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Joint Action is typically described as social interaction that requires coordination among

two or more co-actors in order to achieve a common goal. In this article, we put forward a

hypothesis for the existence of a neural-computational mechanism of affective valuation

that may be critically exploited in Joint Action. Such a mechanism would serve to

facilitate coordination between co-actors permitting a reduction of required information.

Our hypothesized affective mechanism provides a value function based implementation

of Associative Two-Process (ATP) theory that entails the classification of external stimuli

according to outcome expectancies. This approach has been used to describe animal

and human action that concerns differential outcome expectancies. Until now it has not

been applied to social interaction. We describe our Affective ATP model as applied to

social learning consistent with an “extended common currency” perspective in the social

neuroscience literature. We contrast this to an alternative mechanism that provides an

example implementation of the so-called social-specific value perspective. In brief, our

Social-Affective ATP mechanism builds upon established formalisms for reinforcement

learning (temporal difference learning models) nuanced to accommodate expectations

(consistent with ATP theory) and extended to integrate non-social and social cues for

use in Joint Action.

Keywords: emotions, associative two-process theory, social value computation, joint action, minimal

architectures, social Aff-ATP hypothesis, extended common currency

INTRODUCTION

The notion of Joint Action has received various definitions. The popular perspective from the
90s onwards has viewed it as a manifestation of shared intentions to act between two or more
individuals (e.g., Gilbert, 1990; Searle, 1990; Bratman, 1992; Tuomela, 1993). Tomasello, for
example, has stated: “[t]he sine qua non of collaborative action is a joint goal and a joint
commitment” (Tomasello, 2010, p. 181). Bratman’s (1992) shared intentional position on Joint
Action can be described accordingly: (i) inter-acting agents have intentional behavior toward
an outcome, (ii) agents adjust (“mesh”) subplans of the intentional behavior to account for the
other(s), and (iii) the agents are aware of the (adjusting) intentions of the other(s). The collective
aspect is supposedly captured by this form, and there is a requirement of interrelatedness of
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individual intentions among group members: group members
have the “same” individual thought on this collective form. An
important ingredient in Tuomela’s social ontology, for example,
is the collective mode of thought (we-mode) to be distinguished
from the me-mode. In this view, broadly, individuals can act
as members of groups either for satisfying private ends or for
satisfying group ends.

Definitions abound that attempt to de-emphasize the role
that shared intentions play in Joint Action, many of which
are action- or outcome-focused. Butterfill (2012), for example,
bases his definition of Joint Action on shared goals rather
than shared intentions. On this account, goal-directed1 behavior
need not be intentional “there are ways of representing actions
as goal-directed which do not involve representing intentions
or any other propositional attitudes of agents” (p. 13). Other
“minimalist” accounts of Joint Action can be found. For example,
Miller (1992) posits that in Joint Action: “there is more than one
agent; each agent is performing (at least) one action; each agent’s
action is dependent on the actions of the other agents” (p. 275).
Knoblich and Jordan (2002) define Joint Action as a: “[situation]
where neither member of a group can achieve a common goal
on his own but only with the help of the other member” (p. 2)
and Sebanz et al. (2006), describe Joint Action as: “any form of
social interaction whereby two or more individuals coordinate
their actions in space and time to bring about a change in the
environment” (p. 70).

These more “minimalist,” action/goal-oriented perspectives
focus on those mechanisms that are requisite to many Joint
Actions of the type that require coordination in time and
space. Minimal mechanisms are pertinent when tasks are new
to the actors and/or challenging (not mastered): “minimal
representations may be formed when a novice learns to perform
a new joint action, particularly if the novice’s task is cognitively
demanding and leaves insufficient resources to form rich
representations that include all components of the joint action”
(Loehr and Vesper, 2016, p. 536). It is an open question as to
what extent such non-mental mechanisms underlie, constrain,
or even substitute for the “higher” cognitive mentalizing
purported by the advocates of shared intentionality in Joint
Action.

The remainder of this article breaks down as follows: In
Section Minimal Mechanisms and Coordination “Smoothers”
in Joint Action we discuss minimalist mechanisms that enable
Joint Action. Section An Affective Account of Associative Two-
Process Theory concerns a description of a value function
based on ATP theory, which has been applied to individual
learning of differential affective states. In this section, we
also introduce our (novel) hypothesis suggesting that such
an “affective” implementation of ATP may be applied to
a social context relevant to Joint Action. We call this the
Social Aff-ATP hypothesis. In Section Neural-Computational
Basis for Affective Valuation, we describe our existing neural-
computational account of ATP as it applies to the individual,
and then propose the (neural-computational) mechanisms that
underlie our Social Aff-ATP hypothesis. Finally, in Section

1Shared goals here are defined as “complexes of states and relations” (p. 13).

Discussionwe provide a discussion of themechanism’s functional
relevance to a Joint Action context.

MINIMAL MECHANISMS AND
COORDINATION “SMOOTHERS” IN JOINT
ACTION

Investigating Minimal Mechanisms of Joint
Action
The notion of minimalism appeals to evolutionary (Tomasello
et al., 2005; de Waal, 2008; Decety, 2011) and developmental
(Milward et al., 2014; Milward and Sebanz, 2016; Steinbeis,
2016) continuity regarding the mechanisms applicable to social
interaction. It provides a bottom-up approach, which attempts to
minimize assumptions about the cognitive mechanisms that may
account for a particular behavioral phenomenon.Minimalization
is closely related to fundamental imperatives to minimize the
complexity of Joint Action in Bayesian or active inference
treatments of communication and neural hermeneutics (Frith
and Wentzer, 2013; Friston and Frith, 2015). Here, the idea
is to minimize the likelihood of forward models of self and
other; where the marginal likelihood (or model evidence) is
equal to accuracy minus complexity. This means that optimal
exchange and Joint Action should be minimally complex and
as “smooth” as possible. Thereby, a minimalist approach can be
seen as a perspective that fosters deeper understanding of the
origins and functions of processes that underlie, or contribute to,
performance of Joint Actions.

A typical “minimalist” Joint Action example is given in the
form of a table-moving scenario. Two individuals are said to
have as their goal to move a table from place A to B (cf. Sebanz
et al., 2006). The table may be too heavy for one actor but
manageable for the two actors. This example requires that the
actors continually take into account, and adjust to, the patterns
of sensorimotor activity of the other. The actors must not simply
react to the actions of the other but also predict the other’s actions
and adapt to them in order to best realize the achieving of the
common goal.

A number of studies have sought to investigate the minimal
mechanisms that may underlie different varieties of Joint
Action (cf. Sebanz et al., 2003, 2005; Richardson et al., 2012).
In such settings “representing” task-based states of others
(action outcomes, task rules) are not required for successful
completion of the joint activity2. The indication of presence of
such representations, however, is suggestive of their ubiquity
and general applicability in social interactions. Apparently,
individuals can’t help but represent the spatiotemporally
coincident (or overlapping) activities of others. The work
by Sebanz et al. (2003) and Sebanz et al. (2005), has,
respectively, inferred the existence of action-based, and task-
based, representations of others according to scenarios that
entailed joint activity where the successful completion of the task

2Such activity is not considered Joint Action since the participants’ behavior is not

required to be in any way adapted to each other in order to achieve the desired

outcome.
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for either individual did not depend on the performance of the
other in the task.

Atmaca et al. (2011), similar to the findings of Sebanz and
colleagues above, found that subjects will represent task rules of
another co-acting participant even when such knowledge does
not beneficially impact upon performance. The general finding
of Atmaca et al. (2011) was that participants produced a bigger
difference in reaction times when responding to incompatible,
vs. compatible, stimuli when they were in a joint condition
(another participant present) compared to when they were in the
individual condition. The experimenters also found that it was
important as to whether participants believed that the “other” in
the joint condition acted intentionally. As for the Sebanz et al.
(2005) experiment, Atmaca et al. (2011) concluded that people
in a Joint Activity setting have a strong tendency to represent the
task (stimulus-response, or S-R, mappings) of others even when
it is not required for successful completion of the task.

