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The analysis of the angle dependence of the elastic scattering of radiation from a

sample is an efficient and non-invasive technique that is used in fundamental

science, in medicine and in technical quality control in industry. Precise

information on the shape, size, polydispersity and interactions of a colloidal

sample is readily obtained provided an underlying scattering model, i.e. form

and structure factors, can be computed for the sample. Here, a numerical

method that can efficiently compute the form factor amplitude (and thus the

scattering intensity) of nonspherical scatterers through an importance sampling

algorithm of the Fourier integral of the scattering density is presented. Using the

precomputed form factor amplitudes, the calculation of the scattering intensity

at any particle concentration then scales linearly with the particle number and

linearly with the number of q points for its evaluation. This is illustrated by an

example calculation of the scattering by concentrated suspensions of ellipsoidal

Janus particles and the numerical accuracy for the computed form factor

amplitudes is compared with analytical benchmarks.

1. Introduction

Scattering experiments constitute a versatile analysis tech-

nique with important applications in the biomedical field (Wax

& Backman, 2010), the food industry (Lu, 2016) and the

chemical industry (Xu, 2000; Diebold, 2014). However, unlike

direct techniques such as light and electron microscopy, the

analysis of scattering experiments is typically oblique, being

generally based on the fit of a calculated scattering intensity to

the experimental one, in which the physical parameters of the

calculation model are varied until optimal agreement is

reached. In crystallography, this procedure yields the unit cell

atomic arrangement, and in the study of isotropic media,

typically the average size, shape and/or polydispersity of the

sample are obtained (Pedersen, 1997). Moreover, at higher

concentrations, second virial coefficients (Zimm, 1948) or in

principle even complete particle–particle distribution func-

tions (and thus potentials of mean force) can be deduced

(Zimm, 1945). Needless to say, the accuracy of such techniques

depends crucially on the underlying models to interpret the

data. The problem is that the standard models for interpreting

the scattered intensity typically assume spherical scatterers

and may be misleading when applied to nonspherical ones.

This is hence a great impediment to the use of scattering

techniques to characterize these systems.

For a system of N monodisperse spherical scatterers located

at positions r1; . . . ; rN in a volume V, one may write the

scattered intensity as a function of the angle-dependent scat-

tering vector (defined in x2) as (Chen, 1986; Johnson &

Gabriel, 1995; Weyerich et al., 1999; Hansen, 2011)
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IðqÞ / N

V
PðqÞSðqÞ; ð1Þ

where PðqÞ is called the form factor (this function depends

only on the particle form, i.e. size in the case of spheres) and

SðqÞ ¼ hN�1jPj expðiq � rjÞj2i is the structure factor (this

function depends only on the interparticle arrangement).

Because of the spherical symmetry, the structure factor may

also be given the succinct representation (Debye, 1915)

SðqÞ ¼ 1

N

XN
jk

sinðqrjkÞ
qrjk

* +
; ð2Þ

where rjk is the scalar distance between scatterers j and k.

From this equation, one sees that SðqÞ ! 1 when N=V ! 0

(corresponding to increasing values of rjk) but also that

SðqÞ ! 1 as q ! 1, both of which are in fact more general

results than just for spheres. The form factor is thus always the

dominant contribution to the scattered intensity at high

enough values of q, although the scattered intensity is gener-

ally weak in this q regime.

For polydisperse or nonspherical scatterers (unless they all

share the same alignment, as in a perfect crystal), this factor-

ization is no longer generally valid. However, in the dilute

limit, an effective form factor, PeffðqÞ, is unambiguously

defined as the averaged scattered intensity of the individual

scatterers, and if PeffðqÞ is taken to be concentration inde-

pendent, then an effective structure factor, for concentrated

samples, can also be defined from

IðqÞ / N

V
PeffðqÞSeffðqÞ: ð3Þ

When averaged over time scales longer than that of the

diffusive motion of the sample scatterers (e.g. isotropic fluids,

not crystals or liquid crystals), the effective form and structure

factor will both depend only on q ¼ jqj rather than q because

of the angular averaging. Unlike the case of monodisperse

spheres, SeffðqÞ is not a function only of the particle arrange-

ment. Care must therefore be taken when interpreting SeffðqÞ
as SðqÞ.

