UNIVERSITY OF GOTHENBURG

Gothenburg University Publications

Nonlocal electrostaticsin ionic liquids: the key to an under standing of the screening
decay length and screened interactions

This is an author produced version of a paper published in:

Journal of Chemical Physics (ISSN: 0021-9606)

Citation for the published paper:

Kjellander, R. (2016) "Nonlocal electrostaticsin ionic liquids: the key to an understanding of
the screening decay length and screened interactions'. Journal of Chemical Physics, vol.
145(12), pp. 124503.

http://dx.doi.org/10.1063/1.4962756

Downloaded from: http://gup.ub.gu.se/publication/242558

Notice: This paper has been peer reviewed but does not include the final publisher proof-
corrections or pagination. When citing this work, please refer to the original publication.

(article starts on next page)


http://dx.doi.org/10.1063/1.4962756
http://gup.ub.gu.se/publication/242558

This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |
AI R( nlocal electrostatics in ionic liquids: the key to an understanding

Publishing ) . .
of the screening decay length and screened interactions.

J. Chem. Phys. 145, 124503 (2016)
Roland Kjellander

Dept. of Chemistry and Molecular Biology,
Unwversity of Gothenburg, SE-412 96 Gothenbur ,%n

Abstract 5

Screened electrostatic interactions in ionic liquids are investiga by“means of exact statistical

mechanical analysis combined with physical arguments that e ar‘la Q\e\ transparency and conceptual

accessibility of the analysis and results. The constituent iofis and immuersed particles in the liquid can
heXecay of the screened electrostatic

potential and the free energy of interaction in ioni 1 be exponentially damped oscillatory

have arbitrary shapes and any internal charge dlStI"lb:: ons«,

(like in molten simple salts) as well as plain eﬂ{j and long-ranged (like in dilute electrolyte
he

solutions). Both behaviors are in agreement, Wh\ t statistical mechanical analysis and reasons

for their appearances are investigated. Exm‘surprisingly simple expressions for the decay

parameter x of the screened electrostatic Eobxamed, which replace the classical expression for the

Debye-Hiickel parameter kpy (the re \QQ
m behaviors. The key importance of nonlocal electrostatics

WQA]X Dielectric properties of ionic liquids and other electrolytes are

dielectric function €(k) and some effective relative permittivities

ebye length). The expressions are applicable both for

cases with plain exponential and o

is thereby demonstrated

investigated, in particular t
(& and &), é rolﬁs that the dielectric constant €, has for polar liquids consisting of
electroneutral 0(:::1 The dielectric constant in the latter case, which is the limit of é(k) when
the wave n r — O can be expressed solely in terms of dipolar features of the molecules.
In contrast tosthis, “the effective dielectric permittivities of ionic liquids have contributions also
from duadrupo octupolar and higher multipolar features of the constituent ions. The “dielectric
comstant®of eﬁctrolytes does not exist since €(k) — 0o when k — 0, a well-known effect of perfect
sc eningSThe effective relative permittivities £ and £* of ionic liquids are obtained from the non-
?ﬂﬁyr@g part of €(k), but not as a k — 0 limit. Influences of ion associations, especially pairing,

arginvestigated for screened electrostatics and these permittivities. A general, multipolar expansion

of €(k) is derived and used to analyze dielectric properties of ionic liquids and other electrolytes.


http://dx.doi.org/10.1063/1.4962756
J. Chem. Phys. 145, 124503 (2016)


This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.
AI P INTRODUCTION
Publishing

Tonic liquids are organic salts that are in the liquid state at or near room temperature (at
least below 100 °C). They have many unique properties, for instance as solvents, including
negligible vapor pressure, high charge density, tunable polarity and high thermal, chemical
and electrochemical stability. Therefore, they have been given many‘important uses including

several new, innovative ones. For example, they are used in baftteties, er-capacitors and

solar cells, as solvents for dispersions of colloids and in organigsyishesis, as lubricants, extrac-
ies a

tion liquids and self-assembly media. For reviews of prope several uses of ionic liquids

see Refs. [1-5]. From a fundamental point of view, the understanding of their properties on
—

the molecular level have given rise to many challenges, not lgast regarding the dielectric and

electrostatic screening characteristics.|2, 6-14| T@tter of key importance for several of

the unique features of ionic liquids.

L -

Like in other electrolytes, the situatio n ionic liquid is that the electrostatic poten-
tial from a charged particle 1mmersed 1qu1d decays in an exponential or exponen-
tially damped oscillatory manner a fﬁ t distance from the particle provided that the
non-electrostatic interactions be n ions are short ranged. Close to the particle, the
potential varies in a more co p ic e nner and contains several exponentially decaying
contributions as well as contrlb 1th other functional forms. The exponential screening

length of the decay, de ot?\% refers to the leading term at large distances (i.e., with the
largest decay length){ whether fhe decay is a plain exponential or an exponentially damped

oscillatory one. In‘molégn simiple salts the oscillatory decay is the norm.

When the Mctrostatw interaction dominates, the free energy of interaction (the

potential ofsm force) between two particles in an electrolyte has the same decay length as

the mean ecifrosta ic potential and for the oscillatory case, also the same wave length. This is
or t

true also T

mteractlon between two surfaces in contact with the electrolyte. The latter
sforsexa ple be measured experimentally by a surface force apparatus or an atomic
forge mi oscope In many cases the measured force in ionic liquids is damped oscillatory
oscﬂlatlons detected for several nm,|3, 15-18] but long-ranged monotonic exponential

d ay l1ke in a dilute electrolyte solution has also been observed with decay length of 4 — 11
nm.[19-21] The latter is very interesting and has give rise to some controversy,[22-24] but
the existence of the long-ranged monotonic exponential decay has very recently been verified

experimentally for ionic liquids and concentrated electrolyte solutions.|25]
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it be possible to have a long-ranged monotonic exponential decay in a dense,

PUb”ShisQ& ngly coupled electrolyte like an ionic liquid? It has been suggested[19] that the ionic
liquid in such cases is “an effectively neutral, coordinated cation—anion network (i.e., like

‘solvent molecules’) that exists in equilibrium with a small fraction of effectively dissociated

ions.” A possibility is also that many ions in an ionic liquid form ion pairs and only a small

fraction of the ions remain dissociated. A coarse-grained model of g airing in approximate

density functional theory|14] shows that such a pairing can giv@exponential decay

liquid

for the long-range tails of the electrostatic surface forces in iohic ids. On the theme of ion
pairing, an approximate analysis of the static dielectric properties«gf ionic liquids and fused
salts has recently been done by simulations|[13] by cempa anvionic fluid with a dipolar

fluid that is formed by pairing anions and cations together ibto dipolar dumbbell particles.

Ideally, a proper analysis of the various po il:ga-beﬁz»ziors of ionic liquids should be done
by careful investigation of the statistical méchani o‘}.dense electrolytes without relying on
approximations. Since we are only considéhﬁg\e ilibrium properties, equilibrium statistical

mechanics can be used. In a separate pa \,Ré‘f* [26], electrostatic double layer interactions

between surfaces immersed in ionic li }p and other electrolytes are investigated. There it is

shown by an exact statistical mechamigal analysis that strong ion-ion correlations can give rise
to monotonic exponential deca; W long decay length in dense electrolytes. Such a decay

can, for example, arise fr,

anion-cation associations of various kinds, for instance transient
ion pairing or associatio l:%d by many-body correlations. The analysis shows that ion
pairing is a possibi biit not*a necessity for monotonic exponential decay to occur. In the
present work WegJ investigate screened electrostatic interactions in bulk electrolytes, thereby
continuing a (@‘;ﬁ the exact analysis. The properties of the bulk phase is fundamental

for an un ers}an ing of the long-range distance dependence of interactions between surfaces

ligdid. The decay behavior is determined by the surrounding bulk liquid.

Aa i orént question is how to treat the dielectric properties of ionic liquids, in particular
what entity plays a role corresponding to the dielectric constant ¢, of pure polar fluids. Since

b‘rﬁc&quids are conductors, the concept of dielectric constant cannot be taken over unchanged

bégause ¢, is infinitely large in this case. For a polar liquid without ions, €, equals the limiting
value of the static dielectric function é(k) when the wave number k£ — 0, i.e. €, = €(0), but
for an electrolyte €(k) diverges to infinity like 1/k® when k& — 0. The dielectric properties

and the screening behavior are intimately linked to each other, so in a statistical mechanical

3
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PUb“ShIH(g] zero wave number is important in general.
In many cases the thinking and analyses of electrostatic interactions and the screening
phenomenon in ionic liquids have been based on mean-field theories of electrolytes, in partic-
ular the Poisson-Boltzmann (PB) approximation and its 11near1zed version the Debye-Hiickel

(DH) approximation. In these approximations the decay length i al to the Debye length

ADH = IiDH, where kpy is the Debye-Hiickel screening paramet frorn
a=LY 1)

with 8 = (kgT)™', kp Boltzmann’s constant, T the a ol.ute rnperature, o the permittivity
of vacuum, ¢ the charge of an ion of species | and W} the&mmber density of this species,
where superscript b stands for bulk. The sum is @al species [ in the liquid. When the ions
are located in a dielectric medium modeled as a“egntinufim with static dielectric constant &,

the Debye-Hiickel parameter is given by \

%ﬁ\ dielectric medium). (2)

This expression for the decay par@meteris correct for an electrolyte solution in a solvent with
dielectric constant ¢, in the li io;’%}me y low concentration, where the ion-ion correlations
are very weak since the interionic'distances are very large. The conditions in an ionic liquid

are, of course, very di rent\‘)()m such a solution. The ions are very close together, they

Er€o

correlate strongly wi e;tc ther and there is no solvent. In ionic liquids, kpy is large and
the Debye length Aery smallfsince n) is large; spy is simply not a relevant quantity.
The exact nﬁy&&fdassical statistical mechanics for electrolytes shows that the decay

parameter the electrostatic screening can be expressed as

£
W2 —
— / Z l QlQZ ) (3)
where Cis 8)1{111(1 of effective relative permittivity and ¢/ is a “renormalized” charge of ions
of'specie§ [. These are the only differences compared to the PB expression (2) — a perhaps

hrj)r'glng result considering the complex situation in a dense ionic liquid. The appearance of

and ¢g; is precisely what is needed to accommodate the theoretical treatment of screened
interactions to the experimental observations for ionic liquids.
The charge ¢ in Eq. (3) is the sum of the bare charge ¢, and the integral of a charge

density surrounding the ion and associated with it. Note that one cannot include the whole
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-loud of the ion to obtain a renormalized charge. The entire ion cloud has a charge that is
PubliShi&& 1l to —¢; (due to local electroneutrality) so it would yield zero when added to ¢;. Instead
one takes a well-defined part of the ion cloud (a charge density called the “dress” of the ion),

which together with the bare charge yields the charge ¢;. Depending on the conditions, ¢

can can be quite large or small; it can even change sign.

A crucial feature of the exact theory is that £ is a function 04, * = E(k), so Eq. (3)

is actually an equation for x. This equation has several sol '0@ and each solution gives

an exponentially decaying term in the electrostatic interactiom_potentials with, in general,

a&& he one with the largest

decay length A = k™! (the smallest x value). In somfie Cases‘miore than one term is needed

different decay lengths. The leading term for large di

to describe the decay, but in other cases the lerilg rm¥ives a good description of the
)

decay even at rather small distances. In fact, applies also when the electrostatic

interactions decay in an oscillatory, expone%zil‘L aﬁ'rped fashion. This equation then has
eh

complex-valued solutions, which gives such ior'of the decay (the real part of x gives the
exponential decay and imaginary part t‘%ﬂumber of the oscillation). In this case there

is normally a layering of the ions ne Ep& icle or surface into alternating anion-rich and

cation-rich layers, leading to an o \% ) in sign of the charge density and the electrostatic

==t

potential. The plain exponen heoscillatory cases are accordingly different aspects of

the screening of electrostatic interactions; they are closely related to each other and described

by the same equation. @imental surface force results described above are in agreement
with a dominance &,ﬁnf lectrostatic interactions in the long-range decay.
The analysisé e cu /nt work is done for ionic liquids and electrolyte solutions where
the constitueait molecules/ions have arbitrary shapes and internal charge distributions. The
particles dre f?r simplicity assumed to be rigid and not polarizable. The expressions obtained
for theleng- ge/ part of the decay in the analysis in this paper are valid provided that the
screen elec%}ostatic interactions are dominant for large separations in the liquid (the general
t (;r;/ isshowever, not limited to such cases). Furthermore, conditions close to critical points
th id are avoided. Under these conditions analysis is exact, i.e., it is done without any
roximations. The explicit derivations in this paper are mainly done for cases with plain
exponential decay, but as we will see, the end results are equally applicable to oscillatory,

exponentially damped decay, which is prevalent in molten salts and ionic liquids.
Since the analysis is exact, it covers a wide variety of different scenarios regarding the

5
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ils of the local structure in the liquid phase. If, for example, the electrostatic potential
PUb“ShI(%‘ iys slower than the extent of a locally ordered structure caused, for example, by specific
short-ranged interactions, the conditions above are fulfilled. The measured decay length of

the exponentially decaying surface forces of Refs. [19, 21| is of the order of 4 — 11 nm, so

such a locally ordered structure, if it exists, can be pretty extended in this case and still

be smaller than the decay length. When such structures exist, t e\%iations within and
ake

between various structures influences the screening length and arw large.
A major topic in the present work is an investigation of spects of the dielectric
features of ionic liquids, in particular é(k). Like the di con ant g, of a polar liquid,

the effective relative permittivity £ of an ionic liquid'is dete med by the liquid’s dielectric

properties. We will find that both quantities are define omihe “regular” part, €.¢(k), of the

dielectric function, which is obtained by remo iné&he ‘pjmrt of €(k) that diverges (a constant

divided by k?). The divergent part is, of C%ot‘*p'resent for polar liquids without ions,
due t

but it is, for example, present in pure wa its self-ionization. In electrolytes, & is

not given by the value of &.4(0), i.e., the"kourter.component at infinite wave length (which is

appropriate for a slowly varying potentia 'k.e‘ r for large distances ). The exponential decay

of the potential (plain or oscillatmies, as we will see, that £* equals the component of
€reg at a length scale correspo L0 the exponential decay length given by k.

