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ABSTRACT 

In 1637 the Swedish mathematician Martinus Erici Gestrinius contributed with a commented edition of 
Euclid’s Elements. In this article we analyse the relationship between geometry and algebra in Gestrinius’ 
Elements, as presented in Book II. Of particular interest are Propositions 4, 5, and 6, dealing with straight 
lines cut into equal and unequal parts, and the three kinds of quadratic equations Gestrinius associates with 
them. We argue that Gestrinius followed Clavius translation of the Elements, but was influenced by Ramus to 
include algebra.  

1 Introduction  
Martinus Erici Gestrinius (1594–1648) was a Swedish mathematician and became a 
professor of geometry (then named professor Euclideus) at Uppsala University in 1620. He 
was born in Gävle as the son of the parson and in 1611 he became the student of Claudius 
Opsopæus, the professor of Hebrew at Uppsala. As a student Gestrinius repeatedly visited 
Germany and some of its universities, which made him familiar with German mathematics. 
In 1614 he travelled to Helmstedt and in 1615 to Wittenberg. In 1618 he received his 
university degree at Greifswald before he returned to Uppsala to start teaching at the 
university. In 1630, 1638, and 1643 he was the vice-chancellor of the university and in 
1633 he was one of the university’s delegates at the Parliament. 

Uppsala University, founded in 1477, is the oldest university in the Nordic countries 
and was the only university in Sweden until King Gustav II Adolf in 1632 founded the 
university at Dorpat, which today is the University of Tartu in Estonia. The university had 
grown out of an ecclesiastical centre and had been charted through a papal bull by Pope 
Sixtus IV. During the turbulent times of the Reformation in the 16th century, however, 
there was very little activity at the university. In 1593, at The meeting of Uppsala – the 
most important synod of the Lutheran Church of Sweden – Lutheran Orthodoxy was 
established in Sweden, and the Duke Charles (later King Charles IX) gave new privileges 
to the university, which reopened in 1595. 

It is known that Gestrinius lectured at Uppsala University on the significance of 
arithmetic for the bourgeois life, algebra, astronomical calculations, and geometry. He 
seems to be the first in Sweden to use the symbols + and – and he was the first Swede to 



use square roots. One of his greatest mathematical achievements was that he introduced 
algebra into Swedish mathematics. In 1637 he contributed with the textbook In 
Geometriam Euclidis Demostrationum Libri Sex – a commented edition of the first six 
books of Euclid’s Elements. This is the first edition of Euclid’s Elements published in 
Sweden, and it was used as a textbook at the university at least until the beginning of the 
18th century. Gestrinius probably had knowledge of Campanus’, Clavius’ and Peletier’s 
editions of the Elements. However, contrary to these three interpreters of Euclid´s 
Elements, Gestrinius included algebra in Propositions 4, 5 and 6 of Book II in his edition of 
the Elements.  

In this paper we will consider the relations between geometry and algebra in 
Gestrinius’ Elements. In order to do this we will in detail consider the connections between 
Propositions 4, 5, and 6 of Book II and the three kinds of quadratic equations Gestrinius 
associates to them, as well as the different ways in which Gestrinius solves the equations. 
We will also investigate who influenced Gestrinius’ work. Even if Petrus Ramus is not 
mentioned in Gestrinius’ edition of the Elements, as we shall see there are indications that 
he inspired Gestrinius: They use the same notation and they also classified the quadratic 
equations in the same way. However, an important difference is that Gestrinius explained 
the solutions of the equations geometrically, by utilizing diagrams.  

2 Book II of Gestrinius’ Elements  
In the introductory text of Book II in Gestrinius’ version of the Elements, he mentions the 
multiple uses of the contents of Book II – not only in geometry, but also for cossic algebra, 
geodesy and astronomy. He also mentions that he solves algebraic equations and uses surd 
numbers in certain propositions of Book II. Gestrinius’ version of Book II contains 14 
propositions divided into twelve theorems and two problems. He establishes all of the 
propositions in a traditional manner. He also exemplifies the propositions, using numbers.  