The problem with nonspherical scatterers is that analytical

expressions for the structure and form factors are typically not

available (Svergun & Koch, 2003). For systems of mono-

disperse hard spheres, the most frequently used expression for

the structure factor (Wertheim, 1963; Thiele, 1963; Ashcroft &

Lekner, 1966) is based on the Percus–Yevick theory (Percus &

Yevick, 1958) for hard spheres, later extended to the poly-

disperse case by Vrij (1979) and Blum & Stell (1979). Baravian

et al. (2010) introduced an approximate correction to the

spherical structure factor for nonspherical particles on the

basis of geometrical considerations that worked well except at

small q. Also, Hansen has considered the problem of

nonspherical symmetry (Hansen, 2011, 2012), as well as that of

polydispersity (Hansen, 2013), in approximate (although

partly analytical) analyses similar in spirit to that of Baravian

et al. (2010).

Whereas analytical results are typically not possible in the

general case, accurate numerical results for the scattering

intensity and/or the structure factor of hard ellipsoids at high

volume fractions have been obtained from computer simula-

tions by Sjöberg (1999), Donev et al. (2004) and Bezrukov &

Stoyan (2006), and from integral equation theory by Perera et

al. (1987) and Letz & Latz (1999). Weyerich et al. (1999)

studied the validity of approximations for the effective struc-

ture factor of random orientations of rods, limiting themselves

to the case of low q. Nevertheless, even when provided with an

interaction potential, the numerical approach solves the

problem of obtaining IðqÞ only if the so-called form factor

amplitudes (defined in x2) are available.

It is the purpose of this paper to present a general numerical

method to compute the form factor amplitude (valid at any

concentration) and thus also PeffðqÞ (valid for dilute systems or

at high q) efficiently. Provided with an interaction potential,

one may then – as we shall see – obtain SeffðqÞ from IðqÞ for

nondilute systems if the form factor amplitudes are precom-

puted. Notable among other numerical approaches to the

problem of calculating the scattered intensity are the direct

fast Fourier transform method of Schmidt-Rohr (2007) and

the indirect methods where spatial correlation functions are

first sampled and then Fourier transformed (Hansen, 1990;

Henderson, 1996; Heller, 2006). A general comparison of the

efficacy of the direct Fourier and correlation methods has

been presented by Olds & Duxbury (2014). We view our

method as complementary. Unlike any fast Fourier transform

approach, the integration domain for the form factor ampli-

tude is – as we shall see – focused to the regions where

contributions are likely to be the greatest, which is a strategy

that for obvious reasons is conducive to a highly efficient

computation. Moreover, the single sum in equation (4) is

linear in algorithmic complexity with respect to the particle

number, which is better than the (weakly) superlinear

complexity with respect to projected particle scattering

densities of the fast Fourier algorithms.

2. Theory

The physical model that we use for calculating the scattering

intensity assumes a sample-incident ray with wavevector ki

which generates elastically scattered radiation with the

wavevector ks (we ignore all inelastic scattering: the so-called

Raman/Compton scattering for photons/neutrons). Introdu-

cing the so-called scattering vector q ¼ ks � ki, the scattered

intensity, relative to the incident radiation intensity, is given by

(Frenkel et al., 1986; Hess et al., 1989; Sjöberg, 1999)

IðqÞ / 1

V

PN
j¼1

fjðq;xjÞ cosðq � rjÞ
�����

�����
2*
þ PN

j¼1

fjðq;xjÞ sinðq � rjÞ
�����

�����
2+
;

ð4Þ
where rj is the position of the jth scatterer in the sample, xj is

its orientation and fjðq;xjÞ is the form factor amplitude – a

measure of the intrinsic propensity to scatter radiation elas-

tically with scattering vector q – of this scatterer. The sum

extends in principle over all N scatterers impinged on by the

radiation beam (they are contained in the volume V), but is
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typically limited for reasons of computational tractability

when the sample is not translationally symmetric.

The form factor amplitude has a nonnegligible dependence

on q as long as the wavelength of the radiation is not much

greater than the spatial extension of the scattering particle.

For proteins, even scattering in the visible spectrum typically

satisfies this criterion, and for other bioparticles studied by

light scattering such as virus capsids, this is definitely true. The

form factor amplitudes are directly related to the experi-

mentally scattered intensity at high dilution or high q values.

