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Abstract Ocean acidification is expected to have dramatic impacts on oceanic ecosystems, yet surprisingly few studies currently examine long-term adaptive and plastic responses of marine invertebrates to pCO2 stress. Here, we exposed populations of the common 
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copepod Pseudocalanus acuspes to three pCO2 regimes (400, 900 and 1550 µatm) for two generations, after which we conducted a reciprocal transplant experiment. A de 

novo transcriptome was assembled, annotated, and gene expression data revealed that genes involved in RNA transcription were strongly down-regulated in populations with long-term exposure to a high pCO2 environment, even after transplantation back to control levels. In addition, 747,000 SNPs were identified, out of which 1513 showed consistent changes in nucleotide frequency between replicates of control and high pCO2 populations. Functions involving RNA transcription and ribosomal function, as well as ion transport and oxidative phosphorylation were highly overrepresented. We thus conclude that pCO2 stress appears to impose selection in copepods on RNA synthesis and translation, possibly modulated by helicase expression. Using a physiological hypothesis-testing strategy to mine gene expression data, we herein increase the power to detect cellular targets of ocean acidification.  This novel approach seems promising for future studies of effects of environmental changes in ecologically important non-model organisms.  Keywords: Ocean acidification, gene expression, evolution, transgenerational effects, adaptation, acclimation, Pseudocalanus, transcription, translation. 
 
Introduction Anthropogenic emissions of CO2 have increased the global pCO2 from 280 ppm at pre-industrial times to the present day 400 ppm (IPCC 2013). About one third of emitted CO2 is absorbed by the world’s oceans (Sabine et al. 2004). Dissolution of CO2 into surface water forms H2CO3, carbonic acid, which quickly dissociates into bicarbonate (HCO3-) ions as well as hydrogen (H+) ions, lowering the seawater pH (ocean 
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acidification, OA) (Doney et al. 2009). These changes, which are predicted to persist for thousands of years to come, will expose marine animals to dramatically changed chemical conditions, and negative effects are predicted for many species and ecosystems (Wittman and Pörtner 2013). Calanoid copepods constitute approximately 80% of the global zooplankton biomass (Mauchline 1998). Many fish species depend on copepods for prey during their larval life (Last 1980), and fish stock recruitments can vary closely with copepod biomass (Beaugrand et al. 2003; Castonguay et al. 2008). Pseudocalanus is widely distributed in temperate and Arctic seas (Aarbakke et al. 2011). They are intensely preyed upon (Ohman 1986; Thor, Nielsen, and Tiselius 2008), may at times contribute more than 1/3 of the total zooplankton biomass in boreal and Arctic waters (Lischka and Hagen 2005; Thor et al. 2005), and thus constitute important prey items for many fish species.  Tolerance of calanoid copepods to OA has been assessed in a number of studies to date, and many have found them to be remarkably resilient (Weydmann et al. 2012; Pedersen et al. 2013). However, most studies have focused on species such as Calanus 

