
Acta Cybernetica 00 (0000) 1–15.

Monitoring Evolution of Code Complexity and

Magnitude of Changes

Vard Antinyan∗, Miroslaw Staron∗, Jörgen Hansson∗,

Wilhelm Meding†, Per Österström†, Anders Henriksson‡

Abstract

Complexity management has become a crucial activity in continuous soft-
ware development. While the overall perceived complexity of a product grows
rather insignificantly, the small units, such as functions and files, can have
noticeable complexity growth with every increment of product features. This
kind of evolution triggers risks of escalating fault-proneness and deteriorat-
ing maintainability. The goal of this research was to develop a measurement
system which enables effective monitoring of complexity evolution. An action
research has been conducted in two large software development organizations.
We have measured three complexity and two change properties of code for two
large industrial products. The complexity growth has been measured for five
consecutive releases of the products. Different patterns of growth have been
identified and evaluated with software engineers in industry. The results show
that monitoring cyclomatic complexity evolution of functions and number of
revisions of files focuses the attention of designers to potentially problematic
files and functions for manual assessment and improvement. A measurement
system was developed at Ericsson to support the monitoring process.

Keywords: complexity, metrics, risk, lean, agile, correlation, measurement
systems, code, change, revision

1 Introduction

Actively managing software complexity has become an important aspect of continu-
ous software development. It is generally accepted that software products developed
in a continuous manner are getting more and more complex over time. Evidence
shows that the rising complexity drives to deteriorating quality of software [2,3].
The continuous increase of code base and growing complexity can lead to large,
virtually unmaintainable source code if left unmanaged.

∗Computer Science and Engineering, University of Gothenburg | Chalmers, E-mail:
{vard.antinyan,miroslaw.staron,jörgen.hansson}@chalmers.se
†Ericsson, E-mail: {wilhelm.meding,per.osterstrom}@ericsson.com
‡Volvo Group Truck Technology, E-mail: anders.J.henriksson@volvo.com

2 Vard Antinyan et al.

A number of metrics have been suggested to measure various aspects of software
complexity and evolution over development time [7]. Those metrics has been accom-
panied with a number of studies indicating how adequately the proposed metrics
relate to software quality [6, 17]. Complexity and change metrics have been used
extensively in recent years for assessing the maintainability and fault-proneness of
software code [4]. Despite the considerable amount of research conducted for inves-
tigating the influence of complexity on software quality, little results can be found
on how to effectively monitor and prevent complexity growth. Therefore a question
remains:

How to monitor code complexity and changes effectively when delivering feature
increments to the main code branch?

The aim of this research was to develop method and tool support for actively
monitoring complexity evolution and drawing the attention of industries’ software
engineers to the potentially problematic trends of growing complexity. In this
paper we focus on the level of self-organized software development teams who often
deliver code to the main branch for further testing, integration with hardware, and
ultimate deployment to end customers. We address this question by conducting a
case study at two companies, which develop software according to Agile and Lean
principles. The studied companies are Ericsson which develops telecom products
and Volvo Group Truck Technology (GTT) which develops electronic control units
(ECU) for trucks.

Our results show that using two complementary measures, McCabes cyclomatic
complexity of functions and number of revisions of files supports teams in decision
making, when delivering code to the main branch. The evaluation shows that
monitoring trends in these measures draws attention of the self-organized Agile
teams to a handful of functions and files. These functions and files are manually
assessed, and the team formulates decisions before the delivery on whether they
can cause problems.

2 Related Work

Continuous software evolution: A set of measures useful in the context of
continuous deployment can be found in the work of Fritz [8], in the context of
market driven software development. The metrics presented by Fritz measure such
aspects as continuous integration as pace of delivery of features to the customers.
These metrics complement the two indicators presented in this paper with business
perspective which is important for product management.

The delivery strategy, which is an extension of the concept of continuous deploy-
ment, has been found as one of the three key aspects important for Agile software
development organizations in a survey of 109 companies by Chow and Cao [5]. The
indicator presented in this paper is a means of supporting organizations in their
transition towards achieving efficient delivery processes.

Ericssons realization of the Lean principles combined with Agile development
was not the only one recognized in literature. Perera and Fernando [14] presented

Monitoring Evolution of Code Complexity and Magnitude of Changes 3

another approach. In their work they show the difference between the traditional
and Lean-Agile way of working. Based on our observations, the measures and their
trends at Ericsson were similar to those observed by Perera and Fernando.

