
Machine Learning Approach for Quality Assessment
and Prediction in Large Software Organizations

Rakesh Rana, and Miroslaw Staron
Department of Computer Science and Engineering

Chalmers | University of Gothenburg
Göteborg, Sweden

Email: rakesh.rana@gu.se

Abstract—The importance of software in everyday products
and services has been on constant rise and so is the complexity
of software. In face of this rising complexity and our dependence
on software - measuring, maintaining and increasing software
quality is of critical importance. Software metrics provide a
quantitative means to measure and thus control various attributes
of software systems. In the paradigm of machine learning, soft-
ware quality prediction can be cast as a classification or concept
learning problem. In this paper we provide a general framework
for applying machine learning approaches for assessment and
prediction of software quality in large software organizations.
Using ISO 15939 measurement information model we show how
different software metrics can be used to build software quality
model which can be used for quality assessment and prediction
that satisfies the information need of these organizations with
respect to quality. We also document how machine learning
approaches can be effectively used for such evaluation.

I. INTRODUCTION

Software affects almost every part of our life today, from
consumer electronics we almost cannot do without to most ser-
vices we consume on our computing devices and over internet
are provided with help of software. Even the products such as
cars which contained miniscule amount of software (if any) in
1970s today carry a large amount of software. With increasing
importance of software in products and services we use and
interact daily, a critical issue is of course system quality,
attributes related to quality such as reliability, maintainability,
re-usability etc. are of very high importance. Software quality,
mainly the attributes related to dependability are even more
important when developing software for systems deemed as
safety, business and/or mission critical.

ISO 9126 [1] defines quality as “the totality of features
and characteristics of a software product that bear on its
ability to satisfy stated or implied needs”. While ISO 25000
[2] takes the following approach to quality: “capability of
software product to satisfy stated and implied needs when used
under specified conditions”. Assessing software quality early
in the development process are essential to identify and allocate
resources where they are needed most [3].

Software metrics provide quantitative means to control
software product and quality [4]. Software quality estima-
tion models establishes relationships between desired software
quality characteristics and measurable attributes. These models
can be based on statistical techniques such as regression
models [5] [6] or logical models [7] [8], since logical models

such as those based on decision trees or rule sets are white-box
models their interpretation is easier and thus also preferred [3].

Software metrics have long been used for monitoring and
controlling software process [9][10], asses and/or improve
software quality [11][12]. Metrics collection and analysis is
part of daily work activities in large software development
organizations [13]. Mature software development organizations
also widely use the information model of ISO/IEC standard
15939 [14] as means of identifying the information needs
and implementing measurement systems. Staron, Meding and
Nilsson [13] provides a framework for quick development
of measurement system in large software organizations using
ISO/IEC 15939 standard. In this paper we propose how ma-
chine learning approaches can be used within the ISO/IEC
15939 information model framework for effective assessment
and prediction of software quality. Framework that uses ma-
chine learning approaches within ISO/IEC 15939 information
model will enhance the adoption of these techniques in large
scale software organizations already using the standard for
their information needs.

The rest of paper is organised as follows: In next section
we describe very briefly software quality and ISO/IEC 15939
information model. Related work is discussed in section III,
which is followed by section IV outlining the proposed frame-
work. The paper is summarized in section V with conclusions
and directions for future work.

II. BACKGROUND

A. Software Quality

With increasing importance of software in our daily lives,
the aspects of quality with respect to software have also gained
high importance. As with many attributes, quality can be
improved effectively if we define it properly and measure it
continuously.

While quality is one of the very common and well known
terms, yet it is ambiguous and also commonly misunderstood.
To many people, quality is similar to what a federal judge once
said about obscenity “I know it when I see it” [15]. The main
reasons for ambiguity and confusion can be attributed to the
fact that quality is not a single idea, but a multidimensional
concept, where dimensions includes the entity of interest, the
viewpoint and the attributes of that entity [15]. Thus, to fully
appreciate the complexities related to quality the shift have
been from defining quality from a single perspective towards
defining and working with quality models. Quality model

according to ISO/IEC 25000 [2] is: “defined set of charac-
teristics, and of relationships between them, which provides a
framework for specifying quality requirements and evaluating
quality”.

The latest and now widely used framework for software
quality is given in SQuaRE: Software product Quality Re-
quirements and Evaluation, ISO/IEC 25000 [2] which provides
a series of standards on product quality requirements and
evaluation. Quality model division in SQuaRE series (2501n)
provides the detailed software quality model that includes
characteristics for internal, external and quality in use. Quality
characteristics are further decomposed into subcharacteristics
and practical guidance for their use is also provided. Table I &
II outlines the characterstics and subcharacteristics of ISO/IEC
9126-1 [1] quality model.