finmarchius (Mayor et al. 2007; Mayor, Everett, and Cook 2012; Hildebrandt, Niehoff, and Sartoris 2014; Pedersen, Våge, et al. 2014), which undergo seasonal diapause (metabolic depression) during which extracellular pH can drop to pH 5 (Schruender et al. 2013). So, these species could already be adapted to tolerate exposure to low pH conditions. Other studies have shown sensitivity even in species otherwise known to be resilient to large changes in water chemistry (Calliari et al. 2008; Cripps, Lindeque, and Flynn 2014). Also, importantly, most are short-term studies (e.g. Kurihara, Shimode, and Shirayama 2004; Watanabe et al. 2006; Lewis et al. 2013; Engström-Öst et al. 2014), mostly on adult females (Cripps, Lindeque, and Flynn 2014), so they do not assess transgenerational plasticity or adaptation to low pH (but see Kurihara and 
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Ishimatsu 2008; Pedersen, Håkedal, et al. 2014). Thor and Dupont (2015) recently conducted a multi-generation study, finding negative effects of short-term (three weeks) pH stress on fecundity and metabolism in Pseudocalanus acuspes. These effects did not decrease after two generations in elevated pCO2 within the present range of natural variability (900 µatm), but in a higher pCO2 deviating from the present range of variability (1550 µatm), authors observed a transgenerational buffering effect decreasing negative effects to only half of those observed in acute pH stress treatments. Reciprocal transplant tests showed that this buffering was caused either by transgenerational plasticity (e.g. epigenetic changes in gene expression) or adaptive evolution, or a combination of both (Thor and Dupont 2015). The actual mechanism by which OA affects marine organisms has been studied on several different levels. On the whole-organism level, energy budgets are critical to consider, as in affected animals a greater fraction of the energy budget may be diverted to costs for maintenance, repair and homeostasis (Pörtner, Langenbuch, and Reipschlager 2004; Stumpp, Hu, et al. 2012; Stumpp et al. 2013). On a cellular level, maintaining homeostasis is of utmost importance for cellular function, including mitochondrial function through the electron transport chain (Cortassa et al. 2009), protein folding (Dobson 2003) and cytoskeleton organization (Squirrell, Lane, and Bavister 2001). Effects of low pH could lead to increased energy demand for proton pump action maintaining homeostasis (Stumpp, Truebenbach, et al. 2012; Pan, Applebaum, and Manahan 2015; Jager, Ravagnan, and Dupont submitted). Thus, it could be beneficial for cells to be able to down-regulate certain functions (for example cell division) in order to make more energy available for core function such as maintenance of homeostasis, the end result being slower growth but a higher ability to function in a stressful environment (Stumpp et al. 2011). 
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At the molecular level, two processes allow for buffering of negative impacts of pH stress: acclimation and adaptation (Calosi et al. 2013; Reusch 2014). Acclimation can be a short-term, reversible process within an individual, or a transgenerational development of different reaction norms due to for example maternal effects (e.g. egg quality) or epigenetic changes affecting gene expression responses to stress (Riebesell and Gattuso 2014; Magozzi and Calosi 2015). Adaptation on the other hand, is a slower process that depends on heritable genetic variation in traits associated with tolerance for natural selection to act upon (Munday et al. 2013; Stillman and Paganini 2015). In the event of rapid environmental change, adaptation from standing genetic variation allow for rapid response (Hermisson and Pennings 2005). This is likely to occur in large populations that experience long-term environmental fluctuations on a regular basis, and has been shown to be common in the marine environment (Johannesson et al. 2010; Feulner et al. 2013; Pespeni et al. 2013; De Wit et al. 2014; Gosset et al. 2014). In many cases, this genetic variation exist as low-frequency alleles that are neutral (or nearly neutral) in the background environment, but as they become adaptive they can quickly increase in frequency over a few generations, allowing the population to evolve their tolerance limit beyond that possible by non-genetic change (i.e. acclimation). In the most beneficial of cases, it has been hypothesized that a combination of non-genetic short-term changes can combine with longer-term genetic changes in order to facilitate evolution of tolerance limits (Stillman 2003; Ghalambor et al. 2007; Sunday et al. 2014). The present study is an examination of the molecular response of the copepod P. 

acuspes used in the experimental setup of Thor and Dupont (2015). In short, copepods were kept for two generations in one of three different pCO2 environments and then reciprocally transplanted. These reciprocal transplants tests indicated that while observed changes in fecundity were caused solely by phenotypic plasticity (i.e. 
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acclimation) at the intermediate pCO2 (900 µatm), a transgenerational physiological buffering effect was observed at the highest pCO2 (1550 µatm). For the study presented here, we hypothesized that expression patterns of involved genes should follow these observations. In order to investigate this, we used an mRNA-Seq approach, sequencing pools of individual copepods. We assembled and annotated a transcriptome using available arthropod sequences, and then searched for genes exhibiting changes in expression similar to the changes in fecundity. We also scanned all expressed sequences for Single Nucleotide Polymorphism (SNP) frequency changes associated with exposure to the highest pCO2 treatment, in order to infer loci potentially under selection pressure. Finally, we searched for non-random functional annotations within genes exhibiting interesting expression patterns and changes in SNP frequencies. This combined approach allowed us to gain an increased understanding of the cellular targets of OA, and of the relative importance of acclimation and adaptation. By using a physiological hypothesis-testing strategy to mine gene expression data for co-expression patterns, rather than traditional differential expression analyses, it was possible to increase the power to detect cellular functional targets of ocean acidification.  This novel approach seems promising for future studies of effects of environmental changes in ecologically important non-model organisms, where long generation times and lack of replication is a constant issue. 
 