Key aspects of the an

is.in this work are stated in terms of nonlocal electrostatics, which

for weak fields can e in terms of the dielectric function. Theories of nonlocal

electrostatics hzjzp Vi{)usl/

Refs. [27-33| a Nﬁen s therein. Many of them essentially focus on the wavenumber

een employed mainly for aqueous systems, see for example

dependence ?@) of the solvent and often also on a position dependence of the dielectric

permittivity, Qler » mimicking nonlinear polarization effects, for instance near surfaces. The

objectiVes an ‘ches of these approximate theories of nonlocal electrostatics differ a lot from

the focus of t e current work.

%‘Iﬁesen’c paper is based on the Dressed Ion Theory (DIT),[34-36] an exact formalism
xﬁ lectrostatic interactions in electrolyte solutions in the primitive model, and its extension

sed Molecule Theory,[37-39] which includes effects of molecular solvent (if present) and
is not restricted to spherical ions. In the current paper we will call both of these theories DIT,
which is appropriate since we are dealing with ionic liquids. Here we will express the basis of

DIT in a new, much simpler and more physical manner than has been done previously and

6
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AI Rna] e some significant extensions of this theory. In the simplified derivations in the current
PUb”Shi\”& < we will, however, use some assumptions that are not needed in general, which will be
commented on in the text and in notes. For a more complete exposition of the basis of DIT

see the references mentioned above.
It is important to note that DIT is a reformulation of statistical mechanics that gives tools
for an understanding of mechanisms in electrolytes and exact rel@( ships between various
%ﬂter simulations or

entities. To obtain numerical results one needs input of data or%co

al equations. The latter

from approximative theories like density functional theory orintege
tre

can be augmented by various theoretical devices in ordér

correctly in dense electrolytes, see for example Ref. |40}« o
The layout of the paper is as follows. In section II startSfor simplicity with systems con-

ionic associations more

-

taining spherical ions and introduce the basis of DI'T; fQ.Susmg on the origin and implications
of nonlocal electrostatics in electrolytes, wherebysthe @ouicept of dressed ions, the polarization
response and the dielectric function are treated, Starting from an analysis of €(k), we there-

after give a general derivation of Eq. (3%116 & and analyze the decay of the screened
e &,

Coulomb potential, whereby we intr us another effective permittivity. £ is then inves-
tigated for the case of simple elec i&v;‘c\h ion pairing. In section III, systems with ions of
arbitrary internal charge distui &a shape are treated — a task that by necessity is more
complicated due to the orient;%egrees of freedom of the molecules. The relationship
between nonlocal electr: st;’h)and DIT is explored for this case, polarization and screened
electrostatic potenti alﬁ investigated, and multipolar screened interactions between ions are
examined. The lzrd( between the dielectric constant &, of a pure polar liquid and E* and &£
for electrolyteg i iMated, and the multipolar contributions to £ and €é(k) are treated in
some detail¢ ified expressions for £ in certain cases are derived based on an analysis of
the multipelad te? . The more technical aspects of the derivations in this paper are allocated
to tw. A?)pe es. Appendix A is devoted to the case of spherical ions and in Appendix B
vafious ansions of the dielectric function é(k) are derived, including multipolar expansions.
A anal(kous expansion of the reciprocal function 1/€é(k) is also derived.

<

II.,. SYSTEMS WITH SPHERICAL TONS

We first consider a bulk fluid consisting of spherical anions and cations with point charge at

the center of the sphere. The ions can be hard or soft spheres of any sizes; the nonelectrostatic

7
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A. Polarization response and screened Coulomb potential
1. Some basics

Let us initially place the origin of the coordinate system at the center of an ¢ ion, which
we will call “the central ion.” Due to the interactions betwee Q ion and the other ions,
the ionic number densities deviate from the bulk values in.the neighberhood of the ion. The
number density of ions of species j at distance r from the rof the ion is equal to n'][-’gij (r),

—~
where g¢;;(r) is the pair distribution functions (radial distribs n function) for species i and
to

j. The average charge density p;(r) around the 2

ZQJTL gzy ?@1] ~huwis(r (4)

where we have introduced the pair p!\;of mean force w;;(r) that satisfies g;;(r) =
var

exp(—pPw;;(r)). One often describes ion densities around the ion as an “ion cloud”

with charge density p;(). o
The average electrostatic pgt tMr from the ¢ ion and the surrounding charge density

n
pi(r) is according to Coulomb%al to
‘w QbCoul dI‘ pz( )¢Cou1(|r - I'/|), (5)

4

where ¢cou(r) %T)A = (z,y,2) and r = |r|. The integration is taken over the whole
o .

space (in this a?e integrations without explicit limits are taken over all possible values
of the respgctive variables). We can alternatively write this as
£
a4 i) = [ () ocaalle v ©)

where we e introduced the total charge density pi°* of the ¢ ion and its cloud

).
wh P (r) = g6 (r) + pi(r) (7)

with 6©)(r) being the three-dimensional Dirac delta function and ¢;0‘® (r) the point charge

at the origin expressed as a density. The potential v; satisfies Poisson’s equation

—eoV*i(r) = pi*(r), (8)

8
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Publishigg ., write this as

T )] = ) o)

The boundary conditions at 7 — oo is ¥;(r) — 0.

—&

In the Poisson-Boltzmann approximation one assumes that the ?ean field approximation

wij(r) = q;i(r)  (PB) 5\ (10)
is valid for r larger than the distance of closest approach ONKS d 7 ions. The ions are
here assumed to have hard cores so for smaller » wheg thé corés overlap, w;; is infinite.

—
The notation (PB) means that the equation is valid only i _the PB approximation. The
(nonlinear) PB equation can be obtained by combinin Eqs3(4), (7), (8), and (10).

A key assumption in the PB approximation is (@c thj correlations between the ions in the
ion cloud are entirely neglected. This means hhte\céntral ion (here of species i) is treated in
a different manner than the rest of the ion %Kor elations between the central ion and the
rest are included, but all other Correlatl‘O\MG.n_eglected. All ions apart from the central ion
are treated as point ions that do not ‘m%ate

S
in the treatment of the ions and W )/qi is not the same as 1;(r)/q; in general, we have
is

w;;(1) # wji(r), a well known c(s\ eviates from the correct relationship w;;(r) = w;;(r).
syste

In a correct treatment of the all ions should in principle be handled on an equal basis

ith each other. This introduces an asymmetry

and those of the same d must be treated in the same manner.

£
2. Nonlocal @' *s/(md dressed ions
The ass g w;;(1) = qjv;(r) in the PB approximation implies that the density of j ions

ely determined by the electrostatic potential 1); at the same coordinate,

is assu that there is an entirely local electrostatics. In reality, the average density

of giiionswat r/(both of the same and opposite species as the central ion) is influenced by the
el trostétic potential ¢); in an entire neighborhood of this point. Tons at various coordinates

?*'? Qle neighborhood of the point r are affected by the electrostatic potential and since they

elate with any ion at r, i.e., they influence the probability for ions to be there, the density
at r is affected by the potential at all points r’. This means that in reality there is nonlocal
electrostatics. For ionic liquids, in particular, it is vital to include the correlations between

the ions since the density is very high.
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et us ﬁrst investigate how the ion-ion correlations can be properly included for large r,
PUb“ShIineg.. in the tails of w;;(r) and p;(r) far from the central ion, where the electrostatic potential
from this ion is weak. We restrict ourselves to cases where the electrostatic interactions
constitute the longest range effects, so the electric field due to the central ion and its ion

cloud determines the leading contribution to the tail of w;;(r). Slnce w;; at coordinate r

are in the linear

depends on the potential ¢; in an entire neighborhood, w;; is, n\Ka‘i}:matlcal terms, a
Hjhat

functional of v;. Provided r is sufficiently large, v;(r) is so spia

response regime, implying that w;; is a linear functional of %\efore we can write

wij(r) ~ / TR ) N (11)

—
where pj is a function that is as yet unknown and the nbol}‘ means “decays asymptotically
as.” (Mathematically, the existence and uniqu@s such a function follow from Rietz’
representation theorem for linear functionals,[42f,so Egf (11) is exact in the limit » — o0.)
We use the notation p} since this functior% he unit “charge per volume,” as follows from

an analysis of the units in the equatio‘gbf_p_hysical role of p; in Eq. (11) is to interact

with the potential 1); as an “effecti ”w%mr
integral, the values of v; at varidus po ts\r’ affect the value of w;; at coordinate r via the
ero\o

factor pj(|r —r[), which is n \ range of |r — r’| values.
is sml

For large r where w;;(r) . we can expand the exponential in Eq. (4) in a power

distribution associated with the j ion. In the

series and retain terms p-’bjle linear one, exp[—pw;;(r)] ~ 1 — Pw;;(r). If we introduce

this in Eq. (4), inse E%, nd use g;ny = 0 (due to electroneutrality), we obtain

4
dr'i (r') pj (Ir — r'[) = /dr’wi(r')x*(lr —r), r—oo,  (12)

— £ = —52%” p;(r (13)

Thefun on)( determines, according to Eq. (12) the charge density p; due to the potential ¢;
in'the lin‘gar regime, i.e., for small ¢/;. This charge density can be described as the polarization
?esyoase of the bulk electrolyte due to an electrostatic potential, so x* is a polarization
résponse function in linear response theory (it is closely related to the electric susceptibility
and the dielectric function of the fluid). This will be investigated in more detail later.

For smaller r the electrostatic potential 1;(r) is not small, so the polarization charge density

is not linearly related to 1;(r) and the integral in the right hand side (rhs) of Eq. (12) does

10
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PUb“Shl&g( onsider the remainder of p;(r) when the linear part has been removed, i.e.,

plr) = [ il (e =) = p0), (14

dress (1) for reasons to be explained later. It is equal to the charge density

which we denote p
that arises from the nonlinear part of the response to the electvbstatic potential and, in

addition, from any non-electrostatic effects that influence the d

s@g{nd the central ion,

like hard core exclusion and core-core correlations.

We will now reformulate Poisson’s equation (8). Let us j inition of pi°*, Eq. (7),

ides<Poisson’s equation becomes
—eo¥0u(r) = [ e (e = I a0 §0) + o) (15)
The solution v;(r) to this equation can be wri teL

¢Z<r) = /dr” [qi(s(?))(rﬂ & pz ' m ¢60u1(|r - I'”|>,

in the rhs and subtract the integral in Eq. (14) from bot
—

= i PCou(r (") ¢ ou ([t — 1)), (16)
where the function ¢¢,,(7), called t 0 ized) Screened Coulomb potential, satisfies
—£0 V2P u( \ Do (r)X (v —1']) = 3P (r). (17)
One can show that Eq. ( 1on of Eq. (15) by direct insertion, whereby Eq. (17)
is used to simplify the Suﬁa‘te that Eq. (16) has the same general form as Eq. (5).
Mathematically, the defini of ¢¢,.1(r) in Eq. (17) means that it is a Green’s function.

Its physical meanifig is'6hat )f expresses the propagation of the total electrostatic field (the so-

called Maxwel eld)wu ing the effect of polarization of the medium to linear order. Since

the electrostatic eld near an ion is strong, the nonlinear polarization must also be included

and this 9s_dehne fo Y;(r) via the term with p{™* in Eq. (16). By replacing the central i
ion arfd ifs su undmg ion cloud by a “leaner” entity given by the dressed ion with charge
d SIIY dress

total pot ntlal from Eq. 16). This equation has the same form as Coulomb’s law, but with

, we can hence use the screened Coulomb potential to calculate the

screened (¢¢m) rather than the unscreened (¢cow) Coulomb potential.

Now, a very important result of DIT[35] is that the effective charge distribution p; that
interacts with the potential according to Eq. (11) is ezactly the same as the dressed ion charge
distribution, i.e.,

pi(r) = 40 ) + (1), (18)

11
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Publishing

Bilr) = / '} () S (I — 1)), (19)

which should be compared to Eq. (6). Thus the dressed ion is an entity that has the dual
role as (i) the charge density that via the screened Coulomb pote ial ¢, gives rise to the
electrostatic potential ¢;(r) (for all r) and (ii) the the charge den51 t interacts with ;(r)
giving the potential of mean force w;; in the tail region (for lar we eﬁne the screened

electrostatic pair interaction

wze;l(ﬁz) /dl"3dl‘4/?Z (113) P, ql_(\rs j ) (20)

for all ri5, where r;; = |r;;] and r;; = r; —r;, it follows oqu. (11) and (19) that

2 (21)

Wy 5 (7’12) ~ W Tigs 00

These relationships are perfectly symm tr%d J in agreement with the fact that w;; =

wj;. Due to the symmetry we also have | }q.(‘ll)]

NS
wii(r) &&*(%(rr» r = co.

The screened electrostatic p\nberac‘mon we1 is, in fact, a contribution to w;; that is
relevant for all distance aﬂt only large ones.[43] The asymptotic decay analyses in this

paper are valid provided that the electrostatic interaction w - is the contribution to w;; with

hly ?(msider cases where ¢¢,, decays slower than p; for all [. This

the longest rang/
restriction is, howe not needed in general. In fact, in almost all cases when w;;(r) de-

cays in a plai onnential or exponentially damped oscillatory manner, it is the decay of

) («
- S = 0 (22)

‘ﬂh)‘cl& potential of mean force W; in an inhomogeneous liquid exposed to a total electrostatic
field U (see Ref. [37] where p7 is denoted p). Here p’(r'|r) is the dressed ion charge density

r’ for a particle located at r as defined from the distribution functions for particles in
the liquid.[37] This functional derivative formula means that 6W(r) = [ dr'0W(r")p}(r'|r) for

the variation d1¥; when the total electrostatic field is varied by dW. For the special case in

12
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e (weak) potential of mean force w;; plays the role of §W;, the (weak) electrostatic

PUb“ShW(g ntial ¢; is 0V is and one can identify p7(|r —1'|) with p}(r'|r).

The dressed ion charge density pf(r) and the response function x*(r), which play crucial
roles in the current theory,[45] can be obtained from other functions like g;;(r) and pi*(r) that
are directly accessible via numerical calculations using, for example, computer simulations or

integral equation theories. Some ways to do this are briefly outh Appendlx Al.