TABLE I. ISO/IEC 9126-1 INTERNAL/EXTERNAL QUALITY MODEL
CHARACTERISTICS AND SUBCHARACTERISTICS.

Characteristics Subcharacteristcs

Functionality

suitability
accuracy
interoperability
security
functionality compliance

Reliability

maturity
fault tolerance
recoverability
reliability compliance

Usability

understandability
learnability
operability
attractiveness
usability compliance

Efficiency
time behaviour
resource efficiency utilisation
efficiency compliance

Maintainability

analysability
changeability
stability
testability
maintainability compliance

Portability

adaptability
installability
co-existence
replaceability
portability compliance

TABLE II. QUALITY IN USE ACCORDING TO ISO/IES 9126-1.

Measure Characteristics
Quality in Use Effectiveness

Productivity
Safety
Satisfaction

Depending on the product, the way and/or the environment
in which it would be used, different quality measures, charac-
teristics and subcharacteristics can be weighted differently to
customize the quality model to specific needs.

B. ISO 15939 Measurement Information Model

ISO/IEC standard 15939 [14] defines the activities and
tasks necessary to implement a measurement process. The
measurement information model provide a structure that links
information need of stakeholders to the measurable attributes.

The measurement information model outlines how relevant
attributes are qualified and converted to indicators that supplys
the information needed for decision making. The overview of
model as given in [16] and measurement information model
adapted from ISO/IEC 15939 are presented in figure 1.

Measurement
Method

Measurement
Method

Measurement
Method

Measurement
Function

Measurement
Function

Attribute Attribute Attribute

Base
Measure

Base
Measure

Base
Measure

Derived
Measure

Derived
Measure

Analysis
Model

Indicator

Information
Product

Interpretation

Measurement
Method

Measurement
Function

Attribute

Base
Measure

Derived
Measure

Analysis
Model

Indicator

Interpretation Data Analysis

Data Preparation

Data Collection

(a) ISO/IEC 19539 Overview (b) Measurement Information Model – adapted from ISO/IEC 19539:2007

Fig. 1. Overview & Measurement information model adapted from ISO/IEC
15939: 2007

For detailed description of measurement information model
and implementing a measurement process, readers are referred
to standard ISO/IEC 15939 [14]. Two key components of the
information model we would emphasise on this paper are
provided here with their definitions from the standard:

Measurement Function: A function is an algorithm or calcu-
lation performed to combine two or more base measures. The
scale and unit of derived measure depend on the scales and
units of the base measures from which it is composed as well
as how they are combined by the function

(Analysis) Model: An algorithm or calculation combining one
or more base and/or derived measures with associated decision
criteria. It is based on an understanding of, or assumptions
about, the expected relationship between the component mea-
sures and/or their behaviour over time. Models produce esti-
mates or evaluations relevant to defined information needs. The
scale and measurement method affect the choice of analysis
techniques or models used to produce indicators.

III. RELATED WORK AND DISCUSSION

The application of Machine Learning (ML) techniques in
the software engineering domain has been increasing rapidly.
Zhang and Tsai [17] provide a detailed overview of machine
learning approaches applied to range of software engineering
problems. A number of recent studies have looked at apply-
ing different machine learning techniques for assessment and
predictions of various aspects of software quality, Myra [18]
uses ML to support quality judgements, while Azar et al. [3]
proposes search based hybrid heuristic approach to optimize
rule-based software quality assessment. ML approaches have
also been used to model and predict software ageing in study
by Andrzejak and Silva [19] and finding latent code errors by
Brun and Ernst [20].

With regard to software quality assessment and prediction
using ML approaches, much effort has gone into identifying
and predicting defect prone software modules. Khoshgoftaar,
Allen and Deng [21] used regression trees to classify fault
prone software modules, while in different studies Fenton
[22] demonstrated usefulness of Bayesian nets for predicting
software defects. [23] uses support vector machines for predict-
ing modules that are defect-prone. Support Vector Machines
(SVM) are also used and compared to Artificial Neural Net-
works (ANN) in work by Iker Gondra [24] which also looks
at determining the importance of each software metric in pre-
dicting fault-proneness. Various ML techniques for predicting
defect prone software modules are assessed and compared in
work by Khoshgoftaar and Seliya [25].