The above examples provide evidence that humans can’t
help but represent information about others when it concerns
actions and (arbitrary) task rules using simple stimulus-response
mappings. Such tendenices may bring to bear on, or have even
evolved in the context of, Joint Action. In the remainder of
Section Minimal Mechanisms and Coordination “Smoothers” in
Joint Action and in subsequent sections, we will present how
humans may also have a tendency to represent others’ value,
including affective-based outcomes (and expectancies) and how
these may be brought to bear in Joint Action.

The Role of Emotion in Joint Action
Vesper et al. (2010) has proposed a minimalist perspective on
Joint Action, which emphasizes the sensorimotor coordination
required in physical Joint Action tasks. They suggest that whilst
classical Joint Action perspectives that address planning and
high level reasoning are not well-equipped to deal with issues
of fine-grained spatial-temporal sensorimotor coordination, the
opposite is true of sensorimotor-focused perspectives. The focus
of Vesper et al.’s has been to posit an approach for bridging the
gap between these two perspectives by focusing on short-term
planning, monitoring and predicting the actions of others. This
minimalist approach views Joint Action as involving dedicated
mechanisms for coordination and is concerned with how Joint
Action is performed.

Much literature in Joint Action theory has concerned the
shared representation of action effects (or outcomes), (e.g.,
Knoblich and Jordan, 2002; Sebanz and Knoblich, 2009). These
minimalist approaches to Joint Action have, however, overlooked
a potentially equally central aspect to Joint Action—shared value
states, their expression, perception and inference. Where Joint
Action is goal-based, representations of value provide a basis for
expectations concerning the outcome of goal-directed behavior.
By observing another’s emotional state as an expression of
anticipation of a goal-directed outcome or through contextually
inferring its existence (e.g., empathizing), the monitoring burden
(of other’s actions and behavior) can be reduced.

Michael (2011), like Vesper et al. (2010), has advocated for a
minimalist approach to the study of Joint Action, and suggested
that emotions may have an important role to play in such an

approach. Michael claimed “none of [the] minimalist proposals
has addressed the potential role of emotions as coordinating
factors in joint actions. In fact, no proposal of any kind has
addressed this issue” (Michael, 2011, p. 3). However, there are
indications that the potential role of affective3 states in Joint
Action is beginning to garner interest. For example, the role
of empathy, which, broadly, concerns the vicarious experience
of particular affective states, has been alluded to in several
recent Joint Action studies. It has been suggested that self-
other representative states can only be understood in relation
to the interdependence of motoric, cognitive and affective states
(Sacheli et al., 2015; de Guzman et al., 2016; Milward and Sebanz,
2016; Steinbeis, 2016).

AN AFFECTIVE ACCOUNT OF
ASSOCIATIVE TWO-PROCESS THEORY

Associative Two-Process
In this sub-section, we will discuss ATP theory (cf. Trapold, 1970;
Urcuioli, 2005, 2013). We will also discuss differential outcomes
training procedures that can illuminate a function for affective
states in individuals. This description provides the foundation for
understanding a minimalist affective learning mechanism (value
function) for use in Joint Action.

ATP theory has been used to explain behavioral and learning
phenomena that result when different (and arbitrary) stimulus-
response (S-R) mappings are paired with different outcomes.
These outcomes may be motivational stimuli, e.g., food pellets
(for rewarding pigeons or rats), or they may be salient outcomes
(e.g., light flashes, visual stimuli). The differential outcomes
training paradigm has been used on non-human animals
(typically rats and pigeons, cf. Peterson and Trapold, 1982),
but also on infant and adult humans (e.g., Estévez et al., 2001,
2003; Holden and Overmier, 2014). According to this training
paradigm, different outcomes are associated with different, but
“correct”4, stimulus-response (S-R) mappings.

In the differential outcomes paradigm schematized in
Figure 1, arbitrary task rules (S-R mappings) can also be learned
but those “correct,” e.g., “rewarding,” mappings are associated
with differential outcomes. In the example in Figure 2, the
outcome may simply be the probability of reward (1.0 vs. 0.5) for
making the correct response to the presented stimulus.

ATP theory proposes that outcome expectancies, during
a training procedure wherein different S-R mappings lead
to different outcomes, can cue responses in place of, or in
combination with, the external stimuli. The outcome expectancy
for a particular reinforcer becomes a stimulus: “the reinforcer
itself is part of what is learned” (Urcuioli, 2005, p. 1). In this sense,
the classical conception of the stimulus-response-outcome, or
(S-R)-O, sequential relation (with S-R in brackets denoting that
the stimulus-response association is learned), is more accurately

3A distinction between affective and emotional states can be made on the basis that

the latter may be considered a subset of the former which includes phenomena

such as moods, drives, motivations.
4“Correct” means that the response, given a particular stimulus, is that which

provides some kind of positive feedback either because it concerns adherence to

an explicit task rule, or because it leads to a rewarding or interesting outcome.
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FIGURE 1 | Typical differential outcomes training schedule. In this

particular task, the training subject is required to respond differentially to one of

two (or more) stimuli (S1, S2 in the figure) for every trial. After some delay (e.g.,

3 s) where the Stimulus is removed, two (or more) new stimuli are presented

which afford responses (R1 and R2 in the figure). Only one of the two

responses gives a reward. Different S-R mappings, however, provide different

outcomes (e.g., rewards). In the case depicted here, S1-R1 gives a reward

100% of the time, S2-R2 gives a reward 50% of the time—a differential

outcome according to probability of reward (cf. Urcuioli, 1990). Other S-R

mappings receive no reward. Key: ITI, inter-trial interval (in seconds); λ, reward

probability; Ø, no reward.

FIGURE 2 | Associative Two-Process Theory. (A) Common Outcome

Condition. Reinforced S-R associations (mappings) cannot be distinguished by

outcome. (B) Differential Outcome Condition. Reinforced S-R associations can

be distinguished, and cued, by differential outcome expectancies (E1, E2).

Directional arrows indicate causal links. Dashed lines indicate learnable

connections.

portrayed as (S-E-R)-O where E is the learned expectation tied to
a particular outcome. This relationship is captured in Figure 2,
which shows how differential outcomes conditions yield different
expectations in application of the different task rules (S-R
mappings). These differential expectations provide, thereby, an
additional source of information to response choice that can
potentially facilitate, or even substitute for, the information about
the task rules (S-R mappings).

Differential outcomes training procedures have also been
applied to Transfer-of-Control (TOC) paradigms whereby
learning and adaptive behavior is tested according to changes in
the outcome contingencies that the individual experiences over
learning trials. A schematic of a TOC is provided in Figure 3

along with the ATP theoretical explanation of the expected
learning/behavior. The first two phases consist of a number of
conditioning trials for the human / animal to make different
associations based on S-R, S-E, and E-R contingencies. Since
the outcomes (O1 and O2) are differential for the different S-R
mappings in Phase 1 (Discrimination Training), it is possible to

effectively classify new stimuli, introduced in Phase 2 (i.e., S3 and
S4) by these same outcomes (cf. Urcuioli, 2005, 2013). As a result,
when Phase 3 (Transfer Test) occurs, since the animal/human
has learned to classify S1 and S3 according to the same outcome
(O1)—that is, it has formed S1-E1 and S3-E1 associations—S3
automatically cues the response associated with E1 (learned in
Phase 1). No new learning is required for this in spite of the
fact that the subject has not been exposed to the task rule (S3-R1
mapping) previously. This transfer of control constitutes a form
of adaptive switching.

Such a result cannot be explained by recourse to task
rules (S-R mappings) alone. The S-E-R route (see Figure 2)
provides the means for the subject to produce the adaptive
response—it effectively generalizes its previous knowledge to the
new setting. This S-E-R route is otherwise referred to as the
prospective route (Urcuioli, 1990) since a growing expectation of
an outcome ismaintained inmemory during the interval between
Stimulus presentation and Response option presentation. This
is contrasted to the S-R retrospective route so called as the
memory of the stimulus is retroactively maintained in memory
until response options are presented. Subjects can construct new
task rules as a result of this type of inferential5 behavior.

