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for large z in the case of monotonic decay, where κ is the decay

parameter of the bulk electrolyte, and that it decays like an expo-

nential times a cosine function in the oscillatory case. The latter

behavior occurs, for instance, in molten simple salts and dense

classical plasmas where the correlations between the ions are very

strong, while the monotonic decay occurs, for example, in thin

plasmas at sufficiently high temperatures and in dilute electrolyte

solutions, where the correlations are much weaker. For a very

thin plasma the ion-ion correlations are very weak and κ ≈ κDH,

where κDH is the Debye-Hückel screening parameter that is de-

fined from

κ2
DH =

β

ε0
∑

j

nb
j q

2
j , (1)

where β = (kBT )−1, kB Boltzmann’s constant, T the absolute tem-

perature, ε0 the permittivity of vacuum, q j the charge of an ion

of species j and nb
j the number density of this species (superscript

b stands for bulk). The sum is over all species j in the liquid. In

an electrolyte solution where the solvent is a dielectric medium

with dielectric constant εr, the expression for the Debye-Hückel

parameter is instead given by

κ2
DH =

β

εrε0
∑

j

nb
j q

2
j (in dielectric medium), (2)

which differs from Eq. (1) by the factor εr in the denominator. For

an electrolyte solution with a solvent consisting of electroneutral

molecules, κ → κDH in the limit of infinite dilution, where κDH

is given by Eq. (2) with εr being the dielectric constant of the

pure solvent. The same holds for a plasma in the limit of in-

finitely low density, but with κDH from Eq. (1). When the den-

sity of ions is not very low κ ̸= κDH and the decay behavior of

the potential for large distances remains plain exponential when

the density is increased until the so-called Kirkwood cross-over

point is reached,16 where the decay instead becomes exponen-

tially damped, oscillatory. This cross-over is named after John G.

Kirkwood, who was the first to show the existence of oscillatory

decay of electrostatic interactions in electrolytes a very long time

ago.17,18 In the oscillatory case there is normally a layering of the

ions around a particle or outside a surface into alternating anion-

rich and cation-rich layers, leading to an oscillation in sign of the

charge density and the electrostatic potential – oscillations that

extend to large distances (in principle, to infinity).

The free energy of interaction (the potential of mean force) be-

tween two particles in an electrolyte has at large separations the

same decay length as the electrostatic potential (in the oscilla-

tory case also the same wave length), provided the screened elec-

trostatic interaction dominates for large distances. The same is

true for the interactions between two surfaces in contact with the

electrolyte. Such interactions can, for example, be measured in

surface force experiments as mentioned earlier. The long-ranged

monotonic exponential decay that have been observed in some

ionic liquids is quite remarkable since these liquids are very dense

and the ion-ion correlations are very strong.

It is quite common in the literature that the thinking about

screening behavior in electrolytes is based on mean field theories

like the Poisson-Boltzmann (PB) approximation and its linearized

version the Debye-Hückel (DH) approximation. They predict that

κ is equal to κDH as given by the expressions (1) or (2). A key as-

sumption in these approximations as applied to electrolytes near

surfaces is that the ion-ion correlations in the electrolyte outside a

surface are entirely neglected.∗ This can be a fair approximation

for electrolyte solutions that are not too concentrated, but not for

ionic liquids where the ion-ion correlations definitely are very im-

portant. For conditions in ionic liquids where the density is high,

the Debye length 1/κDH is very short. Nevertheless, one could

perhaps argue that many ions in an ionic liquid associate forming

some complexes, for instance ion pairs, and that the ionic den-

sity in Eq. (2) therefore should refer to the remaining “free ions.”

Thereby, εr could perhaps mimic a dielectric constant of the asso-

ciated ions forming a “solvent” for the free ions. The conditions

may therefore be reminiscent of dilute electrolyte solutions. How-

ever, the PB approximation cannot give an exponentially damped,

oscillatory decay and, as we will see, it is not correct to use Eqs.

(1) or (2) in order to find the decay length of the plain exponen-

tial decay. An understanding of why the electrostatic interaction

can have a plain exponential decay instead of an oscillatory decay

needs an analysis that includes both decay behaviors.

In this work we analyze electrostatic interactions in systems

with ions of arbitrary shape and any internal charge distribution,

but we restrict ourselves to cases where the nonelectrostatic in-

teractions are short-ranged and where the screened electrostatic

interactions dominate between the constituent particles at large

distances. Furthermore, we avoid conditions near critical points.

For simplicity we assume that the particles in the electrolyte are

rigid and not polarizable. Since we will deal with equilibrium

properties we use classical equilibrium statistical mechanics. Un-

der these conditions, the analysis is done without any approxima-

tions, so the results are exact.

A major topic in the present paper is the fact that the ion-

ion correlations in dense electrolytes make electrostatics nonlo-

cal, meaning that the ion density at one point is influenced by the

electrostatic potential in a whole neighborhood of this point. This

applies, for example, to the ion density profiles outside a surface.

Mean field theories like the PB approximation assume that the

electrostatics is strictly local, i.e., that the density at one point is

given solely by the mean electrostatic potential at the same point.

They can therefore not properly capture behaviors of the dense

electrolytes like ionic liquids.

By exploiting the nonlocality of the electrostatics, we will de-

rive a remarkably simple, but exact expression for the decay pa-

rameter κ, that replaces the PB expressions (1) and (2). We will

find that19

κ2 =
β

E∗
r ε0

∑
j

nb
j q jq

∗
j , (3)

where E∗
r is a kind of effective dielectric permittivity and q∗j is a

renormalized charge of the ions of species j; a sort of effective

charge of the ions. This formula is obviously quite similar to Eq.

∗ For bulk electrolytes the PB approximation implies that the ion-ion correlations in

the ion cloud surrounding each ion are neglected.
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(2); the only differences being the occurrence of E∗
r instead of εr

and the replacement of one of the factors q j by q∗j . Note that nb
j in

Eq. (3) is the total bulk density of ions of species j irrespectively

if they are associated or not. Furthermore, the remaining q j is

the actual charge of a j ion (the bare charge). The deviation of q∗j
from q j and E∗

r from the value 1, i.e., the relative permittivity of

vacuum, arise from ion-ion correlations. For a thin plasma at high

temperatures the correlations are not so important so q∗j ≈ q j and

E∗
r ≈ 1, which according to Eq. (1) implies κ ≈ κDH and the PB

result is recovered. Likewise, for a dilute electrolyte solution q∗j ≈

q j and E∗
r ≈ εr, the dielectric constant for the solvent. According

to Eq. (2) we again have κ ≈ κDH. Otherwise κ ̸= κDH in general.

The two modifications of the expressions for κDH, i.e., the ap-

pearances of q∗j and E∗
r , capture, in fact, the behaviors we have

discussed above – as they must because Eq. (3) is an exact for-

mula. E∗
r is, as we will see, a function of κ, so Eq. (3) is actually

an equation for κ. This equation can have both real and complex-

valued solutions; real solutions give plain exponential decay and

complex solutions give, as will be apparent later, exponentially

damped, oscillatory decay. Furthermore, we will see that even

for a dense system κ can be real and small, which means that the

long-ranged monotonic exponential decay is a possibility for ionic

liquids.

The analysis of the statistical mechanics of electrolytes and

screened electrostatic surface forces in this paper is done by us-

ing an exact formalism, the Dressed Ion Theory (DIT),20–22 which

originally was set up for spherical ions, and its extension Dressed

Molecule Theory (DMT),23–25 that applies to arbitrarily shaped

molecules with any internal charge distribution. The systems that

are treated in this work consist of electrolytes with immersed pla-

nar walls that have arbitrary internal charge distribution. The

walls can have any short-ranged ion-surface interaction, so a wide

range of internal wall structures are included in the treatment.

We will consider ionic liquids or other electrolytes in contact with

one surface or located in the slit between two surfaces. In the lat-

ter case we assume that there is equilibrium between the liquid in

the slit and a bulk liquid of a specified composition. Electroneu-

tral molecules can also be present, like in electrolyte solutions,

but the main focus is ionic liquids without solvent.

The treatment presented here is a generalization of DIT for

double layer interactions given in our previous work, Ref. 26,

which solely considers spherical ions and hard walls with uniform

surface charges (see also Refs. 27–30 for this kind of system). De-

spite that we here extend the theory and treat much more general

cases in the current work, the presentation and derivations below

are, in fact, much simpler than in our previous work, which is

more mathematically involved but at the same time more com-

plete. The simplified version of DIT and DMT of this paper is

used in order to make the theory more accessible to nonexperts.

Reader who are interested in technical details are referred to the

previous work on these theories for complementary aspects.

The screening behavior in bulk electrolytes and the close rela-

tionship of this behavior to the dielectric properties of bulk ionic

liquids (in particular the static dielectric function) is treated in a

separate paper, Ref. 19. That paper also includes a quite detailed

analysis of consequences of ionic associations like ion pairing.

The current paper is organized as follows. In Section 2 we start

for simplicity with systems containing spherical ions, analyzing

nonlocal electrostatics and the polarization response of the elec-

trolyte due to the presence of an immersed wall. An exact equa-

tion for κ is derived, which contains the polarization response

function of the electrolyte. This equation can alternatively be ex-

pressed as in Eq. (3), which gives the link to the expressions for

κDH above. We give conditions for the replacement of oscillatory

decay by plain exponential decay in dense electrolytes. In Section

3 we treat the more general case with ions of arbitrary internal

charge distributions and shapes. Due to the orientational degrees

of freedom of the ions, the treatment is by necessity a bit more

complicated than for spherical ions, but the equations for κ and

their main consequences remain the same. The DIT concept of

a “dressed wall” is generalized to the case of surfaces with any

internal charge distribution and any short-ranged ion-surface in-

teractions. The average electrostatic potential due to a wall is

given by an analogue to Coulomb’s law involving the charge dis-

tribution of a dressed wall and the normalized screened Coulomb

potential of the bulk electrolyte. Ion-wall interactions and surface

forces between two planar walls are analyzed and the concept of

effective surface charge density is introduced for the general case.