Measurement systems: The concept of an early warning measurement system
is not new in engineering. Measurement instruments are one of the cornerstones
of engineering. In this paper we only consider computerized measurement systems
i.e. software products used as measurement systems. The reasons for this are: the
flexibility of measurement systems, the fact that we work in the software field, and
similarity of the problems e.g. concept of measurement errors, automation, etc.
An example of a similar measurement system is presented by Wisell [21] where the
concept of using multiple measurement instruments to define a measurement system
is also used. Although differing in domains of applications these measurement
systems show that concepts which we adopt from the international standards (like
[11]) are successfully used in other engineering disciplines. We use the existing
methods from the ISO standard to develop the measurement systems for monitoring
complexity evolution.

Lowler and Kitchenham [12] present a generic way of modeling measures and
building more advanced measures from less complex ones. Their work is linked
to the TychoMetric [15] tool. The tool is a very powerful measurement system
framework, which has many advanced features not present in our framework (e.g.
advanced ways of combining metrics). A similar approach to the TychoMetrics
way of using metrics was presented by Garcia et al. [9]. Despite their complexity,
both the TychoMetric tool and Garcias approach can be seen as alternatives in the
context of advanced data presentation or advanced statistical analysis over time.
Our research is a complement to [13] and [15]. We contribute by showing how the
minimal set of measures can be selected and how the measurement systems can be
applied regularly in large software organizations.

Meyer [10, pp. 99-122] claims that the need for customized measurement sys-
tems for teams is one of the most important aspects in the adoption of metrics
at the lowest levels in the organization. Meyers claims were also supported by
the requirements that the customization of measurement systems and development
of new ones should be simple and efficient in order to avoid unnecessary costs in
development projects. In our research we simplify the ways of developing Key
Performance Indicators exemplified by a 12-step model of Parmenter [13] in the
domain of software development projects.

3 Design of the Study

This case study was conducted using action research approach [1,16]. The re-
searchers were part of the companys operations and worked directly with product
development units. The role of Ericsson in the study was the development of the
method and its initial evaluation, whereas the role of Volvo GTT was to evaluate
the method in a new context.

4 Vard Antinyan et al.

3.1 Studied Organizations

Ericsson: The organization and the project within Ericsson developed large prod-
ucts for mobile packet core network. The number of the developers in the projects
was up to a few hundreds. Projects were executed according to the principles of
Agile software development and Lean production system, referred to as Stream-
line development within Ericsson [20]. In this environment, different development
teams were responsible for larger parts of the development process compared to
traditional processes: design teams, network verification and integration, testing,
etc.
Volvo GTT: The organization which we worked with at Volvo GTT developed
ECU software for trucks. The collaborating unit developed software for two ECUs
and consisted of over 40 designers, business analysts and testers at different levels.
The development process was in the transaction from traditional to Agile.

3.2 Units of Analysis

During our study we analyzed two different products software for a telecom prod-
uct at Ericsson and software for two ECUs at Volvo GTT.
Ericsson: The product was a large telecommunication product composed by over
two million lines of code with several tens of thousands C functions. The product
had a few releases per year with a number of service releases in-between them. The
product has been in development for a number of years.
Volvo GTT: The product was an embedded software system serving as one of the
main computer nodes for a product line of trucks. It consisted of a few hundred
thousand lines of code and several thousand C functions. The analyses that were
conducted at Ericsson were replicated at Volvo GTT under the same conditions and
using the same tools. The results were communicated with designers of the software
product after the data was analyzed. At Ericsson the developed measurement sys-
tem ran regularly whereas at Volvo the analysis was done semi-automatically, that
is, running the measurement system whenever feedback was needed for designers.

3.3 Reference Group

During this study we had the opportunity to work with a reference group at Ericsson
and a designer at Volvo GTT. The aim of the reference group was to support the
research team with expertise in the product domain and to validate the intermediate
findings as prescribed by the principles of Action research. The group interacted
with researchers on a bi-weekly meeting basis for over 8 months. At Ericsson the
reference group consisted of a product manager, a measurement program leader,
two designers, one operational architect and one research engineer. At Volvo GTT
we worked with one designer.

Monitoring Evolution of Code Complexity and Magnitude of Changes 5

3.4 Measures in the Study

Table 1 presents the complexity measures, change measures and deltas of complex-
ity measures over time. The definitions of measures and their deltas are provided
also.