Associative Two-Process Theory and
Affect
If we consider the schematized differential outcomes
experimental set-up given in Figure 2, the different outcomes
concern reward probabilities of 1.0 and 0.5, respectively.
Overmier and Lawry (1979), and Kruse and Overmier
(1982), suggested behavioral responding, following stimulus
presentation, can be mediated by anticipatory frustration or
reward according to the strength of the respective expectancies.
In the sense of Figure 2, the expectancies (E1 and E2) can
represent reward acquisition expectation, and reward omission
expectation. Responses are associated with these two types
of affective expectation as a function of how often they are
rewarded. Thus, “anticipatory frustration... [can] gain at
least partial control over one response, while the expectancy
of reward [can gain] full control over the other” (Kruse
and Overmier, 1982, p. 518). Kruse and Overmier (1982)
provided evidence for this phenomenon experimentally. Whilst
differential outcomes training procedures have focused primarily
on differential sensory outcomes, or otherwise differences
in magnitude of rewarding outcomes (and only sometimes
on probabilities), the same principle may also be applied
to differential punishing outcomes (Overmier and Lawry,
1979).

The notion of classifying emotionally-relevant stimuli by
differential affective states has much in common with Damasio’s
(1994, 1999). Damage or absence (through lesioning) of
brain structures (amygdala, prefrontal cortex) implicated in
emotion elicitation and regulation led patients of Damasio into
perseverative, overly rationalized or otherwise inappropriate
decision-making. Damage to areas such as orbitofrontal cortex

5Alternatively, this behavior could be described as “best guess based on existing

evidence.”
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FIGURE 3 | Transfer of Control Paradigm with Differential Outcomes (Discriminative) Training. The conditioning consists of three phases: Phase 1—a

Discrimination Training phase where different stimulus-response (S-R) mappings (S1-R1, S2-R2) yield different outcomes (O1, O2); Phase 2—a Palovian learning

phase where new Stimuli are presented and associated with previously experienced outcomes; Phase 3—an instrumental transfer phase where the Stimuli from

Phase 2 are re-presented as are the response options from Phase 1. ATP theory predicts that responding will be based on already existing S-E and E-R associations

learned from the first two Phases where the theorized preferred selections (underlined Rs) are shown here. This has been described in terms of cueing the response(s)

associated with those stimuli classified by a common outcome—in this case S1 and S3 are classified by O1. Adapted from Urcuioli (2005).

has also been implicated in rigidity of decision-making by
Schoenbaum et al. (2003) (also Delamater, 2007) and Rolls
(1999). In such cases, reversing responses to previously, but no
longer, rewarded behaviors may be compromised.

Furthermore, Miceli and Castelfranchi (2014) have referred
to a S->A->R mode of associative processing where A stands
for “Affect.” In this case the links between affect and stimuli
are hypothesized as being bi-directional (also see de Wit and
Dickinson, 2009 for discussion). An adaptive benefit of this bi-
directionality may be that affective states can have a role in
selective attention of external stimuli suppressing attention to
those stimuli incongruent with the present affective state.

Affective Associative Two-Process Theory
and Joint Action
To our knowledge, whilst differential outcomes training
procedures and ATP theory have been applied to human learning
and decision-making (cf. Maki et al., 1995; Estévez et al., 2001;
Urcuioli, 2005; Esteban et al., 2014; Holden and Overmier, 2015),
no application has been made to the social interaction domain.
While the relevance of the paradigm—separate instrumental
and pavlovian learning phases—might appear opaque to the
types of Joint Action scenarios used to investigate the possibility
of shared task representations given by Sebanz et al. (2005)
and Atmaca et al. (2011), we suggest the significance of the
above-mentioned Transfer of Control (TOC) paradigm to Joint
Action is as follows:

1. Co-actors’ observation of others’ stimulus (event)—outcomes
contingencies, permits a type of pavlovian learning.

2. Observing others’ stimulus-outcome associations and learning
therefrom, may help avoid the correspondence problem
(mapping physical movements of others to those of self; cf.
Brass and Heyes, 2005; Heyes and Bird, 2008) involved in
learning by others’ actions only.

3. Learning by differential outcomes can facilitate the learning
of task rules both of self and other, as well as to lessen the
importance of having explicit knowledge of task rules.

Although a social TOC paradigm does not directly entail Joint
Action, similar to Sebanz et al. (2003, 2005), Atmaca et al. (2011),
this paradigm may be used to provide evidence for tendencies
for individuals to represent others’ affective states for use in
Joint Action. According to our postulates 1–3 above, being
able to appraise events for self and emotionally appraise the
state of the other serves as additional coordination facilitators
that lessen the burden on monitoring and detecting the other’s
actions both in terms of learning how to perform a task
and also in terms of learning the task (rules). Taking the
example of Figure 3, one actor in the pavlovian (“Pairing”) phase
would, instead of passively encountering newly presented stimuli,
perceive these stimuli presented to an observed (co-actor).
The observer would then vicariously experience, or otherwise
learn, these associations and relate them to their own behavior.
In this way, during the instrumental “Transfer Test” phase,
the perceiver, having previously learned, for example, an E1-
R1 association (“Discrimination Training” phase) and an S3-
E1 association (vicariously in the “Pairing” phase), would in
the “Transfer Test” phase already have access to the S3-E1-
R1 affective (anticipatory) route that can substitute for explicit
knowledge of (or exposure to) the S3-R1 task rule. This means
that without having to learn, the observer would be able
to transfer vicariously experienced knowledge to his/her own
behavior.

Consistent with the requirement of minimal monitoring for
spatiotemporally synchronized Joint Actions (Vesper et al., 2010;
Michael, 2011), the requirement for the above-described social
transfer of control (or social TOC) would be that the observer
is, minimally, attentive to the co-actor’s stimuli and outcomes
but would not require monitoring of ongoing actions. Requisite
to this perspective are neural-computational mechanisms that
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FIGURE 4 | Computational Models of Differential Affective States. Left: Neural Network based computational model of Reinforcer Magnitude and Omission

Learning of Balkenius and Morén (2001). Right: Temporal difference learning neural network adaptation of Balkenius and Morén (2001) given by Lowe et al. (2014).

can relate other’s outcome, or expected outcome, to one’s own
response repertoire. We will turn to this in the next section.

NEURAL-COMPUTATIONAL BASIS FOR
AFFECTIVE VALUATION

Neural-Computational Basis for Affective
Valuation in Individual Action
In previous work we have described a computational model of
differential outcomes expectancies based on reward (acquisition)
expectation and reward omission expectation learning (Lowe
et al., 2014). Our model provided a qualitative replication, in
simulation, of the results of Maki et al. (1995) and Estévez et al.
(2001) concerning differential outcomes training of infants of
different ages between 4 and 8.5 years of age. We describe here
only the expectation-based component of the model responsible
for learning S-E associations. This component of the model is
focused on due to the role it plays in affectively “classifying”
stimuli permitting transfer of control. It thereby provides the
basis for the prospective route of behavior. The full model is
found in Lowe et al. (2014).