The relationship between the effective surface charge density and

the dress of the wall is derived. It is shown that the magnitude

of the screened electrostatic surface interaction for large separa-

tions is proportional to the product of the effective surface charge

densities of the walls. The decay behavior of this interaction is of

the same type as in the bulk liquid. In Section 4 the conclusions

of the paper are summarized. Finally, Appendix A gives details

regarding decay of the electrostatic potential from a planar wall

with arbitrary internal charge distribution.

2 Electrolytes with spherical ions

In this section we will treat electrolytes consisting of spherical

anions and cations with point charge at the center of the sphere.

Consider a single planar wall in contact with a bulk electrolyte

with composition specified by densities nb
j for the various species

j. We select a coordinate system with the z axis perpendicular to

the wall and denote a coordinate point as r = (x,y,z). The wall

has an internal charge density σw(r), which may be a continuous

distribution or consist of a set of point charges spread both inside

the wall and on its surface. A special case is a smooth hard wall

with a uniformly smeared out sheet of charge with surface den-

sity σS , i.e., σw(r) = σSδ (z), where δ (z) is the one-dimensional

Dirac function. Here we have placed the coordinate system with

origin at the sheet of surface change. We will, however, start with

the general case. Ions of species j interact with the wall via a

short-ranged, but otherwise arbitrary interaction potential vsh
j (r)

in addition to the electrostatic interactions with the charge den-

sity σw(r) inside the wall.

Due to the interactions between the surface and the ions, the

ionic number densities deviate from the bulk values in the neigh-

borhood of the surface. The number density of ions of species j

at coordinate r is equal to

n j(r) = nb
j e
−βWj(r), (4)
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where Wj(r) is the potential of mean force for species j. The

average charge density ρw(r) outside the wall is equal to

ρw(r) = ∑
j

q jn
b
j e
−βWj(r). (5)

The varying ion densities outside the surface is often described as

an “ion cloud” with charge density ρw(r). When z → ∞ we have

n j(r)→ nb
j and ρw(r)→ 0.

The mean electrostatic potential is given by Coulomb’s law as

ψw(r2) =
∫

dr1 [σw(r1)+ρw(r1)]φCoul(r12)+ const., (6)

where r12 = |r12|, r12 = r2 − r1, φCoul(r) = 1/(4πε0r) and const.

is selected such that ψw(r2)→ 0 when z2 → ∞. The integration is

taken over the whole space (all integrations without explicit limits

in this paper are taken over all possible values of the respective

variables). The potential ψw satisfies Poisson’s equation

−ε0∇2ψw(r) = σw(r)+ρw(r) (7)

with boundary condition ψw(r) → 0 when z → ∞ and where ∇2

denotes the Laplace operator.

2.1 Nonlocal electrostatics and polarization response in the

tail region

In the Poisson-Boltzmann approximation it is assumed that the

density of j ions at any coordinate r is solely determined by the

electrostatic potential ψw at the same coordinate; in other words

one assumes that there is an entirely local electrostatics. We then

have

Wj(r) = q jψw(r) (PB), (8)

where (PB) means that the equation is valid only in the PB ap-

proximation. In actual fact, the average density of j ions at point

r is affected by the values of electrostatic potential ψw in a whole

neighborhood of this point. Consider ions at various coordinates

r′ around the point r. They interact with the electrostatic poten-

tial and since they influence, via ion-ion correlations, the proba-

bility for ions to be at r, the density at r is affected by the potential

at all points r′. Thus, in reality there is nonlocal electrostatics. This

is particularly important for ionic liquids since the density is very

high and the ion-ion correlations are large.

We will first consider the situation for large z, i.e., in the tails

of Wj(r) and ρw(r) far from the wall surface where the electro-

static potential due to the surface is weak, and see how the ion-

ion correlations can be properly included there. For simplicity

we restrict ourselves throughout this paper to cases where all in-

teractions apart from the electrostatic ones are short-ranged, so

the electric field due to the wall and its ion cloud constitutes the

longest range effect in Wj(r) and therefore determines the lead-

ing contribution to the tail of this function.† As we have seen, the

ion density n j(r) at coordinate r depends on the potential ψw in

an entire neighborhood of this coordinate. The same must apply

†The general DIT and DMT formalisms 20,22,23,25,26 can be applied to other cases, but

the simplified version used here has this limitation.

for Wj(r) since βWj(r) = − ln[n j(r)/nb
j ] as follows from Eq. (4).

In mathematical terms, this means that Wj is a functional of ψw.

When z is sufficiently large and ψw(r) therefore is small, we are

in the linear response regime, which implies that Wj is a linear

functional of ψw. This implies that we have

Wj(r) =
∫

dr
′ψw(r

′)ρ∗
j (|r− r

′|), (weak field), (9)

where the function ρ∗
j is not yet known. (The existence and

uniqueness of such a function follow from Rietz’ representation

theorem for linear functionals.31 This means that Eq. (9) is ex-

act in the limit z → ∞.) The entity ρ∗
j has the physical role of an

“effective” charge density associated with the j ion and the inte-

gral is the electrostatic energy of interaction between ρ∗
j and ψw.

Note that the expression (9) implies that the value of Wj at co-

ordinate r is affected by the values of ψw at various points r′ via

the factor ρ∗
j (|r−r′|), which is nonzero for range of |r−r′| values.

In contrast to this, in the PB approximation, Eq. (8), one simply

has replaced ρ∗
j (r) with q jδ

(3)(r) in Eq. (9), where δ (3)(r) is the

three-dimensional Dirac delta function. This highlights the local

electrostatics in this approximation. Note also that ρ∗
j in the gen-

eral case describes linear response due to ψw and is a property of

the unperturbed bulk electrolyte.

The entity ρ∗
j is, in fact, the charge density of a so-called dressed

ion in DIT,20–22,26 where this concept is defined in a different and

quite formal manner. The role of ρ∗
j as an effective charge den-

sity in the interaction with the mean potential described above,

is just one of its several roles in electrolyte theory (more will be

described later). Let us consider this particular role a bit further.

A dressed ion consists of the ion itself and a “dress”, which is a

charge density surrounding the ion and associated with it:

ρ∗
j (r) = q jδ

(3)(r)+ρdress
j (r), (10)

where r is the distance from the ion center. The first term on

the right hand side (rhs) is the bare charge of the j ion (i.e., the

point charge at the center) expressed as a charge density and the

second term is the dress. By inserting Eq. (10) into Eq. (9), the

latter becomes

Wj(r) = q jψw(r)+
∫

dr
′ψw(r

′)ρdress
j (|r− r

′|), (weak field).

(11)

The first contribution is the interaction between the potential ψw

and the bare charge q j of the ion and in the second term ρdress
j

takes care of effects of ion-ion correlations in the interaction of

the j ion with ψw when the latter is small as described earlier.

Some further features of a dressed ion can be explained as fol-

lows. An ion in the bulk electrolyte is surrounded by an ion cloud

of charge density ρ j(r), which has a total charge that is of op-

posite sign to q j and neutralizes the latter,
∫

drρ j(r) = −q j (the

condition of local electroneutrality). The dress ρdress
j (r) is a part

of the charge density ρ j(r), is in general more short-ranged than

ρ j(r), and can be calculated from the pair distribution functions

of the bulk electrolyte.19,20,32 Since the dress is only a part of

ρ j, we have in general
∫

drρdress
j (r) ̸= −q j, which implies that

q∗j ≡
∫

drρ∗
j (r) ̸= 0. Thus the total charge q∗j of the dressed ion
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is generally nonzero, but it may, however, change sign, which

means that it can fortuitously be equal to zero for some states of

the system.

Let us now consider the charge density of the ion cloud outside

the wall given by ρw in Eq. (5). For large z where Wj(r) is small,

we can replace exp[−βWj(r)] by 1−βWj(r). By introducing this in

Eq. (5), inserting Eq. (9) and using the fact that ∑ j q jn
b
j = 0 due

to electroneutrality, we obtain

ρw(r) ∼ −β ∑
j

q jn
b
j

∫
dr

′ψw(r
′)ρ∗

j (|r− r
′|)

=
∫

dr
′ψw(r

′)χ∗(|r− r
′|), z → ∞, (12)

where the symbol ∼ means “decays asymptotically as” and we

have defined

χ∗(r) =−β ∑
j

q jn
b
j ρ

∗
j (r). (13)

Eq. (12) says that the function χ∗ determines the charge density

ρw due to the potential ψw in the linear regime, i.e., for small ψw.

When ψw is zero, the electrolyte is in its bulk state and the effect

of nonzero ψw is to polarize the electrolyte. The charge density

ρw for large z is the polarization response of the bulk electrolyte

due to the potential ψw, implying that χ∗ is a polarization response

function in linear response theory. Note that χ∗ is a property of

the bulk electrolyte.

In the PB approximation we have when z → ∞

ρw(r) ∼ −β ∑
j

q jn
b
j

∫
dr

′ψw(r
′)q jδ

(3)(|r− r
′|)

= −β ∑
j

nb
j q

2
j ψw(r) (PB),

so the polarization response function is given by

χ∗(r) =−β ∑
j

nb
j q

2
j δ

(3)(r) =−ε0κ2
DHδ (3)(r) (PB), (14)

where κDH is the Debye-Hückel screening parameter. As before,

the local electrostatics in the PB approximation is expressed by a

delta function; here it occurs in χ∗.

2.2 The decay length for the electrostatic potential

Let now consider the special case of a smooth hard wall with a

uniformly smeared out surface charge density σS . Then n j, Wj,

ρw, and ψw depend on the coordinate z only. In the PB approxima-

tion we have the well-known fact that the potential ψw(z) decays

when z → ∞ as

ψw(z)∼ APB
w e−κDHz (PB),

where APB
w is a constant. For the general, exact case it has been

shown26 that we have the same kind of decay for the potential,

but with a different pre-factor Aw and decay parameter κ, that is,

ψw(z)∼ Awe−κz z → ∞ (15)

provided the electrostatic coupling is sufficiently weak. Thus, the

decay length λ = κ−1 differs from the Debye length λDH = κ−1
DH.