Table 1: Metrics and their definitions
Complexity
Measures

Abbrev. Definition

McCab’s
cyclomatic
complexity of
a function

M The number of linearly independent paths in
the control flow graph of a function, measured
by calculating the number of ”if”, ”while”,
”for”, ”switch”, ”break”, ”&&”, ”‖” tokens

Structural
Fan− out

Fan− out The number of invocations of functions found
in a specified function

Maximum
Block Depth

MBD The maximum level of nesting found in a func-
tion

Cyclomatic
complexity of
a file

Mf The sum of all functions M in a file

Change
Measures

Abbrev. Definition

Number of re-
visions of a file

NR The number of check-ins of files in a speci-
fied code integration branch and its all sub-
branches in a specified time interval

Number of de-
signers of a file

ND The number of developers that do check-in of
a file on a specified code integration branch
and all of its sub-branches during a specified
time interval

Deltas of
Complexity
Measures

Abbrev. Definition

Complexity
deltas of a
function

∆M ,
∆Fan−out,
∆MBD

The increase or decrease of M , Fan-out and
MBD measures of a function during a speci-
fied time interval.

3.5 Research Method

According to the principles of action research we adjusted the process of our research
with the operations of the company. We conducted the study according to the
following pre-defined process:

• Obtain access to the source code of the products and their different releases

6 Vard Antinyan et al.

• Calculate complexity measures of all functions and change measures of all
files in the code

• Calculate the complexity deltas of all functions through five releases of both
products

• Sort the functions by complexity delta through five releases

• Identify possible patterns of complexity change

• Identify drivers for complexity changes for functions with functions having
highest overall delta

• Correlate measures to explore their dependencies and select measures for
monitoring complexity and changes

• Develop a measurement system (according to ISO 15939) for monitoring com-
plexity and changes

• Monitor and evaluate the measurement system for five weeks

The overall complexity change of function is calculated by:
Overall delta=|∆M1−2|+ |∆M2−3|+ |∆M3−4|+ |∆M4−5|

|∆Mi−j | is the absolute value of change of M of a function between i and j releases.
Overall complexity change of Fan-out and MBD is calculated the same way.

4 Analysis and Results

In this section we explore the main scenarios of complexity evolution. We carry out
correlation analysis of collected measures in order to understand their dependencies
and chose measures for monitoring.

4.1 Evolution of the Studied Measures Over Time

Exploring different types of changes of complexity, we categorized changes into 5
groups.

1. Group 1 - Functions that are newly created and become complex in current
release and functions that existed but disappeared in current release.

2. Group 2 - Functions that are re-implemented in current release.

3. Group 3 - Functions that have significant change of complexity between two
releases due to development or maintenance.

4. Group 4 - Test functions, which are regularly generated, destroyed and re-
generated for unit testing.

5. Group 5 - functions that have minor complexity changes between two releases.

Monitoring Evolution of Code Complexity and Magnitude of Changes 7

Group 1 and group 5 functions were observed to be the most common. They
appeared regularly in every release. Engineers of the reference group charac-
terized their existence as expected result of software evolution. Group 2 func-
tions were re-implementation of already existing function. The existed functions
were re-implemented with different name and the old one was destroyed. Af-
ter re-implementation the new functions could be named as the old one. Re-
implementation usually took place when major software changes were happening:
In this case re-implementation of a function sometimes could be more efficient than
modification. Figure 1 shows the cyclomatic complexity evolution of top 200 func-
tions through five releases of products. Each line on the figure represents a C
function.

Figure 1: Evolution of M of functions

In Figure 1 re-implemented functions are outlined by elliptic and old ones by
round lines. In reality the number of re-implemented functions are small (about
1%), however considering the big magnitude of complexity change of them, many
of them ended-up in the top 200 functions in the picture, giving an impression that
they are relatively many. Figure 2 similarly presents the evolution of Fan-out in
the products. Group 3 functions are outlined by elliptic line in Figure 2.

Figure 2: Evolution of Fan-out of functions

8 Vard Antinyan et al.

Group 3 functions were usually designed for parsing a huge amount of data and
translating them into another format. As the amount and type of data is changed
the complexity of the function also changes. Finally the Group 5 functions were unit
test implementations. These functions were destroyed and regenerated frequently
in order to update running unit tests. Figure 3 presents the MBD evolution of
products. As nesting depth of blocks can be relatively shallow, many lines in Figure
3 overlap each other thus creating an impression that there are few functions. We
observed that functions in group 1, ones were created, stayed complex over time.
These functions are outlined with a rectangular line in Figure 3.