Materials and Methods 

Experimental setup 

Pseudocalanus spp. specimens were collected in the Gullmar fjord in the spring of 2013 (58°16′ N, 11°26′ E) using a 200 µm WP-2 plankton net, after which they were kept in culture at the Sven Lovén Centre for Marine Sciences – Kristineberg in Fiskebäckskil, 
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Sweden at 5 °C. Species identity was confirmed through PCR with species-specific primers: DNA from a pool of 100 indiv. was extracted and separated from RNA and proteins using TriZol reagent (Invitrogen). Primers used were: for P. minutus PsCOI_1561F/COI_1931R; for P. acuspes PsCOI_1561F/COI_2060R (both described in Gudmundsdottir 2008); and for P. elongatus Pseud-E 225-27F/Pseud-E 345-22R (Grabbert et al 2010). The PCR program used for P. minutus and P. acuspes was: 94 °C (45 s), 47 °C (1 min), 72 °C (1 min 30 s) for 40 cycles, 72 °C for 3 min, and the program used for P. elongatus was 94 °C (1 min), 62 °C (1 min) and 75 °C (2 min) for 31 cycles.  After verifying presence of only P. acuspes, 200 adults (F0 generation) were transferred into each of three different pCO2 treatments: Control (400 µatm pCO2), Medium (900 µatm pCO2), and High (1550 µatm pCO2), with two replicates of each for a total of six laboratory populations. The laboratory populations were grown in 40 L tanks with filtered seawater with a 12 h/ 12 h light / dark cycle at 5 °C for 137 d, until the F2 generation reached maturity. pH was dynamically controlled using pH computers (Aqua Medic, Germany), applying the CO2 immediately next to the air flow. pH electrodes were placed inside the streams of bubbles. Total scale pH and total alkalinity were measured once a week, using a Metrohm 827 pH meter and by titration of 25 mL water in a SI Analytics Titroline potentiometric titrator (Riebesell et al. 2010), respectively, after which pCO2 was calculated in CO2sys version 1.4 (Lewis and Wallace 1998). For food, Rhodomonas baltica were pumped intermittently into the tanks to achieve satiating concentrations. Concentrations were measured every two days with an Elzone 5380 electronic particle counter. Water was changed in all tanks every two weeks by siphoning out water from a large 50 µm sieve inserted into the tanks, then transferring the animals into clean tanks. Generation sorting (Both between the F0 and 
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F1 generation and the F1-F2 generation) was achieved in a similar fashion during water change by manually removing all adult individuals after two weeks of egg production.  At maturation, the F2 adults were reciprocally transplanted: the 400 µatm laboratory populations (n = 2) were divided into thirds and placed in 400 µatm pCO2, 900 µatm pCO2, and 1550 µatm pCO2 conditions. The 900 µatm (n = 2) and 1550 µatm (n = 2) laboratory populations were split in halves: half placed back in their original 
pCO2 and half moved into 400 µatm pCO2 conditions. After three weeks, fecundity was measured (Thor and Dupont 2015), after which the animals were placed in RNAlater (Ambion) at 4 °C for 24 h, then frozen at -20 °C for genetic analyses.  
Bioinformatic analysis and transcriptome assembly RNA from 14 pools (seven treatments * two populations) of adult F2 copepods was extracted using TriZol reagent (Invitrogen) (Table 1). Total RNA concentrations were measured using a NanoDrop 2000 spectrophotometer (Thermo Scientific). For each pool, 1 µg of total RNA was used as input to Illumina TruSeq RNA sample kit v2 (Illumina), following the kit standard protocol except in the final PCR step, where only 12 cycles were used rather than the recommended 15 in order to reduce the amount of duplicate sequences. Concentrations and fragment size distributions of the cDNA libraries were examined using a high-sensitivity QuBit 2.0 flourometric assay (Life Technologies) and a TapeStation 2200 (Agilent), respectively, after which libraries were combined equimolarly into three pools of four barcoded libraries each and one consisting of two libraries. Finally, all pools were diluted to 2 nM for sequencing. Sequencing was performed in February 2014 at the Genomics Core Facility of the University of Gothenburg, Sweden, in an Illumina NextSeq 500 sequencing machine with 50 bp read length, paired-end sequencing. 