Most of the previous studies using ML approaches for
software quality assessment and prediction have been focused
on one or few aspects of software quality such as defect
proneness or reliability. Using ML for assessing or predicting
holistic software quality are rare which is not surprising as
software quality is a multi-dimensional concept and difficult
to define. Almeida and Matwin [7] describes machine learning
approach for building software quality models casting quality
prediction as concept learning problem.

Software quality models such as one proposed by Bohem
et al. [26] and international standards on software quality [1],
[2] have greatly enhanced our understanding of what factors
affects quality, they have also contributed towards standard-
ization of various terms and their definitions with regard to
quality. But as described by Kitchenham and Pfleeger [27],
following limitations still holds true with respect to software
quality models:

• Software quality models lack the rationale for de-
termining which factors to include or exclude when
defining quality,

• The basis of selection of quality characteristics and
subcharacteristics and their order is unclear and dif-
ferent in different quality models, and

• Software quality models in general lacks the explana-
tion of how lowest-level metrics (referred as indicators
in ISO 9126) are composed to form higher level
quality characteristics.

The authors argues that the absence of explanation of how
higher level quality characteristics are related to lower level
factors/metrics (or indicators) imply that there are no means
to measure factors at top of hierarchy which makes the model
untestable.

Geoff Dromey [28] believes that these quality models are
not much useful for software engineers looking to build quality
product. The reasoning is that building high level quality
attributes such as reliability or maintainability into products is
almost impossible using such models. Dromey’s proposed ap-
proach [28] overcomes some of these limitations, the proposed
framework suggests identifying quality attributes, components,
quality-carrying properties and linking these properties to qual-
ity attributes which provides reference against which quality
can be assessed for individual module, components or even at
system level.

Our framework compliments both the software quality
models such as ISO 9126 and the approach suggested by Geoff

Dromey. For quick and effective assessment of software quality
in large organizations we propose using machine learning tech-
niques integrated within the measurement information model
of ISO/IEC 15939.

IV. FRAMEWORK FOR QUALITY ASSESSMENT AND
PREDICTION USING MACHINE LEARNING TECHNIQUES

As explained earlier large mature software development
organizations usually collects and monitor various software
metrics considered important for the purpose of monitor-
ing and controlling software development process and soft-
ware/product quality. Given the availability of this large set of
data for current as well as historical projects and the unclarity
of how low level software metrics affect high order quality
characteristics (or overall quality), we contend that for effective
assessment and prediction of overall software quality in large
organizations, machine learning techniques such as pattern
recognition and classification can be used efficiently. We also
provide a framework for quality assessment and prediction
which integrates ML techniques in framework of measurement
information model of ISO/IEC 15939 - a widely used standard
to develop and implement measurement systems within the
software industry.

In the framework we first take a bottoms-up approach,
given that we have some quantitative assessment of high
order quality characteristics (as per software quality models by
Bohem [29] or ISO 9126 [1]), we can use ML techniques for
pattern recognition such as Artificial Neural Networks (ANN)
to recognise/predict under which quality category a given
software module/product falls at a given point of time during
its development. The model for such assessment/prediction can
be represented as in figure 2.

Characteristics - A

ML Pattern Recognition
models

Characteristics - C Characteristics - B

Quality

Fig. 2. Overview of quality assessment model using ML pattern recognition

Next to get a quantitative assessment (quantitative as-
sessment here also refer to value on a limited scale, say
between 0-10) or qualitative class labels (such as high/low)
values for different high order quality characteristics that
affect overall software quality, we propose using framework of
measurement information model of ISO/IEC 15939 supported
by the machine learning techniques of pattern recognition
and classification. This model would be very much based on
ISO/IEC 15939 measurement information model with a top-
down approach which is represented in figure 3.

The model to asses the individual quality characteristics
can be obtained using top-down approach as in ISO/IEC 15939
measurement information model, following steps would be
involved:

• First depending on the characteristics of given soft-
ware project/product and needs of different stake-

Measurement
Method

Measurement
Function

Attribute

Base
Measure

Derived
Measure

Analysis Model

Indicator

Interpretation Data Analysis

Data Preparation

Data Collection

Fig. 3. Overview of high order quality characteristics assessment model using
ML techniques

holders, information need is established. The only
difference compared to ISO/IEC 15939 measurement
information model here is that information need here
specifically relates to quality characteristics that is
recognised as important for overall quality of given
software project/product.

• Next for identified information need (quality charac-
teristics), subcharacteristics (corresponding to derived
measures in reference to ISO/IEC 15939) and different
attributes/software metrics that can potentially affect
the given subcharacteristics are identified.