Figure 3: Evolution of MBD of functions

The statistics of functions of all groups are represented in Table 2. The table
shows how all functions, that had complexity change, are distributed in groups. We
would like to mention that the number of all functions in telecom product is about
65000 and in automotive product about 10000, however only top 200 functions out
of those are presented in the figures. This might result in disproportional visual
relationship between the relation of different groups of functions in the table and in
the figures as the figures contains only top 200 functions. We observed the change

Table 2: The distribution of functions with complexity delta in groups
Group Group 1 Group 2 Group 3 Group 4 Group 5
Percentage 27% 1% 1% 1% 70%

of complexity for both long time intervals (between releases) and for short time
intervals (between weeks). Figure 4 shows how the complexity of functions changes
over weeks. The initial complexity of functions is provided under column M in the
figure. We can see the week numbers on the top of the columns, and every column
shows the complexity growth of functions in that particular week. Under column
we can see the overall delta complexity per function that is the sum of weekly deltas
per function.

The fact that the complexity of functions fluctuates irregularly was interesting
for the designers, as the fluctuations indicate active modifications of functions,

Monitoring Evolution of Code Complexity and Magnitude of Changes 9

Figure 4: Visualizing complexity evolution of functions over weeks

which might be due to new feature development or represent defect removals with
multiple test-modify-test cycles. Functions 4 and 6 are such instances illustrated
in Figure 4. Monitoring the complexity evolution through short time intervals we
observed that very few functions are having significant complexity increase. For
example in a week period the number of functions that have complexity increase
∆M > 10 can vary between 5-10 while overall number of functions reaches a few
tens of thousands in the product.

4.2 Correlation analyses

The correlation analyses of measures were conducted in order to eliminate de-
pendent measures and select a minimal amount of measures for monitoring. The
correlation analysis results of complexity measures for the two software products
are presented in Table 3. The visual presentation of the relationship of complexity
measures is presented in Figure 5. As the table illustrates there is a strong corre-
lation between M and Fan-out for the telecom product and M and MBD for the
automotive product. There is a moderate correlation between M and MBD for the
telecom product. Generally designers of reference group concluded that monitoring
the cyclomatic complexity among all complexity measures is good enough as there
was a moderate or strong correlation between three complexity measures. M was
chosen because of two reasons:

Table 3: Correlation of complexity measures
Telecom / Automotive MBD M
M 0.41 / 0.69
Fan-out 0.34 / 0.20 0.76 / 0.26

10 Vard Antinyan et al.

1. MBD is rather a characteristic of a block of code than a whole function. It is
a good complementary measure but it cannot characterize the complexity of
a whole function.

2. Fan-out seemed to be a weaker indicator of complexity than M because it
rather showed the vulnerability of a function towards other functions that
are in that function.

Considering aforementioned conclusions M was chosen among complexity measures
to be monitored.

Figure 5: Correlogram of complexity measures

NR and ND are measures that indicate the magnitude of changes. Previously a
few studies have shown that change metrics are good indicators of problematic areas
of code, as observed Shihab [18]. The measurement entity of NR and ND is a file.
Therefore in order to understand how change measures correlates to complexity we
decided to define the M measure for files (Table 1). Table 4 presents the correlation
analysis results for ND, NR and Mf measures.

Table 4: Correlation of change and complexity measures
Telecom / Automotive Mf ND
ND 0.40 / 0.37
NR 0.46 / 0.72 0.92 / 0.41

An important observation was the strong correlation between the number of
designers and the number of revisions for the telecom product (Table 4). At the
beginning of this study the designers of the reference group at Ericsson believed
that a developer of a file might check-in and check-out the file several times which
probably is not a problem. The real problem, they thought, could be when many
designers modify a file simpultaneously. Nonetheless, a strong correlation between
the two measures showed that they are strongly dependent, and many revisions
is mainly caused by many designers modifying a file in a specified time interval
(Figure 6).

Monitoring Evolution of Code Complexity and Magnitude of Changes 11

Figure 6: Correlogram of change and complexity measures

In case of automotive product correlation of ND and NR was moderate which
can be due to small number of designers who have rather firmly assigned develop-
ment areas and usually change the same code. Moderate correlation between Mf

and NR for the telecom product indicates that complex files are prone to changes.
There are always simple files that are changed often due to development.

