
Should We Adopt a New Version of a Standard?
– A Method and its Evaluation on AUTOSAR

Corrado Motta1, Darko Durisic1, and Miroslaw Staron2

1 Volvo Car Group, Gothenburg, Sweden,
Corrado.Motta@volvocars.com | Darko.Durisic@volvocars.com

2 Chalmers | University of Gothenburg, Sweden
Miroslaw.Staron@cse.gu.se

Abstract. The development of large software systems is usually based
on a number of industrial standards that define a set of features and their
requirements. In order to use new features specified in the standards, new
releases of the standards need to be adopted together with their require-
ments. This requires a thorough impact analysis of the changes in the
requirements that can be time-consuming considering their potentially
high number. In order to facilitate the adoption of new releases of in-
dustrial standards in large software systems, we present a method based
on both quantitative and qualitative analysis of requirements evolution.
The method is evaluated in a case study of AUTOSAR - a standard used
in the development of automotive software systems in cooperation with
Volvo Car Group. The evaluation results show that the use of the pro-
posed method can identify the most unstable AUTOSAR specifications
and their requirements whose changes may have a significant impact on
the automotive systems. This knowledge can increase the speed of adop-
tion of new AUTOSAR releases by automotive vendors.

Keywords: Requirement evolution, metrics, industrial standards

1 Introduction

Analyzing the evolution of system requirements is an important and inevitable
phase in the development of large software systems [8], especially for OEM (Orig-
inal Equipment Manufacturers) that base their development on industrial stan-
dards. This is because features specified in the standards and their requirements
are usually driven by a number of competitive companies. The process of up-
dating one system with new standardized features brings a series of advantages,
such as making use of a number of standardized requirements that are proved
to be valid in practice and buying cheaper off-the-shelf software packages from
software vendors. However, it also brings new challenges such as working with
requirements not written by OEMs and dealing with their fast evolution.

For this reason, the process of analyzing the evolution of standardized require-
ments without a suitable methodology and tool support can be time-consuming
and can require significant engineering effort. Furthermore, adopting new stan-
dardized features in the development projects without having a clear knowledge



2 Corrado Motta, Darko Durisic, and Miroslaw Staron

whether the standardized requirements related to them can be fulfilled in prac-
tice can lead to the introduction of new faults into the system. Therefore, dealing
with the evolution of standardized requirements is one of the primary objectives
of large companies in order to be able to update their systems faster and cheaper.

Although several solutions have been proposed mostly originating from the
academia, the evolution of standardized requirements is still considered one of the
most challenging practical problems in the development of large software systems
[8]. The objective of this work is to define a suitable methodology for efficiently
analyzing the evolution of standardized requirements as well as improving the
process of updating large software system with new standardized features. We
aim to provide an answer to the following research question: How can we as-
sure efficient adoption of new releases of standards in the development of large
software systems by analyzing the evolution of standardized requirements?

As outcome of our work, this paper presents a method, named SREA (Stan-
dardized Requirements Evolution Assessment), that consists of four steps that
are based on both quantitative and qualitative analysis of requirements evolu-
tion. All steps of the method can and should be performed automatically with
the help of a software tool in order to reduce the time of analysis. Despite the
fact that we focus on the analysis of standardized requirements where the pro-
posed method is particularly helpful as certain requirements changes are driven
by other companies, the method can also be applied on the evolution of company
internal requirements as part of the common requirements engineering process.

In order to evaluate the proposed method, we applied it in the automotive
domain in a case study of AUTOSAR (Automotive Open System Architecture)
standard [3], that specifies a reference architecture and methodology for the de-
velopment of automotive software systems. In particular, AUTOSAR provides a
set of standardized requirements for the design of the automotive architectures
(i.e., language for the architectural models), that consists of a number of Elec-
tronic Control Units (ECUs) responsible for executing software functionalities,
and requirements for the ECU middleware. The rest of the functional ECU re-
quirements are left to be defined by each OEM. As AUTOSAR represents a big
industrial standard that counts more than 150 partners and 21.000 requirements,
we believe it qualifies as a valid case for evaluating the SREA method.

The study is conducted in collaboration with Volvo Car Group (VCG) whose
engineers helped us to understand and prioritize AUTOSAR releases and their
specifications for the evaluation of the proposed method. The results of our eval-
uation show the importance of performing automated analysis of requirements
evolution. In particular, they show that the use of SREA method could help
automotive engineers in analyzing the evolution of the AUTOSAR requirements
faster by providing the engineers with information such as which specifications
are unstable (e.g., their requirements change with every release), which require-
ments are changed and the actual content of the changed requirements.

Knowledge about the unstable specification can be useful for making strate-
gic decisions about the set of standardized features that are mature enough to
be implemented in the system. Knowledge about the changed requirements has



Should We Adopt a New Version of a Standard? 3

a potential of saving lots of time spent on reading tents of AUTOSAR specifica-
tion with thousands of requirements manually. For example, in all specification
with design requirements between AUTOSAR releases 4.2.1 and 4.2.2, we iden-
tified 1563 requirements and presented relevant changes (additions, removals and
modifications) for only 172.

The rest of the paper is organized as follows: Section 2 presents the related
work; Section 3 provides the background of AUTOSAR as our unit of analysis;
Section 4 describes the research methodology we used during this project; Section
5 defines the proposed SREA method; Section 6 presents the results of evaluation
of the SREA method on AUTOSAR; Section 7 discusses the validation of the
proposed method and provides recommendations; finally, Section 8 concludes
our work and describes our plans for future work.