Under these conditions, it suffices to calculate PeffðqÞ directly

as the unweighted orientational average,

PeffðqÞ ¼
1

N

PN
j¼1

j fjðqÞj2
* +

: ð5Þ

At higher concentrations, one may then calculate SeffðqÞ by

dividing equation (4) by PeffðqÞ.

2.1. Statement of the problem

To use equation (4), we need the q dependence of the form

factor amplitude of each particle. Under the assumption of

monodispersity,1 this reduces to the computation of a single

form factor amplitude common to all particles.2 Nevertheless,

depending on the orientation x of each particle with respect

to the incident radiation, the form factor amplitude differs.

Thus, the problem reduces to computing the function f ðq;xÞ.
Given an arbitrary continuous distribution �ðr;xÞ of scat-

tering propensity (for instance, the electron distribution for

X-ray scattering, or the distribution of nuclei for neutron

scattering) defining the (scattering) shape of the particle, the

form factor amplitude can be formally obtained as the three-

dimensional Fourier transform (Guinier, 1939),

f ðq;xÞ ¼ R
dr �ðr;xÞ expðiq � rÞ

¼ R
dr �ðr;xÞ cosðq � rÞ þ i sinðq � rÞ½ �: ð6Þ

2.2. Numerical algorithm

Up to a normalization factor, we compute the integral in

equation (6) by the Metropolis importance sampling tech-

nique (Metropolis et al., 1953). Applied to the present

problem, the method is realized as follows. A Markov chain is

constructed in R
3 with the probability of going from state r to

state r0 proportional to �ðr0;xÞ and denoted by Pðr0 j rÞ. The

probability is normalized such thatR
vðrÞ

Pðr0 j rÞ dr0 ¼ 1: ð7Þ

where vðrÞ is a volume element of arbitrary finite extension

containing r. If the detailed balance condition (see Appendix

A) is fulfilled, the averages of sinðq � rÞ and cosðq � rÞ along the

Markov chain approach

hsinðq � rÞix ! ð1=�Þ R �ðr;xÞ sinðq � rÞ dr; ð8Þ

hcosðq � rÞix ! ð1=�Þ R �ðr;xÞ cosðq � rÞ dr; ð9Þ
where (independently of x)

� ¼ R
�ðr;xÞ dr ð10Þ

as the Markov chain is extended to infinity. The constant �
fixes the scale of the scattering intensity and is the unknown

normalization factor alluded to earlier. If @�ðr;xÞ=@r ¼ 0 for

all r such that �ðrÞ 6¼ 0 and � is always nonnegative, � is

directly proportional to the volume of the particle (for a

spatially varying �, the volume is not well defined). Note that

for a centrosymmetric particle the form factor amplitude is

real valued, and hsinðq � rÞix ! 0.

The detailed balance condition is easily fulfilled by a simple

random walk in R
3 with an acceptance probability propor-

tional to �ðr;xÞ, if the following constraints on vðrÞ are met.

The extension of the volume element is independent of r, and r

is centered in vðrÞ, in the sense that

R0
�a

v½pðtÞ� dt ¼ Ra
0

v½pðtÞ� dt; ð11Þ

where pðtÞ is an arbitrary straight line between points pð�aÞ
and pðaÞ on the surface of vðrÞ and pðtÞ satisfies pð0Þ ¼ r. In this

case, generating an unbiased random vector r0 on any point

along the line pðtÞ in vðrÞ and accepting it with probability

min½1; �ðr0;xÞ=�ðr;xÞ� (and otherwise counting r once more)

is sufficient to obtain the average form factor amplitude in

equation (6).

For selected values of q and x, the sine and cosine

(imaginary and real) parts of f ðq;xÞ are calculated and stored

in computer memory for later use in equation (4). The time

complexity of the algorithm is such that it scales linearly with

the number of q points selected. Linear interpolation ensures

that f ðq;xÞ is a continuous function of q and x. The volume

vðrÞ is chosen as a small cube centered on r in the laboratory

frame. Formally, there are no restrictions on its size, but it does

affect the efficacy of the algorithm. In the calculations, the size

of this cube was adjusted to achieve an acceptance probability

close to 50% during trials without sampling.

2.3. General limitations

Two, closely related, limitations are apparent from the

algorithm itself.

First, the algorithm assumes that �ðr;xÞ is positive definite.