The model, depicted in Figure 4 (right), is a temporal
difference (TD) learning neural network instantiation of the
Balkenius and Morén (2001) network (Figure 4, left). This TD
network, contrary to standard TD learning algorithms computes
a value function according to two dimensions: magnitude, or
reward strength, and omission, or reward omission probability.
Specifically, the value function computes temporally discounted
reinforcer (reward or punisher6) magnitude (right-side of
network) valuation of a given external stimulus (S1, S2,...Si)

6The above only offers a role for our ATP neural-computational model in reward-

based learning. In relation to punishment, the simplest assumption would be

that a mirroring of the reward process occurs for punishment acquisition and

omission/termination. Such mirroring systems have previously been modeled

with respect to reward (acquisition) and punishment (acquisition), e.g., Daw

et al. (2002), Alexander and Sporns (2002). Such a straightforward mirroring for

presented to the network. From this magnitude valuation is
derived an omission valuation. Although, Balkenius and Morén
(2001) did not explicitly state that the “omission” node (depicted
in our network schematic of the model) computes omission
probability, it effectively does so as a fraction of the magnitude
size; therefore, given that the reinforcer magnitude presented to
the network is equal to 1.0, the omission valuation will be a
probability computation based on experience. The requirement
for omission computation is that the magnitude network learns,
but does not unlearn, the valuation of the reinforcer. The
omission network, on the other hand, necessarily both learns
and unlearns its valuation using prediction errors so as to
refine its omission probability approximation. This functionality
is correspondent to the orbitofrontal cortex (cf. Schoenbaum
et al., 1998, 2003; Delamater, 2007; Watanabe et al., 2007).
The requirement for the magnitude network to not unlearn
is biologically plausible when this part of the network is
considered to implement the learning in the amygdala. Morén
(2002), for example, states: “There are studies that imply that
conditioning in the [a]mygdala is permanent, or at least very
hard to reverse ... The rationale behind this is that once
learned, a reaction—especially a negative one—is so expensive
to retest that it pays to assume this negative association is valid
everywhere unless definite proof otherwise has been established”
(Morén, 2002, p. 85). The network, thus, does not unlearn the
value but through inhibition of the output of the reinforcer
magnitude network, can learn to inhibit behavioral responding.
The model has been demonstrated to capture the “savings
effect” whereby behavioral responding, inhibited as a result
of a reinforcer no longer being presented to the network, is
relearned more quickly than it was initially acquired. This occurs
as a result of the relatively fast learning rate of the omission
network in the model. This implements a known computational

punishment systems is, however, considered unlikely bymany neuroscientists (e.g.,

Boureau and Dayan, 2010).
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component of the orbitofrontal cortex, i.e., fast and flexible
“reversal” learning (cf. Schoenbaum et al., 2007). Our temporal
difference learning adaptation of this model (Figure 4, right-
side) addresses one limitation of the Balkenius and Morén
(2001) model, that is lack of sensitivity to the interval between
stimulus presentation and reinforcer onset. Our model thereby
implements a “prospective” component of learning—temporal
difference based valuation. The TD learning model of Sutton
and Barto (1998) predicted the profile of dopaminergic phasic
activation transfer from reinforcer onset to earliest predictive
stimulus onset (Schultz, 1998, 2007). The equations of our model
are given in the Appendix section (Appendix A). They adapt
Doya’s (2000) continuous time TD learning equations providing
a more neurobiologically plausible implementation of Sutton
and Barto’s (1998) discrete time TD learning. The TD learning
mechanism in our model is described and exemplified in detail
in Appendix B.

The outputs of the two value functions (for magnitude and
omission), when non-linearly transformed, e.g., by a sigmoid
function, serve to approximately classify outputs of this value
computational network. In the example in Figure 4, non-linearly
transformed output (of 0.5) will provide strong inhibition to
the output of the Magnitude value function (see Figure 4,
right). This stimulus (stimulus 1), is thus classified by omission
expectation—a pessimistic affective judgment—and its output
may be associated with particular responses (permitting the
E-R associations of ATP theory). Conversely, a low omission
probability is insufficient to inhibit the magnitude output leading
to a dominant optimistic affective judgment.

In the Balkenius and Morén (2001) model (Figure 4, left),
outputs of both the omission and magnitude value functions
are linear. It should be noted that using a heaviside threshold
function allows for complete classification but at the expense
of failing to generate the faster (re)learning characteristic of
the savings effect that the Balkenius and Morén (2001) model
captures. Thus, the output functions in our model, in using
semi-linear functions are able to produce both approximate
affective (pessimistic/optimistic) classifications of stimuli whilst
preserving the savings effect.

The manner in which stimuli classified by differential
outcomes can then be associated with responses, consistent
with biologically plausible TD learning methods, e.g., Actor-
Critic methods (cf. Houk et al., 1995), concerns use of a three-
factor learning rule. This is hebbian learning (pre-synaptic and
post-synaptic activations are associated) gated by the reward
prediction error generated by the “Critic,” which in our model
is the inverted prediction error produced by the Omission
“Critic” (also see Lowe et al., 2014). ATP theory has been
used to explain generic differential outcomes learning findings
(Urcuioli, 2005). However, as described with recourse to our
neural-computational model, a type of differential outcomes
learning involves classifying stimuli by differential probability
of reward (cf. Overmier and Lawry, 1979; Kruse and Overmier,
1982). Where probabilities are sufficiently distinct, differential
expectations are learned that concern an expectation of an
omission of reward and an expectation of an acquisition of
reward. A network that implements expectation-based learning

of this type can be likened to Rolls (1999, 2013) stimulus-
reinforcer contingency “appraisal” model. The neurobiological
underpinnings of this network Rolls considered to be the
orbitofrontal cortex (OFC) as it interacts with the amygdala.
Interestingly, Watanabe et al. (2007), in relation to work by
Hikosaka and Watanabe (2000, 2004), described the finding
of neural activity in the orbitofrontal cortex correlating with
omission of expected reward during a delay period (from
predictive cue onset to the time at which reward is intermittently
delivered). McDannald et al. (2005) have suggested that it is the
interaction between the orbitofrontal cortex and the basolateral
component of the amygdala (BLA) that is responsible for
the encoding of reward and omission expectations associated
with eliciting primary stimuli and responses: “the OFC and
the BLA form a circuit that may mediate both learned
motivational functions and the use of outcome expectancies
to guide behavior” (p. 4626). Delamater (2007) has, similar to
McDannald et al. noted impairments in differential outcomes-
based and devaluation (omission)-based learning as a result of
OFC lesions. Concerning links between Stimulus valuations (i.e.,
S-E associations) and how they bring to bear on decision making
(i.e., via E-R associations), medial prefrontal cortex (Passingham
and Wise, 2012), and dorsolateral prefrontal cortex (Watanabe
et al., 2007) have been suggested to have respective roles in
outcome-contingent choice, and integration of retrospective and
prospective memory that may provide a sort of competition
mediating response choice.

In sum, there exists abundant neurological and behavioral
evidence for this neural computational model of ATP theory
providing an affective value function.

Neural-Computational Basis for Affective
Valuation in Joint Action
In the domain of Social Neuroscience, which dates back to
Cacioppo and Berntson (1992), a key controversy to the present
day, and critically significant to Joint Action, concerns whether
social value qualitatively differs from non-social value or is
fundamentally the same but entails differential pre-processing of
(social) stimuli. Resolving this debate is central to understanding
the extent to which individuals can detect and monitor the
affective states (expected outcomes) of others for facilitating Joint
Action.

Adolphs (2010) discussed whether social processing is unique
or whether the information processing is of the “same type”
as non-social processing. He categorized social processing into:
(i) social perception, (ii) social cognition, (iii) social regulation.
Of the three domains of information processing identified, all
are related to the processing of affective information. Adolphs,
further stated: “An important question for the future is therefore
why, when, and how emotion participates in social cognition”
(p. 755).

Social Valuation: Extended Common Currency (ECC)

vs. Social-Valuation-Specific (SVS)
Ruff and Fehr (2014) reviewed whether a neurobiological
distinction between social and non-social value can be made.
They highlighted three core aspects of value: (i) Experienced
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FIGURE 5 | Extended common currency (ECC) vs. social-valuation-specific (SVS) circuitry. The two perspectives entail: (Left; ECC) processing of social and

non-social stimuli using the same value-representation circuitry, vs. (Right; SVS) processing of social and non-social stimuli but within dedicated non-social and

social-valuation specific circuitry. Adapted from Ruff and Fehr (2014).

value, (ii) Anticipated value, (iii) Decision value. In the case of
(i), orbitofrontal cortex (OFC), amygdala, insula and anterior
cingulate cortex (ACC) are linked to the experience of actual
reward (or punishment). In the case of (ii), value concerns the use
of prediction errors as they derive from anticipated-value signals.
In individual decision-making, dopaminergic neurons encode
prediction error signals while striatum, OFC and amygdala
are said to constitute the reward neural circuitry correlating
with value anticipation (cf. Schoenbaum et al., 2003, 2007;
Rolls, 1999). Decision value (iii), on the other hand, concerns
choice-based preference and is differentiated from anticipated
reward value. Its strongest neural correlate, according to Ruff and
Fehr (2014), appears to be in the ventral medial prefrontal cortex
(vmPFC)—also see Damasio (1994, 1999).