2 Related work

Several studies of requirements evolution are related to our study. In partic-
ular, Wang et al. [15] provide a general method for studying changes in the
requirements in order to find relations between them and the number of soft-
ware defects. The method relies on the quantitative analysis. Although their
approach was considered as a starting point for our work, our focus was on the
impact of requirements changes on the system under development.

Similar but more exhaustive studies were conducted in the avionics context
by Anderson et al. [1], [2] who show how to conduct an empirical analysis of
requirements evolution starting from a general point and moving to a product-
oriented one. They perform the following two steps: (i) collecting information
from the avionics domain using the Requirement Maturity Index (RMI ), His-
torical Requirement Maturity Index (HRMI ), and Requirement Stability Index
(RSI ) metrics and (ii) refining the information gathered in the first step us-
ing the qualitative approach. We rely on a similar work-flow based on the RMI
metric that shows the stability of requirements changes in relation to the past
releases. We did not consider RSI and HRMI metrics since a great number of
requirements changes can lead to a non-meaningful (e.g., negative) number.

For the quantitative analysis of requirements evolution, we considered the
study of Shi et al. [13] that aims to identify requirements that are most likely to
be changed in the future using a number of metrics, e.g., Sequence, Frequency and
Lifecycle. However, these metrics cannot be used for identifying the requirement
specifications that are mostly affected by changes, that is one of our major goals.

For efficiently studying the evolution of system requirements, Nurmuliani et
al. [11] provided a taxonomy of changes for categorizing different types of require-
ments changes, reasons for their change and the origin of changes. This study
inspired us to define a taxonomy of changes for the AUTOSAR requirements.

Additionally, Stark g. et al. [14] proposed a method for analyzing the evolu-
tion of requirements in two steps. We adopted the first step called micro analysis
in order to get a preliminary view on the requirements architecture, structure of
the requirements specifications and possible types of requirements changes.



4 Corrado Motta, Darko Durisic, and Miroslaw Staron

Finally, in order to understand the development of automotive software sys-
tems based on AUTOSAR, several automotive papers were considered. Two
studies of Durisic et al. [6], [7] were useful for improving our general knowledge
of AUTOSAR, its architecture, methodology and complexity. More generally, the
paper from Broy et al. [4] was useful for identifying trends in the evolution of the
automotive software, even though they do not explain how it can be measured.

Although there is a significant number of methods related to the analysis of
requirement evolution, the majority of them are not applied in a real industrial
context in which large software systems are developed. This paper aims to fill
this gap by combining the existing studies with our considerations and metrics in
order to develop an efficient method for analyzing the evolution of standardized
requirements that can facilitate this activity in the real industrial contexts.

3 Case study evaluation context

In the automotive domain, OEMs are usually responsible only for the design
of automotive systems while the actual implementation of software and hard-
ware components is done by a hierarchy of suppliers. In order to standardize the
methodology of work in such a distributed environment and a reference archi-
tecture for the distributed realization of the automotive systems using a number
of ECUs, AUTOSAR standard has been introduced. The proposed ECU archi-
tecture is based on the following common three-layer architecture:

1. Application software layer that consists of a number of software components
responsible for certain vehicle functionalities.

2. ECU middleware layer (a.k.a. basic software - BSW) that consists of a num-
ber of BSW modules responsible for, e.g., signaling and diagnostic services.

3. ECU hardware layer responsible for executing the allocated software com-
ponents and BSW modules.

Since ECU basic software does not contribute to the realization of high level
car functionalities that could make a competitive advantage for one OEM (e.g.,
autonomous drive), it is completely standardized by AUTOSAR that provides
a set of requirements specifications for each BSW module. On the other hand,
the functionality of the application layer is generally not standardized, although
there are some predefined software components. However, AUTOSAR provides
a meta-model followed by a set of design requirements that define the language
for the architectural models of the application layer in order to facilitate the ex-
change of models between OEMs and suppliers [6]. This meta-model and design
requirements serve as basis for the development of AUTOSAR modeling tools.

Based on the described methodology, we can distinguish between the follow-
ing three types of requirements in the AUTOSAR based development process:

1. Functional requirements for the application software specified by OEMs.
2. Design requirements for the system models standardized by AUTOSAR.
3. BSW requirements for each BSW modules standardized by AUTOSAR.



Should We Adopt a New Version of a Standard? 5

In this paper, we focus on the last two types that are standardized by AU-
TOSAR. Design requirements are described in the specifications called ”tem-
plates” (TPS ) and they can be either specification items or constraints (checked
by modeling tools). BSW requirements are described in the software requirement
specifications SWS. An example for each type is provided below:

– Specification item example: The 1:n multicast routing is supported with
the definition of several IPduMappings classes.

– Constraint example: The value of windowSize shall be greater or equal 1.
– BSW requirement example: CAN module shall allow that Multiplexed

Transmission functionality is configurable (ON — OFF) at pre-compile time.

Apart from these types of requirements, AUTOSAR builds a requirements
traceability hierarchy starting from the explained requirements until the general
AUTOSAR features and objectives. These requirements are, together with the
OEM-specific functional requirements, not considered in our analysis as they do
not produce a direct impact on the development of automotive systems.

All AUTOSAR requirements specifications including the meta-model are re-
leased simultaneously. There are three types of AUTOSAR releases:

1. Major release: first digit change, contains backwards incompatible features.
2. Minor release: second digit change, contains backwards compatible features.
3. Revision: third digit change, contains bugfixes only.

4 Research methodology

In order to provide the answer to the research question addressed in this study
that is presented in the introduction, we developed a method named SREA that
aims to reduce the costs and time associated with the process of analyzing the
evolution of standardized requirements and evaluated it in a case study [12] of
the AUTOSAR requirements, in collaboration with VCG.