In Gestrinius’ edition of the Elements, Propositions 4, 5 and 6 of Book II are of 
particular interest (Gestrinius, 1637, pp. 117–129). The propositions consider straight lines 
cut into equal and unequal segments. Gestrinius presents traditional geometrical proofs of 
these propositions, as well as exemplifying them through the solution of the following 
quadratic equations associated with the proposition: 

1! + 10!  æ!"#$. 119 

1! + 20  æ!"#$. 12! 

1!  æ!"#$. 12! + 64 

Gestrinius describes the way to solve these equations in three different ways: 
rhetorically, with tables, and geometrically. We will consider them in detail below. 
2.1 Proposition 4 of Book II  

In Gestrinius’ edition of the Elements, Proposition 5 of Book II is formulated in a 
traditional geometrical manner: 



Proposition 4: If a straight line is cut at random, the square on the whole is equal to 
the squares on the segments and twice the rectangle contained by the segments. 

 
Figure 1. Geometric interpretation of Proposition 4 

According to the proposition, the straight line !" is cut at the point !. The square on 
!" is equal to the sum of the squares on !" and !" together with the two rectangles with 
sides !" and !".  

Gestrinius establishes the proposition in a purely geometrical manner, similar to the 
traditional proof of Euclid. Thereafter he exemplifies the proposition with numbers, letting 
the length of the straight line be 12 and the segments 7 and 5. Gestrinius’ conclusion, with 
modern notation, is that 12! = 7! + 5! + 2 ∙ 7 ∙ 5.  

Gestrinius now associates a quadratic equation of the first kind (“Æquatio Algebraica 
secunda primi generis”) to the proposition: 1! + 10!  æ!"#$. 119. He uses the symbol ! 
for the unknown square (quadratum), ! for the unknown side (latus) and the abbreviation 
æquat. (æqualitatem) for the equality. In this equation the sum of the “maximum” and the 
“medium” terms is equal to the “minimum”. Gestrinius proceeds by verbally describing the 
solution of the equation: 

Half of the medium 10 is 5, its square is 25, composed with the minimum 119 is 
144, is from its side 12 the half of the medium 5 is removed it is remained the 
value 7 of one side.  

Gestrinius tests the received value 7: 10! gives the value 70 and 1! gives the value 
49, the total equals 119. This verbal solution could be summarized with modern notation 
as follows: 

(
10
2
)! + 119 −

10
2
  . 

Now he summarizes the solution in a table (see Figure 2): 

 



 
Figure 2. The table summarizing the solution of the equation associated with Proposition 4 

The reason for including the table is probably to show how to find the solution to the 
equation through a more algorithmic-like process. 

Gestrinius solves the equation one more time, this time using geometry, and referring 
to Figure 1. Translated into English, Gestrinius’ text proceeds as follows: 

This equation is applied to the present proposition and the truth of the equation will 
be evident. To the square !" the gnomon is !"#. Now 1! + 10!  equals the gnomon 
!"!; therefore it equals 119. Moreover 1!, which is !", is the square of the 
gnomon: wherefore 10! is equal to the two rectangles !", !" and the plane 5! is 
equal to the rectangle whose length 1! is the side of the square !" already placed, 
and 5 is the side of the remaining square !". Therefore, 25 is the remaining square 
!", and added to the gnomon !"#, which is 119, it makes the square !" complete 
to 144. From the side 12 of the square !" the side 5 of the square !" is removed, 
remaining 7, which is the side of the square !" and the value of 1!. 