When the coupling is stronger, this kind of decay is replaced by

an oscillatory, exponentially decaying one

ψw(z)∼ Bw cos(κℑz+ϑw)e
−κℜz, (16)

where Bw is a constant, ϑw is a phase shift and where κℜ and

κℑ are the decay parameter and wave number, respectively, for

the decay. The decay length is λ = 1/κℜ and the wave length

is 2π/κℑ. The quantities κℜ and κℑ can, as we shall see, be re-

garded as the real and imaginary parts of κ = κℜ + iκℑ, where i

is the imaginary unit (distinguish i from the species index i), and

the oscillatory behavior in Eq. (16) is then included in Eq. (15).

As mentioned earlier, oscillatory decay occurs, for example, in

molten simple salts and many ionic liquids. Such a decay can, of

course, not be obtained in the PB approximation where κ = κDH

is always real.

Now, let us derive an exact equation for the decay parameter

κ. In the rhs of the Poisson equation (7) the charge density σw(r)

is zero outside the wall and ρw(r) decays according to Eq. (12).

Far from the wall we therefore obtain from the Poisson equation

−ε0
d2ψw(z)

dz2
∼

∫
dr

′ψw(z
′)χ∗(|r− r

′|), z → ∞. (17)

By inserting the limiting form (15) of ψw(z) on both sides and

performing the derivative in the left hand side (lhs), we obtain

for large z

−ε0κ2Awe−κz ∼
∫

dr
′Awe−κz′ χ∗(|r− r

′|)

=
∫

dr′′(r′′)2

[∫
dr̂

′′Awe−κ(z−z′′)
]

χ∗(r′′), (18)

where the last equality follows after a variable substitution r′′ =

r− r′ and where the radial integration over r′′ in spherical polar

coordinates and the integration over the angles have been sepa-

rated. These angles are represented by the unit vector r̂′′ = r′′/r′′.

We now break out a factor Aw exp(−κz) from the square bracket

in the rhs of Eq. (18) and use the fact that

∫
dr̂

′′eκz′′ = 4π
sinh(κr′′)

κr′′
,

whereby we obtain from Eq. (18)

−ε0κ2Awe−κz ∼ 4πAwe−κz
∫

dr′′(r′′)2 sinh(κr′′)

κr′′
χ∗(r′′). (19)

By identifying the coefficients on either side we obtain after sim-

plification

−ε0κ2 =
∫

dr
′′ sinh(κr′′)

κr′′
χ∗(r′′), (20)

where dr′′ = dr′′(r′′)24π (spherical symmetry). This relationship

is an equation‡ for the unknown variable κ. For a given function

‡This equation for κ can be expressed in various equivalent forms, including the

new relationship (3) that is proven later in this work and the expression mentioned

in the next footnote §. Other equivalent equations for κ include expressions that

contain the Fourier transform c̃i j(k) of the direct correlation functions ci j(r) like in

Refs. 16,22,29. The latter expressions can be written in terms of the static dielectric
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χ∗, the equation can be used to determine κ, at least numerically.

The function χ∗ is independent of κ but is, of course, dependent

on the state of the system.

By inserting Eqs. (10) and (13) into Eq. (20) we obtain§

κ2 =
β

ε0
∑

j

nb
j q j

[
q j +

∫
dr

sinh(κr)

κr
ρdress

j (r)

]

= κ2
DH +

β

ε0
∑

j

nb
j q j

∫
dr

sinh(κr)

κr
ρdress

j (r). (21)

Thus, the presence of the last term, which arises because of ion-

ion correlations and the resulting nonlocal electrostatics, makes

κ ̸= κDH. In the limit nb
j → 0 for all j, i.e., for a thin plasma in the

limit of zero density, we have κ ∼ κDH → 0 so the Debye-Hückel

result is recovered in this limit – a well-known result (this is due

to the fact20 that the integral goes to zero like κ, so last term goes

to zero faster than κ2
DH when the density goes to zero).

Equation (20) has in general several solutions κ. Each solution

gives rise to a term in ψw like that in Eq. (15) with the respective

κ value inserted. Thus, there are several such terms with different

decay lengths.¶ By including the two leading terms, we have30

ψw(z)∼ Awe−κz +A′
we−κ ′z, z → ∞, (22)

where both κ and κ ′ are solutions to Eq. (20) and where Aw and

A′
w are constants. The κ value we have discussed earlier is the

solution that corresponds to the leading decay of ψw for large z,

i.e., the term with the longest decay length (i.e., the smallest κ

value).

Solutions to Eq. (20) are not necessarily real-valued; also

complex-valued solutions exist in general. In some cases the lead-

ing solution (with the longest decay length) is complex-valued

and we obtain the oscillatory, exponentially decaying behavior

shown in Eq. (16). For a complex-valued solution, say κ =

κℜ + iκℑ with real κℜ and κℑ, the complex conjugate κℜ − iκℑ is

also a solution to Eq. (20), so we have κ ′ = κℜ − iκℑ and Eq. (22)

applies. The prefactors Aw and A′
w are, in fact, complex-valued too

(complex conjugates) Aw = |Aw|exp(−iϑw) and A′
w = |A′

w|exp(iϑw),

where ϑw is a real number and |Aw|= |A′
w|= Bw/2, which defines

Bw. This implies that the sum of the two terms in Eq. (22) is a

function ε̃(k) as explained in Section IV of Ref. 22, where the equation for κ is

D(k) = 0 with k = iκ and D is a determinant containing c̃i j(k). It is shown in Ref. 22

that D(iκ) = 0 implies ε̃(iκ) = 0 for the cases that are relevant for the electrostatic

potential (other solutions of D(k) = 0 solely affect the decay behavior of the density

distribution). Since ε̃(k)= 1− χ̃∗(k)φ̃Coul(k) one can reformulate the equation ε̃(iκ)=

0 as Eq (20). The route we use for obtaining Eq (20) in the present work is much

simpler.

§ Equation (21) can be expressed as κ2 = β ∑ j nb
j q jq

eff
j /ε0, where qeff

j =
∫

drρ∗
j (r)sinh(κr)/(κr), see Refs. 20,21 where qeff

j is denoted q∗j (the latter is thus

different from q∗j in the current paper). This appealing expression for κ2 is, however,

only applicable for spherical ions. In contrast to this, Eq. (3) is valid in general as

will be demonstrated in Section 3.

¶There are also terms in the decay that have a different functional forms. 20,22,32 In

the cases considered here these terms have shorter decay lengths.

real valued function (as it must for physical reasons)

ψw(z) ∼ |Aw|e
−iϑw e−(κℜ+iκℑ)z + |A′

w|e
iϑw e−(κℜ−iκℑ)z

=
Bw

2

[
e−i(κℑz+ϑw) + ei(κℑz+ϑw)

]
e−κℜz

= Bw cos(κℑz+ϑw)e
−κℜz, (23)

which it is equal to the expression in Eq. (16).

Cross-over from plain exponential to oscillatory, exponentially

decaying behavior occur, as mentioned earlier, when the ionic

density of a high-temperature plasma increases from a small to

a large value.15,16 Such cross-overs can also occur in ionic liquids

when conditions are changed. Consider a system with plain ex-

ponential decay where we have two leading terms as in Eq. (22)

with real-valued κ, κ ′, Aw and A′
w and with κ < κ ′ (recall that both

κ and κ ′ are solutions to Eq. (20)). The first term accordingly has

a larger decay length than the second and gives the leading decay.

At the cross-over point to oscillatory behavior, the two solutions κ

and κ ′ merge and become two complex-valued solutions that are

each other’s complex conjugate (just like the behavior of the solu-

tions of, for example, a quadratic equation with real coefficients;

those solutions can change between real and complex-valued in

this manner when the coefficients are varied). Then the decay

in Eq. (22) changes to that in Eq. (16). This behavior of the de-

cay is nicely illustrated in the molecular-dynamics simulations for

plasmas and molten salts by Keblinski et al.15

When the decay is oscillatory, there is a layering of the ions

outside a surface into alternating anion-rich and cation-rich lay-

ers, which, as pointed out earlier, leads to the oscillation in sign

of the charge density and the electrostatic potential. This layering

extends far out into the liquid (in principle to infinity, but it is of

course not noticeable after several multiples of the decay length

λ). There also exists cases where there are some oscillations at

small z close to the surface, but where the decay turns into a plain

exponential one at larger z and remains exponential when z → ∞.

The decay that we have discussed above is the ultimate kind of

decay for sufficiently large z. What is sufficient for this ultimate

decay to take over is system-dependent; in many cases the dis-

tance need not be very large15,32 (it can be as short as a couple

of ionic diameters in some cases). Whether this decay is plain ex-

ponential or exponentially damped oscillatory is determined by

the bulk properties of the ionic liquid. Thereby, the same values

of decay parameters (κ or κℜ and κℑ) apply for the electrostatic

interactions between all particles of the system and between the

particles and the surface (and, as we shall see, between two sur-

faces at sufficiently large separations from each other). On the

other hand, specific properties of individual surfaces lie behind

the occurrence of some oscillations at small distances from a sur-

face in cases when the ultimate decay is plain exponential. Such

oscillations can exist for one surface in contact with the ionic liq-

uid but not necessarily for another surface in contact with the

same liquid.
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2.3 Alternative equation for κ

Let us now investigate the equation for κ, Eq. (20), a bit further.

We can, in fact, write it as Eq. (3). To this end, we write the

former equation as

−ε0κ2 =
∫

dr
sinh(κr)

κr
χ∗(r)

=
∫

drχ∗(r)+κ2
∫

drr2

[
sinh(κr)−κr

(κr)3

]
χ∗(r) (24)

(note that the square bracket remains finite when κr → 0). By

moving the last integral to the lhs we can express this equation as

−ε0κ2E∗
r =

∫
drχ∗(r), (25)

where we have defined

E∗
r = 1+

1

ε0

∫
drr2

[
sinh(κr)−κr

(κr)3

]
χ∗(r). (26)

By using the definition of χ∗, Eq (13), we have

∫
drχ∗(r) =−β ∑

j

q jn
b
j

∫
drρ∗

j (r) =−β ∑
j

nb
j q jq

∗
j , (27)

where

q∗j =
∫

drρ∗
j (r)

is the total charge of the dressed ion. As we saw earlier, we have

in general q∗j ̸= 0. By introducing Eq. (27) into Eq. (25) we finally

obtain Eq. (3), that is,

κ2 =
β

E∗
r ε0

∑
j

nb
j q jq

∗
j . (28)

The similarity between this formula and Eq. (2) is obvious. The

quantity E∗
r plays the role as an effective relative permittivity of

the electrolyte. Note that Eq. (28) is an equation for κ since the

rhs depends on κ via E∗
r . The dressed ion charge q∗j is independent

of the parameter κ (but q∗j depends, of course, on the state of the

system).

