated by the view that previous values are more basic than
positions [24].

– Terms predicting smaller values are preferred over others.

These criteria, listed according to their priority, ensure that a unique prediction
will always be made. Performance decreased when these criteria were applied in
a different order than the one listed above.

3.6 Implementation

This model was implemented in a computer program written in Haskell. The
program searches for a term that describes a given number sequence, using the
preference order of terms listed above. Since the length of terms is the primary
preference, the program iterates over each length beginning with length one.
For each length, it enumerates all terms and tests them against the sequence.
Terms that describe the sequence are chosen, and one of them is selected using
the preference order listed previously. This term is then used to extrapolate the
sequence.



Program PJP PA IST

SeqSolver 11 29 28
Mathematica 6 9 9
Maple 6 6 9
OEIS 4 11 11
WolframAlpha 6 9 12

Table 1: Performance on the number sequence problems of the IQ-tests PJP (11
items), PA (29 items), and IST (38 items) of the above-mentioned tools. SeqSolver was
developed with the help of the tests PJP and PA (which explains the good performance
on those tests). Then it was tested using the (previously unseen) test IST.

4 Results

To assess the performance of our computational model, we tested it against some
widely used mathematical software tools that have special functions for solving
number sequence problems. The following tools were used in the test:

– Seqsolver, as described above
– Mathematica [25] with FindSequenceFunction [26]
– Maple [27] with the listtorec function [28]
– Online Encyclopedia of Integer Sequences [29]
– WolframAlpha [30] with the online search function (which is connected to

the Online Encyclopedia of Integer Sequences).

We tested the above tools on the number sequence problems of the IQ tests PJP
[3], PA [4], and IST [2]. There was a time-limit of 30 seconds per item, motivated
by the time limit of 30 minutes for the IST test. Table 1 summarizes the results.
The IQ score of SeqSolver on IST was at least 130 (a precise IQ score could
not be given in this case because of the limited size of the norm group) and for
WolframAlpha it was 99 [31]. Decreasing the working memory capacity from 8
to 7 resulted in a decreased score for SeqSolver and increasing it to 9 did not
change the score, although it increased the runtime considerably.

5 Discussion

In general, introducing a cognitive model into a pattern discovery system serves
several purposes. First, it provides a notion of which patterns are amenable
to human-level problem solving. Second, the cognitive model may expedite the
problem solving process. In fact, a limited amount of time can be spent on each
term, as all computations take place inside a finite cognitive model. Third, this
approach may increase the chance of solving the problem “correctly,” as any
terms that are too computationally demanding can be excluded. Finally, this
model provides a notion of cognitive workload, which can serve as a tie-breaker
between terms of the same length.



This study used a particularly simple notion of patterns. This notion could
be broadened by adding more powerful operators. The same strategy would work
in that case, as all computations (terminating or not) will be aborted as soon as
they exceed any of the resource limits.

6 Conclusion

We defined a version of Kolmogorov complexity by constructing a cognitive
model of a human problem solver. This measure of complexity involves only
those computations that can be performed inside the cognitive model, with its
limited cognitive resources. This approach resulted in a set of computations that
is small enough to be computable, yet large enough to contain a substantial part
of the computations that are necessary for human level performance. This com-
plexity measure differs from other proposed computable versions of Kolmogorov
complexity as it makes explicit reference to models of human cognition.

The notion of bounded Kolmogorov complexity and the method presented
here are by no means restricted to number sequence problems. In fact, the
method applies analogously to other types of objects than numbers and other
types of operators than arithmetical. More precisely, the method applies to ar-
bitrary term rewriting systems or production systems with finite computational
resources.

In summary, the results obtained and the generalizability of the method
suggest that resource-bounded Kolmogorov complexity is a useful tool for pattern
discovery in the context of AGI.
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