The gnomon !"# is easily found in the equation 1! + 10! = 119, where 1! 
corresponds to the square !" of the gnomon and 10! corresponds to the two rectangles !" 
and !". The crucial part of the proof is the squaring of the gnomon, which is done by 
finding the side 5 of the remaining square !". After this has been done, Gestrinius easily 
finds the side of the square !", i.e., the square root of 1!. 
2.2 Proposition 5 of Book II 

In Gestrinius’ edition of the Elements, Proposition 5 of Book II states: 

Proposition 5: If a straight line is cut into equal and unequal segments, the rectangle 
contained by the unequal segments of the whole together with the square on the 
straight line between the points of section is equal to the square on the half.  

 

 



 
Figure 3. Geometric interpretation of Proposition 5 

The straight line !" is cut into equal parts at ! and in unequal parts at !. The sum of 
the rectangle !" (the rectangle contained by the unequal segments) and the square !" (the 
square on the straight line between the points of section) equals the square !" (the square 
on the half).  

After establishing the proposition in a geometrical manner similar to the traditional 
proof of Euclid, Gestrinius exemplifies the proposition with numbers. He lets the length of 
the straight line !" be 12. It is divided in equal parts at ! such that !" = 6 and !" = 6, 
and in unequal parts at ! such that !" = 10 and !" = 2. The length of the straight line 
between the point of section is !" = 4. He concludes, translated into modern notation, that 
6! = 10 ∙ 2+ 4!. 

Gestrinius now associates a quadratic equation of the third kind (“Algebraica Æquatio 
secunda tertij generis”) to the proposition: 1! + 20 = 12!. In this equation the sum of the 
“maximum” and the “minimum” terms is equal to the “medium”. Gestrinius proceeds by 
describing the solution of the equation verbally: 

Half of the medium is 6, its square is 36 from which the minimum 20 is subtracted, 
remaining 16, if its side 4 is added to half of the medium 6 it will make 10, if 
withdrawn it will make 2. Therefore 6+ 4 and 6− 4, i. e., 10 and 2, will be the 
values of 1!. 

In modern notation this verbal solution could be summarized to:  

12
2
± (

12
2
)! − 20  . 

Just as in Proposition 4 Gestrinius now summarizes the solution in a table (see Figure 
4): 



 
Figure 4. The table summarizing the solution of the equation associated to Proposition 5 

If an equation of the third kind has a positive root it always has one more. This makes 
it difficult for Gestrinius to give a geometrical solution that is well connected to the 
equation. Despite this fact, Gestrinius uses geometry to solve the equation one more time: 

The diagram makes this equation visible. For if !"  12 is divided into unequal 
segments !"  10 and !"  2, then !"  20 is the plane made up of the unequal 
segments !" and !". And therefore if this plane is reduced from 36, the square of 
the half segment !", i.e., from the square !", there remains 16, the square !" of 
the intermediate segment !", whose side 4 together with the half 6 gives 10, the 
longest segment !", for the value of 1!. The same subtracted from 6, leaves 2, the 
smallest segment !", which in the same manner is the value of 1!. And both 
operations depend however on this proposition by addition and subtraction. Since 
the plane of the whole and the longest segment, is equal to so many times the 
longest segment, as there are unities in the whole. And similar is the plane of the 
whole and the smallest segment equal to so many smallest segments, as there are 
unities in this. As in the same example the plane 120 out of 12 and the longest 
segment 10 is equal to 12!, which contains 100, the square of the longest segment 
10, and 20 the plane of the unequal segments. Thus the plane 24 out of the whole 
12 and the smallest segment 2 is in a similar way equal to 12!, which contains 4, 
the square of the smallest segment, and the plane 20 of the same unequal segments, 
as the demonstration of the operation shows. And therefore there will be a free 
choice to use sometimes addition and subtraction, sometimes just one of them, as it 
will be manifested by the algebraic problems. 