We defined the SREA method by relying both on the existing and novel ap-
proaches. First, we conducted a literature review on the existing approaches for
monitoring the evolution of system requirements using the snowball method [16].
In order to identify the starting set of papers, we searched for papers mention-
ing requirements evolution and requirements volatility keywords in their title,
abstract and keywords sections using Google Scholar, IEEE Xplore and Scopus
databases. We selected papers [13], [9] and [2] as the starting point and con-
tinued to look for references and citation in these papers. We performed three
iterations in total and analyzed in details 23 out of 42 relevant papers. Second,
we improved our understanding of the case study context in semi-structured in-
terviews, workshops and meetings with AUTOSAR experts from VCG. These
two steps served as input for defining the SREA method.

Finally, we evaluated the method using AUTOSAR requirements as a unit
of analysis from the chosen set of AUTOSAR releases. We chose all AUTOSAR
releases from the latest major release 4.0.1 until the latest revision 4.2.2. We



6 Corrado Motta, Darko Durisic, and Miroslaw Staron

decided not to consider previous AUTOSAR releases as their specification are not
structured in the same way which makes them hard to be analyzed automatically.
Nevertheless, AUTOSAR has a lot of significant changes in the last major release.
Finally for the detailed analysis of changes between two releases, we decided to
focus on the changes between 4.0.3 and 4.2.2 releases.

In order to be able to cope with the size of AUTOSAR that counts more than
21.000 requirements in its latest release (4.2.2 ), we developed a configurable soft-
ware tool for gathering data and calculating and presenting the results to the
AUTOSAR engineers at VCG. The tool compares different versions of the AU-
TOSAR requirements specifications in PDF and creates a structured report. The
report presents the following information for the analyzed specifications: types of
requirement changes in all analyzed releases, change history of each requirement
and the number of requirements, cumulative number of requirements, number
of changes and cumulative number of changes for each AUTOSAR release.

Finally in order to validate the proposed SREA method, we distributed a
survey with 10 questions to six AUTOSAR experts at VCG. The questions
were based on both quantitative and qualitative results of the method applied
on AUTOSAR requirements, e.q., which AUTOSAR specifications are mostly
unstable, and they aimed to assess whether the results of the method are in line
with the expectation of the experts who participated in the development of the
AUTOSAR standard. The experts were not aware of the method results.

5 The SREA method

The SREA method we propose in this paper consists of the following steps:

1. Define taxonomy of requirement changes in order to design the right metrics
for performing the quantitative analysis in the next step.

2. Perform quantitative analysis of evolution of the requirements specifications
in order to be able to correctly prioritize them in the next step.

3. Prioritize individual requirements specifications in order to select groups of
specifications for the qualitative analysis in the next step.

4. Perform qualitative analysis of changes in order to accurately assess their
impact on the system under development.

Step 1: Define taxonomy of changes: The first step of the SREA method
aims to define the taxonomy of changes by:

1. Defining which types of changes shall be considered, e.g., added require-
ments, in order to define the metric for each type.

2. Defining the metrics for different types of changes, e.g., NoA as the number
of added requirements, in order to calculate the total number of changes.

3. Defining the total number of changes, i.e., NoC, as the (weighted) sum of
results of the previous metrics, in order to perform quantitative analysis.

4. Defining the taxonomy of modifications (which modifications shall be con-
sidered), e.g., requirements title, in order to perform qualitative analysis.



Should We Adopt a New Version of a Standard? 7

First three points aim to define the types of changes that shall be consid-
ered in the requirements evolution analysis, as not all changes have impact on
the system under development (e.g., split requirements with low probability of
occurrence). We specified the following metrics for each type of identified change:

1. NoA for the number of added requirements.
2. NoS for the number of split requirements.
3. NoU for the number of merged requirements.
4. NoD for the number of deleted requirements.
5. NoM for the number of modified requirements.
6. NoC for the total number of changed requirements.

The NoA, NoS, NoU, NoD and NoM are simple metrics that are calculated
by counting the number of occurrences of each type of change. The NoC metrics
is calculated as the sum of the results of other metrics, as shown in Formula 1:

NoC = a ∗NoA + b ∗NoS + c ∗NoU + d ∗NoD + e ∗NoM (1)

The coefficients a, b, c, d and e are there to indicate which simple metrics
shall be considered in the NoC metric, i.e., value 0 means that this particular
type shall not be considered whilst value 1 means that it shall be considered.

The last point aims to define the taxonomy of requirements modifications
that shall be considered in the analysis. Requirements that are added, split,
merged and deleted are usually easily detectable based on their unique IDs or
names. However, requirements that are modified require checking whether their
content was changed. In practice, not all modifications to the content of the
requirements are relevant, e.g., fixing spelling mistakes does not require effort
for fulfilling the analyzed requirements. There are no general rules for deciding
which modification are not relevant, so they have to be defined. Table 1 shows
the taxonomy of the general types of modification we encountered in our study.

Table 1. Taxonomy of modifications

Types of modifications Description

Grammar and spelling corrections Grammar and spelling improved in a new release.

Encoding modification The specifications can be encoded in different
ways and the output could slightly change.

Format modification The format can change, e.g., how requirements are
structured in tables or text.

Change in the technical term name Changes in the name of, e.g., an API or a class.

Title modification The title of a requirement can change.

Content modification Modification in the content of a requirement.

Reference modification Change of requirement’s traceability reference.

Additionally, it is advisable to implement the taxonomy of modifications in
the tool responsible for calculating the metrics in a configurable way so that the
inclusion/exclusion of each type could be done automatically.