• The next step is data collection which includes col-
lection of attributes and using measurement theory
to assign them values to obtain the relevant base
measures. This step also remains unchanged in our
framework with respect to ISO/IEC 15939 measure-
ment information model.

• Different base measure(s) can now be combined to
form derived measures using pattern recognition tech-
niques (e.g. Artificial Neural Networks) from the ma-
chine learning toolbox. The main advantage of using
ML techniques in this step is that using historical
data, we can easily and effectively use the pattern
recognition ability of ML approaches while finding
formal mathematical relations for the same is complex
and difficult.

• After obtaining the quality subcharacteristics (derived
measures) we can again use the machine learning
techniques such as classification models (e.g. Support
Vector Machines) which can use the historical data
to classify given software project/product/module to
a class of quality characteristics. Again ML learning
tools are highly useful in this step as finding the
correct analysis model is difficult and complex.

• The obtained quality characteristics for current soft-
ware project/product/module can then be interpreted.

The interpretation of quality characteristics in this
framework is comparatively easier given that using
ML model based on historical data, the obtained
values are compared in light of earlier experience
within the organization.

Thus by following the above steps and using machine
learning techniques in conjunction to ISO/IEC 15939 mea-
surement information model we can model overall quality of
given software module/product/project. We can also effectively
used the collected software metrics and historical data which
are usually widely available within large software development
organizations.

V. CONCLUSION

In this paper we examined the growing importance of
software in products and services we consume regularly. Given
this high and growing dependence on software its quality is of
course a major concern for us as consumers and software de-
velopment organizations who develop these products/services.
As software becomes more integral part of our daily lives and
its complexity increases - monitoring, assessing and improving
software quality also becomes ever more important.

Quality in context of software is a common yet ambiguous
term. While everyone have a feeling for quality, it’s an complex
and multifaceted concept, it varies based on the perspective
and also on the environment in which a product is used
and user expectations. While software quality models and
international standards have helped us understand better the
factors that may affect quality, the relationship and effect size
of individual factors/subcharacteristics on overall quality is
unknown. Finding precise relationships is not only difficult but
may well be impossible given that quality depends on number
of characteristics internal, external and in-use which in-turn
can be affected by very large number of factors.

Large and mature software development organizations col-
lects and monitors software metrics widely and is a part of their
day today activities for all projects. While this data is rarely
released outside these organizations due to confidentiality
issues, this wealth of data can be effectively used internally to
model software quality using traditional and machine learning
based techniques.

Given the high availability of wide range of software
metrics data for historical and undergoing projects and use
of ISO/IEC 15939 for implementing measurement systems
in large software organizations, we proposed a framework
that uses machine learning techniques in conjunction with
measurement information model of ISO/IEC 15939. Using
machine learning approaches means that we no longer need to
know exact relationships between base and derived measures
and build precise analysis model of how different quality
subcharacteristics affect higher order quality characteristics
or overall quality. Using the historical data machine learning
techniques can help assess overall quality and high order
quality characteristics models based on measurable attributes.
Another very important benefit of using machine learning
techniques is that they are self improving, thus as they are used
in these large organizations and more data is collected over
time, their accuracy and predictive power improves making
them very attractive for such analysis.

While machine learning approaches have been applied
to many software engineering problems and also to many
individual software quality characteristics/subcharacteristics,
their use for overall quality assessment and prediction is rare.
The framework presented in this paper need to be validated in a
large software organization setting which we see as our future
work direction. We also believe that more research is needed
in this area to establish models for evaluating and predicting
higher order quality characteristics and overall quality using
widely available software metrics data using machine learning
techniques.

ACKNOWLEDGMENT

The work has been funded by Vinnova and Volvo Cars jointly
under the FFI programme (VISEE, Project No: DIARIENR:
2011-04438).

REFERENCES

[1] ISO, ISO Standard 9126: Software Engineering Product Quality, parts
1, 2 and 3, Std., 2001.

[2] ——, International Standard. Software Engineering Software product
Quality Requirements and Evaluation (SQuaRE), Std., 2005.

[3] D. Azar, H. Harmanani, and R. Korkmaz, “A hybrid heuristic approach
to optimize rule-based software quality estimation models,” Information
and Software Technology, vol. 51, no. 9, pp. 1365–1376, 2009.

[4] H. Lounis and L. Ait-Mehedine, “Machine-learning techniques for
software product quality assessment,” in Quality Software, 2004. QSIC
2004. Proceedings. Fourth International Conference on. IEEE, 2004,
pp. 102–109.