To be able to tackle the problem, Gestrinius had to give the roots of the equation 
beforehand. One problem is that the diagram only corresponds to one of the solutions of 
the equation (1! = !"). Since Gestrinius did not use a minus sign he could also not easily 
find a gnomon that can be squared. For example, the gnomon !"# could be described 
with the expression 12! − 1!. To square this gnomon, the “square on the straight line 
between the points of intersection”, i.e. 16, has to be added. Then the square on the half is 
equal to 20+ 16 = 36, i.e., the half is 6, which gives 6− 4 = 2 as a root. A similar 
diagram would give the root 6+ 4 = 10. 
2.1 Proposition 6 of Book II 



In Gestrinius’ edition of the Elements, Proposition 6 of Book II states: 

Proposition 6: If a straight line is cut into equal segments and a straight line is 
added to it in a straight line, the rectangle contained by the whole with the added 
straight line and the added straight line together with the square on the half is equal 
to the square on the straight line made up of the half and the added straight line. 

 
Figure 5. Geometrical interpretations of Proposition 6 

According to the figure, !" is the straight line and it is bisected at ! and the straight 
line !" is added. The proposition states that the rectangle !" (the rectangle contained by 
the whole with the added straight line and the added straight line) together with the square 
!" (the square on the half) equals the square !" (the square on the straight line made up of 
the half and the added straight line).  

Gestrinius proves also this proposition in a traditional geometrical manner before 
exemplifying it with numbers. He lets the length of the straight line !" be 12. It is divided 
in equal parts at ! such that !" = !" = 6. The added straight line is !" = 4. He 
concludes that since the whole and the added straight line equals 16 and the half together 
with the added straight line equals 10, it follows from the proposition that 10! = 16 ∙ 4+
6!. 

Gestrinius now associates a quadratic equation of the second kind (“Secunda Æquatio 
Algebraica secunda generis”) to the proposition: 1! = 12! + 64. In this equation the 
“maximum” term is equal to the sum of the “medium” and the “minimum” terms. 
Gestrinius proceeds by describing the solution of the equation verbally: 

Half of the medium is 6, its square is 36, add the minimum 64 which gives 100, 
whose side is 10. To this add half of the medium 6, the total will be 16 which is the 
value of 1!.  

He concludes that 12 ∙ 16+ 64 = 16!. In modern notation this solution could be 
summarized in: 

(
12
2
)! + 64 +

12
2
  . 

Just as in the other propositions Gestrinius now summarizes the solution in a table 
(see Figure 6): 



 

 
Figure 6. The table summarizing the solution of the equation associated to Proposition 6 

Since an equation of the second kind only has one positive root, it is easier to 
illustrate the solution with the help of the diagram in Figure 5. Gestrinius uses geometry to 
solve the equation in this way: 

The proposed equation is applied in this way: The minimum is the plane made up 
by the composed and the added, and the square of the half of the middle form is the 
square of the half; and therefore the sum of these is equal to the square of the half 
and the added, whose side if the half is added is the side of the great square. As in 
the same example 1!  æ!"#$. 12! + 64. The plane of the composed and the added 
!", !", i.e., rectangle !", is 64, added to the square of the middle !", i.e., square 
!", which is 36, gives 100. This number 100 is equal to the square !", out of the 
half and the added !". Its side is 10, together with 6, the half !", gives the side of 
the great square. 

Even though Gestrinius does not mention any gnomon to be squared, it is involved in 
the solution. The root 1! is equal to “the whole with the added straight line”, i.e., !". The 
rectangle !" is equal to the rectangle !", so the gnomon composed by the rectangle !", 
the square !" and the rectangle !" is equal to the rectangle !". The square !", which 
equals to 36, completes the square.   