For photon and neutron scattering in vacuo, this is not a

problem. However, for scattering in solution, �ðr;xÞ should

be interpreted as the scattering contrast density between the

solvent and the particle, in which case �ðr;xÞ could concei-

vably attain negative values in certain domains.3 While these

domains are, however, unlikely to be large, it does present a
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1 This is the natural assumption in many cases when studying biological
polymers such as proteins.
2 If a distribution of particle shapes and sizes exists, the method may be
applied, at arbitrary resolution, to shapes/sizes drawn from this distribution.

3 Strictly speaking, this is an approximation valid for low solvent scattering
density (in which case negative domains do not arise) and/or large
wavelengths. In principle, one may avoid this problem by treating the system
as a mixture and defining form factor amplitudes also for the solvent
molecules.
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formal limitation for the algorithm that precludes, for instance,

numerical studies corresponding to experiments employing

contrast variation.

Second, and related to the first limitation, is the case of a

disjunct �ðr;xÞ distribution, in the sense that there are at least

two points r0 and r00 that satisfy �ðr0;xÞ; �ðr00;xÞ> 0 that

cannot, however, be connected through the random walk since

one or the other is separated on all sides by regions of �ðr;xÞ
that are greater than the volume v and strictly zero. Even if

this problem can be formally solved by increasing the size of v,

it does present a practical problem for the convergence of the

Markov chain.

We expect these two formal problems to be of minor

practical hindrance in the application to actual scattering

problems, as particles are unlikely to be composed of

completely disjunct domains in their scattering density and

can almost always be assured to scatter radiation more

intensely than the solvent through a more appropriate choice

of the latter.

3. Results and discussion

To validate the method numerically, we will first compute the

form factor amplitude by the importance sampling algorithm

and compare with analytical results. Analytical results are only

available in a handful of high-symmetry cases. In addition to

the spherical case, we have computed form factor amplitudes

also for ellipsoids of revolution, both prolate and oblate. Both

the case of a homogeneous scattering density distribution and

that of a Gaussian one will be investigated. Finally, we show

through a simple case study of dense systems of interacting

ellipsoids that the approach of storing precomputed form

factor amplitudes at a finite resolution is sufficient to yield

good scattering curves also for strongly interacting systems.

3.1. Numerical estimates of the form factor amplitude

Although in general one must store two six-dimensional

arrays for f ðq;xÞ (three dimensions for q, three for x, both

once each for the imaginary and real parts of the form factor

amplitude), in high-symmetry cases, one needs only a one-

dimensional array. This is the case for the ellipsoid of revo-

lution generally and spherical particles in particular. Inci-

dentally, it is also for the high-symmetry cases that analytical

results to compare with are available and let us judge the

accuracy of the algorithm. However, we do not let the algo-

rithm take advantage of this extra symmetry: symmetry-

equivalent points are not averaged for improved statistics and

thus contribute more than once to the average unsigned error.

Also, the imaginary part of the form factor amplitude is

sampled and included in the error, even if it should vanish by

symmetry. In this way, the error provides a fair assessment of

the algorithmic accuracy also in the general, low-symmetry

case.

Finally, note that the algorithm is – in the language of

computer science – ‘embarrassingly parallel’ as the integral in

equation (6) can be independently evaluated in parallel by any

number of random walkers and then averaged for improved

convergence with effectively no upper limit on the number of

Markov chains employed.

3.1.1. Homogeneous ellipsoids of revolution. Consider an

ellipsoid of revolution with semiaxes a, b and c. For simplicity,

we assume that b ¼ c and define the axial ratio � ¼ a=b which

is greater than unity for the prolate and less than unity for the

oblate. For homogeneous ellipsoids of revolution, the exact

expression for the form factor amplitude of the particles is

(Guinier, 1939; Saitô & Ikeda, 1951)

f ðq;xÞ � f ðqKÞ ¼ 3
sinðqKÞ � qK cosðqKÞ

ðqKÞ3 ð12Þ

with K ¼ ½a2 cos2ð’aÞ þ b2 cos2ð’bÞ þ c2 cos2ð’cÞ�1=2. Here ’a,

’b and ’c are the angles between the wavevector q and the

principal a, b and c axes of the ellipsoid, respectively. Note that

this function is one dimensional in the combined variable qK.