3. The dielectric function \\

Let an external electrostatic field E®*(r) polarize an '"tmﬂbed bulk fluid. This field
originates from some fixed charges that in prmmple ate not Sar of the system. The external
field gives rise to a polarization charge den81ty a total electrostatic field E(r),
which is the sum of E®** and the field from pP @l field is sometimes called the Max-

well field and E®™* can alternatively be ex sed interms of the displacement field D given

by D(r) = E®(r)/eo, but we will use E™ h e two fields can be expressed in terms of
\

the respective electrostatic potentialg E —VU=t(r) and E(r) = —V¥(r). We have

\

U(r) = P r dr’ Pl (') poour (It — 1'|). (23)

For the unperturbed fluid (in ame.pf E®*) these potentials are set to zero by default.
We will now consider, h&%tuatlo with a weak external field, so the polarization charge
ar

density is given by li sponse. Using the response function x*(r) we have
pOI dr U )x*(r —r'|)  (weak field). (24)

By inserting¢this A\ ) and taking the Fourier transform, whereby the convolution

integrals become'products in Fourier space, we obtain

- / U (k) = U™ (k) + U(k) ¥ (k)doou (k) (weak field), (25)
eré W(k)= [ dr¥(r)exp(—ik-r), and k = |k|. The Fourier transform of x* is given by

o e = [ a5 (26)

singe x*(r) is radially symmetric and @cou (k) = 1/(c0k?).

Eq. (25) can be written
\IJCXt(k)
é(k)

13

(k) =

(weak field), (27)
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Publishing (k) = 1= X" (k)pcou (k) (28)

is the static dielectric function expressed in x* (more precisely the static longitudinal dielectric

™

function). By inserting the Fourier transform of Eq. (13) we obtain é(k) expressed in terms

of pf(k), see Eq. (A5). In Appendix A 2, é(k) is also expressed in o?er, more common forms.

Wten as

o1 X e -v0 GO

B €0k2 B EokZ N €0 2
= g (k) + Guing () (29)

(30)

The dielectric function can be split into two parts. Eq. (28) ca

where

is singular when &£ — 0 and

X" (k) —x*(0) (0)

€reg(k) =1 — Tk

(31)

is regular (non-singular) at k£ = 0, where qua

QK dr r*x*(r).
Using Eq. (13) we can write
Q esmg Z ny Qqu k‘27 (32)
Q

where /
G i = [ i) = 57 0) (33)

is the totalc )of a dressed ion of species [, i.e., the bare charge ¢ plus the charge of the
dress. Ndte that while [ drpf°*(r) = 0 due to local electroneutrality, we have ¢ = [ drpj(r) #
0 in géneral. s follows since pi°*(r) and pj(r) differ by the linear part of the polarization
re, pa,piy%h h has a total charge that normally is nonzero. It is, however, possible for each
g \to change sign as a function of the system parameters (e.g. temperature or density), but
Mr\a species are in general not exactly equal to zero simultaneously.

The divergence of €(k) at k = 0 is a consequence of the fact that the electrolyte is a
conductor and we see that the singular part €4y, is intimately connected to the values of the

dressed ion charges gf. Alternatively, the coefficient in front of 1/k* can be expressed in terms

of pi°*, see Appendix A 1, Eq. (A9).

14
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PUD“ShIz%gf llows in Fourier space. From the Fourier transform of this equation we obtain
e éCoul( )
¢Cou1( ) (34)
I ( )¢Coul( )

(note that V? gives a factor (ik)? = —k? in Fourier space). By using' Eq. (28) we see that

¢ oul( ) 1
¢cou1( )= Cg(k) = LRk 5\ (35)

where the first equality should be compared with Eq. (27 3
~

—_—

B. Screening behavior and the leading decay ngths

In the PB approximation x*(r) = EOKDH% ,a = 1+ rdy/k* The screened

Coulomb potential ¢¢,,,; in this approxunatw
K/DH

(bCoul 7T€07”

In the general, exact case it has that this kind of decay of the potential holds
for large r provided that the lectr ic Couphng is sufficiently weak, but with a different

decay parameter x and pre- facto

Do (T ;T 00 (36)

[the coefﬁment 111 pg(nﬁed later, see Eq. (45)]. For higher coupling, the potential is
oscillatory an lso a sinusoidal factor, see below.
The folléowi results (in the present Section IIB) are presented for the case of spherical

ions, but are/in fact, of general validity as will be apparent later in Section III (the same

ﬂ
appliés to thsr ults in the preceding Section 1T A 3).
ﬁ
Q\Tbe equation for k

\I<

We now have all that is needed to derive an exact equation for the decay parameter k.

When r > 0 Eq. (17) equals

1 92 /
oy gz 0o (0)] = [ A7 (e = ).

15
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r large r, we can insert the limiting form (36) for ¢¢,, () on both sides (note that x* has a

Publishigg ., range than ¢, ;). By performing the derivatives in the left hand side (lhs), we obtain

e kT e—m"
—eok’A . N/dr’A - X (Jr —r'|)
/!
|

= [ a"(")? | [ di'A ;|_r X (") (37)
| |

for large r, where we have made the variable substitution r’” = r—r th the last equality.
We have also separated the radial integration over r” in spheré\:n coordinates and the
he

!

integration over the azimuthal and polar angles (¢!, 0”) of r ter are represented by

T ’I"
the unit vector &' =r"/r". ‘)H
We now make use of the mathematical identity o

e . )
/dA//e Klr—r"| K\r r' /@|r+r e kT SlIlh I{T‘
r

27r

v —r”| - m"r”\ ,.)_ r kr!"

in ourgasér > "), and obtain from Eq. (37)

(38)

where the last equality holds when r > r” (

osinh(kr”)
—gok?A ") — X (r").
An identification of the coefficients her ide gives after simplification

\ h
\ L Sinh(erT) sinh(kr” O, (39)
\

where dr” = dr"(r")?4m ( spher1c symmetry).[46] Given the function x*, we can use this
equation to determine 4. %mknown variable, k, appears on both sides of the equation
which can be solved for ﬁ ldast numerically). The function x* is independent of x but is,

of course, depen nt 0 e/étate of the system.

By using nd the identity sinh(z) = sin(iz)/i, where i is the imaginary unit
(distinguish bétygéen i and the species index i), we can express the rhs of Eq. (39) as x*(ix),
so the eqlratioh be written as —gox? = Y*(ix). From the expression (28) for é(k) we can
concldde t tha =1 — ¥*(ik)dcou(ir) = 1 + X*(ir)/(e0x%) = 0, so Eq. (39) is equivalent

K herefore we have

. _ . . B .

S D ) = o)+ i) = 85 — 2 mad =0,
o !

where we have defined

E;(K) = Ereg(ir) '
#} X" (r) (40)
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d used Eqs (31) and (32). Thus we conclude that Eq. (39) is equivalent to
Publishing

2:

(41)

where £F = £*(k). The similarity between Eqgs. (2) and (41) is obvious. The rhs of Eq. (41)
depends on « via &, while the dressed ion charge ¢ is independe?f the parameter £ (but

q; depends, of course, on the state of the system). \
For a thin plasma at high temperatures x is small so £ ~ an) = 1l"and ¢} = ¢;, which

implies k¥ ~ kpp and the PB result, Eq. (1), is recovered insghe it x — 0. Likewise,

is small for a dilute electrolyte solution so &£ & €..(0) %the ielectric constant for the
—~—

solvent, and ¢; ~ ¢;. Thus, the PB result Eq. (2) is obtainedsin the limit of infinite dilution.

It is here appropriate to make a comment on th ten§0n of the Fourier transform to

complex k values, which is done here by surnpl inser 1g k = ik into its definition. For a

function f(r) we have
b= [ are \Q e p),

so therefore

(42)

&e T
i.e., a kind of Laplace transfo@ension of x*(k), é(k) et cetera to complex k values

is motivated by the fact that the ay in the electrolyte is exponential, so the exponential

and hyperbolic functions.ar ropriate. For example in & = €.,(ik) one extracts (via the

Laplace transform) cOmp ent of the dielectric response of the electrolyte that is relevant

for the exponen@ Ahe length scale given by the decay length.

2. Soldtions
£

the equation for k

\o"l;aans with smallest x values we have

’
—KT —K'r
€

E3 /6
PCou(r) ~ A . + A p (43)

where k < k/. The first term is dominating at large r — it gives the leading asymptotic

contribution — and the second term contributes significantly for smaller r. The leading decay

17
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AI Rang th is given by A = k~!. The electrostatic potential 1; from an i ion and the charge density
PUb”ShiEg r) decays in the same fashion (but multiplied by different coefficients). The presence of
these terms are nicely illustrated for high temperature plasmas in the molecular-dynamics
simulation by Keblinski et al.[6], see Figure 5c in that paper.

When the density is increased, the two solutions x and ' to Eq. (39) approach each other
and at one density they become equal, which is nicely illustrateg Figure 5b in Ref. [6].
@htential and charge

: they are each other’s

This density constitutes the cross-over point to oscillatory dec
density. For even higher density, x and k' become complekva,
complex conjugates k = kg + ikg and K = kg — ikg. Aheyprefagtors in Eq. (43) become

nd A" = |A'| exp(i);), where ¥

(44)

shift. This is the decay behavio
can be more than one air‘B‘kiomplex—valued solutions to Eq. (39) giving other oscillatory

In this case the decay length i iv\Byg)\ = 5;’ the wave length is 27 /kg and ¥ is a phase
%nonly found in molten simple salts. In general there
contributions but with larges ss, so they decay more quickly with r. There can also be both
plain exponential And cilla{ﬂory terms at the same time. In the present work we will mainly
consider the | 'IN, irrespectively whether it is plain exponential or oscillatory.
The crogs- db
after John, G4 Kirkwood who already in the 1930s showed the existence of a transition to

to oscillatory decay is often called the Kirkwood cross-over point, named

oscillftory behawior for electrolytes.[47, 48] The deviation of x from rkpy and the appearance
ofoscillatory/decay occur in theories that treat all ions in the electrolytes on an equal basis,
rather thyn, as in the PB and DH approximations, treat the central ion in a different manner
L e rest of the ions. This is demonstrated in simple fashion in Ref. [49], where it is shown
that even a DH-like approximation can give rise to these behaviors if all ions are treated
on an equal basis. The same is true in, for example, the Mean Spherical Approximation

(MSA),[50] the Modified Poisson-Boltzmann theory by Outhwaite|51, 52| and other fairly

simple approximations.|53|

18
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wver since the work by Kirkwood, several authors have investigated the exponentially
PUb”Shi(%‘ ying contributions, the transition to oscillatory decay and the behaviors of the decay
lengths and the wave length for electrolytes with spherical ions. More recently, a detailed

analysis of the decay behavior of electrolytes including the Kirkwood cross-over has been

made in a Generalized Mean Spherical Approximation by Leote de Carvalho and Evans.[54]

potential and the pair distribution functions see Ref. [55], whergfa iigher order terms

For a MC simulation study of the leading terms in the decay b dor of the electrostatic
are considered using a DIT analysis. For the dense ionic systéms treated in the current paper,
the work by Keblinski et al.[6], mentioned above, is par cfﬂ)rly evant. They have made
systematic molecular-dynamics simulations for varioms.co 'gi‘(;ffs from the plasma to the
molten salt states. One important fact shown in Refsy |6, 5@ is that the leading decay term
given by Eqs. (36) or (44) gives in many cases a @d scription down to surprisingly small
distances r; in some cases down to a couple o 'oni(ii?ameters. Thus, the decay behavior
given by the leading asymptotic term is noi litnited to very large r. An analysis of the leading
decay is therefore of relevance for a lar &the range of the electrostatic interactions.

Let us now consider the decay be axd% 0f@F 0w () in more detail. When the solution  to

Eq. (39) is real, the screened Co%ote\n’nial decays like
_c (45)

~ r— 00
W 4r€teqr’ ’

)‘(FJ) = g + ! /dr cosh(kr)x*(r) (46)

2e9k?
3, 0 A = [4nEM )7L Note that the quantity £ is different from

where

as shown in Appefidix

£7. Both &°F

Ny the role of an effective relative permittivity of the electrolyte and
both are e ui in terms of the polarization response function x*(r).

As wehave seen*Eq. (39) have in general several solutions, each of which corresponds to
a ternfl in ¢, jdike in Eq. (45), but with larger values of # (shorter decay lengths), cf. Eq.
(43)«. Thege &rms have other values of £ = £ (k) since these quantities are evaluated at
th respé}tive x value, for example A’ = [47E(k')eo]71.[36, 55| Likewise, & = £*(k) has
Hﬂ?re\n values for each of the terms. Note that each of the terms in ¢g,, with different decay
lengths gives a contribution to 1; with the same decay length and likewise a contribution to
w;; with this decay length.

When the solution s of Eq. (39) is complex, the parameter £ = £ (k) = £ (ky & ikg)

is also complex so we can write £ = BT exp(d-idg) where ESf = |€°| and Jg are real, and
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e have when r — oo

Publishing . e cos(kar + V)
¢Cou1 (T) 27TE$,H€07“ (47)

so B = [2mEfgg] 71 and ¥ = Jg. Here EST plays the role of an effective relative permittivity
of the electrolyte.

As shown in Appendix A 3, £T can be written as

E570) = [amt) + | <\ (48)

Thus both &7(k) and £ (k) can be expressed in terms of €.ee(k). They differ by the second

term in the square bracket in Eq. (48). As we have see e@ contribution to ¢¢, () with
~—

a different decay length has its own values of £ = EilrNand & = £ (k) and the absolute

values of them has the roles of effective permittivities "soci}ted with the contribution.