3 Influence on Gestrinius 
In the introduction of his Elements, Gestrinius mentions four post-classic mathematicians: 
Johannes Kepler (1571–1630), Campanus of Novara (1220–1296), Jacques Peletier (1517–
1582), and Christopher Clavius (1538–1612). Kepler did not publish his own edition of the 
Elements, but he is mentioned in connection to the treatment of the five regular polyhedra 
and his Platonic solid model of the solar system. However, Campanus, Peletier, and 
Clavius published versions of the Elements. We will now explain the connection between 
these three versions of the Elements and the connection to Gestrinius’ edition, as well as 
other possible influences on Gestrinius. In particular, we argue that Gestrinius was 
influenced by Petrus Ramus.  
3.1 Campanus, Peletier, Clavius, and Commandino 



Campanus’ Latin version of the Elements, based on Arabic translations, was completed 
between 1255 and 1259 (Corry, 2015). In 1482 it appeared as the first printed edition of the 
Elements, and thus became the standard source until the 16th century, when other editions 
based on direct translations from the Greek were published. Campanus’ treatment of the 
Elements contains many modifications, additions and comments, as he was making efforts 
to present the text in an as self-contained form as possible. In Book II Campanus remained 
within a geometric context, but he also stated that the first 10 propositions of Book II were 
true for numbers as well as for lines.  

Gestrinius mentions the two 16th century mathematicians Peletier and Clavius in 
connection with Proposition 16 in Book III and their debate regarding the angle of contact. 
Peletier’s edition of the Elements was published in 1557 with the title In Euclidis Elementa 
Geometrica demonstrationum, Libri sex. Its title is very similar to Gestrinius’, but 
Peletier’s edition is a work on geometry and includes no algebra. Clavius’ edition of the 
Elements was published in 1574 with the title Euclidis Elementorum Libri XV. Accessit 
liber XVI. Book II of Clavius’ Elements includes many problems solved numerically. The 
wording of the propositions and the proofs of Book II of Clavius are very similar to 
Gestrinius’, but Clavius did not include any algebra.  

One of the most important Latin translations of the Elements is the 1572 version of 
Frederico Commandino (1509–1575) (Heath, 1956). Commandino followed the original 
Greek more closely than Clavius. Gestrinius mentions Commandino when he in Book V 
besides the traditional 25 propositions included 9 extra propositions in an Appendix Ex 
Commandino. However, Commandino in his Elements of 1572 only included 33 
propositions of Book V, compared to the 34 included by Gestrinius, as well as by 
Campanus, Peletier and Clavius. 

In 1632 Gestrinius lectured on geometry at Uppsala University. In the lecture notes 
we can see that the wording of the propositions is very similar to those of Clavius, 
indicating that Gestrinius followed Clavius. In the lecture notes Gestrinius also gave the 
same numerical examples, as he would later present in his Elements. However, algebraic 
applications are missing in the lecture notes. Even if Gestrinius followed Clavius’ 
Elements, his idea of including algebra into Book II cannot come from Clavius. As we will 
argue below, there are indications that Gestrinius got this idea from Petrus Ramus. 
3.2 Ramus 

Petrus Ramus (Pierre de la Ramée, 1515–1572) is not mentioned in Gestrinius’ Elements, 
but there are strong indications that Gestrinius knew of Ramus’ work and was inspired by 
it. Ramus was the most important French algebraist before François Viète (1540–1603). As 
a mathematician Ramus is most famous for his ideas on the practical use of mathematics 
and the influence of his book on the education of mathematics. In his Algebra from 1560, 
he explains that “Algebra is a part of arithmetic” and he mentions that the two parts of 
algebra are “numeratio” (“arithmetical” handling of algebraic expressions) and “æquatio” 
(solving equations). In particular, Ramus showed how to treat quadratic equations. His 
notation was simple, with ! for the unknown (latus=side) and ! for the square of the 



unknown (quadratus=square). Instead of an equality sign he used the abbreviation “æqua.” 
We recognise this notation from Gestrinius. Just as Gestrinius did, Ramus classified the 
quadratic equations into three types (“canon”), which he presented through the following 
examples (Ramus, 1560, pp. 13–19): 

!"#$#  !"!"#$: 1! + 8!  æ!"#. 65 

!"#$#  !"#$%&$!: 6! + 40  æ!"#. 1! 