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 The raw sequence data (Table 1) were processed on the University of Gothenburg computer cluster “Albiorix”. First, low quality (Q < 20) ends were trimmed and adapter sequences were removed. Remaining sequence data was assembled into a transcriptome using Trinity (Grabherr et al. 2007) version r2013_08_14. Assembled contigs (n = 207,302) were annotated by: 1. BLASTx against a BLAST database consisting of all arthropod sequences from the NCBI nr database (April 1, 2014); 2. BLASTx  to the curated SwissProt database, using 10-5 as e-value cutoff. From these searches, top hits were extracted as well as the nr top hit when omitting “putative” and “hypothetical” hits (as very often the descriptions of these hits are not very useful). In addition, GO and KEGG terms were extracted from the SwissProt BLAST results. In order to be conservative, all un-annotated contigs were removed from the dataset, as these could potentially consist of contaminant sequences, for a final list of 69,555 annotated contigs. The quality trimmed sequence data was then aligned against the newly created transcriptome, keeping only reads aligning uniquely to one location.   
Gene expression analysis In cases where different sequences (“seq”) of the same Trinity component (“comp”) had the same annotation, it was concluded that they most likely represented different isoforms of the same gene. Thus, counts of different isoforms were combined into 28,879 “Unigene” counts (mean N reads = 4.254 Mreads / sample, St.Dev. 1.645 Mreads). In order to compare gene expression levels between samples, counts were scale normalized in the DESeq package in R. In addition, genes with greater standard deviation than mean and/or at least one sample with zero counts were excluded. A hypothesis-testing method was employed to search for genes exhibiting a similar expression pattern as the observed changes in fecundity (see Figure 1 in Thor and 
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Dupont 2015) using analysis of covariance (ANCOVA using the SAS software; The Shapiro–Wilk test was used to check that the data were normally distributed). Specifically, we scanned the expression data for genes showing no significant (p > 0.05) difference in neither slope nor elevation (value of gene expression at the midpoint between the two treatments) of the linear regressions of the gene expression changes between the 400900 and 900400 µatm of pCO2 transplants (indicating phenotypic plasticity), AND: 1. significantly different slopes between the 4001550 and 1550400 µatm pCO2 transplant regression lines (“Hypothesis 1”, i.e. transgenerational development of different phenotypic plasticity; Figure 1A) 2.  significantly different elevation between the 4001550 and 1550400 µatm 
pCO2 transplant regression lines (“Hypothesis 2”, i.e. transgenerational development of different phenotype; Figure 1B) 3.  significantly different slopes and elevation between the 4001550 and 1550400 µatm pCO2 transplant regression lines (“Hypothesis 3”, i.e. transgenerational development of both different phenotype and plasticity; Figure 1C). The lists of genes matching these three hypotheses were tested for non-random distribution of functions using a GO enrichment analysis with the online software called “Gene Ontology Enrichment Analysis Software Toolkit” (GOEAST) (http://omicslab.genetics.ac.cn/GOEAST/) (Zheng and Wang 2008) in the “Custom Microarray” setting, using the recommended settings (Hypergeometric tests with FDR under dependency).  
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As “Helicase activity” was indicated as strongly overrepresented in the differential expression dataset matching Hypothesis 2 (see Results), we scanned the transcriptome for other genes exhibiting the same expression pattern, the idea being that anything with identical expression may be part of the same gene regulatory network. Means of the two replicates were calculated, and the logical test was designed as follows: (900400 > 400400 AND 400400 > 1550400 AND 400900 > 900900 AND 4001550 > 15501550 AND 400400 > 400900 AND 4001550 > 400900 AND 400900 > 1550400 AND 400900 > 15501550)(Figure 2). The resulting list of genes passing these conditions was then tested for functional enrichment as described above. 
 