The above value components have been considered
within a social value conceptual framework. Ruff and Fehr
identify a dichotomous perspective in the empirical and
modeling literature regarding neural circuitry concerned
with valuating social signals. On the one hand, social
value representations are considered as utilizing the neural
circuitry of non-social value representations (“identical neural
processes assign motivational relevance to social and non-
social factors,” Ruff and Fehr, 2014, p. 550). This constitutes
an “extended common currency” (ECC) perspective whereby
distinction between social and non-social information is
made outside the value-representation circuit (see Figure 5,
left). An alternative perspective concerns social value and
non-social value being represented in separate dedicated
circuits (see Figure 5, right) whose anatomical structure and
computational processing may, nevertheless, be similar or even
identical.

The particular set of modules comprising the value
representation are considered by Ruff and Fehr (2014) to “not
show specific brain areas and connections but rather...abstract
principles of how brain areas and their interactions could
implement these computations,” (Ruff and Fehr, 2014, p. 551).
Such areas can include, therefore, value components that

concern (i) Experience, (ii) Anticipation, (iii) Decision,
valuation, as listed above. Whether all three aspects of valuation
should be considered to fall into the ECC or SVS perspective is
not addressed by Ruff and Fehr (2014), however.

Social Valuation and Joint Action
Knoblich and Jordan (2002) provided a high-level “minimalist”
Joint Action Architecture based on action outcome effects of
a mirror neuron system (see Figure 6). This can be seen as
providing a framework from which to interpret models pertinent
to Joint Action. In this architecture, a mirror neuron system
becomes active when either the individual registers outcomes of
actions (e.g., the expected end point of an action), or when the
individual observes another organism achieving the same action
outcome. This implies an ECC hypothesis as advanced by Ruff
and Fehr (2014).

In this Joint Action context, however, these “social” and “non-
social” effects are further modulated by a system that accounts
for the complementarity of an individual or other’s action. Thus,
if the particular task requires Joint Action and the engagement
with other is perceived as such Joint Action, the actions of self
and other may be modified. Bicho et al. (2011), produced a
neural-(dynamic) computational architecture of Joint Action that
implements such a division between joint action, and individual
components for use in an autonomous robot that was able to
interact, via dialogue, with humans according to a task that
required complementary actions.

While neural computational architectures of Joint Action and
emotions exist (cf. Silva et al., in press)7, we are not aware of
those that focus on affective learning mechanisms that comprise
TD-based value functions. Suzuki et al. (2012) identified “[a]
fundamental challenge in social cognition [which is] how humans
learn another person’s value to predict [their] decision-making
behavior” (p. 1125). Another important question from the

7This architecture extends that of Bicho et al. (2011) described above by

introducing an additional “Emotional State Layer” of neural computational units

that provide inputs into a module of units for intention perception of other.
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FIGURE 6 | Knoblich and Jordan (2002) Joint Action schema. The

schema consists of two main aspects: (1) A Mirror (neuron) System whose

activity may reflect either the individual effects of the “Self” or those of a

perceived “Other”; (2) A Joint Action System whose activity reflects the action

outcome effects of Joint Action. Adapted from Knoblich and Jordan (2002).

perspective of the nature of social value functions concerns:
how humans learn another person’s value to inform their own
decision-making behavior. These two issues allude to Ruff and
Fehr’s (2014) identification of Anticipatory, and Decision, value
where a separation may be made between valuation of stimuli
(Anticipatory) and valuation of choices (Decision).

In Figure 7 is depicted Suzuki et al.’s (2012) reinforcement
learning model of social value. In Figure 7A (left) is shown a
standard (non-TD) Reinforcement Learning (RL) model that
updates a value function for the self (S) based on the reward
prediction error (RPE) generated following action selection.
Each action is valuated by previous experience according to
whether it leads to reward or not. In this model, unlike our
model (illustrated in Figure 4, right), a single value dimension is
depicted which is labeled “Rwd Prob” (i.e., reward probability).
Reward magnitude, held constant in the social condition of
Suzuki et al. (2012), was multiplied by reward probability.
Figure 7B (right) shows Suzuki et al. (2012) Simulation-RL
model. Like others in the field (cf. Behrens et al., 2007; Burke
et al., 2010), Suzuki et al. (2012) posit the existence of two types
of simulated prediction error that can be used when predicting
the outcome of theOther in a particular task. An sRPE (simulated
reward prediction error) uses the perceived outcome of the Other
to update a predicted value function of the Other. Replicating the
Self value function (Figure 7, left), this function valuates different
actions, which are then compared as part of action selection.
Moreover, the use of sAPE (simulated action prediction error)
updates the Other’s value function, which is used to help predict
the choice of theOther increasing the ability to predict theOther’s
outcome and subsequent response choice.

In the validation experiment of Suzuki et al. (2012), they
found that their Simulation-RL model was better able to
capture behavioral data of participants in a condition requiring
them to predict the choices of another subject (in reality a

computer program). These choices were valuated by an abstract
and probabilistic monetary reward. The Simulation-RL model
replicated the empirical data relatively worse, though still fairly
accurately, when only sRPE was used as compared to both sRPE
and sAPE (reward and action prediction errors). The model did
not match the empirical data at all when using only the (Self) RPE
or only the sAPE.

Suzuki et al. (2012) found that reward prediction error (and
simulated reward prediction error) was correlated with neural
activity (BOLD signals) in the ventral-medial prefrontal cortex
(vmPFC) indicating that, consistent with the ECC perspective
of Ruff and Fehr (2014), the simulation of Other’s outcome
prediction errors recruits circuitry used for individual outcome
prediction errors. The authors suggested that their findings
provided: “the first direct evidence that vmPFC is the area in
which representations of reward prediction error are shared
between the self and the simulated-other,” (Suzuki et al., 2012, p.
1132). More generally throughout the decision making process
made by Self (for Self) and Self on behalf of Other, vmPFC
showed very similar activation in both cases: “the same region
of the vmPFC contains neural signals for the subjects’ decisions
in both the Control and Other tasks, as well as signals for learning
from reward prediction errors either with or without simulation,”
(Suzuki et al., 2012, p. 1132). This finding would suggest that at
least one component of value identified by Ruff and Fehr (2014),
i.e., Anticipatory value, is shared in neural-computation of value
of Self and of Other.

On the other hand, dorsal lateral/medial prefrontal cortex
was implicated in generating a simulated action prediction error
(of Other). Ruff and Fehr (2014) interpreted these findings
as being evidence of a Social-Valuation-Specific (SVS)—see
Figure 5 (right)—explanation of social stimuli processing based
on “spatially and functionally distinct prediction errors that
nevertheless follow similar computational principles” (p. 556).

In relation to the Joint Action architecture of Knoblich and
Jordan (2002; Figure 6), the Suzuki et al. (2012) architecture
(Figure 7, right) embeds within an individual circuit additional
computational processes for simulating the (action and outcome)
effects on other that then lead to motoric outputs in the
self. Simulated other prediction errors (correlating with vmPFC
activity) provide a basis for a “shared representation” of value that
may be requisite to coordinated joint activity (e.g., Joint Action).