8 Corrado Motta, Darko Durisic, and Miroslaw Staron

Based on the defined taxonomy of changes, we can exclude from both quan-
titative and qualitative analysis all types of changes in the requirements that do
not affect their semantics. This in turn is very valuable for the engineers analyz-
ing the evolution of requirements as they are presented with the precise measure
of requirements change considering only those requirements that actually require
certain effort to be fulfilled by the system under development.

In order to successfully perform points 1-4 from the first step for a specific
industrial case, a preliminary analysis of the requirements behavior shall be con-
ducted. We propose the micro analysis method [14] that enables a comparison
of two different versions of one significant (in terms of number of requirements
and their scope) requirement specification for each category of requirements,
e.g., functional requirements, design requirements, etc. This comparison aims
to identify both different types of changes and different types of modifications.
The outcome of the micro analysis should be a table with one row for each re-
quirement changed and one column for each type of change encountered in the
analysis, i.e., deleted, split, modified, merged and added requirements. Depend-
ing on the results of the micro analysis, we could then decide not to consider
certain types of changes if their occurrence is insignificant for the analysis.

Step 2: Perform quantitative analysis of requirements evolution: In
this step we aim to quantitatively analyze the evolution of standardized require-
ments in order to identify specifications that are mostly affected by changes. Our
qualitative analysis relies on the NoC (Number of Changes) metric that counts
the number of added, deleted, split, merged and modified requirements accord-
ing to the defined taxonomy of changes. We analyze the evolution of requirement
specifications in two ways: (i) by calculating the NoC and (ii) by considering
the percentage of changes, based on the RMI metric that is derived from NoC.

The first one gives an overview of the amount of changes and which specifi-
cations contain the biggest number of changed requirements. The other one does
that same taking also the total number of requirements into account. For exam-
ple, although a specification with one thousand changes has a significant NoC,
it could be quite stable, i.e., with a low percentage, if it contains ten thousands
requirements. For this reason, we aim to assess the stability of each requirement
by measuring RMI in the way defined in Formula 2.

RMI =
Rt −NoC

Rt
(2)

Rt represents the total number of requirements for a specific version while
NoC represents the total number of changed requirements between this version
and the previous one. Substructing the results of the RMI metric from Rt can
be used for calculating the percentage of changed requirements. Note that the
percentage could exceed 100% in some cases because RMI considers all types of
changes including merged and deleted requirements. For example, one specifica-
tion could have 199 NoD, 20 NoA, and 47 NoM, hence 266 NoC from one version
to another. However it could have just 200 requirements in the last version.

Step 3: Prioritize individual requirements specifications: The third
step of the proposed method aims to collect a group of specifications based on



Should We Adopt a New Version of a Standard? 9

the results of the previous step and the importance of each specification for the
system under development. One specification is usually considered important if
its requirements are needed for adopting a specific standardized feature in the
system. The set of prioritized specifications are then grouped according to their
semantics (e.g., relevant standardized features) in order to serve as input to the
next step of the method. We do not specify the number of specifications that
should be prioritized and grouped because it depends on the needs, e.g., adopting
one small standardized feature can affect only a few requirements specifications
while adopting an entire new release of a standard may affect many.

Step 4: Perform qualitative analysis of changes: The last step of the
SREA method is focused on the qualitative analysis of changes in the prioritized
group of requirement specifications. The analysis of the actual changes in the
requirements is done by comparing their content (i.e., whether their textual
representation is the same or not) between different releases of the standard.
The outcome of this step is a report for each prioritized specification or for a
group of specifications related to the analyzed feature. In order to increase its
readability, we propose to structure the report in the following way:

1. Table of Contents contains a list of sections and subsections of the report.
2. General Data contains the results of the NoC metric, for each type of change,

and RMI metrics, calculated again for the prioritized specifications.
3. List of Changed Requirements contains the list of all types of changes con-

sidered by specifying the ReqId, title and content of each requirement.
4. Detail of Modified Requirements contains the comparison between the con-

tent of all modified requirements emphasizing (e.g., bold or coloring) the
modified text according to the taxonomy defined in step 1.

Since the main goal of SREA is to increase the speed of analysis of stan-
dardized requirements evolution, automated tool support for performing both
quantitative and qualitative analysis described in the steps above is an impor-
tant part of the method. This tool should also be able to generate the final report
based on the configured taxonomy of changes, as already explained.

6 Evaluation of the SREA method on AUTOSAR

In this section, we show partial results from the evaluation of the SREA method
on the evolution of AUTOSAR requirements for a specific objective: to facilitate
updates of the AUTOSAR modeling tools with new releases of AUTOSAR. This
implies focusing on the analysis of AUTOSAR specifications containing design
requirements. We organize this section according to the steps of the method.

Step 1: Define taxonomy of changes: We initially performed micro anal-
ysis using two AUTOSAR specifications: AUTOSAR TPS SystemTemplate, con-
taining design requirements, and AUTOSAR SWS Com, containing BSW re-
quirements. Figure 1 shows an extract of the results for SWS COM.