Allele frequency changes The Popoolation2 pipeline (Kofler, Vinay Pandey, and Schloetterer 2011) and scripts were used in order to analyze allele frequency changes in the pools, using the trimmed data files and only annotated contigs from the transcriptome assembly (although keeping isoforms separate, nCONTIGS=69,555) (https://code.google.com/p/popoolation2/wiki/Tutorial), employing the SAMtools (Li et al. 2009) mpileup command to calculate allele frequencies at all sites for the 14 pools, then following with the Cochran-Mantel-Haenszel (CMH) test for testing for consistent and significant changes in allele frequency between the replicate treatments of 400 µatm pCO2 and 1550 µatm pCO2. 747,423 variant sites identified by mpileup in the previous step were used for this test. We considered the 4001550 µatm transplants as replicates of the 400 µatm treatments, and the 1550400 µatm transplants as replicates of the 1550 µatm treatment, thus arriving at four replicates for the CMH test. As no mortality had occurred during the transplant we assumed that allele frequencies 
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had not changed during this time. A GO category functional enrichment test was conducted for the resulting gene list using GOEAST, as described above. In addition, gene expression levels between treatments were compared in these genes as well, as described above.  
Results 

Transcriptome assembly The Pseudocalanus acuspes transcriptome assembly initially consisted of 207,302 contigs, with an N50 (contig length at which 50 % of the assembly consists of contigs the same length or longer) of 851 bp, and a GC content of 51.1 %. After removing contigs that could not be annotated, the remaining 69,555 contigs (Supplementary Material 1) had an N50 of 1,236 bp and a GC content of 53.3 %, reflecting that shorter contigs are less likely to be annotated. Information about nr arthropod and SwissProt top hits, as well as GO and KEGG terms are given in Supplementary Material 2).  
Gene expression Out of the 28,879 Unigenes, 15,850 remained after discarding ones with greater variance than mean and/or at least one sample with 0 counts after scaling normalization (Supplementary Material 3). Out of these, 40.0 % (6,345 contigs) had a mean count across all samples > 100, 41.5 % (6,570 contigs) had a mean count between 20 and 100, and 18.5 % (2,935 contigs) had a mean count < 20. While overall there was a large amount of variability between samples, both between and within treatments (see Supplementary Figure 1), the ANCOVA analysis identified 684 genes matching Hypothesis 1, 686 genes matching Hypothesis 2 and 26 genes matching Hypothesis 3 (see Figure 1 for all hypotheses). The lists of genes matching Hypotheses 1 and 3 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

contained a random distribution of GO terms compared to the full transcriptomic dataset. However, the genes matching Hypothesis 2 were significantly enriched for a cascade of functions involving Helicase expression (Figure 3). There were 32 genes involved in this functional category, all exhibiting the same pattern of decreased expression after spending two generations at 1550 µatm pCO2 (mean log two-fold change -0.42; st.dev. 0.20), even after being transplanted back into 400 µatm (mean log two-fold change -0.42; st.dev. 0.25) (Figure 4). This reduction in expression, although not as severe, was also seen in both the short- and long term 900 µatm pCO2 treatments, but the populations that had been located in 900 µatm for two generations increased their expression back to the same expression level (or even slightly higher, although not significant) as the 400 µatm natives, when transplanted back into 400 µatm. Finally, we could also identify 321 additional contigs exhibiting the same expression pattern as the helicase contigs (Supplementary Material 4), almost all of which are involved in RNA metabolism or DNA replication/repair (Figure 5; Supplementary Figure 2).  
Allele frequency changes The SAMtools mpileup algorithm identified 747,423 polymorphic sites within the P. 