For the Debye-Hückel parameter κDH given by Eq. (1), the only

possibility at moderate temperatures for it to be small and hence

the Debye length large is that the ion density is small, like in

a thin plasma. For the actual screening parameter κ there are

other possibilities. A very important difference between the ex-

act equation (28) and the DH formulas is the appearance of the

dressed ion charge q∗j (in nb
j q jq

∗
j) instead of the bare charge q j (in

nb
j q jq j). Let us consider an ionic liquid with one species of anions

and one of cations. As we have seen, q∗j includes the charges in

the dress and when there is a substantial association between an-

ions and cations, the charge of the dress can have a magnitude

that is nearly the same as the bare charge q j, but of opposite sign.

This means that q∗+ and q∗− can be small, which, as we will see,

makes κ small despite that the ion density is high. To verify this

we write the effective relative permittivity E∗
r = E∗

r (κ) in Eq. (26)

as

E∗
r (κ) = 1+

1

3!ε0

∫
drr2χ∗(r)

+
κ2

ε0

∫
drr4

[
sinh(κr)−κr− (κr)3/3!

(κr)5

]
χ∗(r), (29)

where the square bracket remains finite when κr → 0. We can

express this equation as

E∗
r (κ) = E∗

r (0)+O(κ2),

where

E∗
r (0) = 1+

1

6ε0

∫
drr2χ∗(r)

(the symbol O(κ2) means κ2 times a function that stays finite

when κ → 0). Thus, Eq. (25) can be written

ε0κ2
(
E∗

r (0)+O(κ2)
)
= β ∑

j

nb
j q jq

∗
j ,

so when q∗+ and q∗− are small we have (in the limit when both go

to zero)

κ2 ∼
β

E∗
r (0)ε0

∑
j

nb
j q jq

∗
j ,

which implies that κ is small when q∗+ and q∗− are sufficiently

small. If E∗
r (0) is large, κ can be small even if q∗+ and q∗− are not

very small. We conclude that the nonlocal electrostatics caused by

the strong correlations in an ionic liquid can make κ small (and

hence decay length large) despite that the liquid has a large den-

sity. E∗
r (0) as well as the contributions from the last integral in

Eq. (29) contain very important contributions from ion-ion corre-

lations, as can be realized by inserting the expression for χ∗(r) in

terms of the dressed ion charge densities (Eq. (13) in the present

case). This is explored in detail in Ref. 19.

In cases where transient ion pairs are formed in the ionic liquid,

it is shown in Ref. 19 that there are contributions to E∗
r that cor-

respond to those from dipolar particles (like a dumbbell formed

by an anion and a cation of the same valency). When there is a

lot of ion pairing, q∗+ and q∗− are small since each pair forms an

electroneutral entity and since q∗j for each j is an average over all

ions of species j, both paired and unpaired, and the latter are in

a minority. However, it is not necessary to have an actual pairing

to obtain small q∗+, q∗− and κ. Small κ values can be encoun-

tered when each ion on average is surrounded by several ions

of opposite sign that are attracted strongly to the ion for various

reasons, for instance ion-ion correlation effects – a more general

kind of ion association than pairing. This is a situation that readily

can occur in dense ionic liquids. Another possibility is, of course,

some nonelectrostatic attraction between anions and cations. A

strongly asymmetric distribution of charges in the ions, like a pos-

itive patch on one species and a negative on the other, can also

favor association.

As briefly discussed in the Introduction, one possibility could

perhaps be to consider the associated ions (for whatever reason

they are associated) as a “solvent” for the rest of the ions, the

“free” ions. Thereby one might apply the DH formula for elec-

trolyte solutions, Eq. (2), and thereby try to mimic E∗
r for the ionic
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liquids by using εr as a kind of parameter that models the dielec-

tric properties of associated ions. The values of nb
j could then

modified to instead measure the effective densities of “free” ions.

This is, however, fundamentally incorrect since the exact formula

(28) contains the dressed ion ions charges, q∗j , rather than the

bare ones, q j. One may argue that the ratio q j/εr can be used as

a fitting parameter in Eq. (2) that replaces q∗j/E
∗
r in the correct

formula, but the effect of, for instance, ion-ion correlations on q∗+
is in general different from the effects on q∗−. Therefore, to use a

common denominator E∗
r in the fitting is fundamentally flawed.

In an approximate modeling of ionic liquids one should hence not

use classical mean field theories like the DH and PB approxima-

tions with fitting parameters, but instead focus on an essentially

correct treatment of nonlocal electrostatics and make calculations

for entities like q∗+, q∗− and E∗
r .

The conclusions in this subsection are, in fact, valid also for

ions that are not spherical since, as we will see in the next sec-

tion, Eqs. (20) and (28) are general results that apply for ionic

liquids where the ions have arbitrary shapes and internal charge

distributions.

3 Ions with arbitrary internal charge distri-

butions and shapes

We will now generalize the results above to ionic liquids consist-

ing of ions of any shape and any internal charge distribution. For

simplicity, we will, however, limit ourselves to rigid ions that are

not polarizable. Thereafter, we consider the full polarization of

an ionic liquid due to the presence of a wall and investigate in

more detail the interaction between a wall and ions in the liquid.

Finally, we treat electrostatic interactions between two walls and

surface forces. Ionic liquids constitute the main subject of our in-

vestigation, but the analysis is valid also for electrolyte solutions

with a molecular polar solvent.

First, let us introduce some notations. The internal charge dis-

tribution of an ionic or polar particle can be a continuous den-

sity or a set of point charges (defined by a set of delta func-

tions). This charge distribution is denoted σ j(r,ω) for a particle

of species j, where r is counted from the center of mass of the

particle and ω defines the particle’s orientation as described by

the three Euler angles (ϕ,θ ,η) in the laboratory frame. In gen-

eral all three angles are needed, but for a linear particle only the

azimuthal and polar angles (ϕ,θ) are required because the third

angle, η , is selected as the redundant rotation around the axis of

symmetry. The orientational coordinate that we use equals ω =

(ϕ,cosθ ,χ)/(8π2) for nonlinear particles and ω = (ϕ,cosθ)/(4π)

for linear ones; both have the property
∫

dω = 1.

The total charge of a particle of species j is

q j =
∫

drσ j(r,ω), (30)

which, of course, is independent of ω, and the dipole moment of

the particle is given by

µ j(ω) =
∫

drrσ j(r,ω). (31)

Higher order moments can be defined in a similar manner.

As before there is a single planar wall in contact with the bulk

electrolyte. The wall has an internal charge distribution σw(r) and

the interaction between the wall and a fluid particle of species j

located at r1 and with orientation ω1 is

v j(r1,ω1) = vsh
j (r1,ω1)+ vel

j (r1,ω1),

where vsh
j is an arbitrary short-ranged interaction potential and

the electrostatic interaction is given by

vel
j (r1,ω1) =

∫
dr2dr3σw(r2)φCoul(r23)σ j(r13,ω1). (32)

The pair interaction potential between two particles of species

i and j placed at r1 and r2 and with orientations ω1 and ω2,

respectively, is

ui j(r12,ω1,ω2) = ush
i j (r12,ω1,ω2)+uel

i j(r12,ω1,ω2),

where ush
i j is the nonelectrostatic interaction and

uel
i j(r12,ω1,ω2) =

∫
dr3dr4σi(r13,ω1)φCoul(r34)σ j(r24,ω2), (33)

Like before we assume that the nonelectrostatic interactions are

sufficiently short ranged, so the screened electrostatic interactions

in the liquid dominate at large distances. Otherwise, ush
i j is arbi-

trary (but it must, of course, be strongly repulsive when the ions

overlap significantly).

3.1 Polarization response, tail region

Due to the interactions with the wall, the electrolyte outside the

surface is inhomogeneous and the particles have an anisotropic

distribution of orientations there. The number density for species

j is n j(r,ω), which means that n j(r,ω)drdω is the average num-

ber of j particles with orientation within dω around ω and with

centers in the volume element dr around the coordinate r. We

have n j(r,ω) → nb
j when z → ∞. The charge density of the ion

cloud outside the surface is

ρw(r1) = ∑
j

∫
dr2dω2n j(r2,ω2)σ j(r21,ω2),

which can be regarded as the polarization charge density in the

electrolyte due to the presence of the wall (a polarization due

to all interactions, not only the electrostatic one, but the latter

dominate far from the surface in the cases considered in this pa-

per). The mean electrostatic potential ψw(r) is given by Eq. (6),

as before.

The number density n j can be written in terms of a potential of

mean force Wj that satisfies n j(r,ω) = nb
j exp(−βWj(r,ω)), so we

have

ρw(r1) = ∑
j

∫
dr2dω2nb

j e
−βWj(r2,ω2)σ j(r21,ω2). (34)

Sufficiently far away from the wall where the electrostatic field

is weak, n j(r) is close to nb
j so Wj(r) is small and the exponential
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function can be expanded to linear order. We obtain when z1 → ∞

ρw(r1) ∼ ∑
j

∫
dr2dω2nb

j

[
1−βWj(r2,ω2)

]
σ j(r21,ω2)

= −β ∑
j

∫
dr2dω2nb

jWj(r2,ω2)σ j(r21,ω2) (35)

because ∑ j

∫
dr2dω2nb

j σ j(r21,ω2) = ∑ j nb
j q j = 0 by electroneutral-

ity.