Considering the correlation analysis results we designed a measurement system
at Ericsson for monitoring code complexity and magnitude of changes over time.
The description of design and application of measurement system is discussed in
the next section.

4.3 Design of the Measurement System

Based on the results that we obtained from investigation of complexity evolution
and correlation analyses, we designed two indicators based on M and NR measures.
These indicators capture the increase of functions complexity and highlight the files
with highest change magnitude over time. These indicators were designed according
to ISO/IEC 15959. The design of complexity indicator is presented in Table 5. The
other indicator based on NR is defined in the same way: the files that had NR >
20 during last week development time period should be identified and reviewed.
The measurement system was provided as a gadget with the necessary information
updated on a weekly basis (Figure 7). The measurement system relies on a previous
study carried out at Ericsson [19]. For instance the total number of files with more
than 20 revisions since last week is 5 (Figure 7). The gadget provides the link to
the source file where the designers can find the list of files or functions and the
color-coded tables with details.

We visualized the NR and ∆ M measures using tables as depicted in Figure 4.
As in Streamline development the development team merged builds to the main
code branch in every week it was important for the team to be notified about
functions with drastically increased complexity (over 20).

12 Vard Antinyan et al.

Table 5: Measurement system design based on ISO/IEC 15939 standard
Information Need Monitor cyclomatic complexity evolution over development

time

Measurable Con-
cept

Complexity change of delivered source code

Entity Source code function

Attribute Complexity of C functions

Base Measures Cyclomatic complexity number of C functions M

Measurement
Method

Count cyclomatic number per C function according to the
algorithm in CCCC tool

Type of measure-
ment method

Objective

Scale Positive integers

Unit of measure-
ment

Execution paths over the C/C++ function

Derived Measure The growth of cyclomatic complexity number of a C function
in one week development time period

Measurement Func-
tion

Subtract old cyclomatic number of a function from new one:
∆M = M(weeki)M(weeki−1)

Indicator Complexity growth: The number of functions that exceeded
McCabe complexity of 20 during the last week

Model Calculate the number of functions that exceeded cyclomatic
number 20 during last week development period

Decision Criteria If there are functions that exceeded M number 20 then soft-
ware designers should review these functions refactor if neces-
sary

Figure 7: Information product for monitoring M and NR metrics over time

Monitoring Evolution of Code Complexity and Magnitude of Changes 13

5 Threats to Validity

In this paper we evaluate the validity of our results based on the framework de-
scribed by Wohlin et al. [22]. The framework is recommended for empirical studies
in software engineering.

The main external validity threat is the fact that our results come for an ac-
tion research. However, since two companies from different domains (telecom and
automotive) were involved, we believe that the results can be generalized to more
contexts than just one specific type of software development.

The main internal validity threat is related to the construct of the study and
the products. In order to minimize the risk of making mistakes in data collection
we communicated the results with reference groups at both companies to validate
them.

The limit 20 for cyclomatic number established as a threshold in this study does
not have any firm empirical or theoretical support. It is rather an agreement of
developers of large software systems. We suggest that this threshold can vary from
product to product. The number 20 is a preliminary established number taking into
account the number of functions that can be handled on weekly basis by developers.

The main construct validity threats are related to how we identify the names
of functions for comparing their complexity numbers over time. There are several
issues emerging in this operation. Namely, what happens if a function has changed
its list of arguments or what happens if a function is moved to another file? Should
this be regarded as the same function before and after changing the list of arguments
or the position? We disregarded the change of argument list however this can be
argued.

Finally the main threat to conclusion validity is the fact that we do not use
inferential statistics to monitor relation between the code characteristics and project
properties, e.g. number of defects. This was attempted during the study but the
data in defect reports could not be mapped to individual files. This might be a
thread for jeopardizing the reliability of such an analysis. Therefore we chose to
rely on the most skilled designers perception of how fault-prone and unmaintainable
the delivered code is.

6 Conclusions

In continuous software development quick feedbacks on developed code complexity
is crucial. With small software increments there is a risk that the complexity of
units of code can grow to an unmanageable level. In this paper we explored how
complexity evolves, by studying two software products one telecom product at
Ericsson and one automotive product at Volvo GTT. We identified that in short
periods of time a few out of tens of thousands functions have significant complexity
increase. We also concluded that the self-organized teams should be able to make
the final assessment whether the potentially problematic is indeed problematic.

By analyzing correlations between three complexity and two change metrics we

14 Vard Antinyan et al.

concluded that it is enough to use two measures, McCabe complexity and number
of revisions, to draw attention of the teams to potentially problematic code for
review and improvement.