Consequently, the actual choice of the orientation x used in

the numerical evaluation becomes arbitrary after projection

into the qK coordinate.

Plotted in Fig. 1 is the mean unsigned relative error, aver-

aged over 100 independent Markov chains of the indicated

length, in the q range 0< qK< 1 for different lengths of the

Markov chain compared with the exact result for the form

factor amplitude of an ellipsoid at different axial ratios. It is

noteworthy that already for Markov chain lengths of 1000

states the mean unsigned relative error is less than one

percent. For longer Markov chains, the form factor amplitudes

obtained become virtually indistinguishable from the exact

expression.
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Figure 1
Mean unsigned relative error defined as hjjfcalcðqÞj2=jfexactðqÞj2 � 1ji for
0< q< ðabcÞ�1=3 as a function of the length of the Markov chain for the
numerically computed form factor amplitude fcalcðqÞ with respect to the
exact analytical expression fexactðqÞ for inhomogeneous Gaussian
distributions.
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For all of the finite Markov chain lengths studied, the

accuracy of the numerical integration is the lowest for the

oblate ellipsoid, although its marginal improvement is also the

strongest on increasing the chain length. For all but the longest

set of chains sampled, the accuracy is higher for the prolate

than for the sphere, although the rate of convergence with

respect to the number of Markov states is higher for the

sphere. In any case, for 106 Markov steps, the accuracy for

either shape is so high (relative unsigned error less than one-

fifth of one part per thousand) that it is virtually indis-

tinguishable from the analytical result.

3.1.2. Gaussian body. Arguably, the homogeneous body not

only is probably a crude approximation for many real particles

but also represents the least efficient use of the importance

sampling in the algorithm. Because of the constant �, the

importance sampling is nullified and the algorithm reduces

almost to traditional Monte Carlo integration. As another test

case, we therefore consider the general inhomogeneous

Gaussian body defined by

�ðrÞ ¼ ��3=2 expð���2x2 � ��2y2 � ��2z2Þ; ð13Þ
where r ¼ ðx; y; zÞ. Its form factor amplitude is analytically

given by

f ðqÞ ¼ ðabcÞ�1=2 exp½� 1
4 ð�2q2

x þ �2q2
y þ �2q2

zÞ�; ð14Þ
where q ¼ ðqx; qy; qzÞ.

The error – averaged without sign in the range

0<�2q2
x þ �2q2

y þ �2q2
z < 1 – with respect to this analytical

expression of the numerical integration is provided graphically

in Fig. 2. Since the radius of the Gaussian is not well defined,

the comparison with the homogeneous ellipsoids is not perfect

as qK is scaled by this quantity. For instance, for the spherical

case, plotting the values of Figs. 1 and 2 on the same abscissa

implicitly corresponds to taking the ‘homogeneous equiva-

lence’ radius of the Gaussian from the condition

expð�r2Þ ¼ expð�1Þ ’ 0:37, which is a very small value for

the ‘equivalent’ radius as the scattering-equivalent volume

contained within this radius is less than half of that of the

homogeneous sphere of the same radius. Of course, the

condition that both the Gaussian and the homogeneous

sphere share the same value of � leads to an infinite radius for

the Gaussian, and thus the equivalent q range is reduced to

zero and the average error in this zero-length range vanishes

automatically.

3.2. Scattering signal from concentrated systems of Janus
ellipsoids

Having established the feasibility of the approach, let us

investigate some typical scattering signals and their depen-

dence on the underlying particle interactions, for the parti-

cular case of the homogeneous ellipsoid. This is intended as a

proof of concept.

While our focus on ellipsoidal particles with Janus interac-

tions – particles that are non-centrosymmetric in their

potential energy of interaction, having one side which attracts

and one side which repels – is merely for illustrative purposes,

the choice is judicious. In nature, such strong directional

interaction is quite commonly encountered in proteins which

tend to dimerize (Marianayagam et al., 2004). Virus capsids

are also made up of self-assembling proteins with strong

directionality in their interactions (Almendral, 2013;

San Martı́n, 2013). Moreover, synthetic Janus particles are also

very prevalent, as they exhibit many actual and possible

industrial applications (Walther & Müller, 2013), and conse-

quently their self-assembly behavior has attracted interest

through both computer simulation studies (Sciortino et al.,

2009, 2010; Liu et al., 2011) and experiments (Chen et al.,

2011). Here, we use them as an illustrative model example of

an analysis of the scattering intensity.