Based on the complete results of the micro analysis of the SWS COM and
TPS SystemTemplate specifications, we concluded that the number of merged



10 Corrado Motta, Darko Durisic, and Miroslaw Staron

VERSION VERSION NoC ADDs DELs NoC REQs CUMCHACUMREQRMI %CHANGHRMI NoA NoD NoM
4.0.1 R‐R01 0 0 0 0 14053 0 0 100 0 100 11447 3797 9329
4.0.2 R01‐R02 2399 751 253 1395 14551 2399 14551 84 16 84
4.0.3 R02‐R03 4504 2427 671 1406 16307 6903 30858 74 27 79
4.1.1 R03‐R11 8302 4174 1868 2260 18613 15205 49471 55 44 73
4.1.2 R11‐R12 1626 494 238 894 18887 16831 68358 91 8 78
4.1.3 R12‐R13 1478 416 171 891 19132 18309 87490 92 7 81
4.2.1 R13‐R21 4262 2619 390 1253 21361 22571 108851 79 19 82
4.2.2 R21‐R22 2002 566 206 1230 21723 24573 130574 91 9 84

Mod Mer Split Del Add

[SWS_Com_00393]

[SWS_Com_00675]
[SWS_Com_00863]
[SWS_Com_00736]
[SWS_Com_00789]

0

5000

10000

15000

20000

25000

4.0.1 4.0.2 4.0.3 4.1.1 4.1.2 4.1.3 4.2.1 4.2.2

TOTAL NUMBER OF REQs FOR EACH RELEASE

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

R01‐R02 R02‐R03 R03‐R11 R11‐R12 R12‐R13 R13‐R21 R21‐R22

NoC THROUGH ALL RELEASES

Fig. 1. Short extract of the micro analysis

and split requirements is very low and therefore insignificant for our study. There-
fore, we decided not to consider split and merged requirements because of their
low probability of appearance and increased difficulty in detection. The decision
not to consider these types of requirement changes resulted in the definition of
the NoC metric we used for AUTOSAR evaluation presented in Formula 3.

NoC = 1 ∗NoA + 0 ∗NoS + 0 ∗NoU + 1 ∗NoD + 1 ∗NoM (3)

Based on the taxonomy of modifications, and in the discussion with the engi-
neers from VCG, we decided to consider only the following types of modification
for the quantitative analysis performed in step 2: Change in the technical term
name, Title modification and Content modification.

Step 2: Perform quantitative analysis of requirements evolution:
The results of the quantitative analysis of the AUTOSAR requirements evolution
are presented in Figure 2. We considered all minor releases and revisions of the
AUTOSAR major release 4 (i.e., releases from 4.0.1 to 4.2.2 ).

VERSION VERSION NoC ADDs DELs NoC REQs CUMCHANsCUMREQsRMI %CHANGESHRMI NoA NoD NoM

4.0.1 R-R01 0 0 0 0 14053 0 0 100 0 100 11447 3797 9329

4.0.2 R01-R02 2399 751 253 1395 14551 2399 14551 84 16 84

4.0.3 R02-R03 4504 2427 671 1406 16307 6903 30858 74 27 79

4.1.1 R03-R11 8302 4174 1868 2260 18613 15205 49471 55 44 73

4.1.2 R11-R12 1626 494 238 894 18887 16831 68358 91 8 78

4.1.3 R12-R13 1478 416 171 891 19132 18309 87490 92 7 81

4.2.1 R13-R21 4262 2619 390 1253 21361 22571 108851 79 19 82

4.2.2 R21-R22 2002 566 206 1230 21723 24573 130574 91 9 84

0

5000

10000

15000

20000

25000

4.0.1 4.0.2 4.0.3 4.1.1 4.1.2 4.1.3 4.2.1 4.2.2

TOTAL NUMBER OF REQs FOR EACH RELEASE

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R01-R02 R02-R03 R03-R11 R11-R12 R12-R13 R13-R21 R21-R22

NoC THROUGH ALL RELEASES

VERSION VERSION NoC ADDs DELs NoC REQs CUMCHANsCUMREQsRMI %CHANGESHRMI NoA NoD NoM

4.0.1 R-R01 0 0 0 0 14053 0 0 100 0 100 11447 3797 9329

4.0.2 R01-R02 2399 751 253 1395 14551 2399 14551 84 16 84

4.0.3 R02-R03 4504 2427 671 1406 16307 6903 30858 74 27 79

4.1.1 R03-R11 8302 4174 1868 2260 18613 15205 49471 55 44 73

4.1.2 R11-R12 1626 494 238 894 18887 16831 68358 91 8 78

4.1.3 R12-R13 1478 416 171 891 19132 18309 87490 92 7 81

4.2.1 R13-R21 4262 2619 390 1253 21361 22571 108851 79 19 82

4.2.2 R21-R22 2002 566 206 1230 21723 24573 130574 91 9 84

0

5000

10000

15000

20000

25000

4.0.1 4.0.2 4.0.3 4.1.1 4.1.2 4.1.3 4.2.1 4.2.2

TOTAL NUMBER OF REQs FOR EACH RELEASE

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R01-R02 R02-R03 R03-R11 R11-R12 R12-R13 R13-R21 R21-R22

NoC THROUGH ALL RELEASES

Fig. 2. Results of the quantitative analysis of the AUTOSAR requirements evolution

We can observe the evolution of the AUTOSAR standard in Figure 2 from two
different perspectives: (i) the NoC across consequently releases (left chart) and
(ii) the total number of requirements (right chart). Based on these charts, we can
see that AUTOSAR is continuously changing through its releases. Furthermore,
we can also see that AUTOSAR is continuously growing : In R401 AUTOSAR
had 14.000 requirements whilst in the last version (R422 ) it counts more than
21.000 requirements. Finally, we can see that minor releases of AUTOSAR (R411
and R421 ) bring more changes to the requirements than revisions.



Should We Adopt a New Version of a Standard? 11

In order to analyze the specifications that are mostly affected by the evolution
of the AUTOSAR standard, we sorted them based on the results of the NoC and
RMI metrics calculated between the chosen AUTOSAR releases 4.0.3 and 4.2.2.
Figure 3 shows the first 7 (over 84) specifications.