-

C. TIon pairing ‘\\L—

Let us now consider the possibility ien,gling. Such pairing in simple electrolytes is in
the general case not an actual association ofianions and cations; it is rather a question of a
ionsfo be close together, i.e., that the pair distribution

the anion-cation attraction a effects of ion-ion correlations. Such strongly peaked pair

large probability for anions and €at

function g;;(r) is very large fér 7%\1 ; where the ions are close together. This is due to
distribution at close a roﬁjs certainly a nonlinear effect and is therefore present in the
dressed ion charge ditributiondp;(r); it appears as a peak of charge with a sign opposite to
that of ¢;. This pfeanssghat/p;(r) has a point charge at the center and a very large peak of
opposite chargeiat thewanion-cation contact distance for all species involved in ion pairing. It

is of coursea ssible to have a system where non-electrostatic attractions between anions

and cationg edhance pairing.

e the ent theory is exact, the influence of ion pairing on the value of x must be
in §he values of £ and the dressed ion charges g/. All other quantities in the rhs
electrolyte, the dressed ion charges ¢7 and ¢* will be small since paired ions are in
e contact with an ion of opposite charge (included in the dress) forming an electroneutral
entity. Paired ions thus do not contribute to ¢, which is an average over all ions of species [,
while unpaired ions do. It follows from Eq. (41) that small ¢ values make x small and hence

the decay length large (for details see below).
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AI P T'urthermore, the pairing affects the value of £ = €,,(ix). By inserting Eq. (13) into Eq.

PUinShi(ﬂlg we can Write
3 b/ o [sinh(kr) — kr
& =1-— A o 4
r €0 zl: o v (k1) "

71—£Z w (= [ davrorr) + 0)
- : aimy 3! Pi
8 L *

B Zn}) Elez (2) n = m] (51)

of the charge distribution p;(r). When & is small 8‘;:( - B> nPqm;® /(6e0) = Ereg(0).
de

K~
Consider a symmetric electrolyte with numN@ ni =nP =nP. Let us assume that
3

the ions have hard cores and say that a fu{ﬂe
average. The contribution from the pa&\m‘{g)eak of opposite charge in p;(r) at contact,
9

r = a (the anion-cation contact dis n.;s, respond to a total charge —&q;, which we can

approximately express as a delt n A
as a three-dimensional charge’densi{y
ermsin

i0
“(r) into the definition of m;@), we obtain the result

the ions are involved in ion pairing on

n at r = a, namely —£q0(r — a)/(4ra®) written
x) is the one-dimensional Dirac function). When

we insert this delta function t

—a*¢q;. Thus, in Eq. (5 v?e\hife a contribution to £ equal to 83", nP(uP*)?/(6e0), where

Mfair = |q|a is the d<c;1:<1 nehit of an ion pair. Since /ﬁair = u‘jair = pP*" this contribution
(

equals £Bn®(uP*)%/

, which is independent of . As we will see in section ITIC, where

ion pairing is «discus further, this contribution to &' corresponds to the “self-term” in

the dielectric regponse for a dipolar fluid. Effects of, for example, dipole-dipole and charge-

su cientSthat an ion is surrounded by several ions of opposite sign that it attracts strongly
'm'?vglous reasons — a situation that is encountered many times in a dense ionic liquid.

f the values of ¢/ are sufficiently small, irrespectively of the reason for this, the decay
parameter & is small and hence the decay length large. This can be concluded from Eq. (41),

2

where we can see that k* — 0 when ¢ — 0 for all [, since & approaches the finite value

€reg(0) when k — 0. If €,64(0) is large, x* can be small even if the ¢ values are not very small.
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AI ph( value of k? depends, of course, also on the higher order terms in Eq. (51), but since their

PUb“ShlsIhgl is of the order of k2, their contribution is not very important for small x. Thus, small ¢}

values for all [ and a large value of &.,(0) both favor a large decay length.

III. TONS WITH ANY SHAPE AND ANY INTERNAL CH??GE DISTRIBUTION

%Mmy shape and any

internal charge distribution. For simplicity we restrict ourselxgid particles that are not
ut

In this section we treat bulk fluids consisting of anions and

polarizable. Our main purpose is to investigate ionic liquids; e theory is also applicable

to electrolyte solutions with a molecular solvent. The.chargé distribution inside an ionic or

—-—

polar particle can be a continuous density or a set of point eharges (defined by a set of delta

functions). For a particle of species i the interna@iarge ity is given by o;(r,w), where r
is counted from the center of mass of the partié%@ the particle’s orientation described

by the three Euler angles (¢,6,7) in the l&ﬁ%oﬁ‘ frame. For a linear particle only the

azimuthal and polar angles (¢, #) are n dhﬁce e third angle, 7, is selected as a rotation

around the symmetry axis, so it is I@We we use w = (¢, cosf, x)/(87%) and for the
N

linear case w = (¢, cosf)/(4m) asgorie oftal coordinate; both have the property [ dw = 1.
The total charge of the par ic&\

\ = /drai(r,w)

en I@The dipole moment of the particle is given by
£
4

4i
ep
/ p(w) = /dr ro;(r,w) (53)
and the qua u%%ﬁent

/

(52)

is, of course, ind

0,(w) = + / dr [3rr — 120 (r, w), (54)

[\

£
- £
Whermi ntity tensor: I, =1, =1,, =1 and I,,, = 0 when v # v/ (this definition of
up

quadr oment differs by a factor of 1/2 from the definition used, for example, by Gray
an Gub}ins[56] and Jackson.|[57]) The higher multipole moments are defined from

w\ MO (w) = / dr Py(r)oi(r, w), (55)

where P;(r) is a polynomial tensor of order [ defined in Appendix B (it is called the Legendre
polynomial tensor[58—60] and is symmetric and traceless, see also Ref. [38]). We have Py(r) =

1, Pi(r) =r and Py(r) = [3rr — r20]/2, so ¢; = MEO), w; = MZ(-l) and ©; = M?).
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Publishing,

Jonsider two particles of species ¢ and j with centers of mass at coordinates r; and ry and

atations wy and ws, respectively. The pair interaction potential between the particles is
(T2, W1, wa) = U??(I‘m,wl,wﬁ + Ufjl-(r12,w1,w2),
where uf? is the non-electrostatic interaction and the electrostatic ?e is given by

Oﬁjzat, ) (56)

f;l has a short

“2‘(“2""17“’2) :/dr3dr40i(1‘13,w1)¢cou1(7"3

as illustrated in Fig. 1. Like before we assume that the non-electrostatic part u

range and is strongly repulsive for small r15. It is other

ro, respectively. They ha rientations w; and wo and internal charge densities o;(r13,w;) and

Figure 1. A sketch of twetions of species ¢ and j placed with their centers of mass at r; and
)

0j(r24,w2), respecti vﬁler?e ch vector ri3 and ro4 starts at the center of mass of the ion. The

charge densities Z strated as color shades varying between red (positive) and blue (negative).

These densiti i@raet via the Coulomb potential ¢coul(734), giving the electrostatic interaction

uf}(rlg,w wgz, betwgen the ions as shown in Eq. (56). An analogous illustration applies to the

screengd-elect td{ic part of the potential of mean force wf}(rlz, w1,ws2) between the ions as given

in q. (W, wl}re the dressed ion charge densities pj (r13, w1) and pj(ra4, we) interact via the screened

0j p;hess, respectively, and are non-zero both inside and outside of the ions.

The average charge density around an ¢ particle with orientation w; is given by
pi(ris, wi) = Z/dr4dw4n?9ij(r14,w1,w4)0j(1'43,w4)- (57)
J
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Publishing
pEOt(I‘lg, wl) = Ui(r13, wl) + pi(rl?n wl) (58)

and the average electrostatic potential around the particle equals

Yi(ri3, wi) = /dr4PEOt(1’147w1)¢00u1(7“43)/ (59)

The vector ry3 is counted from the center of mass of the ¢ parti e’ijmm three formulas.

A. Polarization response ‘)\

—~—

—
Let us return to the case treated in Section II A8, whexe an external electrostatic field

E™(r) = —V U™ (r) polarizes an unperturbed Qj: liquid and gives rise to a polarization
charge density pP°!(r). This charge density origfsaxsff:o} deviations in particle density from

the bulk values n (for all j) caused by th&%te;el field and from net orientations of the
particles in the field. Say that the res lthﬁw r density equals n,(r,w), meaning that
n;(r,w)drdw is the average number ofjx‘EcTe‘s with orientation within dw around w and
with centers in the volume element dr}uhd the coordinate r. We have

I'3d(.d3nj (1'3, (.U3)O'j(r32, (.4.73).

The total electrostatic t&bBl U(r) is, as before, given by Eq. (23).
The number dengity n;%an/ be written in terms of a potential of mean force W; that

/
ﬂVVj(r,w)), so we have

satisfies nj r, w

p Z/drgdwgn eXp( BW (1'3,(4)3))0'](1'32,&)3) (60)

We now ¢ si{ier he case of a weak external field (in the limit of zero field). Then n,(r) is

close is small and the exponential function in Eq. (60) can be expanded to
e obtain

5

p01<r2> = Z / drgdwgnlj’ [1 — 5VVJ (1‘37 (.4.73)] aj(r327 w3>
= —5 Z / drgdwgn?VVj(rg, wg)O'j(I‘gg, w3) (We&k ﬁeld) (61)

because ijdrgdW3n?0'j(r32,W4) =2, nPq; = 0 by electroneutrality. The deviation in

density from the bulk value and hence the deviation of W; from zero are due to the interactions
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with the total electrostatic potential U(r). Since the electrostatics is nonlocal, as
PUb“ShI('ﬁg( ussed in Section ITA 2, and since W; accordingly is a linear functional of ¥ when the

latter is small, we can write
Wj(rg, UJ3) = /dr4\1f(r4)p}‘(r34, (A.J3) (Weak ﬁeld) (62)

(The existence and uniqueness of pj follow from Rietz’ represent ion theorem in this case

r’) Eq. (22), but the

too. See also the comment on the functional derivative 6W(x;
coordinate r should be replaced by r,w in 6W; and pj
By inserting Eq. (62) into Eq. (61) we can write after

pol — _ﬂZ/qu |:/ drgdwgn p] Irss, W I'32 I'4) (We&k ﬁeld)

f the order of integration

and hence we obtain (cf. Eq. (24))

Pl (r,) dr4\IJ EQN (weak field). (63)
“(rag) = &\W P (T34, w3)0(r32, w3). (64)

The function x* is sphemcally%}xF since we have integrated over all orientations w3z and
to t

with x* given by

since all functions here refer roperties of a bulk fluid. This relationship constitutes

the generalization of ErQee also Ref. [37].

B. Screene oul interactions and é(k)

Let us app t ese results to the potential 1; given by Eq. (59), which satisfies the Poisson

equation githdp!°® in the rhs (cf. Eq. (8)). We introduce the dress of an ion in the same way
as forQa‘bﬁjia ions, Eq. (14), by removing the linear part of the response to ¢;. We thereby

obtain Poisson equation in the form
3 —eoVi(r, w) — /dI'/Q/JZ'(I'/, W)X (|r — 1']) = 0i(r, w) + p(r, w), (65)
~
ich has the solution
hir, w) = /dr’ (0:(r, ) + pi"(r, ) G (|r = 1']) (66)
— [ o w)otu(le - v (o7
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AI Hh( re ¢cou1 satisfies Eq. (17) like before. In the last equality we have used the fact|37] that

PUb“ShIH-*ge quals the dressed ion charge density also in this case, p; = o; + pi™*. Furthermore, the
screened Coulomb potential ¢¢,,(r) decays|37| as in Eq. (45), i.e

—RKT

Bon(r) ~ gm0 (65)

when & is real and as in Eq. (47) when & is complex.
As mentioned earlier, the results in Sections ITA 3 and II a't-s%&m general Since
Oéom () satisfies Eq. (17) like before, its Fourier transform i§ given by Eq. (35). The decay
parameter k is still a solution to Eq. (39), which is equiva \ =0 and, as we will see,

to Eq. (41). Furthermore, £ is still given by Eqs. (4 an

An explicit expression for the dielectric function ‘€ e obtained by inserting the
Fourier transform of Eq. (64) into Eq. ( aln
B

J
where (-), is the average over the orieﬁ%&\&g\\&wﬁhis average is a different way to write the
an

integration over orientations in Eq. ( 4~)‘S
(64) is not a convolution, but it XUId ei r34 were replaced by ry3 = —r34. Note that the
n

rhs is 1ndependent of the dir t\ e wave vector k since the average over w is taken.
We have €(k) = €eg(k) + Esing (B With &g (k) and &.(k) defined as before, Eqs. (30) and
(31). For k =0 the su %69 is equal to Zj n;’q;qj, where

/ £ q; = p;(0,w) /drp;(r,w)

is the dressed 1% chagge for the present case (it is, of course, independent of w), so the
f

rhere —k appears in p; since the integral in Eq.

expression I' €sing(k) is valid in general. It follows from the same arguments as in

Section ITB 1Ahat the decay parameter x is a solution to the same exact equation as before
> ned 4[8*( )€o), Eq. (41). The sum > n7q;q;, which also occurs in the coefficient

in fr.QSk in €sng(k), can alternamvely be written in terms of various moments of p*,

se Appeﬁxdm B, Egs. (B35) and (B36).

ﬁ& expression for £ in terms of p; is more complicated than Eq. (49) of the previous case

with spherical ions. We can obtain an explicit expression for £ by removing €gng (k) from

Eq. (69) and inserting k = ik, whereby it follows that

5 = Erogiv) —1——Zn < —kk, )5, (kk, w) — ﬁ;’f(O,w)&j(O,w)> ‘ . (70)

o K2 wlk=ik
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PUb“Shmg] 'inally, by applying Eq. (62) to the tail of the pair-potential of mean force w;; between
two ions of species ¢ and j separated by ris and with orientations w; and ws, respectively, we

obtain (by letting v; take the role of W)

wij(T12, w1, wa) ~ /dr4¢i<r147w1)p;(r247w2)7 ?J—> Q.

By inserting Eq. (67) into the rhs and defining \
wfjl-(ru,wl,wQ) = /drgdmpz i3, W) ul (71)
for all r12, we can write this as (cf. Egs. (20) and (21))
w;;(r12, w1, wa) ~ r12, ' 2 — 00. (72)

7 -
between the charge distributions of the t

Thus the ion-ion interaction is given at large a ces by the screened Coulomb interaction
dressed ions. As we have seen,[43] wj is a

contribution to w;; that is relevant for all distances™r;, and not only large ones. For the cases

S at\“lstances and ¢¢,,,; decays slower than p; for

considered in this paper wy; ! domina
all 7. As mentioned in the Intro ctloﬁr&experlmental surface forces at large separations
are in agreement with a do an ectrostatics. Eq. (71) has the same form as the

Coulomb interaction in Eq. ( n be illustrated in the same manner, Fig. 1.