The deviation in density distribution from the bulk value far

from the wall and hence the deviation of Wj from zero is due

to the interactions of the particles with the electrostatic potential

ψw(r), which polarizes the bulk electrolyte there. As we have

discussed in Section 2, the electrostatics is nonlocal. Since Wj

accordingly is a linear functional of ψw when the latter is small,

we can write (cf. Eq. (9))

Wj(r2,ω2) =
∫

dr3ψw(r3)ρ
∗
j (r23,ω2) (weak field) (36)

(the existence and uniqueness of ρ∗
j follow from Rietz’ representa-

tion theorem in this case too). The entity ρ∗
j is the charge density

of a dressed ion in analogy to the case of spherical ions discussed

earlier (or a dressed molecule for an uncharged molecule) and we

have ρ∗
j (r,ω) = σ j(r,ω)+ ρdress

j (r,ω), where ρdress
j takes care of

effects of ion-ion correlations in the interaction of the j particle

with ψw when the latter is small (cf. Eq. (11)).

By inserting Eq. (36) into Eq. (35) we obtain when z1 → ∞

ρw(r1)∼−β ∑
j

∫
dr3

[∫
dr2dω2nb

j ρ
∗
j (r23,ω2)σ j(r21,ω2)

]
ψw(r3),

where we have changed of the order of integration. Hence we

have

ρw(r1)∼
∫

dr3ψw(r3)χ
∗(r31) when z2 → ∞, (37)

where χ∗ is defined as

χ∗(r31) =−β ∑
j

∫
dr2dω2nb

j ρ
∗
j (r23,ω2)σ j(r21,ω2), (38)

i.e., the polarization response χ∗ function of the bulk liquid in

the present case. The function χ∗ is spherically symmetric since

an integration has been made over all orientations ω2 in Eq. (38)

and because of the fact that all functions in the expression refer

to the properties of a bulk fluid. This definition of χ∗ constitutes

the generalization of Eq. (13), see also Ref. 23.

3.2 Polarization response, general case

The integral in the rhs of Eq. (37) (or Eq. (12) for the case of

spherical ions) gives, as we have seen, the polarization charge

density in the tail region away from the wall (at large z). This

polarization arises due to the weak electrostatic potential ψw(r)

there; the function χ∗(r) is a linear response function for the bulk

electrolyte. For smaller z the potential is not small, so the polar-

ization charge density is not linearly related to ψw(r). This means

that this integral does not give the full charge density ρw(r); it

only gives the linear part of the response to the electrostatic po-

tential. Let us consider the remainder of ρw(r) when the linear

part has been removed, that is,

ρw(r)−
∫

dr
′ψw(r

′)χ∗(|r− r
′|)≡ ρdress

w (r), (39)

where we use the notation ρdress
w (r) for reasons to be explained

later (it is, in fact, exactly the same kind of entity as the dress for

the particles in the fluid). The charge density ρdress
w arises from

the nonlinear part of the response to the electrostatic potential

due to the wall and, in addition, from any nonelectrostatic effects

that influence the particle density near the surface, like hard core

exclusion and core-core correlations.

Next, we reformulate the Poisson equation (7) by subtracting

the integral in Eq. (39) from both sides. The Poisson equation can

thereby be written as

−ε0∇2ψw(r)−
∫

dr
′ψw(r

′)χ∗(|r− r
′|) = σw(r)+ρdress

w (r). (40)

This equation has the solution

ψw(r) =
∫

dr
′
(

σw(r
′)+ρdress

w (r′)
)

φ∗
Coul(|r− r

′|), (41)

where the function φ∗
Coul(r), called the (normalized) Screened

Coulomb potential, satisfies the equation

−ε0∇2φ∗
Coul(r)−

∫
dr

′φ∗
Coul(r

′)χ∗(|r− r
′|) = δ (3)(r). (42)

One can readily verify that ψw(r) from Eq. (41) satisfies Eq. (40)

by direct insertion, whereby Eq. (42) is used to simplify the result.

It follows from Eq. (41) that

ψw(r) =
∫

dr
′ρ∗

w(r
′)φ∗

Coul(|r− r
′|), (43)

where we have introduced the dressed wall charge density

ρ∗
w(r) = σw(r)+ρdress

w (r). (44)

Note that Eq. (43) has exactly the same form as Coulomb’s law. In

this equation, the dressed wall charge density σw(r)+ρdress
w (r) has

the role of a source charge density when one uses the screened

Coulomb potential φ∗
Coul(r) to calculate the electrostatic potential

ψw.∥ When one calculates the same potential ψw(r) using the

unscreened Coulomb potential φCoul(r) as in Eq. (6), the source

charge density is σw(r)+ρw(r)≡ ρ tot
w (r), i.e., the total charge den-

sity of the wall and its ion cloud.

In fact, the dressed ion charge density ρ∗
j (r,ω) that we intro-

duced above, has the same role vis-á-vis the mean electrostatic

potential ψ j from an ion of species j in the bulk liquid phase.

This potential is defined as

ψ j(r,ω) =
∫

dr
′ρ tot

j (r′,ω)φCoul(|r− r
′|),

∥Note that ρdress
w is nonzero inside the wall since ψw is nonzero there. This charge

distribution in the wall is an entirely nominal charge distribution that expresses the

excluded volume due to the wall in terms of a dress, see Ref. 26 for a discussion of

this fact and for some mathematical aspects of this distribution.
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where ρ tot
j = σ j +ρ j and ρ j is the charge density of the ion cloud

that surrounds the ion. As shown in Ref. 23 we have

ψ j(r,ω) =
∫

dr
′ρ∗

j (r
′,ω)φ∗

Coul(|r− r
′|),

where the rhs shows that ψ j can be calculated for all r by using

the screened Coulomb potential and the charge density ρ∗
j of the

dressed ion. This fact is one of the reasons for using the same

terminology for walls and ions, i.e., “dressed wall” and “dressed

ion.”

In mathematical terms, φ∗
Coul(r) as defined in Eq. (42) is a

Green’s function. Its physical role is to give the spatial propa-

gation of the total electrostatic field (the so-called Maxwell field)

including the contributions from polarization of the electrolyte to

linear order. In the neighborhood of the surface, the nonlinear

polarization must, however, also be included since the electro-

static field is strong there in general. This is done for ψw(r) via

the contribution from ρdress
w in Eq. (41).

In the PB approximation, where χ∗ is given by Eq. (14), φ∗
Coul

equals

φ∗
Coul(r) =

e−κDHr

4πε0r
(PB).

In the general, exact case23 φ∗
Coul(r) decays like

φ∗
Coul(r)∼ A∗ e−κr

r
, r → ∞ (45)

provided the electrostatic coupling is sufficiently weak [the coeffi-

cient A∗ will be specified later, see Eq. (47)]. The decay parameter

κ satisfies Eq. (20), as can be shown from Eq. (42) in a similar

way as we derived Eq. (20) from Eq. (17).19 In exactly the same

manner as in Section 2.3 one can show that κ satisfies Eq. (28),

that is,

κ2 =
β

E∗
r ε0

∑
j

nb
j q jq

∗
j , (46)

where

q∗j =
∫

drρ∗
j (r,ω)

is the dressed ion charge in the current case. Remember that

E∗
r = E∗

r (κ) depends on κ, so Eq. (46) is an equation for κ. This

exact and amazingly simple equation is accordingly valid for the

general case treated in this paper.

In Ref. 19 it is shown that the effective relative permittivity

E∗
r contains the same kind of contributions from the dipole mo-

ments of the ions as the dielectric constant εr does for polar liq-

uids consisting of uncharged molecules. In addition, there are,

as mentioned in Section 2.3, very important contributions from

ion-ion correlations. In Ref. 19 it is also shown that in contrast

to εr, which can be expressed solely in terms of dipolar features

of the molecules in the pure polar liquid, E∗
r for ionic liquids have

contributions also from quadrupolar, octupolar and higher mul-

tipolar features of the constituent ions (and of polar molecules

when present).

For a real solution κ of Eq. (46) (and Eq. (20)), the screened

Coulomb potential decays like∗∗

φ∗
Coul(r)∼

e−κr

4πEeff
r ε0r

, r → ∞, (47)

where

Eeff
r = 1+

1

2ε0

∫
drr2

[
κr cosh(κr)− sinh(κr)

(κr)3

]
χ∗(r). (48)

(Note that the square bracket in the integral remains finite when

κr → 0.) In Eq. (45) we accordingly have A∗ = (4πEeff
r ε0)

−1. Note

that Eeff
r = Eeff

r (κ) is a function of κ. Both Eeff
r and E∗

r play roles

as effective permittivities of the electrolyte and both are defined

in terms of χ∗(r). Their relationship to each other and to the

dielectric properties of the ionic liquid, in particular the static

dielectric function, is examined in detail in Ref. 19.

When Eq. (46) (and Eq. (20)) has a solution κ that is complex,

the parameter Eeff
r = Eeff

r (κ) = Eeff
r (κℜ ± iκℑ) is also complex so

we can write Eeff
r = Eeff

r exp(±iϑE) where Eeff
r = |Eeff

r | and ϑE are

real, and we have

φ∗
Coul(r) ∼

e−(κℜ+iκℑ)r

4πEeff
r eiϑEε0r

+
e−(κℜ−iκℑ)r

4πEeff
r e−iϑEε0r

=
e−κℜr cos(κℑr+ϑE)

2πEeff
r ε0r

(49)

when r → ∞.

In systems where some of the species are uncharged, like elec-

trolyte solutions with polar solvent molecules, q j is zero for these

molecules, so the sum in Eq.(46) is hence only over the ionic

species. Polar molecules participate in the dress of the ions, but

they do not contribute directly to q∗j since they are uncharged.

They do, however, affect the value of q∗j indirectly via correla-

tions and they contribute directly to E∗
r . From Eqs. (46) and (47)

we see that E∗
r and Eeff

r in the general case take roles that the sol-

vent’s dielectric constant εr has for dilute electrolyte solutions. In

the limit of infinite dilution we have E∗
r → εr and Eeff

r → εr. See

Ref. 19 for a detailed discussion of these matters.