TPS_GenericStructureTemplate 371

SWS_SocketAdaptor 450

TPS_SystemTemplate 489

TPS_SWComponentTemplate 626

SWS_DiagCommunicationManager 757

SWS_DiagEventManager 814

SWS_RunTimeEnvironment 826

TPS_SystemTemplate 98

SWS_EthernetStateManager 102

TPS_ECUConfiguration 114

SWS_FlexRayARTransportLayer 124

SWS_SAEJ1939TransportLayer 130

SWS_SocketAdaptor 175

SWS_SynchTimeBaseManage 197
0 50 100 150 200

TPS_SystemTemplate

SWS_EthernetStateManager

TPS_ECUConfiguration

SWS_FlexRayARTransportLayer

SWS_SAEJ1939TransportLayer

SWS_SocketAdaptor

SWS_SynchTimeBaseManage

AUTOSAR SPECIFICATIONS RANKED BY RMI

0 200 400 600 800

TPS_GenericStructureTemplate

SWS_SocketAdaptor

TPS_SystemTemplate

TPS_SWComponentTemplate

SWS_DiagCommunicationManager

SWS_DiagEventManager

SWS_RunTimeEnvironment

AUTOSAR SPECIFICATIONS RANKED BY NoC

SWS_RunTimeEnvironment 826

SWS_DiagEventManager 814

SWS_DiagCommunicationManager 757

TPS_SoftwareComponentTemplate 626

TPS_SystemTemplate 489

SWS_SocketAdaptor 450

TPS_GenericStructureTemplate 371

TPS_SystemTemplate 98

SWS_EthernetStateManager 102

TPS_ECUConfiguration 114

SWS_FlexRayARTransportLayer 124

SWS_SAEJ1939TransportLayer 130

SWS_SocketAdaptor 175

SWS_SynchTimeBaseManage 197
0 50 100 150 200

TPS_SystemTemplate

SWS_EthernetStateManager

TPS_ECUConfiguration

SWS_FlexRayARTransportLayer

SWS_SAEJ1939TransportLayer

SWS_SocketAdaptor

SWS_SynchTimeBaseManage

AUTOSAR SPECIFICATIONS RANKED BY RMI

-100 100 300 500 700 900

SWS_RunTimeEnvironment

SWS_DiagEventManager

SWS_DiagCommunicationManager

TPS_SoftwareComponentTemplate

TPS_SystemTemplate

SWS_SocketAdaptor

TPS_GenericStructureTemplate

AUTOSAR SPECIFICATIONS RANKED BY NoC

Fig. 3. AUTOSAR specifications ranked according to the NoC and RMI

The results of the NoC metric show that SWS RunTimeEnvironment and
SWS DiagEventManager specifications are mostly affected by the changes (more
than 800 changes). Although they have a significant NoC, we can not directly
conclude that these specifications are also the most unstable ones. To assess this,
we ranked them by the results of the RMI metric in order to investigate the rela-
tions between the two lists. We can see that SWS SynchTimeBaseManager and
SWS SocketAdaptor specifications have the highest RMI value. By combining
the two lists, we can also see that SWS SocketAdaptor and SWS SystemTemplate
are the only two specifications that are considered highly affected by the evo-
lution based on the results of both metrics. Generally, all the specification that
have high values of NoC and RMI are good candidates to be analyzed first,
depending on their importance for the actual system under development.

Step 3: Prioritize individual requirements specifications: In this step,
we focused on the main objective of this analysis: facilitate the updates of the
AUTOSAR modeling tools based on a new release of AUTOSAR. Therefore,
we asked the AUTOSAR engineers from VCG which specifications are consid-
ered the most important for the analysis of impact on the AUTOSAR modeling
tools. They agreed on the following three specifications: TPS SystemTemplate,
TPS SWComponentTemplate and TPS ECUConfiguration.

Based on this prioritization and the outcome of the previous step that iden-
tified specifications mostly affected by the changes, we decided to focus on the
qualitative analysis of TPS SystemTemplate and TPS SWCTemplate in the first
phase. The TPS SystemTemplate specification contains general design require-
ments on how the system shall be designed, e.g., description of ECUs connected
with electronic buses and transmission of signal on the electronic buses. The
TPS SWComponentTemplate specification contains general design requirements
on how software components should be designed with their data interfaces.



12 Corrado Motta, Darko Durisic, and Miroslaw Staron

Step 4: Perform qualitative analysis of changes: In the last step we
performed qualitative analysis on the prioritized specifications by running the
tool we implemented and by providing a detailed report. In this report, we first
show the results of all proposed metrics, as presented in Table 2.

Table 2. Report - results of the metrics applied on the chosen specifications

Metric TPS SystemTemplate TPS SWCTemplate Total

NoA 472 374 846

NoD 4 24 28

NoM 13 228 241

NoC 489 626 1115

RMI 0,01 0,41 0,28

The only significant difference in results between the two specifications is
for the NoM metric. TPS SystemTemplate counts only 13 modifications whilst
TPS SWComponentTemplate counts 228 modifications. Nevertheless, the RMI
metric indicates higher stability of the TPS SWComponentTemplate (0,41) in
comparison to the TPS SystemTemplate (0,01). This is because the number of
requirements in the last version of the TPS SWComponentTemplate is much
higher than in the last version of the TPS SystemTemplate (1069 compared to
494) with much smaller difference in the NoC value (626 compared to 489).

After showing the results of all metrics, we list in the report all added, re-
moved and modified requirements emphasizing the textual modifications in the
modified requirements in bold. The example of the presentation of one modified
specification items in the report is shown in Figure 4.

in addition to the formal specification required to implement the communi-
cation via ports, a portprototype may own so-called port annotations (please
find a summary in figure 4.18). they do not directly influence the signature
of calls via this port, but contain further information that may be useful for
the application developers of the components on both sides of the connection.

current version
PortPrototype may own port annotations

in addition to the formal specification required to implement the communi-
cation via ports, a portprototype may own so-called port annotations (please
find a summary in figure 4.20). they do not directly influence the signature
of calls via this portprototype, but contain further information that may
be useful for the application developers of the components on both sides of
the connection.