C. The relative er ‘htles &Y and Seff vs. the dielectric constant ¢,; ion pairing

As we have s he ectrlc constant €, for a solvent, which appears in the expression (2)
for the screening decay gth in dilute electrolyte solutions, is replaced by the effective relative

permittivity 8* the corresponding expression (3) for concentrated electrolyte solutions

and ionig_ i 1ds/ The physical meaning of £ = €.4(ik) can be made clearer by utilizing

expansions 0‘5 (k) derived in Appendix B. Let us first consider the Taylor expansion of

e () gisve y Eq. (B23)
\ N Ereg(k) = b + b3K* + b3k + O(KY), (73)

whare (see Eq. (B21))

) B 1 .1
b0:1+€—02n;? SHy - 1 = (gm m® + gm®) (74)
j
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defined in Eq. (B22) [similar expressions for b} with v > 4 can be obtained from

Publishigg, Egs. (B15) and (B19), see Appendix B|. In bf we have

() = [ derp(eie).

i.e., the dipole moment of the charge distribution p}, and

@@:/mﬁ@m@ ff\\
) 2
m; :/drr o(r,w), \
).

which are the second moments of the charge distrib ions and oj, respectively. The dot

product p; - pj and each second moment are indeperngent oSthe orientation w. The symbol

O(k”) in Eq. (73) means k” times a function thaf stays when & — 0.

By inserting k = ik in Eq. (73) we obtain [cfEq. @4)]

ﬁ—%w@—%\3¥¢@#+omw (75)

i
Note that the term proportional to ¢, b; is the same as the corresponding term in
Eq. (51) for the spherical case %t se m;~ = 0 since the ions have only a point charge
at the center and p; = p3 ﬁXefourth moment term in Eq. (51) contributes to b3,
see Eq. (B22). For cases Wlth ve Small Kk, i.e., when the screening length A is very long,

EF ~ b = Ereg(0). Sinc 7?§5 (B25)]

Sﬁ—% 2b3k2 + 3bk* 4+ O(KS), (76)

we also have ,‘3‘ reg in such cases.

Let us om}) Wlth a nonelectrolyte, where €(k) = €.¢(k) and hence where limy,_,o €(k) =

bg- his Cage hdth ¢; and ¢ are zero for all j and only the first term inside the sum in b

), so the dielectric constant is

ﬁ
k’ & = =1 + — Z n;p; - p;  (nonelectrolyte). (77)
\ S

is is a classical expression for e, which can, for instance, be found in Refs. [61, 62| for

L]
D
=
<
—
~—

a pure dipole fluid.[63] Note that for cases when the molecules have higher order multipole
moments, still only the dipolar term with ;- 7 contributes to €,, a well-known fact. Because

x = 0 for a nonelectrolyte, we have £ = ¢, and £ = ¢, in this case.
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= pj + p"* we can write
Publishing
pi(w) = /dr rp;(r,w) + /dr rpd S (r,w) = p;(w) + pd o (w)
and hence
6 ress
g =1+ 32 Z n?,ui + Z n?p,j . /,L;l (none?ztrolyte), (78)
J J

where j1; = [p;]. The first term in the square bracket is a dipo r‘Sehsm” and the second
term is the contribution from intermolecular correlations.

For an electrolyte, b5 and hence £* and £ contain tHe Nolar term as a nonelec-
trolyte (the value of the term is, however, different), butithe cond moment terms in Eq. (74)
contribute as well. Since k # 0 the higher order terms in E(ﬁ (75) and (76) also contribute,

but let us focus on b to start with. The remaini@erms are treated in Section IIIE.

It is of particular interest to consider contribytiong t0 £ from ion pairs. The ions in an

ion pair belong to two separate species, b&pa s are held strongly together it would be

a good approximation to consider themfas.a séparate additional species. The fraction of ions
that remain unpaired should, of coufse, stillhe treated as belonging to the ionic species. As
trolfte with spherical ions of density n® = nb =nb. Ifa

an example we take a symmetric €lec %
fraction &£ of the ions are invo e@n

airing, the ions pairs considered as an electroneutral

species would have number densitwn’. . = énP. The dipolar self-term from this species equals

pair

Bng i (11P27)?/ (3e) [cf. q.A(VXS, where pP27" is the dipole moment of the pair. Let us compare
this with the result

e obtdimed in the discussion of ion pairing in section II C, where we did
not distinguish paire d ufipaired ions. The ion pairs then gave a contribution to £* equal
to £BnP(1Par)%/ 3Nic originates from the second-moment term containing qlm;(z) in
Eq. (51) [here

1i$ term is included in by, see Eq. (74)]. This result is the same as that from
b

since &nP = Npair- Lhus ion pairs treated as separate ions contribute in

pairs treated as dipolar molecules. In addition there are, of course, further

between ‘)on pairs correspond to contributions to the four-particle correlations between the

?e‘pyir&te ions. All such effects are implicitly contained in p; for all j in an exact theory.

n general, a particularly strong association of ions into pairs can, for example, be due to
short-ranged interactions like hydrogen bonding or due to an unsymmetric charge distribution
with a patch of negative charge on the surface of one species and a patch of positive charge

on the other. These cases are all included in the present formalism. Extensive ion pairing
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ould make ion pairs in the ionic liquid to function like a dipolar solvent for the remaining
PUb”Shiunrga ssociated ions. Then k can be real valued and small, so the screened electrostatics would
be similar to electrolyte solutions at small to moderate concentrations. It must be stressed,
however, that actual ion pairing is not a necessity for this to happen. Strong attractions
between anions and cations can be an effect of many-body ion-ion correlations and transient
association complexes can be quite different from ion pairs. In gg ral, association should

be interpreted in terms of how the ions correlate to each othe ra‘ﬂﬁer than in terms of well
defined long-lived complexes. The latter may, however, existxi
I

In exactly the same manner as argued at the end of eé@)n , one can show that the
—

decay parameter « is small and hence the decay lengtli dlarge if the values of the dressed ion

charges ¢; for all j are small, irrespectively of the reason for bhis. Small gj values and a large

value of b = €,,(0) both favor a large decay length. ﬁjl in a dilute electrolyte solution and
t

cular cases.

an ionic liquid with x ~ 0 we have £ = €, ormer case we have €.,(0) = ¢,, i.e.,

(0).
the dielectric constant of the solvent, whil ?\1\% er case the quantity €..,(0) is something
quite different since it originates from &ﬁlnd includes contributions from the last two
ur

terms in the square bracket in Eq. ( rmore, in a dilute electrolyte solution ¢; ~ ¢;

‘ -y
‘b\t\o are considering here ¢ ~ 0. The decay length A is
. 1 ]

for all j, while in the ionic liquidﬁ
large in the former case since(qk\(;%

in the letter case \ is large since @ for all j are small (and possibly £F large). Let us now

return to the general CQ
£
AN

D. Anis rogy\o\be screened interactions and influences on the dielectric behavior

nic species are small (and possibly ¢, large), while

As a Pweparation for a further exploration of the screening behavior of ionic liquids, in

parti@e operties of the relative permittivity £ and the decay parameter r, it is
t r

rite the expression (70) for £F and the equation for  in yet another manner. The

u
original é);uation (39) for k can be written as

< »
_€Of§2 _ /dr//ens-r X*(T”),

where 8§ is an arbitrary unit vector. By inserting Eq. (64), setting r’ = ryo = r3p — r3y

and realizing that any two of ry, r3 and ry can be selected as independent variables in the
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Publishing

egrations for a bulk liquid we obtain

gok> :52/dwg/drgdr4e“§'(r32_r34)n?,0;(r34,wg)aj(rgg,wg)
J

= ,B Zn}) / d(.dg / drgge"é'r”aj (I‘32, (.«J3) /dr346_”‘§'r34p}f (r347 QJ3)-
J
This can be expressed as /\
£ Y

K2 = = D nk{(Q;(8, ws)QT(—, w)w\ (79)
J
where we have defined 3
~

- P
Qj(f,w) = /dr’aj(r’ w)e’“s (80)
Qeff /dr/ o I'/, KT (81)

-
Since the average over the orientations is a\m (79), the rhs is independent of s.
Furthermore, Eq. (70) can be writte K&(ﬂ Q; and QF

E=1 P Q™—k, w)Q;(k : 82
r— + T T o j ‘L_vw) j( 7w)_qjqj W’ ( )

EoR -
where we have made the iden X\

drpj(r w)e“kr = QEH(k w) (83)
and likewise for o;. hgﬁrs quality in Eq. (83) follows from the definition of the Fourier
transform; the r tmg ral is a kind of Laplace transform, cf. Eq. (42). (For completeness
we note that n alternatively be obtained from é(ix) = 0 by inserting k£ = ix and

k = kk in Eq. , using Eq. (83) and replacing k by S.)
Qfo is, fgct/an entity that gives the magnitude of the electrostatic potential from a j

ion f l-\
ion fo arge
5

}ch\lmphes that the leading term decays as ;(r,w) ~ Q¥ (¥, w) exp(—xr)/(4n&Meor).

istances|38|

Vi(r,w) ~ Q5 (B, w)diou(r), T — oo. (84)

wise, Q; gives the magnitude of the screened potential from the internal charge density

oj (1.e., without any contribution from the ion cloud)

U (r,w) ~ Q;(T, w)ocou(r), r— oo (85)
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y is defined as

0 (r,w) = / dr'o, (¢, w)gbom(Ir — ©').

This can be easily realized from the fact that

/dI’IUj(r/a w)as*(]oul(‘r B rll) ~ /dr/aj (r,’ w>47rge? g I‘/|

when r — oo. Since 5
e—n\r—r'] e—n(r—f"r’) e L, ;
|r — 1| ~ r T oW H\S
'h\
where t = r/r, it follows that o
/-u e 5

7 dr’
Y7 (r,w) ~ / r'o;(r', w)e” 471'5‘5607“ 00,
which is the same as Eq. (85). Eq. (84) can e%\&e‘d"from Eq. (67) in the same manner.

The dependence of QS*(,w) on ¥ show potential 1;(f, w) from an ion varies in

different directions — a behavior that di MS an electrolyte from a nonelectrolyte; for
the latter the potential far away from }T}r@ istribution is independent of the direction and

is proportional to the total charge istribution. The fact that the direction dependence

of the electrostatic potential p hen r — oo in an electrolyte, which incidentally is also

valid in the PB approxi NKL ] has important consequences, see for example Ref. [65].

The leading term for otential of mean force is given by
e—li’f’lz
w; W (T12, w T, Ws)————, Ti2 — OO 86
zy 1 12, 1 ( 12, 2) 471'57?3807“12’ 12 ( )

Note that th Vec r12 n Qeff for the 7 molecule located at r; points towards the j molecule
located r2, —T5 In Qeff for the j molecule points towards the ¢« molecule.
direc /{ndependent (isotropic) parts of 17 (r,w) and 9;(f,w) can be obtained by

taking'ghe ax&rage over all directions r. For ¢7 we have

b <w;(r7w)>f- ~ <QJ(f’w)>f ¢Eoul(r) = Qj¢*(]oul<r)’ r—= 00,

N
ere (distinguish Q, from Q;)

KE-r’ 1 s KEr!
Q; :/dr’aj(r’,w) <e >r :/dr’aj(r’,w)ﬂ/dre

= /dr'aj(r/,w)—smhmr/) (87)

wr!
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i 1dependent of the orientation w (in the integration I represents the polar coordinate
Pub“Shgﬂ& es). Note that Q; is in general different from the charge g; of the ion defined in Eq. (52).
Likewise, we obtain the direction independent part of 1;(T,w) as Q;HQS"(}OHI(T) where

o5 = [ () ) (58)

Kr!

defines the effective charge for a j ion. /
The anisotropy of the potentials 17 and 1; expressed by the'y aendence of Q;(r,w) and

Qjﬁ(f‘,w), respectively, can be expressed in terms of a kind of'multipole expansion. For the

former we have[38| ‘)--\
Q;(t,w) = Q; + xQ' S (89)
where
0V(w) = (21 + 1)1 ’éi’iﬁ? (90)

for [ > 0 constitute generalized multipo W (2041 = (21+1)(21—1)-...-3-1 and 4;(x)

is a modified spherical Bessel functindi;(z) j;(iz)/i', where j;(z) is an ordinary spherical

Bessel function|. In the limit & g(]\t §e moments reduce to the ordinary ones, Mg,l) (w),

defined in Eq. (55) since i;(x Q‘Q + 1) when z — 0. Note that ig(x) = sinh(x)/z
and Py =1, so Eq. (87) can also be written as in Eq. (90) with ng) = Q.

When the decay len h%i significantly larger than the molecular size, the generalized
e

multipole moments @ ,:}r ally equal to the ordinary ones, Mgl). This can be seen from

Eq. (90) since un?ér these cipfumstances i;(kr') / (k') ~ 1/(2141)!! inside the molecule (where

o; # 0), whic imfm\Khat le) (w) ~ Mg.l) (w); for example, Q; ~ ¢; and le)(w) ~pi(w).
Furthermo Adarge decay lengths (small k), the multipolar terms in the expansion (89)

ry important since they have the factor ' in front of them.

~ = O +rpf(w) 2+ 32 OF (W) B, 61
where
Q" (w) = (21 + 1)1 / dr Py (r)pi(x, w>zéii83’ (92)
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d Where we in the second line have used the alternative notations for the first few moments

Publishing - 0o
ps = "W and @5 = 9. (93)
Note, however, that the expansion for Q; in Eq. (89) cannot be written in a similar manner

with g;, p; and ©; since we have in general Q; # ¢;, Qg»l) # p; and Q§-2) # ©;. The latter

are equal only when x =0

The expansions for Q;(¥,w) and QS (r, w) in Eqgs. (89) and ( \wserted in Eq. (82)
in order to obtain the higher multipole moment contribution The resulting expression
is Eq. (B18), which is derived in Appendix B. This is th Momt of the discussion of
E! in the next section, see Eq. (97).

For completeness we note that the entire expressio for ths decay of ¥7 when r — 00 is|38|
1 R e*:‘ﬂ’ , A-. —K o 67""'
ArEefic, {Qj(r,w) + jgn.w)% + Qj(F,w) 3 +...,
"G w) = OW(w) - F ki O (w1
where Q}(f,w) = Q;/(w) T+ KT Q7 (Wi T

r- Q§-2) (w) - T+ ... starts with a quadl‘%um. Thus, when £ — 0 we recover the usual

multipole expansion for the potenti g qi/r+ p(w) - T/r? 41 0j(w) - T/rP 4.