3.3 Decay of the mean electrostatic potential from the wall

For simplicity, we start with the case of a wall with a uniformly

smeared out surface density σS located at z = 0 and we initially

assume that the wall is smooth so the nonelectrostatic ion-wall

interaction does not depend on the x and y coordinates, i.e., vsh
j =

vsh
j (z,ω). Thus, the charge densities ρw and ρ∗

w and the potential

ψw depend only on z. We first treat the case when κ for the bulk

electrolyte is real-valued. From Eqs. (43) and (47) it follows that

∗∗This decay behavior has been demonstrated in Ref. 23, where φ ∗
Coul(r) is denoted

φ 0(r). For the case of spherical ions this was originally shown in Ref. 20, where

φ ∗
Coul(r)δq is denoted δΨav(r) and δq is an infinitesimally small point charge. The

integral representation of Eeff
r in Eq. (48) is given in Ref. 20.
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the potential far from the surface decays like

ψw(z) ∼
∫

dr
′ρ∗

w(z
′)

e−κ|r−r′|

4πEeff
r ε0|r− r′|

when z → ∞

=
1

4πEeff
r ε0

∫
dz′ρ∗

w(z
′)
∫

ds
e−κ[s2+(z−z′)2]1/2

[s2 +(z− z′)2]1/2
,

where s = (x− x′,y− y′), s = |s| and ds can be replaced by 2πsds.

The last integral can be done analytically, yielding

ψw(z)∼
1

2κEeff
r ε0

∫
dz′ρ∗

w(z
′)e−κ|z−z′| when z → ∞.

In fact, ρ∗
w(z

′) is more short-ranged than exp(−κz′), 26 so we can

take z′ < z and in the limit z → ∞ we obtain

ψw(z)∼
1

2κEeff
r ε0

[∫
dz′ρ∗

w(z
′)eκz′

]
e−κz,

where the integral is convergent. By defining an effective surface

charge density

σSeff =
1

2

∫
dz′ρ∗

w(z
′)eκz′ (50)

we can write this as

ψw(z)∼
σSeff

κEeff
r ε0

e−κz when z → ∞. (51)

This can be compared with the DH result for a surface with charge

density σS in contact with an electrolyte in a solvent that has

dielectric constant εr

ψw(z)∼
σS

κDHεrε0
e−κDHz (DH), (52)

which motivates the inclusion of the factor 1
2 in the definition of

σS eff (see also Ref. 26).

Let us now proceed to the general case where the internal

charge distribution of the wall is σw(r) and the short-ranged inter-

action potential is vsh
j (r,ω). Then ρw(r), ρ∗

w(r) and ψw(r) depend

also on x and y. It follows from Eq. (43) that

ψw(r)∼
∫

dr
′ρ∗

w(r
′)

e−κ|r−r′|

4πEeff
r ε0|r− r′|

when z → ∞. (53)

As shown in Appendix A, the x and y dependences of ψw(r) vanish

when z → ∞ more quickly than the z dependence, which still goes

like exp(−κz). Thus, ψw(r) ultimately depends only on z for large

z. This means that the potential still decays like in Eq. (51), i.e.,

ψw(r)∼
σSeff

κEeff
r ε0

e−κz when z → ∞, (54)

where, as shown in Appendix A, the effective surface charge den-

sity in this case is given by

σSeff =
1

2A

∫
dr

′ρ∗
w(r

′)eκz′ , (55)

with A being the area of the surface (σSeff is in principle evalu-

ated in the limit of an infinitely large surface, see Appendix A).

3.4 Potential of mean force acting on ions outside a wall

The potential of mean force acting on an ion (or other particle)

of species j is given by Eq. (36) in the tail region in the limit of

large z. By inserting our result (54) for ψw and utilizing the fact

that that this potential depends only on z for large z we obtain

Wj(r1,ω1) ∼
σSeff

κEeff
r ε0

∫
dr2e−κz2 ρ∗

j (r12,ω1) when z1 → ∞,

=
σSeffe−κz1

κEeff
r ε0

∫
dr2e−κ(z2−z1)ρ∗

j (r2 − r1,ω1).

By setting r = r2 − r1 and keeping r1 constant during the integra-

tion so dr2 = d(r2 − r1), we can write the integral as

∫
dre−κzρ∗

j (r,ω1) =
∫

dre−κr·ẑ1 ρ∗
j (r,ω1) =Qeff

j (−ẑ1,ω1)

where ẑ1 is the normal to the surface (which defines the z direc-

tion) and Qeff
j is defined from

Qeff
j (r̂′,ω) =

∫
dreκr·r̂′ρ∗

j (r,ω) (56)

with r̂′ =−ẑ1 in our case. Thus we have

Wj(r1,ω1)∼ σSeffQeff
j (−ẑ1,ω1)

e−κz1

κEeff
r ε0

when z1 → ∞, (57)

which means that the magnitude of the interaction is proportional

to the product of the effective surface charge density of the wall

and an effective interaction parameter Qeff
j of the ion. The latter is

the entity that gives the magnitude of the screened electrostatic

interactions between ions (or molecules) in bulk electrolytes as

shown in Ref. 24 (in this reference the entity Qeff is denoted a0).

The leading term for the potential of mean force wi j between two

ions of species i and j when the separation r12 → ∞ is given by24

wi j(r12,ω1,ω2)∼Qeff
i (r̂12,ω1)Q

eff
j (−r̂12,ω2)

e−κr12

4πEeff
r ε0r12

, (58)

where the interaction parameter Qeff
l , with l = i or j, depends on

the orientation of each ion and the direction of the vector r12 that

joins the centers of the two ions (i.e., for a given orientations ω1

and ω2, which are defined relative to the laboratory frame, Qeff
l

depends on the direction of r12). Note that for Qeff
j in Eq. (57) the

vector −ẑ1 points towards the surface, which is in complete anal-

ogy to the vector −r̂12 in Qeff
j in Eq. (58), which points towards

the i ion.

The screened electrostatic part wel
i j of the potential of mean

force wi j is in the general case given by††

wel
i j(r12,ω1,ω2) =

∫
dr3dr4ρ∗

i (r13,ω1)φ
∗
Coul(r34)ρ

∗
j (r24,ω2) (59)

for all distances between the ions. This has the same form as

†† In Refs. 23,24 it is shown that wel
i j , as defined in Eq. (59), is a term in wi j that

contributes for all r12. Despite that wel
i j contains interactions with dressed ion charge

distributions, it is not a weak field expression that is restricted to the asymptotic

regime at large distances. The complete expression for wi j is given in Eqs. (81) and

(82) of Ref. 23.
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the electrostatic energy calculated using Coulomb’s law, but with

the screened Coulomb potential acting between the dressed ion

charge distributions of the two ions. When the electrostatic inter-

actions dominate for large r12 (as in the cases considered in the

current work) we have wi j(r12,ω1,ω2) ∼ wel
i j(r12,ω1,ω2) when

r12 → ∞. Eq. (58) gives the leading term of wel
i j for large r12 when

κ is real and therefore also the leading term of wi j. Likewise, for

the wall-ion potential of mean force Wj, the screened electrostatic

part W el
j is in general given by

W el
j (r1,ω1) =

∫
dr3ψw(r3)ρ

∗
j (r13,ω1) (60)

=
∫

dr2dr3ρ∗
w(r2)φ

∗
Coul(r23)ρ

∗
j (r13,ω1) (61)

which is defined for all r1. Note that the first equality, Eq. (60), is

the same as Eq. (36) but in contrast to the latter, Eq. (60) is not

limited to weak fields (as found for large distances from the wall)

but is valid in general. The last equality, Eq. (61), is obtained by

inserting Eq. (43), which is also of general validity. In the cases

considered in this work Wj(r1,ω1)∼W el
j (r1,ω1) when z1 → ∞ and

Eq. (57) gives the leading term when κ is real. For the oscillatory

case when κ is complex-valued, the leading term corresponding

to Eq. (57) can be obtained by adding two such terms (complex

conjugates) as has been described earlier.

3.5 Surface forces

Let us now treat interactions between two planar surfaces in con-

tact with an electrolyte. Consider two parallel walls I and II that

have an electrolyte in the slit between the surfaces. This elec-

trolyte is in equilibrium with a bulk electrolyte with density nb
i for

each species i present. Wall I is infinitely large laterally, while wall

II initially has a finite, albeit very large, surface area AII. We will

later let AII → ∞ in order to obtain the interaction per unit area

between two infinite surfaces at large surface separations. Since

wall II is very large, we will neglect the edge effects of the surface

on the interaction. These effects vanish in the interaction per unit

area when AII → ∞. Furthermore, the walls are very thick.

When wall II is infinitely far from wall I, the electrostatic po-

tential from the latter decays like (from Eq. (54))

ψI(r)∼
σSeff

I

κEeff
r ε0

e−κz when z → ∞,

where σSeff
I is defined as in Eq. (55). Let wall II approach wall I.

The distance between the surfaces is L as measured between the

origin placed at surface I and a similarly placed origin at surface

II (i.e., the origin of a local coordinate system for II with z axis

in the opposite direction compared to that of wall I). Still, wall I

defines the origin of our (global) coordinate system (x,y,z).

Since our result in Eq. (57) is of general validity for a particle

of any size, shape and charge distribution placed at coordinate z,

it is also valid for the potential of mean force WII acting on wall II

in the presence of wall I. We have

Qeff
II (−ẑ1,ω) =Qeff

II (ẑII,ω) =
∫

dr
′eκr′·ẑII ρ∗

II(r
′,ω),

where ẑII is the local normal of surface II, ρ∗
II is the dressed charge

density of wall II and the last equality follows from Eq. (56).