Social Valuation and ATP
Let us now refer back to Section Associative Two-Process and
the traditional use of TOC experiments as a means of validating
the existence of an ATP (See Figure 3). Pavlovian conditioning,
as a passive form of learning, i.e., where the subject’s responses
do not influence the onset of stimuli and outcomes, may also
be conceived in a social context. In relation to the pavlovian
phase in Figure 3, we postulate that individuals, rather than
passively perceiving Stimulus-Outcome pairs in relation to Self,
may perceive Stimulus-Outcome pairs in relation to Other. In
the sense of the Suzuki et al. (2012) model/experiment described
in Section Social Valuation and Joint Action, the subject may
perceive the Other’s observed (reward) outcome. This could be
the result of at least three experimentally manipulated interaction
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FIGURE 7 | Suzuki et al. (2012) reinforcement learning model of social value. (A) RL model: Suzuki et al. (2012) provide a depiction of a standard reinforcement

learning circuit, which (as for our model shown in Figure 4), updates a value function (reward probability) according to a reward prediction error (RPE) that compares

the reinforcement (reward) outcome (S’s Outcome) to the expected value (Rwd Prob), following a particular behavioral choice. The Choice probability is based on a

stochastic action selection process that compares the different action options based on their previously experienced/learned probability of yielding reward.

(B) Simulation-RL model. Central to this model is the use of simulated prediction errors by the Self (S) of the Other (O) to update a predicted value function of the

other. The model assumes that the Other’s internal process (actual value) is a black box whilst action choice and outcome of other are perceptible. See text for main

details. Key: sAPE, simulated action prediction error; sRPE, simulated reward prediction error; RPE, (Self) reward prediction error; T, transformation function of sAPE

into a value usable for updating the Other’s value function. Adapted from Suzuki et al. (2012).

scenarios: (i) Competitive—the Other receives a non-reward (or
punisher); (ii) Collaborative—the Other receives a reward (that
benefits Self); (iii) Vicarious—the Other receives a reward
(neutral to the Self). Suzuki et al.’s (2012) set up explicitly
concerned scenario (iii) here. In their set-up external reward
was, however, provided for correctly predicting the other’s choice
(vicarious decision making). The authors provided behavioral
and neural-computational modeling evidence to suggest that
vicarious reward was not merely ego-centrically experienced, i.e.,
where the other’s actions and outcomes were not perceived as
belonging to the other.

The individual’s knowledge of the social interaction scenario
in which (s)he is placed permits differential pre-processing of
social stimuli thereafter valuated according to ECC or SVS neural
computational circuitry. Such pre-processing involves perceiving
Other as competitor requiring a comparing of outcomes (i), or
as a collaborator requiring monitoring of collectively attained
outcomes (ii), or focus purely on Other’s outcomes (iii).

Central to the perspective of ATP theory is that individuals
are able to transfer knowledge (and “generalize,” or best

guess) from previously experienced instrumental and pavlovian
phases to a novel instrumental phase, i.e., one in which new
Stimulus-Response (S-R) pairings are presented. Using the
prospective (Stimulus-[Outcome]Expectation-Response) route,
given a differential outcomes and transfer-of-contrl set-up,
subjects are able to, with minimal or no learning, find the
correct S-R mapping. Given Collaborative or Vicarious rewarding
social scenarios as outlined above, independently representing
outcomes of Other subjects is less obviously “typical” (does
not require comparison of Self to Other) than for Competitive
scenarios (does require comparison).

We consider a social version of the TOC using a differential
outcomes procedure an excellent methodological paradigm for
testing an ECC hypothesis, specifically, our Social Aff-ATP
hypothesis. This is because if the individual case of transfer can
also apply to the social case (transfer based on simulated Other’s
Stimulus-Outcome pairings), subjects can potentially substitute
for a lack of information (about action choice). They can do this
through: (i) the use of observed differential outcomes (values)
that they vicariously experience or/and (ii) the perception of
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FIGURE 8 | ATP Neural Network required for Social TOC. Adapting the Balkenius and Morén (2001) network, only the stimuli used in the social Pavlovian phase

are added. These “Social” stimuli would be required to have direct input into the Non-Social value function. In this sense, social valuations would directly recruit the

existing non-social network. This does not preclude the existence of other social valuation representations (e.g., of the like depicted in Figure 9), however. On the right

hand side is shown “Other” inputs to the network. It may be possible that the Other’s internal process is not so opaque given that affective expressions (of

expectations or outcome reactions) map to affective states isomorphic to those of the observer’s.

expressions of Other that map to the Other’s value functions
(outcome expectations/predictions). Such adaptive switching
behavior may facilitate coordination of Joint Action, i.e., provide
a coordination smoother (Vesper et al., 2010).

A Neural Computational Implementation of Social

Aff-ATP
In this sub-section, we present a Social Aff-ATP neural
computational mechanism that constitutes our hypothesis in this
article. It is depicted in Figure 8.

The mechanism parsimoniously adapts that of Balkenius and
Morén (2001), Balkenius et al. (2009) and Lowe et al. (2014)—
see Figure 4—by viewing social processing as a pre-valuation
stage (not described here) that exploits the existing function
for individual/Self stimuli valuations. The neurobiological,
behavioral and neural-computational evidence for the existence
of this mechanism, previously considered in terms of individual
effects, was given in Section Neural-Computational Basis for
Affective Valuation in Individual Action. It is an explicit
implementation of the ECC schema of Ruff and Fehr (2014). It
also comprises a type of mirror system as described by Knoblich
and Jordan (2002) but as it applies to perception/representation
of (affective) value outcomes rather than action effects. We
discuss below how this mechanism, while not accounting as
comprehensively for Joint Action effects as the full Knoblich
and Jordan model, permits effects that can be used for Joint
Action and is thereby more minimalist. The equations for this
mechanism, in viewing social inputs as stimuli to be valuated, are
the same as for the originally-conceived individual (non-social)
model found in Appendix A.

This mechanism is apt for processing social valuations in
vicarious and collaborative social scenarios where representations
of Other are not functionally critical.

An alternative mechanism to our Social Aff-ATP is provided
in Figure 9. Here valuation of social stimuli is computed using
a separate “Other” /Social value circuit and is considered a SVS
circuit. More specifically it is a SVS-ATP alternative mechanism.

Consistent with Suzuki et al. there are separate Non-Social
and Social value functions for Self and (simulated) Other.
Also consistent with Suzuki et al. (2012), both Non-Social and
Social value functions recruit the same reward prediction error
computations. Suzuki et al. suggest these computations correlate
with vmPFC (BOLD) neural activity. Such prediction errors have
also been attributed to activity in the striatum (cf. Redgrave et al.,
1999). Our interest is, above all, in the neural computational
plausibility of such a network rather than the specific anatomical
root of the computations. However, in line with Balkenius and
Morén (2001), as mentioned in Section Associative Two-Process
Theory and Affect, we posit that the value nodes compute activity
correspondent to that in the orbitofrontal cortex and amygdala8.
In our ATP model, prediction errors code for reward magnitude
(a non-negative value) and reward omission, i.e., two dimensions
of value whose outputs relate to emotions elicited according to
the acquisition and omission reward contingencies, respectively
(cf. Rolls, 1999).

The depicted mechanism in Figure 9, as for the Social
Aff-ATP mechanism (Figure 8), outputs value computations
of magnitude and omission to relay nodes (E2 and E1)

8Correspondent activity, of course, needn’t imply that such structures provide the

root of such activity.
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FIGURE 9 | ATP Pavlovian adaptation of Suzuki et al. (2012). The Non-Social network used the output function of Lowe et al. (2014) and the value function of

Balkenius and Morén’s (2001)—we use this latter function rather than our own temporal difference learning version to simplify the illustration. As for Suzuki et al.