The automated support for the teams was provided in form of a MS Sidebar
gadget with the indicators and links to statistics and trends with detailed complex-
ity development data. The measurement system was evaluated by using it on an
ongoing project and communicating the results with software engineers in industry.

In our further work we intend to study how the teams formulate the decisions
and monitor their implementation.

Acknowledgment
The authors thank the companies for their support in the study. This research has
been carried out in the Software Centre, Chalmers, University of Gothenburg and
Ericsson, Volvo Group Truck Technology.

References

[1] Baskerville, R.L. A Critical Perspective on Action Research as a Method for
Information Systems Research. Journal of Information Technology, 1996(11),
235-246.

[2] Boehm, B. A view of 20th and 21st century software engineering. Paper pre-
sented at the Proceedings of the 28th international conference on Software
engineering, 2006.

[3] Bosch, Jan. From integration to composition: On the impact of software
product lines, global development and ecosystems. Journal of Systems and
Software, 83(1), 67-76. doi: http://dx.doi.org/10.1016/j.jss.2009.06.051

[4] Catal, Cagatay. A systematic review of software fault predic-
tion studies. Expert Systems with Applications, 36(4), 7346-7354. doi:
http://dx.doi.org/10.1016/j.eswa.2008.10.027

[5] Chow, Tsun. A survey study of critical success factors in agile software
projects. Journal of Systems and Software, 2008, 81(6), 961-971.

[6] Fenton, Norman E. A critique of software defect prediction models. Software
Engineering, IEEE Transactions on, 1999, 25(5), 675-689.

[7] Fenton, Norman E. Software metrics (Vol. 1): Chapman and Hall London,
1991.

[8] Fitz, Timothy. Continuous Deployment at IMVU: Doing the impossible fifty
times a day. from http://timothyfitz.wordpress.com/2009/02/10/continuous-
deployment-at-imvu-doing-the-impossible-fifty-times-a-day/

[9] Garcia, F. Managing Software Process Measurement: A Meta-model Based
Approach. Information Sciences, 2007, 177(2), 2570-2586.

Monitoring Evolution of Code Complexity and Magnitude of Changes 15

[10] Harvard Business School. Harvard business review on measuring corporate
performance. Boston, MA: Harvard Business School Press, 1998.

[11] International Bureau of Weights and Measures. International vocabulary of
basic and general terms in metrology = Vocabulaire international des termes
fondamentaux et gnraux de mtrologie (2nd ed.). Genve, Switzerland: Interna-
tional Organization for Standardization, 1993.

[12] Lawler, J. Measurement modeling technology. IEEE Software, 2003, 20(3),
68-75.

[13] Parmenter, David. Key performance indicators : developing, implementing,
and using winning KPIs. Hoboken, N.J.: John Wiley and Sons, 2003

[14] Perera, G. I. U. S. Enhanced agile software development - hybrid paradigm
with LEAN practice. Paper presented at the International Conference on In-
dustrial and Information Systems (ICIIS), 2007.

[15] Predicate Logic. TychoMetrics. Retrieved 2008-06-30, 2008, from
http://www.predicatelogic.com

[16] Sandberg, Anna. Agile Collaborative Research: Action Principles for Industry-
Academia Collaboration. IEEE Software, 2011, 28(4), 74-83.

[17] Shepperd, Martin. A critique of cyclomatic complexity as a software metric.
Software Engineering Journal, 3(2), 30-36.

[18] Shihab, Emad. An industrial study on the risk of software changes. Paper
presented at the Proceedings of the ACM SIGSOFT 20th International Sym-
posium on the Foundations of Software Engineering, 2012.

[19] Developing measurement systems: an industrial case study. Journal of Soft-
ware Maintenance and Evolution: Research and Practice, 23(2), 89-107. doi:
10.1002/smr.470

[20] Tomaszewski, Piotr. From Traditional to Streamline Development - Opportu-
nities and Challenges. Software Process Improvement and Practice, 2007(1),
1-20. doi: 10.1002/spip.355

[21] Wisell, David. Considerations when Designing and Using Virtual Instruments
as Building Blocks in Flexible Measurement System Solutions. Paper presented
at the IEEE Instrumentation and Measurement Technology Conference, 2007.

[22] Wohlin, Claes. Experimentation in Software Engineering: An Introduction.
Boston MA: Kluwer Academic Publisher, 2000.

Received ...