Analogous expressions apply[38]
Eq. (84) is valid also whe exparameter is complex, kK = kg & ikg, provided one

L
adds the contributions to ; N of these two k values as explained earlier. We have

6_(H§R+1H$)T

7 (r,w) ~

.. sfarts with a dipolar term and Qf(f,w) =

& 6_(5%_1"5%)7'

off /

. QM w)——————, r—= 94
nEfellecyr — —J (t, >47TE$H6_“9E507“’ ' (94)

where /

AN

lued and the underscore denotes complex conjugation. Writing Qeff(r w) =

(¢ / with a real-valued ~;, we obtain from Eq. (94)

ﬂ
—RRT
ij (I‘, w) ~ |Q§ff(f" w)| m COS[KJ%T + 19E + ’Yj(f‘, w)]v r — 0Q, (95)

ﬁ
wgvekb(bh the magnitude and the phase of the oscillatory decay depend on the direction r.

\1‘§E@se, for w;; we obtain in an analogous manner

G H R e FRrT12
wz‘j(r127w17w2) ~ |Qf (1'1270-’1)Q§ (=12, wo)| m
X cos[kgT12 + Vg + 7i(T12, w1) + 7 (—T12, w2)], 712 = 00. (96)

Q¢ (,w) can also in this case be written as a multipole expansion, similar to the one above.
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The multipolar contributions to & and é(k)

Publishing

We have seen that & contains the contributions included in the dielectric constant e,
for non-electrolytes, as given by Eq. (77), but that there are additional important terms in
electrolytes. In particular we have seen in Section III C how second moment terms ensures
that the emergence of transitional electroneutral entities like ion gairs, give rise to effects

system. As noted above,
h} i.e., —bik? etc., also

contribute to & for electrolytes. While the dipolar co L:}ou QN

like those from an actual electroneutral polar species present in

since k # 0 for an electrolyte, the higher order terms in
; ;18 contained in

by, the corresponding quadrupolar term is contained in b3s AS“ean be seen in Eq. (B22), b}

—
contains the product ©;e©7, where ©] is the quadrupole mgment of the charge distributions

p; and the symbol e denotes a product of qanIL‘:pole ment components defined from
r @r z,y,z (in general, the e symbol

©;00; = > . 00xO] .., Where a and
denotes the full contraction product of thé\ze\ns;;;rg see Appendix B). The corresponding
in 0}

4

octupolar contributions to & are containe and the hexadecapolar ones in —bjk°

(not shown in Eq. (75), but see Eqe (B In addition there are various other kinds of

moments Contrlbutlng like ;- | drr r‘;*w) as shown in Eq. (B22). These kinds of rather

complicated contributions are una b in Taylor expansions of €. (k) and & = €eq(ik)

and the expressions become i 1nc r more intricate for the higher moment terms. We will

therefore utilize a different ansion.
A more straightfosvar ‘E‘;B\er to write a multipolar expansion of £ is obtained in Ap-
zﬁsi(}a of &eg(k) in Eq. (B17). The expression for £ is given in Eq.

pendix B from tﬁh)!
(B18), which ca Wt

-ﬁ
where
ks 4 = ;%" ~ 445,
M _ L0 Aef)
Q\ = sel
@ _ 2 502 Aef(2)
dji” = 5-Q7 ¢ Q;

135
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) (20 + 1) =

The product Qg-l) . Q;ﬂ(l) is independent of w. By using the notation in Eq. (93) we can

alternatively write the second and third coefficients as

1
1 _ (1), eff
@ 2 5@ eff \

ince d\” depends on k,

In contrast to Eq. (73), Eq. (97) is not a Taylor expansion ;

but these coefficients are much simpler than in Eq. (73) irb ,_‘g.}i.e‘y only contain generalized
multipole moments. The other moments (second, fofirth moments etc. of various kinds) in
the 0} coeflicients originate from the x dependen e_&& d Q;H(l) in dgl). A major point
of the Taylor expansion (73) is, however, to a\Lﬁhe‘Cynnection to the nonelectrolyte case

clear as explained in Section IITC.

-
Both Eqs. (82) and (97) are expressions%@ rms of the coefficients for the long-range
decay of the potentials 1y and ;. In th%equation we see that the generalized multipole
a

moments of various orders occur in W & erms. When « is small and hence the decay
length is large, the higher order texms in'Eq. (97) are not very important. Note that dgo) goes

to zero proportionally to k2 % , SO dg-o)/li2 stays finite (this term gives the second
in this h

moment contributions to b i it). Explicitly, we can write this term as

QY gl + ¢ |9 - ¢
_ .-

h B
Jjﬁ/drr2aj(r,w)31n (k1) — K1

(wr)?

A
Q\Jr qj/d”zﬂ?(r,w)smh((,i%‘ (98)

The last %}ta ns the same integral as in the expression for £ for spherical ions, Eq.
he

ﬂ
(49). In ¢t tter case, the second last term is zero since there is only a point change at the
cehter o

efion and Q; = ¢;. Furthermore, due to the spherical symmetry the dipolar and

al 1ultibolar terms in Eq. (97) are zero, so this equation reduces to Eq. (49).
Woted earlier, when the decay length 1/ is significantly larger than the molecular size

weshave Qg-l) (w) ~ Mg-l) (w) and then we can write as a good approximation

(1) ~ 1 eff
dj ~ _§p'j B
2 o 2 fF
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which can be inserted in Eq. (97). Furthermore, we have in Eq. (98)
inh - 1 m;
/drrzaj(r,w) [%] ~ 6/drr2aj(r,w) = é

since the square bracket is virtually constant inside the molecule./\‘“
n

When &« is small, for instance when there is a large amou o‘f)o pairing, a reasonable

approximation would be to set d§3) k* + ... ~ 0 and obtain

~1- 2 Zn [_ (Q)ngf Qeff T q] . eff + _@ ° Ge{f] (99)
] J J

135
The second term in the square bracket, &3

eff o
&4 /drr (100)

K2

contains contributions due to ion pairing&;cuss d in sections IIC and IITC. The third

term corresponds to the dipolar contribﬁcia\n\\nonelectrolytes, Eq. (77) [for nonelectrolytes
qu

ujﬁ = p;j since Kk = 0]. The dipolar 5& aipolar contributions are, of course, also affected
by ion pairing. All terms containgthe efieCts of correlations (via Qeﬂ, qj, ,u‘;ff and @e.ﬁ).
As we have seen in the previous\séetio

, in the limit kK — 0 we have & — b = €.4(0),

which is also the limit of themq 99) since Qeﬂ - qj, uj — p; and the integral in
Eq. (100) goes to mj( ) .‘H'ES(:e we have
1

7 n; [ (C]Jm(Q) + Qjm;(2)> LA IL;} (101)

£

when & in very.smalls
all contributions to £ in Eq. (97) apart from the dipolar term in Eq. (101)

e only term in the dielectric constant e, for a pure polar liquid) implies

‘Fesio ic liquids the second moment terms in Eq. (101) remain even when & is very small.
o

For completeness, we also give the expansion of é(k) in multipolar terms, corresponding to
Eq. (97). As shown in Appendix B, é(k) in Eq. (69) can be written (cf. Eq (B16))

§k) =1 b b DJ(O)(k) DW(k Dzka D® (k) 102
) =14 D | =+ DY+ DP MR+ DY W | (102)
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here the functions D (k), expressed in terms of the cartesian multipolar tensors ﬁ;(l)(k, w)

Publishing, &El) (k,w) |associated with p}(k,w) of 7;(k,w), and defined in Egs. (B13) and (B14),

respectively|, are given by

and, in general,
(20 + 1)*1!

il
(20 + 1)N]3

~*l)(k w)

—-—

DV (k) =

J

Dj(p) is the product of two scalars, Dj( ) is the dot product & two vectors (like dipoles) and
Dj(?) is the full contraction product of two secon (?rd tensors (like quadrupoles), etc. Due
to the dot and contraction products in the rhs,%all m?(k)
Note that the expressions for ﬁ;(l) 1) hEq (B13) and (B14) evaluated at k = ix

ents Q;ﬁ(l) and Qg-l) in Egs. (92) and (90),

functions are independent of w.

and

become equal to the generalized multi

respectively. The multipolar expansi in terms of the corresponding spherical tensors

'\
associated with p7(k,w) and & I\ iven in Eq. (BY9). Likewise, 1/é(k) can be expanded
in similar manners, see Egs. \ 31).
IV. SUMMARY A %CLUSIONS

V.

n Q&act statistical mechanical analysis of electrostatic screening in

In this paper/
and dielectric ON of ionic liquids and other electrolytes (under conditions outlined
in the Introd

ion). The free energy of interaction (the potential of mean force) between

constitueht_pdrticles of the liquid are investigated, with emphasis on screened electrostatic

interaftions.
arpitca *ha}es

he d§cay of the screened electrostatic potential and the free energy of interaction between

e ions and other particles can have any internal charge distributions and

par icles in ionic liquids can be exponentially damped oscillatory or plain exponential with
rge decay length. In the latter case the decay is proportional to exp(—«xr)/r for large r
and in the former case there is also a sinusoidal factor. Both behaviors are in agreement with
the exact analysis. The plain exponential decay can, for example, occur when there exist

high degrees of association between anions and cations — not necessarily from an actual ion
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but also from collective associations due to, for example, attractions resulting from

PUb”ShisQ& ng ion-ion correlations. The analysis in this paper gives insights into these matters in a
quite concrete and lucid manner.

In the exact Dressed lon Theory formalism used in this work, the nonlocal nature of

electrostatic interactions in electrolytes, which is due to the ion-ion correlations, is expressed

dress

J

in terms of “dressed ions” — a kind of effective ionic entities (“quasi-pargicles”) — each consisting
s dress is a well-defined

T'n)'

minus the linear part of the

of a bare ion and a charge density p surrounding the ion

part of the ion cloud around each ion (it consists of the clo

*

polarization response due to the ion). The total charg d‘e‘)sity : of a dressed ion is the

sum of ion’s internal charge density and p?ress. In DITthe :E‘E'é of nonlinear electrostatic

response and several complicated ion correlation effégts in "he electrolyte are included via

the dresses of the ions and other particles. Ther‘by, the D

formalism makes it possible to
express many features of ionic liquids and other“electrglytes in a linear response language — a
feature that makes DIT physically transp N et exact.

Several dielectric features of ionic L:ds\\mi other electrolytes are expressed in terms
of effective relative permittivities ( *sa%d c), which take some roles that the dielectric
constant &, has for pure polar li &sﬁing of electroneutral molecules. In contrast to
£-, which can be expressed s@m of dipolar features of the molecules, the effective

permittivities of ionic liquids have'gontributions also from quadrupolar, octupolar and higher

multipolar features of tlie (:‘o}jtuent particles. The meaning of polarity of an ionic liquid as
expressed by the pe

itt}'vi is'not the same as for a pure polar liquid. For ionic liquids with

small screening lefigth the difference is larger than for those with a large screening length.

The effecti erntigtivity £ occurs in the equation for the decay parameter s that in
e~§Ces the classical expression for the Debye-Hiickel screening parameter xpy

exact theowy r

2 _ _B bo gt
S " T Ewe ijnﬂ%’ 1%

2 1 I sinh(kr)

— [ =, (104)

where x*(r) is the polarization response function for the polarization charge density of a bulk

ionic liquid exposed to a perturbing electrostatic field in the linear response domain. The
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nction x* expresses this charge density in terms of the total field and is closely related to
PUb”Shiqug; static electric susceptibility and the static dielectric function [in Fourier space the suscep-
tibility is (k) = ¥*(k)dcou (k) and (k) = 1 — x(k)]. Egs. (103) and (104) are consequences
of the non-local nature of the electrostatics in ionic liquids and other electrolytes. Both x*(r)

and €(k) can be expressed in terms of pj for all species present.

The other effective permittivity £T gives the far-field magnitu he screened Coulomb
potential ¢¢,,(7), that governs the spatial propagation of t ele%ic interactions in
an ionic liquid and other electrolytes. When the electrostatic fteraetions decay in the plain
exponential fashion, ¢¢,,(r) decays like Aexp(—~r)/r orbx&r, where A = 1/[4n&cMe]
and the decay length is A = 1/k. For the exponenfially iped oscillatory case, the de-
cay parameter £ is complex-valued, k = kg + isg, and tll potential ¢, (r) decays like
Bexp(—kgr) cos(kgr + Jg)/r, i.e., with a decanggt = 1/kg, a wave length 27/kg and
a phase shift Y. Here B = 1/(27|E%|¢) a%!k‘giﬁen by the phase of £, which like & is
he

complex-valued in this case. Here |ET| ha‘&\ le/of an effective relative permittivity.

There are in general several terms in ﬁ'ﬁ-wi’ch different decay parameters, i.e., solu-

1

tions k, k' etc. to Eqgs. (103) and (1 SFQL he plain exponential case we have ¢, (7) ~

) \
Aexp(—kr)/r+ A exp(—k'r)/r V\M " and each term has its own value of £ = £°(k),
so A =1/[4rEM (k)ep) and A’ “%(K")eo]. The other effective permittivity, £ = £ (k),

has likewise different va

for each decay mode. There can also simultaneously be both

plain exponential andsosei terms with different decay lengths in ¢¢,(r). For smaller

r, short-range t?‘ [ith 091 decay behavior also contribute.

The average le}rsi’w: potential v); due to an ion of species ¢ and the screened electro-
static pair Ibal w$} between any two ions are determined for all distances by ¢, and
the dresséd ion charge densities p; and p; associated with the ions. These two potentials can
be obgaimed /simple application of Coulomb’s law with ¢¢,(r) inserted instead of the
us @_L nscregned) Coulomb potential ¢com(r) [Egs. (19), (20), (67) and (71)]. The same

lies ES ¥; and wfjl- for any particles present in the liquid in addition to the ions. The

'sqsee electrostatic pair potential wfjl- is a term|43] in the total pair potential of mean force

N
; and for the cases considered in this work it dominates in w;; for large distances.