acuspes transcriptome. Within these, the CMH test identified 1517 SNPs, located in 303 contigs that were showing consistent and significant allele frequency changes among the biological replicates, after Bonferroni multiple-test correction (p > 0.05) (Supplementary Material 5 & 6). These genes were strongly enriched for functions involving protein translation (GO:0006412, p = 4.43 * 10-56), proton transport (GO:0015985, p = 7.93*10-7), mitotic spindle elongation (GO:0000022, p = 5.24 * 10-7) and cellular respiration (mostly mitochondrial genes) (GO:0006754, p = 1.08 * 10-5) 
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(see Supplementary Figure 3 for all enriched terms). No significant gene expression changes between transplant treatments were seen in these genes, however.  
Discussion In this study, we identified 303 genes that could be involved in adaptive evolution to 
pCO2 stress. This list included genes that encode for most of the proteins involved in ribosome formation and a large fraction of all mitochondrial genes. As all mitochondrial genes are inherited as one unit, it is difficult to speculate on which of these could be the ultimate target of natural selection,although it is interesting that also rather conserved sequences such as cytochrome oxidase subunit I also exhibit differences between treatments. Rather, it can be concluded that the mitochondrial function of oxidative phosphorylation was a target of natural selection. Respiration rates were higher at 900 µatm, which was interpreted as a result of metabolic expenses due to an increased allocation of resources in order to acclimate to the new environment (Thor and Dupont 2015). Respiration rates were higher at 900 µatm as compared to 400 µatm, and were correlated with a decrease in fecundity. Since metabolic expenses vary depending on energy allocation to egg production in copepods (Thor 2002; Thor et al. 2002), Thor and Dupont  (2015) interpreted this as a reallocation of resources caused by increased energy costs in high pCO2. On the contrary, at 1550 µatm respiration rates were similar to the ones at 400 µatm, with transplant tests suggesting that this could have arisen as a result of adaptation (Thor and Dupont 2015) due to differential mortality in the high 
pCO2 treatment. It therefore seems plausible that selection could be acting on maintenance of efficient oxidative phosphorylation at high pCO2 levels (Cortassa et al. 2009; Beaufort et al. 2011), in order to maintain energy production levels.  We did not observe any increase in mitochondrial gene expression levels among treatments, which 
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might have been expected if an increased energy demand had required more ATP to be produced. However, mitochondrial energy production can be modulated in more ways than expression levels (e.g. mtDNA copy number, transcription rate, mtRNA turnover, translation, mitochondrial fission/fusion). Other genes of interest showing allele frequency changes between treatments include Ferritin, which is associated with oxidative stress, known to be induced by high pCO2 levels in oysters (Tomanek et al. 2011), and also several subunits of the proteasome, which has ben shown to evolve in response to high pCO2 stress in Sea Urchins (Pespeni et al. 2013).  A large fraction of the genes showing changes in allele frequencies between the high and low pCO2 treatments were mitochondrial, and must thus be linked as the mitochondrial genome is inherited maternally without recombination in copepods. Thus, the population of P. acuspes used in this experiment must have contained at least two mitochondrial lineages in order for this type of evolution to be observed. It is not uncommon for large marine invertebrate populations to show considerable variation in mitochondrial sequence (e.g. Silberman, Sarver, and Walsh 1994; Meyer and Paulay 2005), so this could be considered a realistic experimental situation. The rather rapid transfer of individuals (gradual increase over three days) from low to high pCO2 at the initiation of the experiment can be criticized as a less than realistic situation (although a frequent experimental practice), as ocean acidification is a slow and gradual process that will take place over a several hundred year period. By showing that P. acuspes has the potential to buffer even this rapid change, however, it is likely that they can do so also over longer time scales. While genetic changes seem to be concentrated around the translational mechanism (ribosome formation) and mitochondrial functions, the gene expression data suggest transgenerational changes in RNA transcription and potentially DNA 
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replication through changes in helicase activity. Interestingly, while the ANCOVA approach used to identify genes with expression patterns matching the observed changes in fecundity only used “difference in expression elevation” (between acute vs. multi-generation treatment in 1550 µatm) as a criterion without considering the direction of the change (up or down regulation), all of the 32 contigs associated with helicase activity showed the same pattern (Figure 4): Strong down-regulation after two generations at 1550 µatm pCO2, with no compensation when transplanted back into 400 µatm pCO2. At the intermediate 900 µatm pCO2, a decrease in expression (although not as strong as at 1550 µatm pCO2) can be seen at both acute and transgenerational scales, but upon reintroduction into 400 µatm pCO2 expression re-attained 400 µatm-levels.  These changes in expression could be associated with changes in energy allocation to different functions.  All contigs associated with helicase activity consistently showed identical expression patterns (Figure 2) despite being identified though ANCOVA by the rather vague “Difference in elevation” approach (“Hypothesis 2”). Thus, it was of interest to scan the gene expression data for contigs showing the same pattern, in order to potentially identify other genes part of the same regulatory network. This search identified 353 contigs (including the helicase contigs) involved in RNA transcription and DNA replication (Figure 5, Supplementary materials 4). We cannot distinguish which cellular functions are the primary targets of this consistent down-regulation of transcription/replication, but rather conclude that this can play a role in changes in energy allocation to different functions. Using both the gene expression and the SNP frequency change data, a picture emerges on the cellular response and adaptive potential of P. acuspes to pCO2 stress. The high pCO2 level induces a transgenerational change in helicase activity (either 