!"#$#  !"#!$%&: 1! + 21  æ!"#. 10! 

As we can see, Gestrinius and Ramus used the same notation, and also classified the 
quadratic equations in the same way. Just as Gestrinius, Ramus also illustrated the 
algebraic solutions of the equations with the help of the geometry in Propositions 4, 5, and 
6 of Book II in the Elements, but he did it in an algebraic context, not using diagrams as 
Gestrinius did. Thus, Ramus used the three propositions to illustrate the three equations, 
that is, he used geometry to illustrate algebra. As we have seen, Gestrinius, on the other 
hand, used the equations to illustrate the propositions, that is, he used algebra to illustrate 
geometry. 

In 1545 Ramus also published a version of Euclid’s Elements (Heath, 1956). 
However, it only includes definitions and propositions, but no comments. Ramus also only 
included 25 propositions in Book V and not 34 as Gestrinius, as well as Campanus, Peletier 
and Clavius, did. This indicates that Ramus, in this sense, was not following the traditions 
of Campanus, Peletier and Clavius.  

4 Concluding remarks 
Gestrinius was the first Swedish mathematician to publish an edition of Euclid’s Elements 
and to present algebra in a printed text. However, he was not the first mathematician to use 
algebra in a geometrical context. William Oughtred (1573–1660) was one of the first to 
exemplify theorems of classic geometry using algebra (Stedall, 2002). He demonstrated all 
of the 14 propositions of Book II of Euclid’s Elements in his Clavis mathematicæ from 
1631 with his analytical method, which means that he used algebra. He used Viète’s 
algebraic notation, as presented in Viète’s symbolic algebra, or the Analytical Art. Inspired 
by Diophantos’ work during the end of the 16th century, Viète used capital letters instead of 
abbreviations as symbols for the unknown and known entities. This made it possible for 
him to present a general equation and to give a general method of solving it. Nevertheless, 
Gestrinius did not use Viète’s symbols, and it is possible that he did not even know about 
them. Therefore it seems unlikely that he, at least in 1637, had knowledge of Oughtred’s 
Clavis.  

Many years before Oughtred’s Clavis, Thomas Harriot (1560–1621) had written the 
propositions of Book II algebraically, but this text was never printed (Stedall, 2000). Also 
Harriot was influenced by Viète, but he used his own symbols, similar to Descartes’. 
Another important contribution was made by Pierre Hérigone (1580–1643) when he in 
1634 published his Cursus Mathematicus, where he replaced the rhetorical language of 
Euclid’s Elements with a symbolic language (Massa-Esteve, 2010). Hérigone’s aim was to 



introduce a universal symbolic language for dealing with both pure and mixed 
mathematics.  

We do not suggest that Gestrinius was an extraordinary mathematician even though 
he was the first professor of mathematics at Uppsala University who brought the subject to 
a more scientific study. Primarily he was an educator, and his importance lies in the fact 
that he transferred known mathematical theories to the following generations of Swedish 
mathematicians. His edition of the Elements was used at Uppsala University, as well as 
Clavius’ edition of the Elements. For example, the Swedish mathematician and 
mathematics teacher Anders Gabriel Duhre (1680–1739 (possibly 1681–1739)), most well-
known for his textbooks on algebra and geometry, most likely studied Gestrinius’ version 
of the Elements. In his book on geometry, Duhre also connected geometry to algebra and 
proves the propositions of Book II of Euclid’s Elements using algebra in Descartes’ 
notation as well as in the notation of Wallis and Oughtred. Also Samuel Klingenstierna 
(1698–1765), the most well-known Swedish mathematician during the 18th century, learned 
Euclid by reading Gestrinius’ edition of the Elements. Therefore, Gestrinius keeps an 
important position in the Swedish history of mathematics and mathematics education. 
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