Even if there are some oscillations in the interaction potential for short distances, the decay
of the potential can ultimately turn into a plain exponential one further out. What is sufficient

for the ultimate decay to take over depends on the system; in many cases the distances need

40


http://dx.doi.org/10.1063/1.4962756

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |
AI Rot be very large (sometimes as short as about a couple of ionic diameters). Whether the

PUb“Shlt'ﬂgi nate decay is plain exponential or exponentially damped oscillatory is determined by the
bulk properties of the ionic liquid and is common for the electrostatic interactions between all

particles of the system. The relative magnitudes of the plain exponential and the oscillatory

el

parts of the decay of wg;,

when present simultaneously, depend on the properties of the ¢ and
J particles and are in general different for the different kinds of icles in the liquid (the
same applies for the interaction with or between surfaces). T erﬁho be short-ranged
oscillations in w;; that are not governed by ¢¢,,(7). The exiStencesof such oscillations in the

interaction at small separations between two particles (or uﬁ)ees epends on the properties

S

of each individual particle (or surface) involved. Theyscan exist for some kinds of particles in

the liquid but not necessarily for all. 3

The static dielectric function can be writte asgsurﬁ)f two parts, €(k) = €reg (k) + Eing (k).
The singular part égng(k), i.e., the part tha€ diverges to infinity like 2 when k& — 0 for an
electrolyte, can be expressed in terms of }h@ed ion charges ¢; via a factor > ; n;?qjq;
which gives the magnitude of €g,g(k) [E %The remainder, the regular part €. (k), is
finite at £ = 0. The effective relative \rpi iv
(1 [Eqs. (40), (46) and (48)]. The physical meaning of

ties £ and & can be calculated from €., (k)

or the polarization response functi

these formulas is that the per ities are obtained from the polarization response function

l.a%w length scale corresponding to the exponential decay length

riatg in electrolytes where the potential is exponentially screened.

by extracting a compone

given by k, which is app

Experimental 0? ctital estimates of effective dielectric permittivities of ionic liquids must
correctly includ cw .
When ther Q

ransient ion pairing, £ and £ contains contributions from the ion pairs

ns at nonzero wavenumber k in order to be appropriate in general.

that are Sunildr to the dipolar contributions to the dielectric constant for polar liquids. In

iith a very large amount of ion pairing, the renormalized charges of the ions become

b

small, i.e., the screening length is large despite that the number density of ions n;

isMarge (n?

7 includes all ions of each species). In addition, when & is large we can obtain a

small k even if ¢} for all j are not very small. Note that ¢; can be small even in absence of
ion pairing. It is sufficient that there is a very strong effective anion-cation attraction so each

ion has an immediate neighborhood with a charge density of opposite sign that is brought
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ere for instance by many-body correlations among the ions, i.e., in addition to the bare
PUb“Shlzﬂg( n-cation Coulomb attraction. The value of &..(k) at & = 0, which is the limit of infinite
decay length (as well as infinite wave length), is appropriate as an approximation for £ and

&’ in any case with very long decay length, but not otherwise.

The decay parameter x and the permittivity £ can also be expressed in terms of particle

specific entities QST for the various species i present in the elect l ) and (82)].
A major role for this entity, which is defined in terms of p}, i to

of the average electrostatic potential v; due to a particle With 'entatlon w. For large r
this potential is given by 1;(r,w) ~ QST (¥, w)pg, . (7) )s

ive the magnitude

en al (with r counted from

the center of the particle). QST and thereby 1; depe e‘a‘i?ection of r, as indicted by
r =r/r . Likewise, the magnitude of the potential of miean fo&e between two particles at large
distances decays like ¢f, () times the product @he ffective entities QST for each particle
|[Eq. (86)]. When the screened Coulomb potential is exponentially damped oscillatory, each
particle contributes also with a directiona‘}e@ phase shift to the oscillations in these

potentials, i.e., in addition to the mag!ﬁxﬂgigressed by |Q¢H| [Egs. (95) and (96)].

The entity QS (#,w) can be resol effective charge, QS effective dipole moment,
s (w), quadrupole moment, ©f higher effective multipole moments of the particle.
This is the basis of an expansi &K&rms of the multipolar features of the constituent ions
[Eq. (97)]. Formally, this is m utilizing multipolar expansions of the static dielectric

function é(k) [Eq. (102)]. hermore, the expansion of é(k) is used to derive simplified

expressions for £ w, J 1S'spdall [Egs. (99) and (101)].

4
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pendix A: On dressed ion charge density, screened Coulomb potential and é(k)

<

n this appendix we derive some explicit expressions for the dressed ion charge density
p; in terms of other entities and consider some issues regarding the calculation of p; for an
electrolyte with spherical ions. Furthermore we investigate some issues regarding the dielectric

function €(k) and the screened Coulomb potential ¢, (7).
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Publishing

In this section we will show how to obtain the dressed ion charge density p;(r) and its
charge ¢ from other more accessible functions like g;;(r), 1;(r) and p{°*(r). Starting from the

Fourier transform of Eq. (19) and Eq. (35) we can derive

~ _ wz() _ 2~ 7 /
Filh) = = = ek e ﬁ;\\

o e (A1)

TL-6Y, qmtis(k) 1—62%@fw\ )

where we have used Eq. (A6) (derived in the next Appendix s

ion) and the Fourier transform

(=l

of Eq. (8) to obtain the last two equalities. If we know 1@@) or pi°t(k) we can accordingly
calculate p;(k). For k = 0, however, Eq. (A1) dannef.be used as it stands because the rhs

becomes indeterminate when k& — 0 since bot e nuferator and denominator go to zero

like k2. Note that that 83", gnbe( \K k — 0, which is equivalent|68] to the

Stillinger-Lovett second moment condl@he latter can be written as
Wd‘hﬁ 0t (1) = —6ey, (A2)

in our notation.

To obtain g} (k) for s make an expansion of the Fourier transform of pf°*
sm kr oot
k4
/wﬂrt»+y/ﬁﬁﬂw>+MW> (A3)

where we ave e anded sin(kr) in a power series and used the fact that [ drpi®(r) =0 due

to localele on eitrality. By inserting Eq. (A3) into Eq. (A1) and using Eq. (A2) we obtain

s 2050fd1' 7"2 tOt( )
F=5(0) = .
3 O e T

’I"I? s\mal k dependence of p; (k) can be extracted from Eq. (A1) in terms of higher moments

(A4)

of'!°*(r) from the expansion obtained by utilizing further terms in the & expansion of pi°(k)
in an analogous manner. This is useful since a direct application of Eq. (A1) for small % is

numerically difficult. From g} (k) one can calculate p}(r) and all relevant quantities like x*(r),

K, E, E* etc.
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AI More fundamentally, pi(r) = ¢;0® (r) + pdess(r) can be defined|35] in terms of pair distri-

Publishifg:, functions in a similar manner as the definition of pi(r) in Eq. (4), namely

dress
Z q]n gm

where gj;(r) is defined from the direct correlation function c;;(r ) ofhe fluid in the following

Q‘)\\\c{msfy the Ornstein-

h;j(r). The short range

manner. The total correlation function h;;(r) = ¢;;(r) — 1 an

Zernike (OZ) equation,|[70] which can be solved to obtain ¢;;(r
part of c;;(r) is given by ¢j;(r) = c;;(r) + /BQinqscou](T). un 5(r)=g;;(r) — 1 and
ci;(r) also satisfy the OZ equation,[35] so h};(r) and henc (&Qan be obtained from c};(r)

—

to do this conversion from

—
by solving the OZ equation once more. A numerlc&1icK u
gi;(r) determined by computer simulations is desérth ef [55] (see also Ref. [71]).

2. The reciprocal dielectric functio \\

The dielectric function in Eq. (28 c}&\ case of spherical ions be written

P

5 kQ ZQZn pz (A5)

where we have used Eq. ( ahN = 1/(gok?). By first inserting 1/(g0k?) = dcou (k) =
Gt (F)E(K) and then t %r transform of Eq. (19) into this equation we obtain

%n 101 ¢Coul ) ( =1+ 52% bwl ( )

This yields
1_BZ% b¢z - 1__2(1177’ ﬁ:Ot 7 (A6)

where he la equahty is obtained by using v; (k) = 5t (k)dcou (k). We can write this as the

Qre ssmn for é(k
1 .
3 ( ) =1- 80’%5@@(1{:)’ (A7)

N
where Soq(k) = Y2, aiq;[nydi; + >, nyn} hi;(k)] is the the charge-charge structure factor and

hij = Gij — 1.
The reciprocal dielectric function can be expanded in a power series 1/é(k) = by + bok? +

byk* +O(kP). The coefficients can be expressed in terms of pi°(r) as follows. From the second
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oment condition (A2) follows that by is zero, as it must since €(k) diverges at k = 0, and

Publishigg,, the £ term in Eq. (A3) we can deduce that

b= =g Sl [ der ). (A8)

 120eg

Likewise by can be expressed in terms of the sixth moment of pt°* (?/by taking the expansion
one step further. (For nonspherical particles, see Appendix B 4.
Since €(k) = [bok? + byk* + O(K®)| 7! = 1/(bok?) — by /(b2)?

dielectric function can be written € ng(k) = 1/(b2k?) and ave hawe €

3, the singular part of the
(0) = —by/(b2)*. The
Taylor series of €., (k) can be obtained by evaluating furt rus in the same manner. Note

that it follows from Eq. (A4) that the coefficient of € ~Ilg?k) 1§ . (32) can be expressed as

(12.080 _ l (A9)

B bt = -
o Z n; q;q; = ﬁ Zj @%‘W{apgm (’I“) bg >
P ? -

M Soo(k) and hence the 1/k? coefficient

rivative of the mean chemical potential with

where we have applied Eq. (A2). The k*

in €(k) can also be determined in term

respect to charge density by using h dynawic arguments.|72]

=

NN

3. The screened Coulo tial and the dielectric function

The decay behavior &(hg“) shown in Eq. (45) was derived in Ref. [35] from ¢, (k) =
[eok?e(k)]~* by resi@ 'in complex Fourier space (in Ref. [35] ¢¢,,(7)dq, where dq is
an infinitesimally/Sma oinf charge, is denoted 0¥ (r)). This decay can alternatively (and
equivalently) btaingd in the following, more elementary manner. Since the denominator

of ¢ty (k)dasadero at k = ir (and therefore also a zero at k = —ik), it satisfies £gk?&(k) ~

goC(k? +'w2 dn the limit k& — ik, where C' is a constant. This constant is equal to the limit

of k*d kﬁ(k%—k ) when k — ik. We have
K2e(k) [2keE(k) + k2dé(k) /dk

QS [EE { ok Lzm
kde(k)/dk

< - [

where we have used I'Hospital’s rule and the fact that é(ix) = 0. Thus C = £ where

k dé(k)
eff _ |V
gt = [Q—dk L (A10)
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|5 ) 1
Publishing Gt (k) ~ ST T (A11)

in the limit k& — ix. The rhs of Eq. (A1l) is the Fourier transform of the rhs of Eq. (45),
which hence follows. Note that since ¢;(k) = 5 (k)i (k) for spherical ions (from Eq. (19)),
we have in the same limit ¢;(k) ~ ¢ /[ o(k? + k)], where ¢ £ pi(ik) [the latter can
alternatively be written as in Note [46], cf. Eq. (88)]. This impli( t i(r) ~ ¢t (r)

1) = 5 (6)7 (K) ah)

when r — oo for spherical ions (cf. Ref. [35]). Likewise, sin
(from Eq. (20)) we have w;;(r) ~ qfﬁq;?ﬂqﬁ*coul(r).
To write £ in terms of x*(r), it is useful to write Eq &))Q ot — L [d(ke(k))/dk],_,.,

where we have used the fact that é(ix) = 0. By inserfing the ‘definition (28) of é(k), one can

write this as

g (A12)
Using Eq. (26), one can write Eq. (A12) a,
One can express £ in term of éeq(k)- i 1 . (29) into Eq. (A10) we have

geff — |:E dgsing(k>

k dé eq (k)
2 dk (k) + :|k; ik ’

2 dk

where we have used k[d(k~2)/

k déreg(k)l | (A13)

Eres(F) + 501

where we have usedhe }%D’c €reg (1K) + Esing(ik) = 0. This result can also be derived from

Egs. ( & /

Appe

b k) =1+ g_iz Z n? <,6_;(k,w)5j(k,w)>w , (B1)

ere

xpansions of é(k) for liquids with arbitrarily shaped particles

ix we shall consider the dielectric function in Eq. (69), which we can write

gik,w) = /draj(r,w)eik'r (B2)

and analogously for p;. Underline indicates complex conjugation. We will obtain a multipolar

expansion of €(k) by making an expansion of exp(—ik-r) in the expressions for 5; and 5} and
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AI Rse rt thls into Eq. (B1). Thereby it is advantageous to consistently utilize traceless multipole
Publishi WEinents of the kind used in Section T1T rather than multipole moments with nonzero trace like
a quadrupolar [ dro;(r,w)rr and an octupolar [ dro;(r,w)rrr moment. The latter would
appear if we do a simple Taylor expansion of the exponential function in Eq. (B2), i.e
> (—=ik -r)”/vl. Instead we will use the Rayleigh expansion|56] of the exponential function.
(At the end of section B 3 below we will make a brief remark on thedifference between the two
alternative multipole moments.) From the multipolar expansi 31)%{9, will then obtain

its power series expansion in k.

The method we use will also be utilized to expand 1/

k‘mive y the relationship
1 s

_:1__an<~tot( J
= 2 j J
E(k’) 60]6 ; - §

which corresponds to Egs. (A6) and (A7 bth&ll focus of Eq. (B1) to start with.