3.2.1. Interaction model. As a generic model for the

interaction between the Janus particles, we employ a gener-

alization of the Kern–Frenkel potential (Kern & Frenkel,

2003) to ellipsoids of revolution. In a local Cartesian coordi-

nate system ðx; y; zÞ, a hard ellipsoid is defined by

x

a

� �2

þ y

b

� �2

þ z

c

� �2

¼ 1; ð15Þ

where a, b and c denote the semiaxes of the ellipsoid. Overlap

of two such hard ellipsoids, as determined by the algorithm of

Perram & Wertheim (1985), leads to an infinite potential

energy. Centered on the hard ellipsoid and aligned with it, but

with semiaxes �a, �b and �c (� � 1), is another ellipsoid of

revolution. Overlap of this ‘soft’ ellipsoid with its homolog on

a neighboring particle leads to an energy
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Figure 2
Mean unsigned relative error defined as hjjfcalcðqÞj2=jfexactðqÞj2 � 1ji for
0<�2q2

x þ �2q2
y þ �2q2

z < 1 as a function of the length of the Markov
chain for the numerically computed form factor amplitude fcalcðqÞ with
respect to the exact analytical expression fexactðqÞ for different aspect
ratios � ¼ �=� ¼ �=� for three-dimensional Gaussians.
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�"< 0 if êei � r̂rij < 0 ^ êej � r̂rij > 0

"> 0 if êei � r̂rij > 0 ^ êej � r̂rij < 0

0 otherwise

where êei is the unit vector pointing along the x axis of particle i

and r̂rij is the interparticle unit vector. A schematic illustration

of the interaction sites is given in Fig. 3. We arbitrarily set

� ¼ 1:1 in all our simulations. Only the inner ellipsoid scatters

radiation. For conciseness, we restrict our study to the two

cases a> b ¼ c (prolate ellipsoid) and a< b ¼ c (oblate

ellipsoid), although the model is applicable also when b 6¼ c.

Most importantly, nothing except computer power and

patience limits the range of validity to small scattering angles

in our treatment.

After sufficient equilibration, Metropolis Monte Carlo

simulations in a cubic simulation cell with periodic boundary

conditions and 512 particles were performed for 108 cycles at

every reported state point. The thermodynamic temperature

was set to T ¼ k�1
B , kB being the Boltzmann constant, in all

simulations. Equation (4) was evaluated and averaged over

snapshots from numerical simulations of collections of ellip-

soids. The summation over all particles is of linear algorithmic

complexity in the number of particles, i.e. OðNÞ, and thus

asymptotically faster than fast Fourier algorithms that scale as

OðNc lnNcÞ, where Nc is the number of grid cells.

3.2.2. Scattered intensity. In Fig. 4, we employ the

precomputed form factors (at a homogeneous q resolution of

�ðqKÞ ¼ 0:062832; sampled for 106 Markov steps) to gauge

the effect of changing the volume fraction ’, the Janus inter-

action strength " and the axial ratio � on the scattered intensity

as a function of q. Such curves correspond directly to that

which is measured in the scattering experiment, and have

previously been reported in part by Sjöberg

(1999), although for a much more restricted

range of q and only for the case " ¼ 0 in the

present notation. For the q range that we

consider here, the influence of the form factor

of the particles is evident also at the highest

volume fractions of ’ ¼ 0:3, with or without

Janus interactions, and its exact curve is

included in the figure for comparison purposes.

Whereas the increasing volume fraction leads

to a substantial suppression of the scattered

intensity at low q even for fairly dilute

concentrations of ’ ¼ 0:1, the inclusion of the

Janus interactions – the strength of which was

roughly chosen to be as large as possible yet

without inducing crystallization – leads only to

a very small difference in the scattered inten-

sity with respect to that of the purely repulsive

interaction.