[5] F. Brito e Abreu and W. Melo, “Evaluating the impact of object-oriented
design on software quality,” in Software Metrics Symposium, 1996.,
Proceedings of the 3rd International. IEEE, 1996, pp. 90–99.

[6] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” Software Engineering,
IEEE Transactions on, vol. 22, no. 10, pp. 751–761, 1996.

[7] M. A. De Almeida and S. Matwin, “Machine learning method for
software quality model building,” in Foundations of Intelligent Systems.
Springer, 1999, pp. 565–573.

[8] S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “Analyzing software
measurement data with clustering techniques,” Intelligent Systems,
IEEE, vol. 19, no. 2, pp. 20–27, 2004.

[9] M. Staron and W. Meding, “Monitoring bottlenecks in agile and lean
software development projects–a method and its industrial use,” in
Product-Focused Software Process Improvement. Springer, 2011, pp.
3–16.

[10] N. Mellegård and M. Staron, “Characterizing model usage in embedded
software engineering: a case study,” in Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume.
ACM, 2010, pp. 245–252.

[11] M. Staron, L. Kuzniarz, and C. Thurn, “An empirical assessment of us-
ing stereotypes to improve reading techniques in software inspections,”
in ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4. ACM,
2005, pp. 1–7.

[12] N. Mellegard, M. Staron, and F. Torner, “A light-weight defect clas-
sification scheme for embedded automotive software and its initial
evaluation,” in Software Reliability Engineering (ISSRE), 2012 IEEE
23rd International Symposium on. IEEE, 2012, pp. 261–270.

[13] M. Staron, W. Meding, and C. Nilsson, “A framework for developing
measurement systems and its industrial evaluation,” Information and
Software Technology, vol. 51, no. 4, pp. 721–737, 2009.

[14] ISO/IEC, Systems and software engineering – Measurement Process,
Std., 2007.

[15] S. H. Kan et al., Metrics and Models in Software Quality Engineering,
2/e. Pearson Education India, 2003.

[16] L. Bégnoche, A. Abran, and L. Buglione, “A measurement approach
integrating iso 15939, cmmi and the isbsg,” in Proceedings of 4th
Software Measurement European Forum (SMEF), Rome, 2007.

[17] D. Zhang and J. J. Tsai, “Machine learning and software engineering,”
Software Quality Journal, vol. 11, no. 2, pp. 87–119, 2003.

[18] M. Custard and T. Sumner, “Using machine learning to support quality
judgments,” D-Lib Magazine, vol. 11, no. 10, pp. 1082–9873, 2005.

[19] A. Andrzejak and L. Silva, “Using machine learning for non-intrusive
modeling and prediction of software aging,” in Network Operations and
Management Symposium, 2008. NOMS 2008. IEEE. IEEE, 2008, pp.
25–32.

[20] Y. Brun and M. D. Ernst, “Finding latent code errors via machine learn-
ing over program executions,” in Proceedings of the 26th International
Conference on Software Engineering. IEEE Computer Society, 2004,
pp. 480–490.

[21] T. M. Khoshgoftaar, E. B. Allen, and J. Deng, “Using regression trees to
classify fault-prone software modules,” Reliability, IEEE Transactions
on, vol. 51, no. 4, pp. 455–462, 2002.

[22] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause,
and R. Mishra, “Predicting software defects in varying development
lifecycles using bayesian nets,” Information and Software Technology,
vol. 49, no. 1, pp. 32–43, 2007.

[23] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules
using support vector machines,” Journal of Systems and Software,
vol. 81, no. 5, pp. 649–660, 2008.

[24] I. Gondra, “Applying machine learning to software fault-proneness
prediction,” Journal of Systems and Software, vol. 81, no. 2, pp. 186–
195, 2008.

[25] T. M. Khoshgoftaar and N. Seliya, “Comparative assessment of software
quality classification techniques: An empirical case study,” Empirical
Software Engineering, vol. 9, no. 3, pp. 229–257, 2004.

[26] B. Boehm, J. Brown, H. Kaspar, M. Lipow, G. MacLeod, and M. Mer-
ritt, “Characteristics of software quality. 1978.”

[27] B. Kitchenham and S. L. Pfleeger, “Software quality: the elusive target
[special issues section],” Software, IEEE, vol. 13, no. 1, pp. 12–21,
1996.

[28] R. G. Dromey, “Cornering the chimera [software quality],” Software,
IEEE, vol. 13, no. 1, pp. 33–43, 1996.

[29] B. W. Boehm, “A spiral model of software development and enhance-
ment,” Computer, vol. 21, no. 5, pp. 61–72, 1988.