(2012), the prediction error nodes for Magnitude and Omission expectations are used both by the Non-Social network to update the Self’s value function, but also by

the social-valuation-specific network. Simulated Other (Social) value predictions (for Magnitude and Omission), as for Suzuki et al. (2012) are separately represented

and have separate outputs. The Other’s internal process here may still be seen as a black box as is the Other’s choice. The only information required is the Other’s

Outcome.

whose function is to non-linearly “classify” the outputs of
the stimulus valuations as omission expectant (pessimistic)
or acquisition expectant (optimistic)—see Lowe et al. (2014)
for computational details. These outputs in turn, through a
three-factor learning rule (hebbian learning gated by reward
prediction error/dopaminergic projections) can be associated
with actions / choices. In the alternative mechanism shown in
Figure 9, the Social value representation projects instead to sE1
and sE2 relay nodes, i.e., separate output representations. For
the Social Aff-ATP (and SVS-ATP) mechanism we do not focus
on the action selection component of the algorithm, which can
be represented simply by a winner-take-all laterally inhibiting
layer of nodes (each node representing an action/choice).
Nevertheless, mathematically, the link between value function
output and action selection in Suzuki et al. and the Social
Aff-ATP mechanism are analogous. For Suzuki et al. stimulus
valuations are computed as: Q(S1) = p(S1)R(S1), where Q(S1)
is the valuation of stimulus 1 (S1) computed as the product
of probability of reward for S1, i.e., p(S1) and magnitude of
reward for S1, i.e., R(S1). In the Social Aff-ATP (and SVS-ATP
value functions), E1 is calculated as E1 ≈ R(S1) − (1− p(S1)),
where (1− p(S1)) = omission probability and is given by
the relayed output of E2 subject to non-linear transformation.
When R(S1) is fixed at 1.0, as it is for Suzuki et al. in their
social condition, E1 = Q(S1). A difference in our ATP-based
models is that both pessimistic/omission probability focused
(E2) and optimistic/acquisition probability focused (E1) outputs
are permissible allowing for differential expectation-response
associations. Another difference is that Suzuki et al. valuate
vicarious actions by incorporating within Q(S1) an action
valuation for S1 which substitutes for p(S1). Actions and stimuli
are, therefore, not dissociated as they are for the prospective route
of the ATP network—the actions elicited by E1/E2 do not have

“knowledge” of the stimulus, which permits the classification of
a number of stimuli by affective value to then be associated with
particular actions critical for TOC effects to manifest.

The ATP-based circuitry here (Figures 9, 10) focuses on what
would be required for transfer of pavlovian knowledge from
Other to Self, i.e., for our Social Aff-ATP hypothesis to hold.
Importantly, from the perspective of a Social TOC, the network
above-described (Figure 9) would not allow for transfer from
Other to Self of the learned Stimulus-(Outcome) Expectancy
maps in the instrumental transfer phase. This is because although
it may be possible to learn the Other’s (Social) value function
(stimulus outcome valuations) in the pavlovian phase, the
association betweenOther’s outcome expectation and Self response
cannot be made in the initial instrumental phase as sE1/sE2
outputs would have separate associations with actions / choices
to E1/E2 outputs. This description is schematized in Figure 10.
It is arguable as to whether the SVS-ATP mechanism depicted in
Figure 9, would be more representative of the Suzuki et al. model
if Social value magnitude and omission representations/nodes
had direct inputs to the Non-Social equivalent nodes. A Social
TOC would indeed, in this case, transpire. It would also make
the Social value representation redundant when not tied to
separate (simulated Other) actions. We have suggested that the
SVS-ATP network would be useful when individuals wish to
compare their valuations with those simulated for others and the
actions they expect others to make in comparison to themselves.
This might be viewed in terms of a competitive interaction
scenario, but could also be useful in a Joint Action scenario
where complementarity of other’s valuations and actions to the
self should often occur.

In Figure 10, the standard TOC (non-social/individualistic)
is schematized along with the learned associations in each of
the first two stages and the causal links that are exploited in
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FIGURE 10 | Schematic of Associative Two-Process theoretic description of Pavlovian-Instrumental Transfer (TOC). Top: Non-Social TOC (standard ATP

description of TOC). Bottom: Social TOC, ATP description according to our Suzuki et al. (2012) compatible social-valuation-specific ATP mechanism (Figure 9).

Dashed lines represent learnable connections, Solid lines represent causal links, red solid lines represent links of the Other that are hidden to the Self. The three panels

(left to right) concern instrumental, pavlovian, and instrumental transfer phase, respectively.

the final (instrumental transfer) phase. This is a simplified set-
up since a standard TOC would include multiple S-R mappings
in each phase (allowing for differential outcomes classification
of stimuli). The Social TOC, using the SVS-ATP mechanism
(Figure 9) shows how such a transfer would not be possible.
In the instrumental transfer phase, there is no learned (causal)
link between the valuation of S2 for Other (Eother) and the
response and so there is not a complete prospective route by
which the correct response (R1) can be automatically cued
(i.e., without further learning being necessary). Since the (Self)
subject has not previously learned an S2-R1 association (via
the retrospective route), there is no causal route to the correct
response. Only if there is a further link between Eother and Eself
value representations could a transfer be possible. The Social
Aff-ATP mechanism (Figure 8), however, in utilizing the value
function of Self for stimuli relevant to Other through vicarious
stimulus processing, should re-produce the standard TOC found
in individuals (Figure 10, top).

In summary, the Social Aff-ATP neural computational
hypothesis would predict TOC effects that have been neural-
computationally found using a model capturing data for
an individual task. This mechanism conforms to the ECC
perspective of Ruff and Fehr (2014). An alternative mechanism
conforming to the SVS alternative perspective put forward by
Ruff and Fehr (2014), and likened to the reinforcement learning
model of Suzuki et al. (2012), should not produce a social TOC.

DISCUSSION

In this article, we have posited a neural computational hypothesis
for a minimalist affective-learning mechanism for use in
Joint Action. We have called this the Social Aff-ATP (neural
computational) hypothesis, which provides a specific, testable
implementation of the ECC hypothesis (cf. Ruff and Fehr,
2014). We discussed the ATP theory of differential outcomes
learning. We then discussed our neural-computational modeling
of this process and how a tweak of the model allowing for the
incorporation of social stimuli inputs provides a social variant
of the model. We also suggested an alternative mechanism that
implements a SVS mechanism comparable to that of Suzuki
et al.’s with separate social and non-social value functions.
We have presented a schematic describing why this SVS-ATP
implementation would not permit a social transfer of control
(TOC) of the type that typically manifests in non-social contexts.

In the remainder of the Discussion Section, we will reiterate

and elaborate on why we think our Social Aff-ATP mechanism

constitutes a minimal mechanism that can have a useful function
in Joint Action.

Vesper et al. (2010) has suggested that a feature of monitoring

and detecting others’ actions and action outcomes during Joint

Action is to facilitate sensorimotor coordination during the
Joint Action. Prediction can “smooth coordination” by enabling

co-actors to accommodate each other in space and time or
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to compensate for deficiencies in performance of the other.
Michael (2011) posited that emotions can provide such a role
serving to facilitate alignment and monitoring and detecting of
others (e.g., when the other expresses frustration). A perspective
of Urcuioli (2005, 2013) is that outcome expectancies provide
a means to effectively classify stimuli (see Figure 3). Action
selection can then be simplified through exploiting affordances of
the subset of those actions already associated with the outcome
expectancy classes. This is a reason why participants under
differential outcomes TOC training can immediately select the
unique action that leads to the desired outcome even though the
stimulus-action (response) contingency has previously not been
experienced: Subjects have already classified the stimuli according
to a given outcome expectancy previously associated with an
action. This of course depends on a passive pavlovian phase. We
conjecture from an evolutionary perspective it is natural that such
observation might be exploited in a social context. In this case,
agents observing the stimulus context of another (con-specific),
irrespective of strong monitoring of actions, can learn from the
stimulus-outcome contingencies and, via ECC circuitry, bring
to bear such knowledge on their own instrumental capabilities.
Such an ability, facilitates coordination as it subverts the need for
a ponderous learning process during the Joint Action. Thereby,
particularly when Joint Action is of a sensor-motorically complex
nature or requires rapid and flexible interactions a Social Aff-ATP
mechanismmay reduce themonitoring of the other’s (behavioral)
activity. It may often suffice to be aware of the (stimulus) context
and the (affective) outcomes of the Other.