4. Conclusion

We have presented a numerical algorithm to

compute the form factor amplitude of any

continuous body. For homogeneous ellipsoids

of revolution, the algorithm yields an average

error of less than one-tenth of a percent for q

values up to ðabcÞ�1=3, and for Gaussian bodies

the accuracy is arguably even greater. The

algorithm scales linearly with the number of q

points chosen for the resolution. Given the

speed of the algorithm on modern computers,
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Figure 3
Schematic cross-section illustration of the modified Kern–Frenkel
potential defining the particle interactions. Overlap of two inner
ellipsoids (denoted by the grey region enclosed within the black solid
line) leads to an infinite potential energy. Overlap of two outer ellipsoids
(enclosed by the dark-blue and light-red solid lines) leads to an energy of
�" if the point of contact is ‘red’ for both ellipsoids, þ" if ‘blue’ for both
ellipsoids and zero otherwise. The extents of the semiaxes a and b are
marked on the x and y axes, respectively, by dashed lines. Likewise, the
outer ellipsoid is defined by the semiaxes �a, �b and �c.

Figure 4
Normalized intensity of the scattered radiation as a function of q at different volume
fractions ’, axial ratios � and Janus interaction strengths ". The curve for ’ ¼ 0:0 (the form
factor) is calculated using the analytical expression (12), the others using the numerical
algorithm.
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an adaptive search over arbitrary scattering distributions

should be possible to allow fitting to experimentally measured

form factors of dilute suspensions or to experimental scat-

tering intensities of concentrated suspensions but for large q

values.

Using the precomputed form factor amplitudes, we have

calculated the scattering intensity, at both low and high q, of

concentrated systems of Janus ellipsoids using a single sum

over the particle positions. In total, the computation of the

scattering signal of a single snapshot scales bilinearly with the

number of particles and with the number of q points, which is

asymptotically better than fast Fourier transform approaches.

APPENDIX A
Proof of equations (8) and (9)

The following proof has appeared in a slightly different form

(Metropolis et al., 1953) for the calculation of thermodynamic

partition functions and is here adapted to the present case, for

the benefit of the reader who is not familiar with Metropolis

Monte Carlo simulations.

Since equations (8) and (9) share the same mathematical

form, we may succinctly write

hAðq � rÞix ! ð1=�Þ R �ðr;xÞAðq � rÞ dr ð16Þ
for both equations and let A represent either the sine or the

cosine function. The quantity � is in any case independent of

A.

First, we recognize that the right-hand side of equation (16)

is the arithmetic average of Aðq � rÞ weighted by the function

�ðr;xÞ, whereas the left-hand side of said equation is the

average along the Markov chain in R
3. To prove that the left-

hand side converges to the right-hand side, we must show that

the Markov chain generates points in R
3 distributed according

to �ðr;xÞ.
Now consider two spatial points r and r0 that denote

different states of the Markov chain (a state is understood to

be defined completely by the spatial location of the random

walker). Let the population of random walkers at r, r0 be PnðrÞ,
Pnðr0Þ after n steps. A walker at position r will leave for

position r0 with a probability Pðr0 j rÞ; likewise, a walker at

position r0 will leave for position r with a probability Pðr j r0Þ.
The net flux of walkers between r and r0 should be zero when

the distribution of random walkers is equal to �ðr;xÞ, hence

the equilibrium conditions

PnðrÞPðr0 j rÞ � Pnðr0ÞPðr j r0Þ ! 0 ð17Þ
and

PnðrÞ;Pnðr0Þ ! �ðr;xÞ; �ðr0;xÞ ð18Þ
as n ! 1. In other words,

�ðr;xÞ
�ðr0;xÞ ¼

P1ðrÞ
P1ðr0Þ ¼

Pðr j r0Þ
Pðr0 j rÞ : ð19Þ

Let us now factor the transition probability into separate trial,

T, and acceptance, Y, probabilities: Pð�Þ ¼ Tð�ÞYð�Þ. The trial

probability is the probability of attempting a move from one

state to another, whereas the acceptance probability is the

probability of accepting such a move. Invoking the detailed

balance condition Tðr j r0Þ ¼ Tðr0 j rÞ, this transforms

equation (19) into

�ðr;xÞ
�ðr0;xÞ ¼

P1ðrÞ
P1ðr0Þ ¼

Yðr j r0Þ
Yðr0 j rÞ : ð20Þ

Hence, if we set

Yðr j r0Þ ¼ �ðr;xÞ=�ðr0;xÞ; �ðr;!Þ< �ðr0;!Þ
1; �ðr;!Þ � �ðr0;!Þ

�
ð21Þ

then equation (19) is satisfied and equations (8) and (9)

proved.
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