——————————————–

5.54 [TPS SWCT 01209]

———–content———–

previous version:
ClientServerAnnotation

the clientserverannotation can be used to provide more information with
respect to the operation of the port.

current version
ClientServerAnnotation

the clientserverannotation can be used to provide more information with
respect to the clientserveroperation of the portprototype.

——————————————–

154

Fig. 4. Example of modification of a specification item



Should We Adopt a New Version of a Standard? 13

One interesting discovery that we came across by analyzing changes in the
AUTOSAR requirements was the fact that change in the name of certain techni-
cal terms (e.g., API or meta-class names) can have a significant impact on the re-
sults of the metrics. For example, we located an unexpected increase in the results
of the NoM metric between AUTOSAR releases 4.2.1 and 4.2.2. After investi-
gating the causes of this, we found that AUTOSAR renamed one requirement
specification from SWS DevelopmentErrorTracer to SWS DefaultErrorTracer.
As a consequence of this renaming, all requirements that contained the word
development (in this context) have also been renamed to default.

In order not to invalidate the results by this change that has no impact on the
semantics of the analyzed requirements, we provided an option in our tool for the
engineers to specify which changes in the names of the technical terms shall be
ignored (e.g., every change of a single word from development to default). Using
this option, engineers can add these types of modifications to the configuration
file every time they encounter them and run the tool again. We discovered that
ignoring these types of replacements can significantly decrease the total NoM
and therefore the size of the report providing more accurate results to the users.
For example, excluding the development to default replacement reduced the total
NoM between the two analyzed releases by 27%.

7 Discussion

We validated the proposed SREA method by distributing a survey to the AU-
TOSAR experts at VCG in which we asked them a number of questions related
to the evolution of the AUTOSAR requirements specifications, e.g., which spec-
ifications they think are mostly affected by the changes between two AUTOSAR
releases. Our goal was to assess whether the results of our method meet their
expectations. We concluded that the results of the SREA method fully met the
answers from the VCG experts in 66% of questions and were significantly differ-
ent in just 1%. In 17% of questions we did not get an answer from the experts
and in 16% of questions the answer was slightly different than the one provided
by our method, e.g., the experts indicated that the second most affected docu-
ment according to our method was mostly affected by the changes. More details
about the validation including survey questions and answer can be found in [10].

Based on the results of the validation, we concluded that the proposed
method can indeed be used for analyzing the evolution of standardized require-
ments of AUTOSAR and identifying the requirements specifications, together
with the actual requirements, that are mostly affected by the changes. However,
additional validation of the true benefits of the proposed method and the tool
in reducing the amount of time spent analyzing the evolution of standardized
system requirements is yet to be performed, as we explained in the future work.

In order to assess different threats to validity for our study, we followed Cook
and Campbell’s list of threats [5], i.e., threats to internal, external, construct and
conclusion validity. Due to space limitation, we describe in this paper the most



14 Corrado Motta, Darko Durisic, and Miroslaw Staron

important threats to internal validity, that concerns accuracy of our results, and
external validity, that concerns generalization of our results.

The most important threat to the internal validity of our study is related
to what is considered a requirement in the AUTOSAR specifications. According
to AUTOSAR, not only specification items and constraints described in this
paper can be considered as requirements, but also plain text written in the
specifications as it is mandatory to be followed when developing AUTOSAR
compliant systems. However, we realized during our micro analysis that most
of the important statements are part of specification items (and constraints),
whilst the remaining text usually represents examples, rationales, and figures.
For this reason, we believe that the internal validity of our results is still high
as we managed to analyze the most important content of the requirements.

The most important threat to the external validity of our study is related
to the generalizability of our results to systems that are developed based on
other industrial standards and their requirements. Although we cannot claim
that the SREA method can provide equally good results in other domain without
evaluating it in additional case studies, we believe that the this is likely due to the
fact that we designed the steps of the method considering the existing literature
and studies performed and validated in different domains (e.g., avionics).

Finally, we can recommend to other companies who would like to analyze the
evolution of standardized system requirements to start by defining the taxonomy
of possible requirements modifications and the types of changes according to their
knowledge about the analyzed standard. We believe that the other steps of the
method are applicable to other contexts/domains as well.

8 Conclusion

In this paper, we present and evaluate the method named SREA that can be
used to facilitate the process of adopting new releases of industrial standards and
their features. The method is based on the quantitative and qualitative analysis
of evolution of the standardized system requirements and is able to:

– Identify, based on the NoC metric, requirements specifications that are
mostly changed in the new release of a standard, indicating that they should
be considered first in the analysis of impact of adopting the new release.

– Identify, based on the RMI metric, requirements specifications that are
mostly unstable during the evolution of one standard, indicating that fea-
tures described in these specifications may contain defects.

– Present the actual content of added/removed and modified requirements
in the concrete specifications of one release of a standard to the engineers
performing the analysis, thus significantly reducing the time of analysis.

We apply and validate the SREA method on the case of AUTOSAR stan-
dard by developing the software tool that implements the method. We used the
proposed method and the tool to study and assess the impact of AUTOSAR re-
quirements evolution on the automotive software systems based on AUTOSAR.



Should We Adopt a New Version of a Standard? 15

Our results show that the requirements standardized by AUTOSAR and their
evolution should be analyzed and measured in a structured and automated way,
i.e., by following a clearly defined method supported by a software tool to auto-
mate the process of gathering results. This approach helped automotive engineers
from Volvo Car Group to faster assess the impact of AUTOSAR design require-
ments changes, related to a set of new AUTOSAR features, on the AUTOSAR
modeling tools used in the development process.