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through natural selection in a control region (Wray 2007), or non-genetic changes (Goldberg, Allis, and Bernstein 2007)), which is used to modify energy allocation. Helicase is involved in the separation of double-stranded DNA and is a regulator of both RNA transcription and DNA replication, so changes in helicase expression would have significant effects on certain cellular functions, depending on the type of helicase involved. For example, reducing costs associated to DNA replication /cellular division, thereby reducing egg production as observed , would allow energy to be allocated to maintenance of homeostasis through ion pumps. Interestingly, a similar pattern has been observed in sea urchins, where gonadal tissue was used as an energy source during acclimation to pH changes (Dupont et al. 2013). At the same time, there is a selective advantage (either through selective mortality or perhaps more likely through larval development) for certain ribosomal structures and mitochondria that are better suited to a low-energy metabolic mode.  From the results of this study, we cannot conclude which specific physiological functions are down-regulated and what the long-term fitness consequences might be (apart from the apparent decrease in fecundity). For example, elevated pCO2 can lead to modulation of the immune-response and lead to a reduced ability to fight against pathogens (e.g. Asplund et al. 2014), and reduced levels of genetic variability due to one selective factor might impede the population’s ability to adapt to additional stressors (Pistevos et al. 2011). Thus, an exciting field for future studies lies within investigating consequences of the observed “adaptation” in the context of multiple environmental drivers (Dupont and Pörtner 2013). Despite these issues, this study demonstrates the great ability that marine invertebrates have to adapt from standing genetic variation. In most cases, these small organisms harbor large amounts of genetic diversity, have large population sizes and short generation times (Hellberg et al. 2002), so adaptation from 
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standing genetic variation will surely have a large role in the maintenance of ecosystem stability in an unstable future environment. Presently, the long-term consequences of ocean acidification are difficult to predict. Even between closely related taxa, short-term responses vary considerably (see e.g. Kroeker et al. 2010), and very little is known about the effects of evolutionary change on a global scale. However, by understanding the effects of OA from a cellular perspective over a longer timeframe in ecologically important species (such as copepods), we might be able to build predictive models of global ecosystem changes in the future. In order to do this, much more data will be needed from a variety of different organisms, but as sequencing methods become more available and easier to use and standards for experimental design are being improved, this goal becomes more and more achievable in the years to come. In addition, by testing gene expression data against specific hypotheses generated by physiological data, we can gain power in detecting the cellular mechanisms involved in adaptation and acclimation to OA, and we predict that future studies increasingly will adopt this type of approach rather than the more exploratory differential gene expression analyses used to date.     
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Figure 1. The three hypotheses used to examine the gene expression data. A. Hypothesis 1: Different slopes but equal elevation interpreted as a transgenerational development of different reaction norms (i.e. transgenerational development of different phenotypic plasticity) at 1550 µatm pCO2; B. Hypothesis 2: Equal slopes but different elevation interpreted as a transgenerational development of different phenotype (i.e. adaptation) at 1550 µatm pCO2; C. Hypothesis 3: Different slopes and elevation. All three hypotheses assumed pure phenotypic plasticity between 400 and 900 µatm pCO2 as depicted by the gray arrows. 
Figure 2. General expression pattern exhibited by contigs associated with helicase activity, used to scan the data for co-expression patterns. Arrows indicate the logical rules used in the test. 
Figure 3. All Gene Ontology terms significantly enriched in the set of 686 contigs matching Hypothesis 2: Transgenerational development of different phenotype. Percentages are given as (% contigs with GO-term in list / % contigs with GO-term in transcriptome), along with false-discovery rate corrected p-values. 
Figure 4. Expression of the 32 contigs associated with helicase activity. Expression levels are given as relative to the expression level in the control treatment. 
Figure 5. The most important Gene Ontology terms significantly enriched in the set of 353 contigs having the same expression pattern as the contigs involved in Helicase activity (for the full set, see Supplementary Figure 1). Percentages are given as (% contigs with GO-term in list / % contigs with GO-term in transcriptome), along with false-discovery rate corrected p-values.      
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Table 1. Sample size, number of reads and alignment results from the 14 samples used in the study. 
Sample ID population sample size (n copepods) n reads % of reads aligning uniquely 

1 400A 37 19,233,392 25.8 
2 400B 68 22,531,143 23.1 
3 900A 31 17,582,146 13.7 
4 900B 50 13,269,154 9.5 
5 1550A 39 21,055,372 22 
6 1550B 49 21,006,096 24.1 
7 400-900A 43 19,261,833 21.5 
8 400-900B 58 20,218,284 25 
9 400-1550A 38 20,271,884 16.4 

10 400-1550B 28 22,877,758 23.4 
11 900-400A 74 24,166,899 25.7 
12 900-400B 76 20,619,393 25.7 
13 1550-400A 68 12,020,876 8.7 
14 1550-400B 57 24,491,817 23.4      

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 