The orientation ω, which is written explicitly here, is also im-

plicit in ρ∗
II for the wall. From the definition (55) follows that

∫
dr′ exp(κr′ · ẑII)ρ

∗
II(r

′,ω) = 2AIIσ
Seff
II since r′ · ẑII = z′ in the local

coordinate system for II (we select this local coordinate system for

r′ in the integral; this is in congruence with the choice of coordi-

nate system in Eq. (55) when applied to wall I). Thus, by using

this result and defining the interaction free energy (potential of

mean force) per unit area for the interaction between I and II as

WI,II =WII/AII, we obtain from Eq. (57) in the limit of AII → ∞

WI,II(L)∼ σSeff
I σSeff

II

2e−κL

κEeff
r ε0

when L → ∞, (62)

(note that z1, which is the distance from wall I in Eq. (57), has

here been replaced by L). Compare this with the Debye-Hückel

result

WI,II(L)∼ σS
I σS

II

2e−κDHL

κDHεrε0
(DH)

for the interaction between two surfaces with surface charge den-

sities σS
I and σS

II .

When κ is complex valued, with κℜ ± iκℑ being the two com-

plex conjugate solutions to Eq. (20), we have the two contribu-

tions to the mean electrostatic potential

ψI(r) ∼
σSeff

I

(κℜ + iκℑ)Eeff
r ε0

e−(κℜ+iκℑ)z

+
σSeff

I

(κℜ − iκℑ)E
eff
r ε0

e−κ(κℜ−iκℑ) when z → ∞, (63)

where underline means complex conjugate,

σSeff
I =

1

2A

∫
dr

′ρ∗
I (r

′)e(κℜ+iκℑ)z
′
= |σSeff

I |e−iγI

with a real-valued γI, and where Eeff
r = Eeff

r exp(iϑE) is given by

Eq. (48) evaluated at κ = κℜ+ iκℑ. Writing κℜ+ iκℑ =Kexp(iϑK)

with real K and ϑK, we obtain from Eq. (63) the oscillatory decay

ψI(r)∼
2|σSeff

I |e−κℜz

KEeff
r ε0

cos(κℑz+ϑEK+ γI) when z → ∞, (64)

where ϑEK = ϑE+ϑK. For the interaction free energy we likewise

obtain when L → ∞

WI,II(L)∼
4|σSeff

I σSeff
II |e−κℜL

KEeff
r ε0

cos(κℑL+ϑEK+ γI + γII) (65)

and we see that the surfaces contributes with phase shifts γI and

γII apart from the magnitudes |σSeff
I | and |σSeff

II |.

Thus, Eqs. (62) and (65) gives the decay of the interaction free

energy WI,II(L) per unit area between two planar surfaces for the

two cases of plain exponential decay (real-valued κ) and expo-

nentially damped, oscillatory decay (complex-valued κ), respec-

tively. The surface force FI,II per unit area between the two walls

is FI,II =−dWI,II(L)/dL.
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4 Conclusions

The free energy of electrostatic interaction per unit area, WI,II,

between two walls I and II immersed in a bulk electrolyte decays

when the separation increases in either an damped oscillatory or

a monotonic manner. Both behaviors can appear in ionic liquids

and other electrolytes. At sufficiently large surface separations

the interaction free energy is proportional to the product of the

effective surface charge densities, σSeff
I and σSeff

II , of the walls

WI,II(L)∼ σSeff
I σSeff

II 2C1e−κL when L → ∞

for the monotonic case and

WI,II(L) ∼ |σSeff
I σSeff

II |2C2e−κℜL

× cos(κℑL+ϑEK+ γI + γII) when L → ∞

for the oscillatory case, where γI and γII are the phase shifts of

the respective surface (Section 3.5). C1, C2 and ϑEK are constants

(specified below) that are determined by the bulk electrolyte. The

interaction has the same kind of decay, the same decay length,

1/κ or 1/κℜ respectively, and wave length, 2π/κℑ, as the screened

Coulomb potential of the bulk. The walls can have a wide range

of internal structures; they can have an arbitrary internal charge

distribution and any non-electrostatic ion-wall interactions, pro-

vided the latter are sufficiently short-ranged. The electrolyte can

consist of ions and other molecules of any shapes and any inter-

nal charge distributions. Their nonelectrostatic interactions are

assumed to be short-ranged too.

The same decay behavior (with the same decay parameters κ

or κℜ and κℑ) applies for the electrostatic interactions between

all particles in the system (ions, molecules and other particles),

between the particles and a surface, and between two surfaces

provided the separations are sufficiently large. However, specific

properties of individual surfaces lie behind possible occurrences

of some oscillations at small distances in cases when the ultimate

decay is plain exponential. Such oscillations can exist for one sur-

face in contact with the electrolyte but not necessarily for another

surface in contact with the same electrolyte. What distance is suf-

ficient for the ultimate decay to take over is system-dependent;

the distance need not be very large15,32 (it can be as short as a

couple of ionic diameters in some cases).

An important conclusion of the current work is that the ex-

perimentally observed, long-ranged monotonic exponential de-

cay9–11 for surface forces in ionic liquids do not contradict the-

ory for diffuse double layer interactions, provided the latter is cor-

rectly applied to dense electrolytes. When nonlocal electrostatics

is appropriately treated and the correct expression for the decay

parameter κ is used (equation (66) below), the occurrences of

both plain exponential and exponentially damped, oscillatory de-

cay are accommodated in the theoretically predicted behaviors

of ionic liquids and other very dense electrolytes. Furthermore,

likely conditions for the appearance of the plain exponential de-

cay instead of the oscillatory one are related to various possible

reasons for transient associations of anions and cations. Since

the ions are closely together in ionic liquids and since each ion

is surrounded by several ions of opposite sign, but also by ions

of the same sign, the term “association” should hereby in general

be interpreted in terms of how the ions correlate to each other

rather than in terms of well defined long-lived complexes. This

does not exclude, however, that entities like ion pairs are tran-

siently formed in particular cases. An important point is that such

pairing is not necessary for long-ranged monotonic exponential

decay to occur.

The nonlocal nature of electrostatics in an ionic liquid or other

electrolyte is due to correlations between the ions (and other

molecules when present). The nonlocality can be expressed in

terms of a polarization response function χ∗(r) in linear response

theory (Sections 2.1 and 3.1); this function is closely related to

the electric susceptibility of the bulk electrolyte.‡‡ The screening

parameter κ satisfies the equation

κ2 =−
1

ε0

∫
dr

sinh(κr)

κr
χ∗(r).

This equation can be written in terms of an effective relative

permittivity E∗
r (κ) and renormalized charges of the ions q∗j (the

dressed ion charge which is the integral of the charge distribution

ρ∗
j ) in the following manner (Sections 2.3 and 3.2)

κ2 =
β

E∗
r (κ)ε0

∑
j

nb
j q jq

∗
j . (66)

These two equations for κ are equivalent. Real-valued solutions

κ give plain exponential decay and complex-valued solutions κ =

κℜ + iκℑ give exponentially damped, oscillatory decay.

Long-ranged plain exponential decay in ionic liquids (associ-

ated with a real solution κ with a small value), can, for exam-

ple, occur when the renormalized charges q∗j for all species are

small. In cases where E∗
r (0) is large the values of q∗j do not need

to be very small for such a solution to exist. Small q∗j can ap-

pear when there is a large degree of association of anions and

cations, for instance ion pairs, but other kinds of transient as-

sociations are also possible, for example caused by many-body

ion-ion correlations or by specific anion-cation attractions in ad-

dition to the plain electrostatic ones. A large E∗
r (0) corresponds to

large dipole-dipole contributions19 from correlations both involv-

ing permanent dipoles of the ions and transient association “com-

plexes.” Most significantly, the values of E∗
r (κ) for κ ̸= 0 contains

contributions from quadrupolar and higher multipolar features of

the ions and of association complexes. Thus, not only the dipolar

features are important in general. These and other properties of

E∗
r are extensively discussed in a separate paper, Ref. 19, where

also the relationships between κ, E∗
r , Eeff

r and the static dielectric

function of the ionic liquid are treated in detail.

For a single wall immersed in an ionic liquid or other elec-

trolyte, the average electrostatic potential ψw(r) from the wall

depends in general on all three coordinates x, y and z, where

‡‡The electric susceptibility, which relates the polarization field to the total elec-

trostatic field (the Maxwell field), is the Fourier transform χ̃(k) of χ(r12) =
∫

dr3χ∗(r13)φCoul(r32) and the static dielectric function of the bulk electrolyte is

ε̃(k) = 1− χ̃(k).
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z is the distance from the wall surface. At increasing distance

from the surface, the x and y dependences of the potential do,

however, decay quite quickly and eventually only the z depen-

dence remain in practice (Section 3.3). Therefore, for the case of

monotonic exponential decay of the potential, the values of ψw for

large z can be the same as the values of the potential from a per-

fectly smooth surface with some uniformly smeared out surface

charge density σS and without internal structure. The same ap-

plies to the surface interaction WI,II for large surface separations

described above. The value of σS for the surface with uniform

surface charge density is, however, not the same as the average

charge density per unit area of the original wall with internal

structure. By definition, both surfaces – the original one and the

smooth one – do have the same effective surface charge density

σSeff, which is defined from the magnitude of the potential in the

asymptotic decay region at large z,

ψw(r)∼ σSeffC1e−κz when z → ∞,

where the entities C1 = 1/(Eeff
r ε0κ) and κ are properties of the

bulk electrolyte alone. For the case of exponentially damped, os-

cillatory decay, the wall gives rise to a phase shift γ of the potential

(Section 3.5)

ψw(r)∼ |σSeff|C2e−κℜz cos(κℑz+ϑEK+ γ) when z → ∞,

where all entities except |σSeff| and γ are properties of the

bulk electrolyte alone, i.e., the entities C2 = 2/(|Eeff
r |ε0|κ|), κℜ,

κℑ and ϑEK = ϑE + ϑK (here, κ = κℜ + iκℑ = |κ|exp(iϑK) and

Eeff
r = |Eeff

r |exp(iϑE)). The γ value is in general different for dif-

ferent surfaces even if they have the same value of |σSeff|.