The affective component of ATP, which concerns outcome
expectancy classifications for differential dimensions of rewards
(e.g., differing reward magnitudes, presentation/omission
probabilities, qualitatively different rewards) or punishers, may
be particularly pertinent to Joint Action. The affective properties
of emotion contagion, and empathy identified by Michael (2011)
are particularly relevant. In the case of the former, an actor may
align his/her affective (outcome expectancy) state with the co-
actor thereby cuing a subset of action possibilities similar to those
cued in the observed actor. In this case, observation of (affective)
outcomes may not be necessary to “smooth” coordination but
rather observation of the expression of the other when it is
isomorphic with the other’s affective state. This expression can
thereby be predictive of the outcome and facilitate (corrective)
action in anticipation of (undesired) desired outcomes. We
could envisage social stimuli—face and other bodily expressive
computed inputs—as providing an input to the value function
alternatives depicted in Figure 8 (social Aff-ATP) and Figure 9

(SVS-ATP) in this case.
The case of empathy relates to our Social Aff-ATP hypothesis

where perception of stimuli, in the context of the presence
of another, innervates circuits (e.g., mirror neuron circuits)
that relate to one’s own affective experience. Empathy and
contagion may draw on related neural circuits (cf. De Vignemont
and Singer, 2006), which recruit similar neural structures as
those alluded to for our Social Aff-ATP (see Section Neural-
Computational Basis for Affective Valuation in Individual

Action)—and also in Knoblich and Jordan (2002). Bernhardt
and Singer (2012) (see also Decety, 2011), for example, advocate

a core (value-based) circuitry involving amygdala, vmPFC,
dopaminergic pathways, as well as anterior cingulate cortex and
insula.

Joint Action is, of course, a dynamic phenomenon, and it
might be contended that it is not captured using a minimalist,
turn-taking, procedure such as the differential outcomes TOC
procedure. Such a controlled approach, however, allows for
relative analytic ease in identifying mechanisms that may be
used in the “wild.” A means of further bridging this turn-
taking minimalist approach with a more dynamic method
would be to include parallel learning and action selection
(in line with the minimalist approaches of Sebanz et al.,
2003, 2005; Atmaca et al., 2011; Loehr and Vesper, 2016).
It is, in fact, possible to employ TOC procedures where the
pavlovian and transfer phase are run concurrently (Overmier
and Lawry, 1979). Turn-taking TOC procedures might also
be used with fine resolution interleaving, e.g., switching from
(social) pavlovian to transfer trials every other trial as compared
to switching following a block of (social) pavlovian-only or
transfer-only trials. Neural-dynamic computational models, of
the type we have proposed in this article, may also be deployed
in controlled but continuous Joint Action settings when used
as controllers for artificial agents, e.g., virtual agents in virtual
environments.

Notwithstanding the above arguments for appropriate testing
of a social TOC, it is critical to appropriately evaluate
whether subjects are, in fact, perceiving stimuli as social
(e.g., vicarious) or not (ego-centric). Suzuki et al. (2012)
employed sophisticated behavioral analytic means to suggest
subjects did indeed act vicariously in choosing reward for
others (given that they were themselves rewarded for correct
Other choice predictions). Social valuation circuitry may even
dynamically express itself as more or less ECC-based or SVS-
based depending on the interactive nature of the task (note,
Nicolle et al., 2012 found that different circuits might be deployed
dynamically according to changing interactive scenarios). Neural
representations for individual Self/Other and joint (action)
effects may similarly entail dynamic expression according to
changing perceptions of the social context in which the agents
are acting.
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APPENDIX

Appendix A
Our model is given by Equations (A1–A7).

Ve (t) =
∑

sǫS

[

θes (t)φs(t)
]

(A1)

where Ve (t) is the learned value function; θes (t) implements the
value function update rule (Equation A2); e ǫ {m, o} is an index
denoting Magnitude or Omission value functions, respectively;
t is time in [1, T] where T is the total time over which a
temporal representation of stimulus (s) memory is presented to
the network; s is the number of different (social or non-social)
stimuli in [1, S] where S = 2 for most cases of differential
outcomes training.

θe (t) = θe (t − 1t) + βeσeφs (t − 1t) (A2)

where βe is a learning rate in [0, 1]; 1t is the time window;
σe is the prediction error term; φs is calculated as φs (t) =

φs (t − 1t) γ λTD,where γ = 1−1t
τ
and λTD = 1, implementing

TD(1).

E2 (t) = 3 (Vo (t)) (A3)

E1 (t) = 3(Vm (t) − E2 (t)) (A4)

3(x) =
1

1+ exp
[

−β(x− θ)
] (A5)

Equations (A3–A5) implement the output nodes computations
of the network. E2 (t) provides the output of Vo (t) and E1 (t)
provides the output of Vm (t). The sigmoid function in Equation
(A5) transforms the outputs of the Vm (t) and Vo (t) value
functions to effectively produce expectations (or classifications)
of stimuli inputs according to reward acquisition, and reward
omission expectation, respectively.

σm (t) = λ (t − 1t) +
1

1t

[(

1−
1t

τ

)

Vm (t) − Vm (t − 1t)

]

(A6)

σo (t) = −σm (t) +
1

1t

[(

1−
1t

τ

)

Vo (t) − Vo (t − 1t)

]

(A7)

In Equation (A6) Doya’s (2000) continuous time TD learning
prediction error (for the magnitude value function) is given.
λ (t − 1t) is the reinforcer input (stimulus) λ ǫ {0|1}, τ > 1t
is the decay constant. Equation (A7) in our model provides
the omission value function prediction error σo (t), which
subtracts the error of magnitude value function σm (t) and
computes its own temporally discounted prediction error for
expected omission. The same equations may be used both for
our individual ATP model (Section Associative Two-Process
Theory and Affect) and for our social ATP model (Section
Social Valuation and ATP). We do not provide specific values
for variables as the social ATP model currently provides our
hypothesis to be evaluated.

Appendix B
In Figure A1 is depicted the computational process of omission
probability, using the prediction error rule of Equation
(A7), that is the novel feature of our TD model. The
network shows the activation levels at the time step preceding
reinforcement presentation (Figure A1, left), and at the time
step at reinforcement presentation (Figure A1, right). These
computations show reinforcement predictions of an external
stimulus, via prediction error updating, to provide a magnitude
value of 1.0 and an omission probability value of 0.5. Figure A1
(left) shows, following learning, both the magnitude and
omission values (Vm (t) and Vo (t), respectively) of the reinforcer
when it is perfectly predicted. The prediction nodes of magnitude
and omission critic are set to zero (white circles) as the
inputs from the magnitude value node (black circle) is perfectly
temporally predicted via the relayed discounted value node
(lighter gray circle symbolizing a lower value) which receives
input γVm(t). When reinforcement is presented (λ (t − 1t) =

1, in Figure A1 right) the input from the magnitude value
node to the prediction error node at the previous timestep
Vm(t − 1t) = −1) cancels the effect of the reinforcement
input (λ (t − 1t)). However, for the Omission Critic, there is a
0.5 prediction of omission and since reinforcement presentation
(of magnitude 1) cancels the Vm (t − 1t) input, this produces a
−0.5 prediction error and reduces the omission value weights
according to its update rate (Equation A7). For this reason,
prediction of omission probability will fluctuate around 0.5
following presentations of expected, or omitted, reinforcement as
a function of the rate of learning—the smaller, the less fluctuation.
Thus, when reinforcement is unexpectedly omitted (not shown),
nothing reduces the previous timestep Vm (t − 1t) = 1 input
so the Omission Critic prediction error node now generates
an error of +0.5. The magnitude value, being learned, is
not affected by the negative prediction error as there is no
unlearning of the intrinsic magnitude of the reinforcer. Both
Omission Critic and Magnitude Critic learn by their temporal
difference learning rules producing asymptotically growing value
functions from Stimulus onset time until reinforcer presentation
time.
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FIGURE A1 | Differential outcomes computations. Computations of the Critic following learning of the value of a particular stimulus (0.5 omission probability of

reinforcement of magnitude value 1.0). Left: At the time step prior to reinforcer presentation. Right: At the timestep of reinforcer presentation. Darker nodes represent

greater activation; black, full activation of 1; white, zero activation. See Equations (A1, A2, A6, A7) for computation equations and text for explanation.
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