\ )
\

The Rayleigh expansion of thesex phhﬂl function is[56|

5\ i i (k) Yo (£)Yion (K), (B4)
where j;(z) is a spheri function of order [, Y},,(f) is a spherical harmonics with
representing the th@)&;ﬂt and polar angles (¢,,6,) and the sums are taken over [ =

<m

0,1,...,00 and

1. Spherical tensor expansion

l By inserting this expansion in Eq. (B2) we obtain

&j (k,w) = 4%2/(11“03 r,w)(—1)" i (k) Y (£) Vi (K)
and b %

(K
G jam (b, w) = (20 + 1)1 / drrlaj(r,w)](llir;)@(f‘) (B5)
We&wviite this as
\ < (—ik) )
ik, w —472 RSy ”a];lm(k;,w)Y}m(k). (B6)

Note that j;(z)/2' — 1/(20 + 1)!! when z — 0, which motivates the factor in front of the

integral in the definition of 7;,,. For k = 0 the quantity o0, constitutes the mth component
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AI Rf the spherical multipole moment tensor of order [ of the charge distribution o; defined as[57]

Publishi
ublishing () = [ derlos (e

— / dr o;(r, w)Vim(r)

where Vi, (r) = 7Y}, (%) is a solid harmonics, i.e., a homogeneous harmonic polynomial in x,
y and z.
Likewise, for p7(k,w) we have a relationship correspondin to“& ) with p},,,(k,w)

defined analogously to Eq. (B5). We can write the deﬁmtlonﬁg‘as
ﬁ;;lm<kvw> = (2l + 1) dI' pj )7 (B7)
-\

where we have entered ), instead of rl@. Furt ermomj e define spherical multipole

-

moment tensor for pj as

M) = [ a0 (o).
By utilizing these results we can write : \
é\( o

ik)!
pilk, w)o;(k,w) QU+ 1) H (20 + D

direction k due to the averaging ‘eyer r1entat10ns we can take the average of pjaj over all

l, o, )3 i (K, @) Vit (K) Vi (),
which we can insert in Eq. B\S%ﬁxe 1e rhs of the latter equation does not depend on the

directions of k whereb W'e-c\Q)utlhze the orthonormality of the spherical harmonics
dk Y/ / m(A) = 5ll/5mm’

and obtain

k’2l
pjkwajkw 47T2mzpjlmkw)g]lm<k w)

The s m_over myin the rhs is the inner product of two spherical tensors of order [ with

components %e ned in Egs. (B5) and (B7), i.e., the product

Qs Pra* Tia(k) = D P (ks @) 5 jm (K, w). (B8)

\tp dgvariant under rotations and hence independent of w. Hence we finally obtain

45 k201
( _1+_Z Z 2l+1 |'2p]l Jj;l(k>7 (Bg)

where the [ = 0 term is a product of two scalars, the [ = 1 term is the product of two vectors

written in spherical components etc.
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Publishing

It is worthwhile to go over to cartesian tensors starting from the expression (B9). Thereby

we will use the relationship[56]

2l 1
Zylm ylm = + Pl(r I') (BlO)

/

where Pj(r,r’) = (r')!P(t - ) is a solid Legendre polynomi is the ordinary
Legendre polynomial of order [. By inserting the deﬁmtlons\nd (B7) in Eq. (B8) and

use Eq. (B10) we obtain
" (21 + 1)[(2dat-

Piax (k)
( )

X /drdr p;(r,w)

To write this in terms of the cartesian CON nts’of the tensors we will utilize the

(B11)

relationship[59]

I‘,r/ wpl@' OPZ (B12)
where Py(r) is the Legendre polyno m)ten r defined below and where e stands for full
contraction product (e.g.. if a = d b = {b;;r} then aeb = Zijk a;;j1biji). Note that

by convention (—1)!! = 1. \
The Legendre polynomial tensow P;(r) is a symmetric traceless tensor of order [ that

is directly related[58-
P;(r) o (r')l, Wher

to the solid Legendre polynomial via Py(r,r') = rll ¢ Py(r') =

r[”/: rrr...r [l factors of r| and likewise for r’ (see also Ref. [38]).
Explicitly, it 1s

Dl“) U v <1> _ D ngyy (%)

r !
[with { f V/ where V = (0/0x,0/0y,0/0z)|. The lowest order Legendre polynomial
tenso are shown in Table I together with the corresponding solid Legendre polynomials.
B? us q. (B12), we can write the integral in the rhs of Eq. (B11) as
3 Wk k
[ dvae 50l 88 o ) )
\ < L (i)
_ - =001 ) e W (k
oD@ et Ferse k)
where
o . 1 (kr
P (k,w) = (20 + 1) / drPl(r)pj(r,w)j(ll(W)l) (B13)
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le I. The lowest order solid Legendre polynomials Pj(r,s) and Legendre polynomial tensors P;(r).

Publlshm

1he ordinary Legendre polynomials are denoted P;(z) and . stands for a symmetrisation operator

for the indices.®

Py(r,s) = (rs) Py(+ - 8) P(r)

L P =t 5\

b
o

|
~
w

Py =3 [3(r-s)? — r?s? Py =3 [3rr—r
Py =1 [5(r-s)? —3rs%(r-s)] P3 =1 [5rr, —}2 }H
Py =4 [35(r-s)t = 30r2s%(r - 5)? + 3rist] Py = [‘B&srrr 3'\0;?5’ {rrl} + 3rty {II}]
@ We have, for example, ./ {rl},, . ('M rylyyr + 1),
and

&\ (k (20 4+ 1)1 r')o; (r', w) r) (B14)

kr )l
\
Note that for & = 0 we have l (0,(@ (w the multipole moment tensor of the ion
e

of species j defined in Eq.

moment tensor \%

of the charge distribution }e also note that if one inserts k = ik, the values of quantities

ﬁj(l and & D becofne al}f) Qe-ﬁ(l) and Qg-l), respectively, defined in Eqs. (92) and (90).

, at k = 0 the quantity pj equals the multipole

[ P

From Eq. the results above we obtain the spherical tensor entity g7, x 5;.(k)

expressed orrespondmg Cartesian tensor entity

-
@ —niPr 2o %)

Pia* (k) =

e 5
wh p;V e\ (k) = pi (k, w) 0 & (I, w)

is independent of w. Using Eq. (B9), we can write the dielectric function as

5 kz(l1(2l+1)2l'~* .
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AI Rx; hc1tly, we have

Publishin
: 142 Sl |
€0 ]{Z2 J J
1 5 2k% _, N
+ 5P i e (k) + Epj@) o5V (k)+ ... 1 ) (B16)

where the first term in the square bracket is the product of two g€alars, the second is the

dot product of two vectors (like dipoles) and the third is the fu

%Non product of two
second order tensors (like quadrupoles).
Consider the regular part of the dielectric function, €. ="€(k) = Esing(k), where €ng(k)

is defined in Eq. (32). The expansion for é..(k) that corregponds.to Eq. (B16) is
-

~%(0) ~ N
greg<k) - 1 + Eﬁ Z n‘}; [pj (k).o";];g@] Qj
0

L.y - .
+3 j(l) "75'1) ‘%\@ &' - ] ; (B17)
m\q

where ¢;q; = [);(0) (0)7; (0) ) so the first er um is finite at £ = 0. The terms beyond
the second order term in this expan on W rom Eq. (B15).

&’ is obtained by inserting k = 1/<; 1 ). By using the definitions of Q and Q;ﬂ(l) in
Eqgs. (90) and (92), we obtaln

QefoJ - q QJ
g’r = 1 — - n] Tj
0
(—1)l/€2(l 1 (QZ + 1) l! eff (1) )
QM o 0! (B18)
(20 4+ )13 J J
/l 1 [
where the pro o Q( is independent of w.

e/ser expansion in k

ﬂ
(@ a Taylor series expansmn of the spherical Bessel function in the definitions

(B14) of p p] ) and O'j , we have (with ) = p;(l)

f (k,w) = (20 + 1)!!/drPl(r)f(r’w)jz,iﬁ;l)

_ (2l+1)!!/drPl(r)f(r,w)§: (1) (kr)™

— V12" + 20+ 1N

_ (kr)? (kr)?
- /drPl(r)f(r"") {1 T in@i+s) fae@isers ) BY)

or a§l))

o1
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AI Rro n thls we can obtain the Taylor series in & of f(l) for instance,
Publishing

- 2 4
f(o)(k) :/drf(r,w)—%/derf(r,w)—i—%o/drr‘lf(r,w)—l—(’)(kﬁ)

and

~ k2
(1) - _r 4 6
Yk, w) /drrf(r w) 1O/drrr 280/dr/frw + O(k°).
The function f(r,w) decays fast to zero with r in the cases c \ this paper, so all

integrals converge. For the case f(r,w) = 0;(r,w) the first tdgx\he k expansion of & a (k)
is

is ¢j, the charge of a j ion, and the first term in 0'5-)

! ), its dipole moment.

0, % and pj )(k,w) are q; and
p,;'f(w), respectively; the latter being the dipole moment of tf)e charge distribution pJ.
By inserting these results in Eq. (B15) we obti‘inqthe k expansion of the dielectric function

ék) = - k2 Z n;q;q; + Q\#‘b“k‘* + bgk® + O(k®), (B20)

where we have defined the constants b} gi
* ﬁ b * 1
b > (7

Likewise, for f(r,w) = pj(r,w) the corresponding terms.o

p=1+—=> n’ M = [qjm;k-@) + q;-‘m§~2)D (B21)
o F 3 6
. B % | «(12) e (12)
b, ;OZ”J' N'GJ_%[“J m; " - m; ]
1 *(4 %« 4 1 *(2
+ sl + gm )] + gy my! )) : (B22)
(for b} with v eve dd > y analogous expressions can be obtained in a similar manner).

Here we have s \QR for clarity (all terms in b} are independent of w) and introduced
er v of

the moments{of o the charge distributions o; and p;

m§y) = /drr”aj(r,w)

3 m;(y) = /dr 7 p;(r, w),
ﬁ
t%ponding vectorial moments
\ S

mg.l’”)(w) = /drr’r”aj(r,w)
m’ ) (w) = /drrr”p”f(r w)
¥ Vi Y )

and ©} = O}(w), which is the quadrupole moment of pi(r,w). The coefficients b} and bg

contain the octupolar and hexadecapolar moments, respectively, and various other moments
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m; and higher order tensor moments. The first term in Eq. (B20) is €sng(k), s0

Publishing llows that €..,(k) has the Taylor expansion

Ereg(k) = bF + b3k + Dk + bk + O(K). (B23)

EF = Eeglir) = by — by + bjK* — b’ + O /i\ (B24)

and from Eq. (48) we obtain

o _ {aeg(kr) . g dér;gk(k)} » ‘)\

This implies that

* * 2 * 4 $ga O hhé\
(Incidentally, we note that the second momelg::;2 occur in b would contribute to

quadrupole moment with nonzero trace. would be equal to the second moment.

the quadrupole moment if we had used a deﬁ&lilze)f drrro;(r,w) for the latter, i.e., a
? -
tra

Likewise, the vectorial moment m§-1’2) nd th moment m§-4)

that occur in b5 would
contribute to the octupole and the hexa >po@ moments, respectively, if the tensors with

nonzero trace were used. In this Qﬁ}:me tensors with zero trace throughout.)

4. Expansions of the re(§\ ielectric function

Let us now turn to,l /€ given by Eq. (B3). One can derive the corresponding expan-

t

sions of this functi follo ing the same procedure as above but with pto instead of p;.

Thereby, one ob, aiwt\ erlcal tensor expansion (cf. Eq. (B9))

b F0D ~tot
4 N T 2 e g o) (826

with £ /
ﬂb i) = L4 )1 [ e i ﬁ,ﬁﬁ;%(r). (B27)

Th cart)sian version of this expansion is (cf. Eq. (B15))

\\ 1

k2 (=1 2l + 1 l' ~tot(l) ~ (1)
ék)y =13 Z Z [(21 4 )13 pj 0, (k) (B28)
with
o o Jilkr
p; t(l)(k w) = (20 + 1)ll/drP ()Pl (r,w) (llir)l) (B29)
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we have
Publishing
1 p b L ~i01(0) 7= (0)
—=1-= — K)o, (k
1 _ton(1) - 2% o N
T gp; t<1>.a§1>(k)+ 135pjt Ve (k) + ... ] : (B30)

where the first term in the square bracket stays finite when k& — 0/8ince pEOt(O)(O) = 0.
spang to Eq. (B20) is

1
F0) = bok? + byk" + bgk® + O(/fs\ (B31)
é

where the coefficients b, can be defined in analogy to the '?S'mns for b} above as will be

For an electrolyte, the power series expansion of 1/é(k) in k nnj

discussed below. There is no 1/k* contribution for the reas(sn just given. Since 1/é(k) — 0
when & — 0 for an electrolyte, the constant te orres ding to b} in Eq. (B21) is zero

(bp = 0), which deserves a special comment. Sl er analogy to Eq. (B21))
p b1
bo=1- o Z CAELA
J \
where ¢} and p** are the total cha d dipole moment, respectively, of p{(r,w) and

we have defined the moments \’\
d

Now, not only ¢;°* = 0

e el)) o

v tot(

rr r,w).

t alsoythe dlpole moment, p,t"t = 0, and all corresponding multipole

dlyte, for example the quadrupole moment @t‘)t of p

moments are zero ipf an /ele 4

r,w).
Thisis a consequggce of'the {(erfect screening in electrolytes and has been rigorously proven for

systems with i nsan ipolar particles.|73] Perfect screening also lies behind the divergence

of é(k) wh 0 and the second moment condition (cf. Eq. (A2))
=~ By nfami™? = ~6z, (B33)
1€ﬁ a S been proven rigorously for systems with ions and dipolar particles.[74| Indeed,

one ta s by = 0 by inserting Eq. (B33), ¢;* = 0 and p}** = 0 in expression (B32).
H nanalogy to Eq. (B22) we have

B b tot 1 tot(l 2) tot (1,2)
_e_ozj:nj 135@ *9" ~ 3 [u; T m, ]

o 1 o
o0 1 o] 4 L tt@)), (B34)

120 367

120 [qﬂ
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PUD“Shlng mt-Ot(LV)(W) :/drrrupt0t< )
J

J

Since ¢i*, p'** and O are zero, Eq. (B34) can be simplified to

B bl 1 tot(1,2) 1 i) _ 1 @) wor2
T Xj:nj 3o ™y ~ 1209 (B35)

36 /
for an electrolyte. Since we must have

é(k) = Zn q;q; + by + bsk® + b] 4\ffk»\
B 1
 bok? + bkt + bk + . ..

it follows that

éan : l (B36)

which for the case of spherical ions Wlth

int charges agrees with Eq. (A9) since
p; =0 and m( ) = 0 in that case, SO Eq&wzeduces to Eq. (A8). Furthermore, it follows
that b} can be expressed in terms ) arious v for instance b = —by/(by)?%.
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