The effective surface charge density of a wall with a large sur-

face area A is expressed in a straightforward manner in terms of

the charge distribution ρ∗
w(r) of the so-called dressed wall (intro-

duced in Section 3.2) according to

σSeff =
1

2A

∫
drρ∗

w(r)e
κz

(in principle in the limit of infinite A). A dressed wall can be char-

acterized as follows. The average electrostatic potential ψw(r) is

given for all r by Coulomb’s law either (i) in terms of the screened

Coulomb potential φ∗
Coul(r) of the bulk electrolyte and the dressed

wall charge distribution ρ∗
w(r)

ψw(r1) =
∫

dr2ρ∗
w(r2)φ

∗
Coul(r21),

or, equivalently, (ii) in terms of the usual (unscreened) Coulomb

potential φCoul(r) and the total charge distribution ρ tot
w (r) due to

the wall [i.e., the sum of its internal charge distribution σw and

the charge density ρw of its ion cloud]

ψw(r1) =
∫

dr2ρ tot
w (r2)φCoul(r21)+ const.

(const. is selected so ψw is zero in the bulk liquid at z1 → ∞). The

equivalence follows from the fact that the charge density ρ∗
w is

equal to ρ tot
w minus the linear part of the polarization response of

the electrolyte due to ψw, as shown in Section 3.2.

The free energy of interaction (potential of mean force) Wj be-

tween a single wall and a j ion located at r1 and with orientation

ω1 decays as

Wj(r1,ω1)∼
∫

dr2ψw(r2)ρ
∗
j (r12,ω1) when z1 → ∞,

where ρ∗
j is the charge density of a dressed ion of species j. This

holds provided the screened electrostatic interaction dominates

for large distances. In the general case, the right hand side gives

the screened electrostatic part of Wj for all r1 outside the surface –

not only for large z1. For a bare ion the electrostatic interaction

energy would be
∫

dr2ψw(r2)σ j(r12,ω1), where σ j is the internal

(bare) charge density of the ion. The appearance of ρ∗
j instead

of σ∗
j in the formula for Wj expresses the nonlocal nature of the

electrostatic interactions in the ionic liquid, as explained in Sec-

tion 3.1 (see also Section 2.1).

For large separations, Wj is proportional to the product of the

effective surface charge density of the wall and an orientation

dependent factor, Qeff
j , from the ion (the latter originates from

the dressed ion charge density of the j ion, as shown in Section

3.4). For the oscillatory case there also appears a phase shift from

the wall and an orientation dependent phase shift from the ion

(the latter contained in Qeff
j ).

Appendix

A Decay of screened electrostatic potential

from a planar surface

In this appendix we shall investigate long-range decay of the

screened electrostatic potential ψw from a surface with an internal

charge distribution σw(r) that depends on all coordinates, includ-

ing the lateral coordinates x and y. The surface has infinite lateral

extent, but in some arguments below we consider a finite surface

of area A in the limit A → ∞ to obtain the infinitely large case.

Initially we assume that the decay parameter κ is real. We will

use Eq. (53) to determine the potential from the dressed surface

charge distribution ρ∗
w(r)=σw(r)+ρdress

w (r), but we will start with

the contribution from σw which we denote ψσ
w . It decays as

ψσ
w (r)∼

∫
dr

′σw(r
′)

e−κ|r−r′|

4πEeff
r ε0|r− r′|

when z → ∞. (67)

Since the rhs is a convolution it can be written in Fourier space as

a product and we obtain

ψσ
w (r)∼

1

Eeff
r ε0(2π)3

∫
dk

σ̃w(k)

κ2 + k2
eik·r when z → ∞, (68)

where 1/(κ2 + k2) is the Fourier transform (FT) of

exp(−κr)/(4πr), σ̃w is the FT of σw, and we have made an

inverse FT.

Consider first the special case when σw(r) = δ (z)σS(x,y) =

δ (z)σS(rxy) where rxy = (x,y), that is, a nonuniform surface

charge density located at z = 0. Then σ̃w(k) = σS(kxy), where

kxy = (kx,ky) and σS(kxy) is the two-dimensional FT of σS(rxy).

We will split σS in two parts

σS(rxy) = σS
Av +σS

R (rxy), (69)
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where σS
Av is the average surface charge density defined as

σS
Av = lim

A→∞
A−1

∫
drxyσS(rxy) = lim

A→∞
A−1σS(0)

and σS
R (rxy) is the remainder of surface charge distribution which

is net electroneutral. Since σS
Av is a uniform surface charge den-

sity we have in Fourier space

σS(kxy) = σS
Av4π2δ (2)(kxy)+σS

R (kxy), (70)

where δ (2) is the two-dimensional Dirac function. Note that

σS
R (0) = 0 due to the electroneutrality of σS

R .

By inserting σ̃w(k) = σS(kxy) into Eq. (68) we obtain

ψσ
w (r) ∼

1

Eeff
r ε0(2π)3

∫
dkxy

∫
dkz

σS(kxy)

κ2 + k2
xy + k2

z

ei(kxy·rxy+kzz) when z → ∞

=
1

Eeff
r ε08π2

∫
dkxy σS(kxy)

e−z [κ2+k2
xy]

1/2

[κ2 + k2
xy]

1/2
eikxy·rxy , (71)

where kxy = |kxy| and the last equality follows from the fact that the inverse one-dimensional FT of 1/(a2 + k2
z ) is equal to exp(−a|z|)/2a

when a > 0 (applied for the case a2 = κ2 + k2
xy and with z > 0). By breaking out a factor exp(−κz)/κ to the outside of the integral and

inserting Eq. (70), we obtain when z → ∞

ψσ
w (r)≡ ψσ

w (rxy,z) ∼
e−κz

κEeff
r ε08π2

∫
dkxy

[
σS

Av4π2δ (2)(kxy)+σS
R (kxy)

]
F(z,kxy)e

ikxy·rxy

=
e−κz

κEeff
r ε08π2

[
σS

Av4π2 +
∫

dkxyσS
R (kxy)F(z,kxy)e

ikxy·rxy

]

where F(z,kxy) = exp(−κz [(1+ k2
xy/κ2)1/2 −1])/(1+ k2

xy/κ2)1/2 and the last equality follows from the fact that F(z,0) = 1. Note that the

x and y dependence of ψσ
w (r) for large z originates solely from the term with σS

R . When kxy ̸= 0 we have F(z,kxy)→ 0 exponentially fast

when z → ∞. Since σS
R (0) = 0, the integral with σS

R goes to zero in this limit and it follows that

ψσ
w (r)∼

σS
Av

2κEeff
r ε0

e−κz when z → ∞ (only surface charges). (72)

Thus the x and y dependence of ψσ
w vanishes for large z and the limiting form of the screened potential from a nonuniform surface

charge density is the same as from a uniformly smeared out one.

When the surface structure is periodic, σS(kxy) is equal to an

infinite sum of Dirac delta functions located at the lattice points

of the reciprocal lattice of this structure. From Eq. (71) follows

that the (x,y) dependent part of ψσ
w decays like exp[−z [κ2+s2

1]
1/2]

in the z direction, where s1 is equal to the kxy value of the nonzero

reciprocal lattice point(s) closest to kxy = 0. Thus the correspond-

ing decay length is only a fraction of λ = κ−1, so the x and y

dependence vanishes quite quickly when z is increased.

The result (72) can easily be generalized and applied to ψσ
w

from Eq. (67) for a general σw(r), which is zero outside the wall,

i.e., for z > 0. First, if there is a surface charge density distribu-

tion located at z= z′ instead of at z= 0, the potential in this case is

obtained from Eq. (72) by replacing exp(−κz) by exp(−κ(z− z′))

in the formula. Next, let us consider the contribution to the po-

tential from σw(r′) ≡ σw(r′xy,z
′) in the interval (z′,z′+ dz′) for an

infinitesimally small dz′, that is, from the surface charge distribu-

tion σw(r′xy,z
′)dz′. This contribution equals that in Eq. (72) with

exp(−κ(z− z′)) inserted and with σS
Av replaced by the appropriate

average density, i.e., limA→∞A−1
[∫

dr′xyσw(r′xy,z
′)
]

dz′. It follows

that the entire ψσ
w (r) can be obtained as an integral over z′ with

all such contributions for z′ ≤ 0

ψσ
w (r)∼

1

2κEeff
r ε0

0∫

−∞

dz′
[

lim
A→∞

1

A

∫
dr

′
xyσw(r

′
xy,z

′)

]
e−κ(z−z′).

when z → ∞. We can write this as

ψσ
w (r)∼

σS
cAv

2κEeff
r ε0

e−κz when z → ∞, (73)

where we have defined the composite average (cAv) surface

charge density

σS
cAv = lim

A→∞

1

A

∫
dr

′σw(r
′)eκz′ (74)

and the z′ integration is done for z′ ≤ 0 (where σw(r′) ̸= 0). Note

that the dependence of σw(r′) on z′ affects the value of the poten-

tial for large z, but the x′ and y′ dependencies of σw(r′) do not (in

the limit z → ∞).

Finally, the potential ψw(r) from the dressed surface charge dis-

tribution ρ∗
w(r) given by Eq. (53) is obviously, in analogy to Eqs.
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(73) and (74), decaying like

ψw(r)∼
σSeff

κEeff
r ε0

e−κz when z → ∞, (75)

where the effective surface charge density is given by

σSeff = lim
A→∞

1

2A

∫
dr

′ρ∗
w(r

′)eκz′ (76)

with integration over the whole space. We have moved the factor

1/2 to the definition of σSeff for reasons explained in the main

text. The integral converges in the limit z′ → ∞ since ρ∗
w decays

fast to zero in the cases considered here.

These results apply also for the case of complex-valued decay

parameter κ = κℜ ± iκℑ provided one adds the contributions to

ψw from each of these two κ values as explained in the main text.

The prefactor σSeff of each term is a complex quantity, but when

the the two terms are added, the prefactor of the sum becomes

real and contributes to the phase of the oscillation, so the actual

effective surface charge density is real. Also in this case, the x and

y dependence of ψw vanish in the limit z → ∞. This follows from

the fact that the factor exp(−z(κ2 + k2
xy)

1/2) in Eq. (71) decays

faster than exp(−κz) ≡ exp(−κℜz)exp(∓iκℑz) when kxy ̸= 0 since

the real part of ((κℜ ± iκℑ)
2 + k2

xy)
1/2 then is greater than κℜ.
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