In particular, we show that by applying the SREA method to different ver-
sions of the AUTOSAR standard, it is possible to identify the most important
requirements specifications to be analyzed in the first phase. As an example,
we showed the the analysis of the two specifications - TPS SystemTemplate and
TPS SWComponentTemplate - shall be done first in order to assess the impact
of switching from the AUTOSAR release 4.0.3 to release 4.2.2 on the used
AUTOSAR modeling tools. We also show that the method is able to provide a
report containing only relevant information on the added, removed and modified
requirements to the automotive engineers in order to increase the speed of anal-
ysis. For example in case of the TPS SystemTemplate, the report contained 269
pages of relevant information about the changes whilst the same specification
provided by AUTOSAR have around 1500 pages. Without the proposed method,
these pages would need to be compared manually between the analyzed releases.

The information provided by the SREA method can therefore help organi-
zations responsible for managing large software systems in understanding which
areas of the system will be mostly affected by the changes in the standardized
requirements and therefore faster adopt new releases of the standard.

We identified several potential areas of interest for further work. Since re-
quirements evolution is today considered to be a challenging task for both in-
dustry and academia, this study shall be considered as a first step in defining
the methodology for performing this task. There are several interesting ways for
improving and/or extending the method we propose, in particular:

1. Calculate the actual engineering effort that is saved by using the the SREA
method. This would increase the validity of the presented results.

2. Apply SREA to other industries that develop system based on standards.
This would increase the generalizability of the presented results.

3. Extend the proposed method to provide effort estimates for adopting new
standardized features in the development projects. This would additionally
help companies in allocating resources for supporting specific features.

4. Extend the proposed method to include a model for estimating the number
of changes to the requirements specifications that will occur in the future
releases of the standard. This would help standardization organizations in
allocating resources for working with the most critical specifications early.

The tool we used for the analysis of AUTOSAR requirements can be down-
loaded from here: https://www.chalmers.se/en/projects/Documents/SREA.zip



16 Corrado Motta, Darko Durisic, and Miroslaw Staron

Acknowledgment

The authors would like to thank Swedish Governmental Agency for Innovation
Systems (VINNOVA) for funding this research (grant no. 2013-02630) and the
AUTOSAR team at Volvo Car Group for contributing to the work.

References

1. Anderson, S., Felici, M.: Controlling Requirements Evolution: An Avionics Case
Study. In: Proceedings of the 19th International Conference on Computer Safety,
Reliability and Security. pp. 361–370 (2000)

2. Anderson, S., Felici, M.: Requirements Evolution from Process to Product Oriented
Management. In: Proceedings of the 3rd Conference on Product-Focused Software
Process Improvement. pp. 27–41 (2001)

3. AUTOSAR, www.autosar.org: Automotive Open System Architecture (2003)
4. Broy, M., Kruger, I., Pretschner, A., Salzmann, C.: Engineering Automotive Soft-

ware. In: Proceedings of the IEEE. 2, vol. 95 (2007)
5. Cook, T., Campbell, D.: Quasi-Experimentation: Design & Analysis Issues for Field

Settings. Houghton Mifflin (1979)
6. Durisic, D., Staron, M., Tichy, M.: ARCA - Automated Analysis of AUTOSAR

Meta-Model Changes. In: International Workshop on Modelling in Software Engi-
neering (2015)

7. Durisic, D., Staron, M., Tichy, M., Hansson, J.: Evolution of Long-Term Industrial
Meta-Models - A Case Study of AUTOSAR. In: Euromicro Conference on Software
Engineering and Advanced Applications. pp. 141–148 (2014)

8. Ernst, N., Borgida, A., Jureta, J., Mylopoulos, J.: An Overview of Requirements
Evolution. In: Evolving Software Systems, pp. 3–32. Springer (2014)

9. Li, J., Zhang, H., Zhu, L., Jeffery, R., Wang, Q., Li, M.: Preliminary Results of
a Systematic Review on Requirements Evolution. In: Proceedings of the IEEE
Conference on Evaluation Assessment in Software Engineering. pp. 12–21 (2012)

10. Motta, C.: Analyzing the Evolution of System Requirements. Chalmers — Univer-
sity of Gothenburg (2016)

11. Nurmuliani, N., Zowghi, D., Fowell, S.: Analysis of Requirements Volatility dur-
ing Software Development Life Cycle. In: Proceedings of the Australian Software
Engineering Conference. pp. 28 – 37 (2004)

12. Runeson, P., Host, M.: Guidelines for Conducting and Reporting Case Study Re-
search in Software Engineering. In: Proceedings of the Conference on Empirical
Software Engineering. pp. 131–164 (2009)

13. Shi, L., Wang, Q., Li, M.: Learning from Evolution History to Predict Future Re-
quirement Changes. In: Proceedings of the International Conference on Require-
ments Engineering. pp. 135–144 (2013)

14. Stark, G., Skillicorn, A., Smeele, R.: A Micro and Macro Based Examination of
the Effects of Requirements Changes on Aerospace Software Maintenance. In: Pro-
ceedings of the IEEE Conference on Aerospace. pp. 165–172 (1998)

15. Wang, H., Li, J., Wang, Q., Wang, Y.: Quantitative Analysis of Requirements Evo-
lution Across Multiple Versions of an Industrial Software Product. In: Proceedings
of the 17th Conference on Asia-Pacific Software Engineering. pp. 43–49 (2010)

16. Wohlin, C.: Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering (2014)


